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Abstract

Starting from her home, a service provider visits several customers, following a prede-
termined route, and returns home after all customers are visited. The problem is to �nd
a fair allocation of the total cost of this tour among the customers served. A transferable-
utility cooperative game can be associated with this cost allocation problem. We intro-
duce a new class of games, which we refer as the �xed-route traveling salesman games with
appointments. We characterize the Shapley Value in this class using a property which
requires that sponsors do not bene�t from mergers, or splitting into a set of sponsors.
JEL Classi�cation Codes : C71
Keywords : �xed-route traveling salesman games, routing games, appointment games,

the Shapley value, the core, transferable-utility games, merging and splitting proofness,
networks, cost allocation.

1 Introduction

Finding the least-costly route that visits a given set of locations and returns to the starting
location, the so called �traveling salesman problem (TSP)� is one of the most well-known
combinatorial optimization problems in operations research. As �rst investigated by Fishburn
and Pollack (1983), in several TSP problems, the cost of the tour has to be allocated among the
locations visited (sponsors). Some examples include distribution planning situations such as
delivery of supplies to grocery stores by a manufacturer (see, Engevall et al; 1998), information
transmission over a TSP-type of network, a service provider (salesman, repairman, cable guy,
parcel delivery guy, private tutor, doctor etc.) visiting his customers, a professor invited by
several universities for seminars, and passengers using shuttle buses or car-pooling.

In some of the above examples, the traveling agent may need to follow a route that is
not necessarily the least costly one. We study the so called ��xed-route traveling salesman
problems�where the route is �xed due to outside factors. Here, starting from an original
location we call home (e.g., main o¢ ce, factory, or depot), a set of locations has to be visited
following a predetermined route, and after each location is visited exactly once, the tour ends
at home.

�The �rst draft of this paper was written when I was a Ph.D student in the University of Rochester. I am
grateful to William Thomson for his guidance and advice. I also thank Anirban Kar for his suggestions.

ySchool of Economics, the University of Adelaide, Adelaide, SA 5005, Australia; e-mail:
duygu.yengin@adelaide.edu.au.
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Various factors other than the cost may a¤ect the route. Some of the sponsors may need
to be visited before the others due to the urgency of their needs, their higher priority status,
or the availability of their free times for a visit. Other examples include a communication
network where the �ow of information has to follow the speci�ed network structure or a
product which has to be processed in several departments in a �rm according to the stage of
its development (e.g. it can not be sent to the marketing department before quality control).

We assume that each customer is to be visited exactly once but home can be visited
more than once, which may be necessary, for instance, when the service provider needs to
replenish her supplies, or perform maintenance for the machinery/tools, after visiting a group
of customers and before visiting the rest. There may also be customers who come to the main
o¢ ce for the service. Another reason may be that the traveler has appointments to meet with
the customers and there is a considerable waiting time between two consecutive appointments.
Then, in between those appointments, she would go home (o¢ ce) and wait there.

Our goal is to �nd a fair distribution of the total cost generated in a �xed-route TSP
among the sponsors. Note that the sponsors only share the total cost of the route. Hence, we
implicitly assume that each agent pays the cost of the service provided to her separately.

One approach to solve this cost distribution problem is to de�ne rules that select cost
allocations for each �xed-route TSP directly. We follow the second approach which is to
associate a cooperative game with transferable utilities (TU-game) with each �xed-route TSP
and de�ne rules that select allocations for the TU-game. A TU-game is a pair (N; v) where
N is a �nite set of agents and v : 2N ! R is a characteristic function which assigns to each
coalition S � N; a value v(S) such that v(;) = 0: In the current context, v(S) represents the
cost of the tour in which only the members of S are served by the service provider. Potters et
al (1992) formulate a TU-game associated with a �xed-route TSP as follows: for each coalition
S � N; v(S) is de�ned as the cost of the original route restricted to S; where the salesman
visits the members of S in the same order as they were visited in the original route over N ,
skipping all agents in NnS:1 They refer to these games as routing games.

We introduce a new class of games which we refer as the class of �xed-route traveling
salesman games with appointments (here after, appointment games). Consider the case in
which each sponsor in N makes an appointment to meet the traveler at a speci�ed time.
After all the appointments are made, suppose the members of S � N decide to hire the
traveler without cooperating with the sponsors in NnS: That is, the members of S together
will pay v(S) to the traveler. This can be thought as if all the sponsors in NnS cancel their
appointments. The permissible route over S is the one where the traveler still visits the
sponsors in S according to their original appointments. So, the traveler follows the original
route, skipping the sponsors who are not in S; and when she skips a sponsor, she goes home
from where she goes to the next unvisited sponsor in S: The value of a coalition S; is the cost
of this permissible route over S:

Our formulation of permissible routes over coalitions makes sense in several TSPs where
the service provider makes appointments which satisfy two conditions:

First, when some appointments are cancelled, the remaining ones can not be rescheduled
due to the costs of rescheduling, in�exibility of the available or suitable times of other cus-
tomers, etc. Hence, if some appointments are cancelled, the traveler still has to follow the

1Potters et al (1992) also studied TSPs where the route is not �xed. They introduced the traveling salesman
games, where the value of a coalition is the cost of a least costly tour over the members of that coalition. The
salesman is allowed to visit any agent more than once and he is free to visit the agents in a coalition in any
order he wishes as long as the cost of the trip is minimized.
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initial appointment schedule.
Second, the appointments are sparsely scheduled. This would be the case, for instance,

when the service provider has to spend a considerable period of time to complete her service
for the sponsor she visits. If an appointment is cancelled, then the traveler has to wait a
lengthy period of time till the next appointment. Then, the service provider has two options:
either she can wait at (or close by) the previous or next appointee�s location till the next
appointment starts, or she can go home (main o¢ ce) and wait there. In many cases, the �rst
option would be too costly and this cost is not reimbursed by the sponsors, hence the traveler
would go home. For instance, think of a professor who wants to visit universities in di¤erent
states at speci�c dates as a visiting professor. If a university cancels its appointment, there
would be a few weeks waiting period till the next appointment. Hence, the professor goes
back to her home and waits there until the appointed date for the next university arrives.2

Several papers discuss the �core� in traveling salesman games and routing games (see
Derks and Kuipers, 1997; Engevall et al., 1998; Kuipers, 1993; Potters et al., 1992; Tamir,
1989). Here, we study another well-known solution, the �Shapley value�(Shapley, 1971). To
our knowledge, the results we present here are the only ones so far on the characterizations of
the Shapley value in TSPs. Also, we follow an axiomatic approach which di¤erentiates this
paper from the other papers analyzing the cost allocation problem in TSPs.

In general, the Shapley value is computationally complex. However, in appointment games,
we show that this is not the case. We show that under a mild condition on the costs, the
class of appointment games is convex, hence, in this class, the Shapley value is in the core.
Moreover, the Shapley value may be an appealing alternative to core since it is always non-
empty, single-valued, and is the unique solution satisfying certain desirable properties. The
Shapley value has been characterized in general networks by Myerson (1977) and Jackson and
Wolinsky (1996), in minimum cost spanning tree games by Kar (2002), and in scheduling and
queuing problems by Maniquet (2003), Chun (2006, 2010) and Moulin (2007).

Our characterizations involve several variations of a strategic property called merging and
splitting proofness which requires that a set of sponsors who follow each other on a route
should not gain by merging or a sponsor should not gain by splitting into several sponsors
located next to each other. We also analyze the Shapley value in the class of routing games.
Our characterizations don�t extend to the routing games. Potters et al (1992) speci�ed the
conditions which ensure that the core of routing games is non-empty. However, we show that
these conditions do not guarantee the convexity of the routing games. Hence, we can not
guarantee that Shapley value is in the core whenever it is non-empty.

In Section 2, the model is described. The results for the appointment games are presented
in Section 3. Section 4 states the results for the routing games. All proofs are in the Appendix.

2 The Model

2.1 The Economy

Let N = f1; :::; ng with jN j = n � 2 be an ordered list of sponsors and 0 be home. Without
loss of generality, we assume that the sponsors are visited in the same order as they appear
in N: Let N0 � N [ f0g and for each S � N; let S0 � S [ f0g: A route r = (i1; i2; :::; iM ) is

2For more examples and extended introduction, see the working paper version of our paper at
http://economics.adelaide.edu.au/research/papers/doc/wp2009-28.pdf.
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an ordered list of the agents (sponsors and home) to be visited by a �traveler�such that
(i) the route starts from home and ends at home (i.e. i1 = iM = 0);
(ii) each sponsor is visited exactly once,
(iii) home can be visited more than once,
(iv) after sponsor i 2 N is visited, either home or sponsor i + 1 is to be visited (i.e. the

relative order of the sponsors in r respect their order in N):

For each pair fi; jg � N0; i is connected to j on a route r (denoted as i �r j), if after i;
the next agent visited is j : r = (0; :::; i; j; :::; 0).

