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Abstract

A decision maker is asked to express her beliefs by assigning proba-
bilities to certain possible states. We focus on the relationship between
her database and her beliefs. We show that, if beliefs given a union
of two databases are a convex combination of beliefs given each of
the databases, the belief formation process follows a simple formula:
beliefs are a similarity-weighted average of the beliefs induced by each
past case.

1 Introduction

A physician administers a certain treatment to her patient. She is asked to

describe her prognosis by assigning probabilities to each of several possible

outcomes Ω = {1, ..., n} of the treatment. The physician has a lot of data
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mous referees for their comments. Gilboa and Schmeidler gratefully acknowledge ISF
grant no. 975/03, and Samet – ISF grnat no. 891/04 and partial financial support by the
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on past outcomes of the treatment, and she can readily quote the empirical

frequencies of these outcomes. Yet, patients are not identical. They differ

in age, gender, heart condition, and several other measurable variables that

may affect the treatment outcome. Let us assume that these form a vector

of real-valued variables X = (X1, ..., Xk) and that X was measured for all

past cases. Thus, case j is a (k + 1)-tuple (xj, ωj) ∈ Rk × Ω where, xj ∈ Rk

is the value of X observed in case j, and ωj ∈ Ω is the observed outcome of

the treatment in case j. The new patient is defined by the values xt ∈ Rk of

X. How should these measurements affect the probability assessment of the

physician?

It makes sense to restrict attention to those past cases that had the same

X values as the one at hand, and compute relative frequencies only for these

data. That is, to estimate the probability of state ω by its relative frequency

in the sub-database consisting of all cases j for which xj = xt. However,

large as the original database may be, the sub-database of patients whose X

value is identical to xt might be quite small or even empty. Therefore, we

wish to have a procedure for assessments of probabilities over Ω that makes

use of data with different X values, while taking differences in these values

into account.

Assume that the physician can judge which past cases are more similar

to the one at hand, and which are less similar. In evaluating the probability

of a state, she may assign a higher weight to more similar cases. Formally,

suppose that there exists a function s : Rk × Rk → R++, where s(xt, xj)

measures the degree to which, in the physician’s judgment, a patient whose

presenting conditions are given by xt ∈ Rk is similar to another patient whose

presenting conditions are xj ∈ Rk. Given a database of past cases ((xj, ωj))j,

we suggest to assign probabilities to the possible outcomes of treatment for

a new patient with conditions xt by the formula,

pt =

∑
j s(xt, xj)p

j

∑
j s(xt, xj)

∈ ∆n−1 (1)
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where pj ∈ ∆n−1 is the unit vector assigning probability 1 to ωj.

Observe that (unqualified) empirical frequencies (of states in Ω) consti-

tute a special case of this formula, where the function s is constant. Another

special case is given by s(xt, xj) = 1{xt=xj}.
1 In this case, (1) boils down to

the empirical frequencies (of states in Ω) in the sub-database defined by xt.

Thus, formula (1) may be viewed as offering a continuous spectrum between

the unconditional empirical frequencies and conditional empirical frequencies

given xt.

In this paper we study the probability assignment problem axiomati-

cally. We consider the relationship between various databases, modeled as

sequences of cases, and the probabilities they induce. We impose two axioms

on the probability assignment function. The first, invariance, states that the

order of cases in the database is immaterial. This axiom is not very restrictive

if the description of a case is informative enough, including, for instance, the

time of occurrence of the case. The second axiom, concatenation, requires

that, for every two databases, the probability induced by their concatenation

is a convex combination of the probabilities induced by each of them sepa-

rately. In behavioral terms, this axiom states that, if each of two databases

induces a preference for one act over another, then the same preference will

be induced by their concatenation. Under a minor additional condition, these

two axioms are equivalent to the existence of a similarity function such that

the assignment of probabilities is done as a similarity-weighted average of

the probabilities induced by single cases. Two additional assumptions then

yield the representation (1).