For each fi; jg � N0; let ci;j � 0 be the cost of traveling between agents i and j: Let
ci � c0;i = ci;0 be the cost of traveling between home and sponsor i: The cost of a route r is
c(r) =

P
fi;jg�N0: i�rj

ci;j :

Let c = fci;j : fi; jg � N0g. An economy is given by e = hN; c;ri : Let the domain of all
economies be E :

A sponsor set S = fl; l + 1; :::;m � 1;mg � N is a connected set on r if and only if
0 �r l �r l+ 1 �r ::: �r m� 1 �r m �r 0: Let Se be the set of all connected sets in economy
e:

In order to visualize the problem, we can associate a graph with each e = hN; c;ri 2 E :
The elements of N0 are called nodes, 0 being the source. A link between nodes i and j
(denoted as lij) is a direct path between them: Let li � l0i be the link between home and i:
Let L = flij : fi; jg � N0g be the set of all links between all agents. A graph g over N0 is
a subset of L: The graph associated with e = hN; c;ri 2 E is g(e) = flij : fi; jg � N0 and
i �r jg where each link lij in g(e) is associated with weight ci;j :
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Figure 1

Example 1. Let e = hN; c;ri with r = (i1; i2; i3; :::; i7) = (0; 1; 0; 2; 3; 4; 0): The route r de-
scribes a trip where starting from 0 (home); the traveler visits sponsor 1, then goes back
home: From home; she visits sponsors 2, 3; and 4, in that order, and returns home and
completes the tour.
Here, the connected sets are S = f1g and S0 = f2; 3; 4g: Hence, Se = fS; S0g: The cost of the
route is c(r) = 2c1 + c2 + c2;3 + c3;4 + c4: The associated graph g(e) is as in Figure 1.

2.2 Appointment Games

Let e = hN; c;ri 2 E and S � N: Let the permissible route over S (denoted as rS) be as
follows:

Starting from home, the traveler �rst visits the smallest numbered sponsor in S; let us call
this sponsor j1: Suppose, in the original route r; after visiting sponsor j1; the traveler visits
agent (home or a sponsor) i 2 N0 (i.e. j1 �r i). If i 2 S0; then in route rs; the traveler goes
to i right after visiting j1 (i.e. j1 �rS j2 � i): If i =2 S; then it is as if i has cancelled her
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appointment. In this case, in rS ; after visiting j1, the traveler goes home and she waits there
till it is time to attend the next outstanding appointment with the sponsors in Snfj1g: That
is, if j1 �r i and i =2 S; then j1 �rS 0 �rS l where l = minfk : k 2 S and k > j1g). A similar
procedure is followed until all the sponsors in S are visited, then the traveler returns home.
Note that each time after the traveler visits home, the next agent she visits is the smallest
numbered agent in S that has not been visited so far.

Formally, for some T � jSj; let rS = (0; j1; j2; :::; jT ; 0) be such that:
(i) for each t 2 f1; ::; Tg; jt 2 S0; and for each i 2 S; there is a unique t 2 f1; ::; Tg such that
i � jt on rS ;
(ii) j1 = min

i2S
i and jT = max

i2S
i;

(iii) for each jt 2 S with t 2 f1; 2; ::; Tg and each i 2 N such that jt �r i; if i 2 S0; then
jt �rS jt+1 � i; otherwise jt �rS jt+1 � 0; and
(iv) for each jt � 0 with t 2 f2; ::; T � 1g; we have jt �rS minfk : k 2 S and k > jt�1g:

Let e = hN; c;ri 2 E : For each S � N; let cS= fci;j � 0 : fi; jg � S0g: The economy
restricted to S with respect to rS is eS = hS; cS ;rSi 2 E :

Let (N; v) be a TU-game where v : 2N ! R+ is a characteristic function such that v(;) = 0:
For each e = hN; c;ri 2 E , the �xed-route traveling salesman game with appointments (in short,
appointment game) associated with e is (N; ve) where ve : 2N ! R+ is such that for each
S � N; ve(S) = c(rS): Let VE be the class of appointment games:

Note that ve(N) = c(r) and for each S 2 Se; ve(S) = c(rS): Since c(r) =
P
S2Se

c(rS),

ve(N) =
P
S2Se

ve(S):

Example 2. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, rS = (0; 1; 0; 4; 5; 0; 6; 0; 7; 0; 9; 0): Here, 7 �r 8 but 8 =2 S (i.e. 8
cancelled her appointment). Thus, after visiting 7, the traveler goes home from where she
goes to sponsor 9:
The graphs g(e) and g(eS) = flij : fi; jg � S0 and i �rS jg are as in Figures 2a and 2b.
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Figure 2a : g(e)
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2.3 The Shapley Value

A solution F is a mapping that associates with each TU-game (N; v); an allocation vector
x =(x1; x2; :::; xn) 2 Rn where

P
i2N
xi = v(N): By abuse of notation, instead of F (N; v); let

F (v) denote the allocation proposed by F for (N; v):
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An example of a solution is the Shapley value, SV: for each (N; v) and each i 2 N;

SVi(v) =
X

S�Nnfig

jSj!(n� jSj � 1)!
n!

[v(S [ fig)� v(S)]:

In general, the Shapley value is computationally complex since we need to calculate the
marginal contribution of each agent to each possible coalition. But, for appointment games,
we can show that the Shapley value takes a simple form.

Proposition 1. Let e = hN; c;ri 2 E, i 2 N; and Si 2 Se be the connected set such that
i 2 Si:
� If Si = fig; then

SVi(ve) = 2ci:

� If Si \ fi� 1; i+ 1g = j; then

SVi(ve) =
3ci + ci;j � cj

2
:

� If fi� 1; i+ 1g � Si; then

SVi(ve) =
1

2
(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1):

In an appointment game, due to the network structure, each agent is essentially coop-
erating with two sets of agents: the set of agents that come before her on the route, and
the set of agents that come after her. Our calculation of the Shapley value in appointment
games re�ects this fact: for each sponsor i 2 Si, her Shapley value in an appointment game
is the average of her marginal contribution to the coalition of sponsors that are in the same
connected set as her and precede her on the route (ve(fj 2 Si : j � ig)� ve(fj 2 Si : j < ig))
and her marginal contribution to the coalition of sponsors that are in the same connected set
as her and come after her on the route (ve(fj 2 Si : j � ig) � ve(fj 2 Si : j > ig)). Hence,
e¤ectively, for each agent, only her marginal contribution to these two sets of agents matter,
even though the original formula of the Shapley value considers her marginal contribution to
any subset of agents.

Note that in the appointment games, the Shapley value of a sponsor only depends on the
cost of traveling from herself to home, and to the sponsors that are connected to her. A
change in the cost of a sponsor to connect home a¤ects only herself and the sponsors who
are connected to her. Also, a change in the cost of traveling between two sponsors only a¤ect
those sponsors and a¤ect them equally.

3 Characterizations of the Shapley Value in Appointment
Games

3.1 The Core and the Shapley Value

In a cost allocation problem, the core of a TU-game (N; v) is the set of vectors x 2 Rn such
that for each S � N;

P
i2S
xi � v(S) and

P
i2N
xi = v(N): If an allocation x 2 Rn+ is in the core of

a game (N; v); then no coalition of sponsors has an incentive to leave the grand coalition N: In
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general, the core can be empty. Potters et al (1992) state that in the class of routing games,
if the route r chosen for the grand coalition is a least-costly tour and triangle inequalities
hold for all the agents (i.e. for each triple fi; j; kg � N0; ci;j + cj;k � ci;k), then the core is
non-empty.

In appointment games, a much weaker condition is su¢ cient for the core to be non-empty.
First of all, we do not need that r be a least costly tour for N: Second, we only need that
given a route, for each pair of connected sponsors, the sum of their costs of connecting to
home is greater than the cost of connecting to each other: Formally, for each r and each pair
fi; jg � N such that i �r j; ci + cj � ci;j . Let ET be the set of economies in which this
condition holds. Let VET be the class of appointment games associated with economies in ET :
Actually, on VET ; we achieve more than the non-emptiness of the core. Here, we also have the
convexity of the appointment games and hence, by Theorem 7 of Shapley (1971), the Shapley
value is an element of the core.

Proposition 2. On the domain VET ; appointment games are convex and the Shapley value is
in the core.

Proposition 2 shows that working on the domain VET is a su¢ cient condition for the core
to be non-empty. It is easy to see that when there are only two agents, working on domain
VET is also a necessary condition for the non-emptiness of the core: let x 2 R2 be in the
core of (fi; jg; ve): The core conditions are: xi � 2ci; xj � 2cj ; and xi + xj = ve(fi; jg):
If i �r j; that is r = (0; i; j; 0); then ve(fi; jg) = ci + ci;j + cj : By the core conditions,
ci + ci;j + cj = xi + xj � 2ci + 2cj ; which implies ci + cj � ci;j . Hence, (fi; jg; ve) 2 VET :

In the rest of the paper, unless stated otherwise, the results hold on both of the domains
VE and VET :

Let us present other axioms that compare the cost shares of sponsors with the values of
coalitions in di¤erent situations.

Although, the core compares, for each coalition, the sum of the cost shares of the sponsors
in the coalition with the value of that coalition, the following two axioms are concerned with
only the grand coalition N and singleton coalitions, respectively.

E¢ ciency: For each (N; v);
P
i2N
Fi(v) = v(N):

Individual Rationality: For each (N; v); Fi(v) � v(fig):

Note that the Shapley value satis�es Individual Rationality only on VET : To see this,
let e = hfi; jg; c;ri with i �r j and suppose that ci + cj < ci;j (i.e. e =2ET ): Then, since
SVi(ve) = 1=2(3ci + ci;j � cj) and v(fig) = 2ci; SVi(ve) > v(fig):

The following axiom states that in each connected set, the sponsors should together pay
the value of that set. Hence, connected sets should not cross-subsidize each other.

Respect of Connected Sets: For each e = hN; c;ri 2 E and each connected set S 2 Se;X
i2S
Fi(ve) = ve(S):

Note that we de�ne some of the axioms (such as E¢ ciency) for any TU-game where as
some (such as Respect of Connected Sets) are de�ned only for those TU-games associated
with �xed-route TSPs.

7



We also consider the following weakening of Respect of Connected Sets where for each
connected set S, the sum of the cost shares of the sponsors in S sum up to an amount that
depends on the value of S: Hence, instead of the cost of visiting all the sponsors in S; the
traveler collects an amount from S which is a function of this cost. For instance, the service
provider may charge a �at fee to each connected set, regardless of the cost of visiting them or
may use markup pricing. Let � : R+ ! R.

Weak Respect of Connected Sets with respect to � : For each e = hN; c;ri 2 E and
each connected set S 2 Se; X

i2S
Fi(ve) = �(ve(S)):

Consider the di¤erence between the value of a coalition consisting of only one sponsor
and the cost share of this sponsor in the grand coalition. This di¤erence measures how much
a sponsor bene�ts from cooperating with the other sponsors rather than being alone. The
following fairness axiom requires that in a two-sponsor TU-game, the sponsors should equally
bene�t from cooperation. In a sense, in two-sponsor games, we require the sponsors to have
equal bargaining powers when it comes to sharing the bene�ts from cooperation.

Equal Bene�t: For each (fi; jg; v),

v(fig)� Fi(v)=v(fjg)� Fj(v):

Hart and Mas-Colell (1989) call a solution F �standard for two-person games� if it sat-
is�es E¢ ciency and Equal Bene�t. For each (fi; jg; v), such a solution divides the surplus
v(fi; jg)�v(fig)�v(fjg) equally among the sponsors.3 Most solutions satisfy this requirement,
one of them being the Shapley value.

Remark 1. A solution F satis�es E¢ ciency in two-sponsor TU-games and Equal Bene�t if
and only if for each (N; v) with n = 2 and each i 2 N;

Fi(v)=v(fig) +
1

2
[v(N)�v(fig)�v(Nnfig)] = SVi(v):

3.2 Mergers and the Shapley Value

There are several ways in which agents can collude. In the context of TU-games, two ap-
proaches can be noticed: either a new game with the same player set evolves when agents
make binding agreements (Haller, 1994) or a group of agents merge into one player so that the
set of players for the new game is reduced (Lehrer, 1988; Derks and Tijs, 2000, Knudsen and
Østerdal, 2005). In some of the papers, only bilateral agreements/amalgamations are studied
(e.g. Lehrer, 1988; Haller, 1994) or there is a given partition of the agent set that dictates
which coalitions can merge (Derks and Tijs, 2000).

We consider mergers which result in a reduced player set. Also, instead of any group of
sponsors, we only allow sponsors who follow each other on a route to merge or a sponsor to
split into a set of consecutive sponsors. This requirement is intuitive especially when we think
that sponsors can only e¤ectively communicate with their neighbors in the network or when
mergers of (or splits into) non-consecutive sponsors are easily detected. Suppose a group of

3Hart and Mas-Colell (1989) introduce the concept of "preservation of di¤erences" which can be regarded
as a generalization of the "equal division of the surplus" idea for two-person problems.
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consecutive sponsors K = fk; k + 1; k + 2; :::; lg for some fk; lg � N , forms a coalition and
represents itself as a single sponsor k 2 K (i.e. K merges into k).4 Note that K does not
have to be a connected set, the traveler may visit home in between visiting any two sponsors
in K: However, the traveler does not visit any sponsor outside K in between visiting any two
sponsors in K:

In some other models, merging or splitting of agents is studied in a more literal sense of
merging or splitting of the characteristics of the agents. For instance, in queuing problems,
multiple jobs in the queue can literally merge and become one job. However, we analyze a
di¤erent strategic situation: when sponsors in K merge, they do not change their physical
locations. The traveler still has to visit the locations of these sponsors. However, the sponsors
in K now represent themselves as a single entity which may change their bargaining power in
the grand coalition. Hence, we are not considering changes in the economy (i.e., the agents
do not merge their locations), but we are interested in changes in the cooperation/bargaining
structure as a result of some agents�forming alliances between themselves. Therefore, we do
not adopt the approach of de�ning rules and axioms directly for the economy. Instead, we
de�ne a TU-game that represents the cooperation structure within the economy and de�ne
our axioms for this TU-game.

Think of an electrician who provides maintenance service to a big �rm with separate o¢ ce
buildings located closely. These di¤erent units can either bill the service provider separately,
or they can bill together under the name of the �rm which they belong to. Would it make a
di¤erence in their total cost share if the units acted separately or as a group?

Before the sponsors in set K merge, each sponsor in K had the authority to bar-
gain/cooperate with other coalitions by herself, so her contribution to other coalitions mat-
tered in the calculation of her cost share. After the merger, agents in K must act together as
one entity to cooperate with other sponsors: By requiring K to act as a single entity, we are
imposing restrictions on which coalitions can form: previously all subsets of N could interact,
after the merger, the number of entities that can bargain within themselves falls to n�jKj+1:

If K merges and acts like a single sponsor k 2 K; then we assume that as a group, K
is willing to pay the traveler up to ve(K): This is because, the locations of the members in
the merging coalition are still the same as before the merger, hence the stand-alone value of
coalition K is same before and after the merger. If members of K hire the traveler alone
without cooperating with others, they still have to cover the cost of being visited as a group,
and this cost is still ve(K): The resulting TU-game with the restricted cooperation structure
after the merger can be de�ned as follows.

Let e = hN; c;ri 2 E and K � N be such that K = fk; k + 1; k + 2; :::; lg for some
1 � k < l � n. Let bv : 2(NnK)[fkg ! Rn�jKj+1+ be such that

� bv(fkg) = ve(K);
� for each S � NnK; bv(S) = ve(S); and
� for each S � NnK; bv(S [ fkg) = ve(S [K):

We refer ((NnK) [ fkg; bv) as the TU-game obtained from (N; ve) when K merges into a
single sponsor k:

The following axiom states that no group of consecutive sponsors can bene�t from a merger
or no sponsor bene�ts from splitting into a group of consecutive sponsors.

4Note that the choice of k as the representative of K is arbitrary, K can merge into any i 2 K:
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Merging and Splitting Proofness: For each e = hN; c;ri 2 E , each K = fk; k + 1; k +
2; :::; lg with 1 � k < l � n; and each ((NnK) [ fkg; bv) as described above,

Fk(bv) =X
i2K
Fi(ve):

We can strengthen Merging and Splitting Proofness by allowing for the possibility that
there may be more than one merger at the same time. In this case, for each of the merging
groups, the total cost its members pay should remain unchanged. Although, our proofs will
also work with this stronger requirement, for our results, we only need a much weaker (but
less intuitive) version of this requirement: Suppose the grand coalition is partitioned into two
groups of consecutive sponsors and each of these groups merge into a single sponsor. Then, for
none of these two groups, their total cost share should change by these mergers. Formally, let
e = hN; c;ri 2 E and fK;K 0g � 2N be such that K = f1; 2; :::; kg and K 0 = fk+1; k+2; :::; ng
for some 1 � k < n. Let ev : 2fk;k0g ! R2+ be such that ev(fkg) = ve(K), ev(fk0g) = ve(K 0); andev(fk; k0g) = ve(N): Let (fk; k0g; ev) be the TU-game obtained from (N; ve) when K merges
into a single sponsor k and K 0 merges into a single sponsor k0 2 K 0:

Merging and Splitting Proofness-2: For each e = hN; c;ri 2 E , each fK;K 0g � 2N ; and
each (fk; k0g; ev) as described above,

Fk(ev) =X
i2K
Fi(ve) and Fk0(ev) = X

i2K0

Fi(ve):

Another variable population property is concerned with departures from the original econ-
omy in the following way. Let S be a connected set in e = hN; c;ri. Now, suppose all the
sponsors which do not belong to S leave after paying their cost shares. Note that since S
is a connected set, the cost of visiting the sponsors in S is same both before and after the
departure of sponsors in NnS. Hence, fairness may require that whether the sponsors in S
cooperate with the grand coalition or not should not a¤ect their cost shares. In other words,
the sponsors in S should not be a¤ected when the other sponsors leave the economy. Let
eS = hS; cS ;rSi 2 E be the reduced economy after the departure of NnS:

Consistency over Connected Sets: For each e = hN; c;ri 2 E , each S 2 Se, and each
i 2 S;

Fi(ve) = Fi(veS ):

Between the axioms stated so far, certain (sometimes rather obvious) logical relations hold
as the following remark presents.