In our theorem, the function s is derived from presumably observable

probability assignments given various possible databases. We interpret this

function as a similarity function. Yet, it need not satisfy any particular

1We assumed that the function s is strictly positive. This simplifies the analysis as one
need not deal with vanishing denomintaors. Yet, for the purposes of the present discussion
it is useful to consider the more general case, allowing zero similarity values. This case is
not axiomatized in this paper.
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properties, and may not even be symmetric. One may impose additional

conditions, as in Billot, Gilboa, and Schmeidler (2004), under which there

exists a norm n on Rk such that

s(xt, xj) = e−n(xt−xj). (2)

Such a function s satisfies symmetry and multiplicative transitivity (that is,

s(x, z) ≥ s(x, y)s(y, z) for all x, y, z).2

The Bayesian approach calls for the assignment of a prior probability

measure to a state space, and for the updating of this prior by Bayes’s law

given new information. Ramsey (1931), de Finetti (1937), Savage (1954), and

Anscombe and Aumann (1963) provided compelling axiomatizations that

justify the Bayesian approach from a normative viewpoint. But these axiom-

atizations do not help a predictor to form a prior if she is does not already

have one. In this context, our approach can be viewed as providing a belief-

generation tool that may be an aid to a predictor who wishes to develop a

Bayesian prior.

Such a predictor may be convinced by our axiomatization that, in certain

situations, it might be desirable to generate beliefs according to formula (1).

Yet, just as Bayesian axiomatizations do not serve to choose a prior, our

axiomatization does not provide help in choosing the similarity function.

Even if one adopts a certain functional form as in (2), the question still

remains, which specific similarity function should we choose?

We believe that this question is, in the final analysis, an empirical one.

Hence, the similarity function should be estimated from past data. Gilboa,

Lieberman, and Schmeidler (2004) axiomatize formula (1) for the case n = 2

(not dealt with in this paper), and develop the statistical theory required

for the estimation of the function s, assuming that such a function governs

2Billot, Gilboa, and Schmeidler (2004) deal with a similarity-weighted average for a
single real-valued variable, assuming that values of the same variables were observed in
the past. Their axioms may be applied to any single component of the probability vector
discussed here.
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the data generating process. The present paper provides an axiomatization

for the case n > 2. In certain situations, it allows to reduce the question

of belief formation to the problem of similarity assessment. Developing the

corresponding statistical theory is beyond the scope of this paper.

2 Model and Result

Let Ω = {1, ..., n} be a set of states of nature, n ≥ 3.3 Let C be a non-empty

set of cases. C may be an abstract set of arbitrarily large cardinality. A

database is a sequence of cases, D ∈ Cr for r ≥ 1. The set of all databases is

denoted C∗ = ∪r≥1C
r. The concatenation of two databases, D = (c1, ..., cr) ∈

Cr and E = (c′1, ..., c
′
t) ∈ Ct is denoted by D ◦E and it is defined by D ◦E =

(c1, ..., cr, c
′
1, ..., c

′
t) ∈ Cr+t.

Observe that the same element of C may appear more than once in a given

database. This structure implicitly assumes that additional observations

of the same case do in fact add information. Indeed, when one estimates

probabilities by relative frequencies, one subscribes to the same assumption.

For the statement of our main result we need not assume that C and Ω

are a-priori related. We therefore impose no structure on C, simplifying no-

tation and obtaining a more general result. Yet, the intended interpretation

is as in the Introduction, namely, that C is a subset of Rk × Ω. The predic-

tion problem at hand, described above by xt ∈ Rk, is fixed throughout this

discussion. We therefore suppress it from the notation when no confusion is

likely to arise.

For each D ∈ C∗, the predictor has a probabilistic belief p(D) ∈ ∆(Ω)

about the realization of ω ∈ Ω in the problem under discussion.

For r ≥ 1, let Πr be the set of all permutations on {1, ..., r}, i.e., all

3Our result only holds when the range of the probability assignment function is not
contained in a line segment. The condition n ≥ 3 is obviously a necessary but insufficient
condition for this requirement to hold. We mention it here in order to highlight the fact
that the case n = 2 is not covered by our result. See Gilboa, Lieberman, and Schmeidler
(2004).
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bijections π : {1, ..., r} → {1, ..., r}. For D ∈ Cr and a permutation π ∈ Πr,

let πD be the permuted database, that is, πD ∈ Cr is defined by (πD)i =

Dπ(i) for i ≤ r.