Remark 2. a) If a solution satis�es Weak Respect of Connected Sets with respect to � for
some � : R+ ! R, Merging and Splitting Proofness-2, and Equal Bene�t, then � is an identity
function (i.e. the solution satis�es Respect of Connected Sets).

b) E¢ ciency and Merging and Splitting Proofness together imply Merging and Splitting
Proofness-2.

c) E¢ ciency, Individual Rationality, and Merging and Splitting Proofness together imply
Respect of Connected Sets.

d) E¢ ciency in two-sponsor TU-games,Merging and Splitting Proofness-2, and Equal Bene�t
together imply Respect of Connected Sets.
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e) Core implies Respect of Connected Sets which in turn implies E¢ ciency in two-sponsor
TU-games.

f) E¢ ciency and Consistency over Connected Sets together imply Respect of Connected Sets.

By Remark 1, E¢ ciency in two-sponsor TU-games and Equal Bene�t characterize the
Shapley value for two sponsor TU-games. By Remark 2d, we also have Respect of Connected
Sets. This axiom and Merging and Splitting Proofness-2 lifts the characterization from two
sponsor games to larger economies as stated in our main theorem.

Theorem 1. The Shapley value is the only solution which satis�es E¢ ciency in two-sponsor
TU-games, Merging and Splitting Proofness-2, and Equal Bene�t.

Several alternative combinations of axioms still characterize the Shapley value in appoint-
ment games due to the logical relations stated in Remark 2. For instance, by Remark 2e and
Theorem 1, the Shapley value is also the only solution that satis�es Respect of Connected
Sets, Merging and Splitting Proofness-2, and Equal Bene�t. Moreover, by Remark 2a, we can
weaken Respect of Connected Sets and still characterize the Shapley value. Also, by Remark
2b and Theorem 1, we have the following: the Shapley value is the only solution which satis�es
E¢ ciency, Merging and Splitting Proofness, and Equal Bene�t

One may argue that only those sponsors that belong to the same connected set can e¤ec-
tively communicate and hence can merge into a single sponsor. That is, the network structure
does not permit sponsors in di¤erent connected sets to merge. We can weaken Merging and
Splitting Proofness-2 to take into account this argument by requiring that we can only apply
the axiom when the agent set N itself is a connected set. In Theorem 1, if we replace Merging
and Splitting Proofness-2 with its weaker version and add Consistency over Connected Sets,
we can still characterize the Shapley value (for a formal statement, see Proposition 2 in our
working paper version).5

Hart and Mas-Colell (1989) characterize the Shapley value in general TU-games using
E¢ ciency in two-sponsor TU-games, Equal Bene�t, and a consistency property which, if
adapted to our setting, is stronger than Consistency over Connected Sets since it allows the
departure of any set of agents (not only the sponsors that are outside a given connected set)
after paying their cost shares. Theorem 1 indicates that in appointment games, instead of
consistency, we can use Merging and Splitting Proofness-2 and still obtain the Shapley value.

In almost all characterizations of the Shapley value, E¢ ciency (or Respect of Connected
Sets) is used. In Theorem 1, we weakened E¢ ciency so that it is only required to hold in
two-sponsor TU-games. To see how far we would move away from the Shapley value when we
drop the requirement that the traveler collects the cost of visiting sponsors, let us consider
Weak Respect of Connected Sets with respect to � for some � : R+ ! R: Remark 2a states
that if � : R+ ! R is an arbitrary function and not necessarily the identity function, then
Weak Respect of Connected Sets with respect to �, Merging and Splitting Proofness-2, and
Equal Bene�t are incompatible. For instance, if the traveler wants to use markup pricing or
a �at fee, she can not use a solution which satis�es Merging and Splitting Proofness-2 and

5Note that the same result can be obtained if we replacedWeak Merging and Splitting Proofness-2 with the
following stronger but more intuitive requirement: there may be more than one merger at the same time but
only the sponsors that belong to the same connected set are allowed to merge, then, for each of the merging
groups, the total cost its members pay should remain unchanged.
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Equal Bene�t. The proof of this incompatibility result requires using economies with at least
three connected sets. Let E2 = fe 2 E : jSej � 2g be the set of economies with at most two
connected sets and VE2 be the class of appointment games associated with economies in E2: If
F is de�ned on VE2 ; then F can satisfy the aforementioned three axioms and yet � does not
have to be an identity function. The interesting point is that F would still be closely related
to the Shapley value: in economies where it is de�ned, F coincides with the Shapley value for
each sponsor i 2 N that is connected to both i � 1 and i + 1: Hence, weakening Respect of
Connected Sets only a¤ects the cost shares of the �rst and the last sponsors to be visited in
any connected set: This result shows that, on VE2 , the traveler can be �exible in her pricing
strategy and still not move too far away from the Shapley value in appointment games.

Proposition 3. Let F be solution de�ned on VE2. Let � : R+ ! R:
a) Solution F satis�es Weak Respect of Connected Sets with respect to �, Merging and
Splitting Proofness-2, and Equal Bene�t if and only if for each e = hN; c;ri 2 E such that
jSej = 1 and each i 2 N;

Fi(ve) = 1
2(�(ve(N)) + ve(fig)� ve(Nnfig)); if i 2 f1; ng;

= SVi(ve); if i =2 f1; ng:

b) Solution F satis�es Weak Respect of Connected Sets with respect to �, Merging and
Splitting Proofness-2, Equal Bene�t, and Consistency over Connected Sets if and only if for
each e = hN; c;ri 2 E such that jSej = 2; each i 2 N and Si 2 Se with i 2 Si;

Fi(ve) = �(ve(fig)); if jfi� 1; i+ 1g \ Sij = 0;
= 1

2(�(ve(fSig)) + ve(fig)� ve(Sinfig)); if jfi� 1; i+ 1g \ Sij = 1;
= SVi(ve); if jfi� 1; i+ 1g \ Sij = 2:

4 The Shapley Value in Routing Games

Potters et al (1992) introduced the routing games to analyze the cost allocation problem in
�xed-route TSPs, and they studied the Core in these games. Here, we analyze the Shapley
value in routing games.

Let e = hN; c;ri 2 E and S � N: The permissible route over S in a routing game is the
one where the traveler follows the original route r; skipping all the sponsors who are absent in
S: Let r�S be the resulting route over S: The routing game associated with e is (N; v

�
e) where

v�e : 2
N ! R+ is such that for each S � N; v�e(S) = c(r�S): The axioms in Section 3 can be

stated for routing games just by replacing all ve with v�e; rS with r
�
S ; etc.

Example 3. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, r�S = (0; 1; 0; 4; 5; 0; 6; 0; 7; 9; 0) and v�e(S) = 2c1 + c4 + c4;5 + c5 +
2c6 + c7 + c7;9 + c9:

The results we derived in Section 3 do not carry over to the class of routing games. First
of all, in the class of routing games, the Shapley value doesn�t reduce into a simple formula
as it does in the class of appointment games. Moreover, Theorem 1 no longer holds in the
class of routing games since the Shapley value violates Merging and Splitting Proofness-2.
The following example demonstrates this fact and the calculation of the Shapley value for a
3-sponsor economy.
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Example 4. Let N = f1; 2; 3g and r = (0; 1; 2; 3; 0): For each S � N , let jSj = s and
f(s) = s!(n�s�1)!

n! : Then, (N; v�e) is such that

f(s) S : 1 =2 S v�e(S [ f1g)� v�e(S) S : 2 =2 S v�e(S [ f2g)� v�e(S) S : 3 =2 S v�e(S [ f3g)� v�e(S)
2=6 ; 2c1 ; 2c2 ; 2c3
1=6 f2g c1 + c1;2 � c2 f1g c2 + c1;2 � c1 f1g c3 + c1;3 � c1
1=6 f3g c1 + c1;3 � c3 f3g c2 + c2;3 � c3 f2g c3 + c2;3 � c2
2=6 f2; 3g c1 + c1;2 � c2 f1; 3g c1;2 + c2;3 � c1;3 f1; 2g c3 + c2;3 � c2
Since for each i 2 N; SVi(v�e) =

P
S�Nnfig

f(s)[v�e(S [ fig)� v�e(S)]; we have

SV1(v
�
e) =

4

3
c1 �

1

2
c2 �

1

6
c3 +

1

2
c1;2 +

1

6
c1;3

SV2(v
�
e) = c2 �

1

6
c1 �

1

6
c3 +

1

2
c1;2 �

1

3
c1;3 +

1

2
c2;3

SV3(v
�
e) =

4

3
c3 �

1

2
c2 �

1

6
c1 +

1

6
c1;3 +

1

2
c2;3:

Let c1 = 30; c2 = 6; c3 = 15; c1;2 = 25; c1;3 = 16; c2;3 = 20: Note that e 2 ET : We have
SV1(v

�
e) =

149
3 ; SV2(v

�
e) =

47
3 ; and SV3(v

�
e) =

74
3 :

Let sponsors 1 and 2 merge into a single sponsor denoted by k: Let ((Nnf1; 2g)[fkg; bv) be
the TU-game obtained from (N; v�e) by this merger: Thus, bv(fkg) = v�e(f1; 2g) = c1+c1;2+c2;bv(fk; 3g)� bv(f3g) = c1+ c1;2+ c2;3� c3: Then, SVk(bv) = 1

2(2c1+ c2� c3+2c1;2+ c2;3) =
121
2 :

Since, SVk(bv) 6= SV1(v�e) + SV2(v�e); SV is not Merging and Splitting Proof or Merging and
Splitting Proof-2.

Potters et al (1992) state that in the class of routing games, if the route r chosen for
the grand coalition is a least-costly tour and triangle inequalities hold for all the agents (i.e.
for each triple fi; j; kg � N0; ci;j + cj;k � ci;k), then the core is non-empty. Let E�T be
the set of economies in which these conditions hold: Note that to ensure the convexity of
appointment games (which also implies the non-emptiness of the core), we only needed the
triangle inequalities to hold for those sponsors who are connected rather than all sponsors and
we did not need the route r be a least-costly route for the economy. Hence, ET is a larger set
of economies than E�T : Let VE�T be the class of routing games associated with economies in E

�
T

We know that if a class of TU-games is convex, then the Shapley value is an element of the
core. In general, routing games are not convex. Here, we show that even under the conditions
Potters et al (1992) specify for the non-emptiness of the core, the routing games are still not
convex. Hence, we do not know for sure that Shapley value is in the core whenever it is
non-empty. It is an open question to characterize the conditions under which the Shapley
value is in the core of routing games.

Proposition 4. On the domain VE�T ; the routing games are not convex.

5 Appendix

Proof of Proposition 1:
Let e = hN; c;ri 2 E , i 2 N; and Si � N be the connected set such that i 2 Si: For each
S � N; let jSj = s and f(s) = s!(n�s�1)!

n! :
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� If Si = fig; then since for each S � Nnfig; ve(S [ fig)� ve(S) = ve(fig) = 2ci; we have

SVi(ve) = 2ci:

� If Si \ fi� 1; i+ 1g = j; then since

for each S � Nnfig such that j 2 S; ve(S [ fig)� ve(S) = ci + ci;j � cj ; and

for each S � Nnfig such that j =2 S; ve(S [ fig)� ve(S) = 2ci; we have

SVi(ve) =
X

S�Nnfig
f(s) (ve(S [ fig)� ve(S))

=
X

S�Nnfig:j2S
f(s) (ci + ci;j � cj) +

X
S�Nnfi;jg

f(s) (2ci)

= (ci + ci;j � cj)
n�1X
s=1

�
n� 2
s� 1

�
f(s) + 2ci

n�2X
s=0

�
n� 2
s

�
f(s)

= (ci + ci;j � cj)
1

2
+ (2ci)

1

2

=
3ci + ci;j � cj

2
:

Here,
�
n�2
s�1
�
is the number of (s � 1)-combinations from the set Nnfi; jg: It gives us the

number of subsets of Nnfig that contains j and has s number of sponsors: to �nd such subsets,
we need to pick s� 1 sponsors from the set Nnfi; jg: Similar interpretation applies to

�
n�2
s

�
and all other binomial coe¢ cients from now on.

� If fi� 1; i+ 1g � Si; then since

for each S � Nnfig such that fi�1; i+1g � S; ve(S[fig)�ve(S) = ci�1;i+ci;i+1�ci�1�ci+1;

for each S � Nnfig such that S \fi� 1; i+1g = fjg; ve(S [fig)� ve(S) = ci+ ci;j � cj ; and

for each S � Nnfig such that S \ fi� 1; i+ 1g = ;; ve(S [ fig)� ve(S) = 2ci; we have

SVi(ve) =
P

S�Nnfig:fi�1;i+1g�S
f(s) (ci�1;i + ci;i+1 � ci�1 � ci+1)

+
P

S�Nnfig:fi�1;i+1g\S=fi�1g
f(s) (ci + ci�1;i � ci�1)

+
P

S�Nnfig:fi�1;i+1g\S=fi+1g
f(s) (ci + ci;i+1 � ci+1) +

P
S�Nnfig:fi�1;i+1g\S=;

f(s) (2ci)

= (ci�1;i + ci;i+1 � ci�1 � ci+1)
n�1P
s=2

�
n�3
s�2
�
f(s) + (ci + ci�1;i � ci�1)

n�2P
s=1

�
n�3
s�1
�
f(s)

+ (ci + ci;i+1 � ci+1)
n�2P
s=1

�
n�3
s�1
�
f(s) + 2ci

n�3P
s=0

�
n�3
s

�
f(s)

= (ci�1;i + ci;i+1 � ci�1 � ci+1) 13+(ci + ci�1;i � ci�1)
1
6+(ci + ci;i+1 � ci+1)

1
6+(2ci)

1
3
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= 1
2(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1): 2

Proof of Proposition 2: Let e = hN; c;ri 2 ET and i 2 N: Let K = fj 2 Nnfig : either
i �r j or j �r ig:6 Note that on ET ; for each j 2 K;

ci + cj � ci;j : (1)

We need to show that for each S � T � Nnfig;

ve(S [ fig)� ve(S) � ve(T [ fig)� ve(T ): (2)

There are 6 possible cases. We will show that in each case, (2) holds.

1. K \ S = ;. Then, ve(S [ fig)� ve(S) = 2ci:
a) K \ T = ;: Then, ve(T [ fig)� ve(T ) = 2ci: Hence, (2) holds.
b) K \ T = fjg: Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, by (1), (2) holds.
c) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

2. K \ S = fjg. Then, ve(S [ fig)� ve(S) = cj;i + ci � cj :
a) K \ T = fjg. Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, (2) holds.
b) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

3. K \ S = K \ T = fi � 1; i + 1g: Then, ve(S [ fig) � ve(S) = ve(T [ fig) � ve(T ) =
ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, (2) holds. 2

Proof of Remark 1: Let F satisfy E¢ ciency in two-sponsor TU-games and Equal Bene�t.
Let (N; v) be such that n = 2: Then, for each i 2 N and j = Nnfig; by Equal Bene�t, (I)
Fi(v)� Fj(v)=v(fig)� v(fjg); and by E¢ ciency, (II) v(N) = Fi(v) + Fj(v): By (I) and (II),
for each i 2 N; Fi(v)=1

2 [v(N)+v(fig)�v(fjg)] = SVi(v): 2

Proof of Remark 2:

a) Let � : R+ ! R and F satisfy the �rst 3 axioms listed in Remark 2a. We need to show
that for each a 2 R+; �(a) = a: Let e = hN; c;ri 2 E be such that jSej � 3 and there is S 2 Se
with S = fl; l + 1; :::;mg for some 1 < l � m < n and ve(S) = a: Let K1 = fi 2 N : i < lg
and K2 = fi 2 N : i > mg:

Let K1 and S merge into a single sponsor denoted by k1 2 K1 and K2 merge into a single
sponsor denoted by n. Let (fk1; ng; v1) be the TU-game obtained from (N; ve) by these
mergers: Thus, v1(fk1g) = ve(K1[S) = ve(K1)+ve(S); v1(fng) = ve(K2); and v1(fk1; ng) =
ve(N) = ve(K1) + ve(S) + ve(K2):

Since (fk1; ng; v1) is a two-sponsor TU-game, by Equal Bene�t,

Fk1(v
1)� Fn(v1)=v1(fk1g)� v1(fng) = ve(K1) + ve(S)� ve(K2): (3)

6 If 0 �r i �r 0; then K = ;: If i� 1 �r i �r 0; then K = fi� 1g: If 0 �r i �r i+ 1; then K = fi+ 1g: If
i� 1 �r i �r i+ 1; then K = fi� 1; i+ 1g:
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By Merging and Splitting Proofness-2, Fk1(v
1) =

P
i2K1

Fi(ve) +
P
i2S
Fi(ve) and Fn(v1) =P

i2K2

Fi(ve): These equalities and (3) together imply

X
i2K1

Fi(ve) +
X
i2S
Fi(ve)�

X
i2K2

Fi(ve)=ve(K1) + ve(S)� ve(K2): (4)

Note that K1 is a union of connected sets and so is K2: Let �(K1) =
P

S0�K1:S02Se
�(ve(S

0))

and �(K2) =
P

S0�K2:S02Se
�(ve(S

0)). By Weak Respect of Connected Sets and (4),

�(ve(S)) = �(K2)� �(K1) + ve(K1) + ve(S)� ve(K2): (5)

Now, let K2 and S merge into a single sponsor denoted by k2 2 K2 and K1 merge into a
single sponsor denoted by 1. Let (f1; k2g; v2) be the TU-game obtained from (N; ve) by these
mergers: Again, by Equal Bene�t, (I) Fk2(v

2)�F1(v2)=ve(K2)+ ve(S)� ve(K1): By Merging
and Splitting Proofness-2, (II) Fk2(v

2) =
P
i2K2

Fi(ve) +
P
i2S
Fi(ve) and F1(v2) =

P
i2K1

Fi(ve): By

(I), (II), and Weak Respect of Connected Sets,

�(ve(S)) = �(K1)� �(K2) + ve(K2) + ve(S)� ve(K1): (6)

By (5) and (6),
�(K2)� ve(K2) = �(K1)� ve(K1): (7)

Since ve(S) = a; substituting (7) into (5), �(a) = a: Since we can repeat this procedure for
any a 2 R+; � is the identity function. Therefore, F satis�es Respect of Connected Sets.

b) Let F satisfy the �rst two axioms in Remark 1b. Let e = hN; c;ri 2 E and fK;K 0g � 2N
be such that K = f1; 2; :::; kg and K 0 = fk + 1; k + 2; :::; ng for some 1 � k < n. Let
(fkg [K 0; bv) be the TU-game obtained from (N; ve) when K merges into a single sponsor k:
By E¢ ciency, Fk(bv) = bv(fkg [ K 0) �

P
i2K0

Fi(bv) and P
i2K
Fi(ve) = ve(N) �

P
i2K0

Fi(ve): Sincebv(fkg[K 0) = ve(N) and by Merging and Splitting Proofness; Fk(bv) = P
i2K
Fi(ve); we have (I)P

i2K0
Fi(bv) = P

i2K0
Fi(ve):

Now, let (fk; k0g; ev) be the TU-game obtained from (fkg[K 0; bv) when K 0 merges into a single
sponsor k0 2 K 0: By Merging and Splitting Proofness; Fk0(ev) = P

i2K0
Fi(bv): This equality and

(I) together imply (II) Fk0(ev) = P
i2K0

Fi(ve): Also, by E¢ ciency, Fk0(ev) = ev(fk; k0g) � Fk(ev)
and

P
i2K0

Fi(ve) = ve(N) �
P
i2K
Fi(ve): Since ev(fk; k0g) = ve(N), by (II), Fk(ev) = P

i2K
Fi(ve):

This equality and (II) together imply that F satis�es Merging and Splitting Proofness-2.

c) Let F satisfy the �rst 3 axioms listed in Remark 2c. Suppose, by contradiction, that F does
not satisfy Respect of Connected Sets. Then, there are e = hN; c;ri 2 ET and fS0; S00g � Se
such that

P
i2S00

Fi(ve) < ve(S
00) and (I)

P
i2S0

Fi(ve) > ve(S
0): Such S0 and S00 exist since by

E¢ ciency,
P
S2Se

�P
i2S
Fi(ve)

�
= ve(N) =

P
S2Se

ve(S):
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Now, let S0 merge into a single sponsor denoted by s0 2 S0: Let ((NnS0) [ fs0g; bv) be the
TU-game obtained from (N; ve) by this merger. Thus, (II) bv(fs0g) = ve(S0): By Merging and
Splitting Proofness, (III) Fs0(bv) = P

i2S0
Fi(ve): By Individual Rationality, (IV) Fs0(bv) � bv(fs0g):

By (II), (III), and (IV),
P
i2S0

Fi(ve) � ve(S0) which contradicts (I).

d) Let F satisfy the �rst 3 axioms listed in Remark 2d. Let e = hN; c;ri 2E and
Se = fS1; S2; :::; ST g for some T � n: The proof is by induction.

�Base Step: Let S1 merge into a single sponsor denoted by 1 and NnS1 merge into a single
sponsor denoted by n: Let (f1; ng; v1) be the TU-game obtained from (N; ve) by these mergers.
Thus, v1(f1g) = ve(S1); v1(fng) = ve(NnS1); and v1(f1; ng) = ve(N): Note that since S1 is
a connected set, ve(N) = ve(S1) + ve(NnS1): These equalities and Remark 1 together imply

F1(v
1) = 1

2

�
v1(f1; ng) + v1(f1g)�v1(fng)

�
;

= ve(S1):
(8)

By Merging and Splitting Proofness-2, F1(v1) =
P
i2S1

Fi(ve): This equality and (8) together

imply
P
i2S1

Fi(ve) = ve(S1):

�Induction Step: Let k < T: Assume that for each t < k;
P
i2St

Fi(ve) = ve(St): We will prove

that
P
i2Sk

Fi(ve) = ve(Sk):

Let fS1; S2; :::; Skg merge into a single sponsor denoted by k; and fSk+1; ::; ST g merge into a
single sponsor denoted by n: Let (fk; ng; vk) be the TU-game obtained from (N; ve) by these

mergers. Thus, vk(fkg) = ve(
k
[
t=1
St) =

kP
t=1
ve(St); v

k(fng) = ve(
T
[

t=k+1
St) =

TP
t=k+1

ve(St); and

vk(fk; ng) = ve(N) =
kP
t=1
ve(St) +

TP
t=k+1

ve(St):

These equalities and Remark 1 together imply

Fk(v
k) = ve(Sk) +

k�1P
t=1
ve(St): (9)

By Merging and Splitting Proofness-2, Fk(vk) =
P
i2Sk

Fi(ve) +
k�1P
t=1

P
i2St

Fi(ve): This equality,

(9), and the induction hypothesis together imply
P
i2Sk

Fi(ve) = ve(Sk):

�Conclusion Step: By the Base and the Induction steps, for each t < T ,
P
i2St

Fi(ve) = ve(St):

Now, consider (fT � 1; ng; vT�1) obtained from (N; ve) when ST merges into a single sponsor
denoted by n and NnST merge into a single sponsor denoted by T�1: Similar to the argument
in the Base step, we have

P
i2ST

Fi(ve) = ve(ST ): Therefore, F satis�es Respect of Connected

Sets.
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e) For each e = hN; c;ri 2 E ; let F (ve) be in the Core of (N; ve): Then,
P
S2Se

P
i2S
Fi(ve) =

ve(N) and for each S 2 Se;
P
i2S
Fi(ve) � ve(S): Since ve(N) =

P
S2Se

ve(S); for each S 2 Se;P
i2S
Fi(ve) = ve(S) and F satis�es Respect of Connected Sets.

Now, let F satisfy Respect of Connected Sets. Let (fi; jg; v) be a two-sponsor TU-game.
Let e = hfi; jg; c;ri be such that ci = v(fig)=2; cj = v(fjg)=2; ci + ci;j + cj = v(fi; jg); and
r = (0; i; j; 0): By Respect of Connected Sets, (I) Fi(ve) + Fj(ve) = ve(fi; jg): Since for each
S � fi; jg; ve(S) = v(S); we have (N; v) � (N; ve): This equivalency and (I) together imply
that F satis�es E¢ ciency in two-sponsor TU-games.

f) Let e = hN; c;ri 2 E and S 2 Se: Consider eS= hS; cS ;rSi 2 E : By E¢ ciency,
(I)

P
i2S
Fi(veS ) = veS (S): By Consistency over Connected Sets, for each i 2 S; (II)

Fi(ve) = Fi(veS ): Note that by de�nition, ve(S) = c(rS) = veS (S): Hence, by (I) and (II),P
i2S
Fi(ve) = ve(S): That is, F satis�es Respect of Connected Sets. �

Proof of Theorem 1:

It is easy to see that the Shapley value satis�es E¢ ciency and Equal Bene�t. Next, we show
it satis�es Merging and Splitting Proofness. Then, by Remark 2b, it also satis�es Merging
and Splitting Proofness-2.
Merging and Splitting Proofness:
Let e = hN; c;ri 2 E andK � N be such thatK = fk; k+1; k+2; :::; lg for some 1 � k < l � n.
Let ((NnK) [ fkg; bv) be the TU-game obtained from (N; ve) when K merges into k:

Note that K may involve some connected sets. For some 1 � M � jKj; let PK =
fK1;K2; :::;KMg be the partitioning of K such that

� for each m 2 f1;M � 1g; each i 2 Km; and each j 2 Km+1; we have i < j;
� for each m 2 f1;Mg; Km � S for some S 2 Se; and
� for each m =2 f1;Mg; Km 2 Se:
For example, if r = (0; 1; 2; 3; 4; 0; 5; 6; 0; 7; 0; 8; 9; 0) and K = f3; 4; ::; 8g, then
PK = ff3; 4g; f5; 6g; f7g; f8gg:

Note that there are n � jKj + 1 agents in the game ((NnK) [ fkg; bv): For each S � N; let
jSj = s and g(s) = s!(n�jKj�s)!

(n�jKj+1)! : For each 1 � m � M; let Km = fkm; km + 1; :::; lmg: The
following four cases are possible.

1) PK � Se : That is, for each 1 � m �M; Km is a connected set. Then, for each S � NnK;

bv(S [ fkg)� bv(S) = bv(fkg) = ve(K) = MX
m=1

ve(Km) =

MX
m=1

(ckm +

lm�1X
t=km

ct;t+1 + clm): (10)

Hence, SVk(bv) = bv(fkg). By Respect of Connected Sets, for each Km 2 PK ; P
i2Km

SVi(ve) =

ve(Km): These equalities and (10) together imply that SVk(bv) =
MP
m=1

P
i2Km

SVi(ve) =P
i2K
SVi(ve):
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2) PKnSe = fK1g and either M � 2 or l = n: That is, except for K1; each Km 2 PK is a
connected set. Then, for each S � NnK such that k1� 1 =2 S; (10) holds. For each S � NnK
such that k1 � 1 2 S;bv(S [ fkg)� bv(S) = ck1�1;k1 + (ve(K)� ck1)� ck1�1: (11)

Then,

SVk(bv) = P
S�NnK:k1�12S

g(s)(bv(S [ fkg)� bv(S)) + P
S�NnK:k1�1=2S

g(s)(bv(S [ fkg)� bv(S))
=
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[ck1�1;k1 + (ve(K)� ck1)� ck1�1] +

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)ve(K):

Note that
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s) =

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s) = 1

2 :
7 Hence,

SVk(bv) = ve(K) + 1
2(ck1�1;k1 � ck1 � ck1�1)

= 1
2(2cl1 + 2

l1�1P
t=k1

ct;t+1 + ck1�1;k1 + ck1 � ck1�1) +
MP
m=2

ve(Km)

=
P
i2K1

SVi(ve) +
MP
m=2

P
i2Km

SVi(ve)

=
P
i2K
SVi(ve):

3) PKnSe = fKMg and either M � 2 or k = 1: That is, except for KM ; each Km 2 PK is a
connected set. Then, for each S � NnK such that lM +1 =2 S; (10) holds. For each S � NnK
such that lM + 1 2 S;

bv(S [ fkg)� bv(S) = (ve(K)� clM ) + clM ;lM+1 � clM+1: (12)

Then,

SVk(bv) = n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[(ve(K)� clM ) + clM ;lM+1 � clM+1] +

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)ve(K)

= ve(K) +
1
2(clM ;lM+1 � clM � clM+1)

= 1
2(2ckM + 2

lM�1P
t=kM

ct;t+1 + clM ;lM+1 + clM � clM+1) +
M�1P
m=1

ve(Km)

=
P

i2KM

SVi(ve) +
M�1P
m=1

P
i2Km

SVi(ve)

=
P
i2K
SVi(ve):

4) PKnSe = fK1;KMg: That is, except for K1 and KM ; each Km 2 PK is a connected set.
Note that this case covers the possibility that K = K1 = KM and K =2 Se:
Then, for each S � NnK such that fk1 � 1, lM + 1g \ S = ;; (10) holds. For each S � NnK
such that k1 � 1 2 S and lM + 1 =2 S; (11) holds. For each S � NnK such that lM + 1 2 S
and k1 � 1 =2 S; (12) holds. For each S � NnK such that fk1 � 1, lM + 1g � S;

bv(S [ fkg)� bv(S) = ck1�1;k1 + (ve(K)� ck1 � clM ) + clM ;lM+1 � ck1�1 � clM+1:
7For the calculation of these values, see Appendix 7 in the working version of our paper.
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Then,

SVk(bv) = n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s)ve(K)+

n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[ck1�1;k1+(ve(K)�ck1)�ck1�1]+

n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[(ve(K)�clM )+clM ;lM+1�clM+1]+

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s)[ck1�1;k1+(ve(K)�

ck1 � clM ) + clM ;lM+1 � ck1�1 � clM+1]

Note that
n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s) =

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s) = 1

3 and
n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s) = 1

6 :

Hence,

= ve(K) +
1
2(ck1�1;k1 � ck1�1 � ck1 + clM ;lM+1 � clM � clM+1)

= 1
2(2cl1+2

l1�1P
t=k1

ct;t+1+ck1�1;k1+ck1�ck1�1)+
M�1P
m=2

ve(Km)+
1
2(2ckM +2

lM�1P
t=kM

ct;t+1+clM ;lM+1+

clM � clM+1)

=
P
i2K1

SVi(ve) +
M�1P
m=2

P
i2Km

SVi(ve) +
P

i2KM

SVi(ve)

=
P
i2K
SVi(ve):

In all the possible cases, we showed that SVk(bv) = P
i2K
SVi(ve). Therefore, the Shapley value

satis�es Merging and Splitting Proofness.

Now, we show that the Shapley value is the only solution that satis�es the axioms listed in
Theorem 1. (For the independence of axioms, see the appendix in our working paper version).
Let F satisfy those axioms and e = hN; c;ri 2 E : We will show that for each S 2 Se and each
i 2 S; Fi(ve) = SVi(ve):

If n = 2; by Remark 1, F = SV: Let n > 2: By Remark 2d, F satis�es Respect of Connected
Sets. Hence, for each fig 2 Se; Fi(ve) = ve(fig) = SVi(ve):

Now, let S 2 Se be such that jSj � 2 and S = fl; l + 1; :::;mg for some fl;mg � N: Let
K1 = fi 2 N : i < lg and K2 = fi 2 N : i > mg:8

The proof is by induction.

�Base Step: Let K1 and flg merge into a single sponsor denoted by l. Let K2 and fl+ 1; l+
2; :::;mg merge into a single sponsor denoted by n: Let (fl; ng; vl) be the TU-game obtained
from (N; ve) by these mergers: Thus,

vl(flg) = ve(f1; :::; lg) = ve(K1) + 2cl;

vl(fng) = ve(fl + 1; :::; ng) = cl+1 +
m�1P
t=l+1

ct;t+1 + cm + ve(K2) = (ve(S)� cl � cl;l+1 + cl+1) +

ve(K2); and

vl(fl; ng) = ve(N) = ve(K1) + ve(S) + ve(K2):
8 If l = 1; then K1 = ; and if m = n; then K2 = ;: Note that K1 is a union of connected sets and so is K2:
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These equalities and Remark 1 together imply

Fl(v
l) = 1

2

�
vl(fl; ng) + vl(flg)�vl(fng)

�
;

= ve(K1) +
1
2(3cl + cl;l+1 � cl+1):

(13)

By Respect of Connected Sets,X
i2K1

Fi(ve) = ve(K1);
X
i2S
Fi(ve) = ve(S); and

X
i2K2

Fi(ve) = ve(K2): (14)

By Merging and Splitting Proofness-2;

Fl(v
l) =

X
i2K1

Fi(ve) + Fl(ve): (15)

By equalities (13), (14), and (15),

Fl(ve) =
1

2
(3cl + cl;l+1 � cl+1) = SVl(ve): (16)

�Induction Step: Let l < k � m: Assume that, for each l < i < k; Fi(ve) = SVi(ve): We will
prove that Fk(ve) = SVk(ve):

Let K1 and S1 = fl; l + 1; ::; kg merge into a single sponsor denoted by k: Let K2 and SnS1
merge into a single sponsor denoted by n: Let (fk; ng; vk) be the TU-game obtained from
(N; ve) by these mergers.

If k < m; then

vk(fkg) = ve(f1; :::; kg) = ve(K1) + cl +
k�1P
t=l

ct;t+1 + ck;

vk(fng) = ve(fk + 1; :::; ng) = (ve(S)� cl �
kP
t=l

ct;t+1 + ck+1) + ve(K2); and

vk(fk; ng) = ve(N) = ve(K1) + ve(S) + ve(K2):

These equalities and Remark 1 together imply

Fk(v
k) = 1

2

�
vk(fk; ng) + vk(fkg)�vk(fng)

�
;

= ve(K1) +
1
2(2cl + 2

k�1P
t=l

ct;t+1 + ck + ck;k+1 � ck+1):
(17)

By Merging and Splitting Proofness-2;

Fk(v
k) =

X
i2K1

Fi(ve) +

k�1X
i=l

Fi(ve) + Fk(ve): (18)

Note that
k�1P
i=l

SVi(ve) =
1
2(2cl + 2

k�2P
t=l

ct;t+1 + ck�1 + ck�1;k � ck): Hence, by the induction

hypothesis and equalities (14), (17), and (18),

F
k
(ve) = (2ck + ck�1;k + ck;k+1 � ck�1 � ck+1) =2 = SVk(ve):
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If k = m; then

vm(fmg) = ve(f1; :::;mg) = ve(K1) + ve(S);
vm(fng) = ve(fm+ 1; :::; ng) = ve(K2); and
vm(fm;ng) = ve(N) = ve(K1) + ve(S) + ve(K2):

These equalities and Remark 1 together imply

Fm(v
m) = 1

2 [v
m(fm;ng) + vm(fmg)�vm(fng)] ;

= ve(K1) + ve(S):
(19)

By Merging and Splitting Proofness-2;

Fm(v
m) =

X
i2K1

Fi(ve) +
m�1X
i=l

Fi(ve) + Fm(ve): (20)

Hence, by the induction hypothesis and equalities (14), (19), and (20),

Fm(ve) = (3cm + cm�1;m � cm�1) =2 = SVm(ve):

This concludes the induction step.

�Conclusion Step: By the Base and the Induction steps, for each l � k � m; we have Fk(ve) =
SVk(ve):

By repeating the induction proof for each S 2 Se; we obtain that for each i 2 S;
Fi(ve) = SVi(ve): This completes the proof. �

Proof of Proposition 3:

Let � : R+ ! R: Let F be de�ned on VE2 :

a) Let F satisfy Weak Respect of Connected Sets with respect to �, Merging and Splitting
Proofness-2, and Equal Bene�t. Let e = hN; c;ri 2 E2 be such that jSej = 1:

First, suppose that i 2 f1; ng: Let Nnfig merge into a single sponsor denoted by j 2 Nnfig:
Let (fi; jg; vi) be the TU-game obtained from (N; ve) by this merger: Thus, vi(fig) = ve(fig);
vi(fjg) = ve(Nnfig); and vi(fi; jg) = ve(N):

Since (fi; jg; vi) is a two-sponsor TU-game, by Equal Bene�t, (I) Fi(vi) � Fj(vi)=ve(fig) �
ve(Nnfig):

By Merging and Splitting Proofness-2; (II) Fi(vi) = Fi(ve) and Fj(vi) =
P

l2Nnfig
Fl(ve):

By (I) and (II), we have (III) Fi(ve)�
P

l2Nnfig
Fl(ve) = ve(fig)� ve(Nnfig):

By Weak Respect of Connected Sets, (IV) Fi(ve) +
P

l2Nnfig
Fl(ve) = �(ve(N)): By (III) and

(IV),

Fi(ve)=
1

2
[�(ve(N))+ve(fig)� ve(Nnfig)] : (21)

Now, we will show that for each i 2 f2; ::; n� 1g; Fi(ve)=SVi(ve): The proof is by induction.
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�Base Step: Let f1; 2g merge into a single sponsor denoted by 2 and Nnf1; 2g merge into a
single sponsor denoted by n: Let (f2; ng; v2) be the TU-game obtained from (N; ve) by these
mergers: Similarly, (f2; ng; v2) is a two-sponsor TU-game. Hence, by Equal Bene�t,

F2(v
2)� Fn(v2)=ve(f1; 2g)� ve(Nnf1; 2g): (22)

ByMerging and Splitting Proofness-2; (I) F2(v2) =
P

i2f1;2g
Fi(ve) and Fn(v2) =

P
i2Nnf1;2g

Fi(ve):

By Weak Respect of Connected Sets, (II)
P

i2f1;2g
Fi(ve) +

P
i2Nnf1;2g

Fi(ve) = �(ve(N)): By (I),

(II), and (22) X
i2f1;2g

Fi(ve)=
1

2
[�(ve(N))+ve(f1; 2g)�ve(Nnf1; 2g)] :

This equality and (21) together imply

F2(ve)=
1

2
[ve(f1; 2g)�ve(Nnf1; 2g)� ve(f1g)+ve(Nnf1g)] :

Note that ve(f1; 2g)�ve(f1g)=c2 + c1;2 � c1 and ve(Nnf1g)�ve(Nnf1; 2g) = c2 + c2;3 � c3:
Hence, F2(ve)=1

2 [2c2 + c1;2 + c2;3 � c1 � c3] = SV2(ve):

�Induction Step: Let 1 < k < n: Assume that for each 1 < j < k; Fj(ve)=SVj(ve): That is,
for each j < k;

P
i2f1;::;jg

Fi(ve)=
1
2 [�(ve(N))+ve(f1; :::; jg)�ve(Nnf1; :::; jg)] :

Let f1; ::; kg merge into k and fk + 1; ::; ng merge into n: Let (fk; ng; vk) be the TU-game
obtained from (N; ve) by these mergers: Since (fk; ng; vk) is a two-sponsor TU-game, by Equal
Bene�t, (I) Fk(vk)� Fn(vk)=ve(f1; ::; kg)� ve(Nnf1; ::; kg):

By Merging and Splitting Proofness-2; (II) Fk(vk) =
P

i2f1;::;kg
Fi(ve) and Fn(v

k) =P
i2Nnf1;::;kg

Fi(ve):

By Weak Respect of Connected Sets, (III)
P

i2f1;::;kg
Fi(ve) +

P
i2Nnf1;::;kg

Fi(ve) = �(ve(N)): By

(I), (II), and (III),X
i2f1;::;kg

Fi(ve)=
1

2
[�(ve(N))+ve(f1; ::; kg)�ve(Nnf1; :::; kg)] :

This equality and the induction hypothesis together imply

Fk(ve)=
1

2
[ve(f1; ::; kg)�ve(Nnf1; :::; kg)� ve(f1; ::; k � 1g)+ve(Nnf1; :::; k � 1g)] :

Since ve(f1; ::; kg) � ve(f1; ::; k � 1g)=ck + ck�1;k � ck�1 and ve(Nnf1; :::; k � 1g) �
ve(Nnf1; :::; kg) = ck + ck;k+1 � ck+1; we have

Fk(ve)= =
1

2
[2ck + ck�1;k + ck;k+1 � ck�1 � ck+1] = SVk(ve):
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�Conclusion Step: By the Base and the Induction steps, for each i 2 f2; ::; n � 1g;
Fi(ve)=SVi(ve):

b) Let F satisfy Weak Respect of Connected Sets with respect to �, Merging and Splitting
Proofness-2, Equal Bene�t, and Consistency over Connected Sets. Let e = hN; c;ri 2 E2 be
such that jSej = 2; i 2 N; and Si 2 Se with i 2 Si:

If jfi � 1; i + 1g \ Sij = 0; that is Si = fig; then by Weak Respect of Connected Sets,
Fi(ve) = �(ve(fig)):

Now, suppose that jfi � 1; i + 1g \ Sij � 1: Let Si = fl; l + 1; :::;mg for some fl;mg � N:
Consider eSi = hSi; cSi ;rSii 2 E2:

If jfi � 1; i + 1g \ Sij = 1; that is i 2 fl;mg; then by part (a),
Fi(veSi )=

1
2 [�(ve(Si))+ve(fig)� ve(Sinfig)] and by Consistency over Connected Sets

Fi(veSi )=Fi(ve):

If jfi�1; i+1g\Sij = 2; that is i 2 fl+1; ::;m�1g; then by part (a), Fi(veSi )=SVi(veSi ) and
by Consistency over Connected Sets Fi(veSi )=Fi(ve) and SVi(veSi )=SVi(ve): This concludes
the proof. �

Proof of Proposition 4:
Let e = hf1; 2; 3; 4g; c;ri 2 E�T be such that r� = (0; 1; 2; 3; 4; 0) and c1 = c1;2 = c3;4 = c4 = 5;
c2 = c3 = c2;3 = 3; c1;4 = 10; and c1;3 = c2;4 = 6: Note that triangle inequalities hold among
all agents and r is a least costly route for e. Let i = 2; S = f1; 4g; and T = f1; 3; 4g: Since,
v�e(S [ fig)� v�e(S) = 1 and v�e(T [ fig)� v�e(T ) = 2; and 1 < 2; (N; v�e) is not convex.
In general, let e = hN; c;ri 2 E�T be such that there is Si 2 Se with jSij � 4 and
fi � 1; i; i + 1; i + 2g � Si for some i 2 N where ci;i+2 + ci�1;i+1 < ci�1;i+2 + ci;i+1: Note
that this inequality is compatible with a cost vector satisfying triangle inequalities (as in the
example in the previous paragraph). Let S = fi� 1; i+2g and T = fi� 1; i+1; i+2g: Then,
v�e(S [ fig)� v�e(S) < v�e(T [ fig)� v�e(T ) and (N; v�e) is not convex. �
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