We formulate the following axioms.

Invariance: For every r ≥ 1, every D ∈ Cr, and every permutation

π ∈ Πr, p(D) = p(πD).

Concatenation: For every D,E ∈ C∗, p(D◦E) = λp(D)+(1−λ)p(E) for

some λ ∈ (0, 1).

The Invariance axiom might appear rather restrictive, as it does not allow

cases that appear later in D to have a greater impact on probability assess-

ments than do cases that appear earlier. But this does not mean that cases

that are chronologically more recent cannot have a greater weight than less

recent ones. Indeed, should one include time as one of the variables in X,

all permutations of a sequence of cases would contain the same information.

In general, cases that are not judged to be exchangeable differ in values of

some variables. Once these variables are brought forth, the Invariance axiom

seems quite plausible.

The Concatenation axiom states that the beliefs induced by the concate-

nation of two databases cannot lie outside the interval connecting the beliefs

induced by each database separately. If an expected payoff maximizer is

faced with a decision problem where the states of nature are Ω, the Concate-

nation axiom could be re-stated as follows: for every two acts a and b, if a is

(weakly) preferred to b given database D as well as given database E, then

a is (weakly) preferred to b given the database D ◦E, and a strict preference

given one of {D,E} suffices for a strict preference given D ◦ E.

We can now state our main result.

Theorem 1 Let there be given a function p : C∗ → ∆(Ω). The following

are equivalent:

(i) p satisfies the Invariance axiom, the Combination axiom, and not all
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{p(D)}D∈C∗ are collinear;

(ii) There exists a function p̂ : C → ∆(Ω), where not all {p̂(c)}c∈C are

collinear, and a function s : C → R++ such that, for every r ≥ 1 and every

D = (c1, ..., cr) ∈ Cr,

p(D) =

∑
j≤r s(cj)p̂(cj)∑

j≤r s(cj)
. (∗)

Moreover, in this case the function p̂ is unique, and the function s is

unique up to multiplication by a positive number.

This theorem may be extended to a general measurable state space Ω

with no additional complications, because for every D only a finite number

of measures are involved in the formula for p(D).

Theorem 1 deals with an abstract set of cases C. Let us now assume,

as in the Introduction, that a case cj is a (k + 1)-tuple (xj, ωj) ∈ Rk × Ω,

and that the function p is defined for every database D, and a given point

xt ∈ Rk. The theorem then states that, under the non-collinearity condition,

a function p(D) = p(xt, D) on C∗ satisfies the Invariance and Concatenation

axioms if and only if there are functions s(cj) = s(xt, cj) and p̂(cj) = p̂(xt, cj)

on C such that (∗) holds for p(D) = p(xt, D).

This application of formula (∗) is more general than formula (1) in two

ways: first, p̂(xt, cj) need not equal pj, namely, the unit vector assigning

probability 1 to state ωj. Second, s(xt, cj) may depend on ωj and not only on

(xt, xj). To obtain the representation (1), one therefore needs two additional

assumptions. First, assume that a state ω that has never been observed in

the database is assigned probability zero. This guarantees that p̂(xt, cj) =

pj. Second, assume that if the names of the states of nature are permuted

in the entire database, then the resulting probability vector is accordingly

permuted. This would guarantee the independence of s(xt, cj) of ωj.

Limitations

Formula (1) might be unreasonable when the entire database is very small.

Specifically, if there is only one observation, resulting in state ωi, pt assigns
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probability 1 to ωi for any xt. This appears to be quite extreme. However, for

large databases it may be acceptable to assign zero probability to a state that

has never been observed. Moreover, a state that has never been observed may

not be conceived of to begin with. That is, for many applications it seems

natural to define Ω as the set of states that have been observed in the past.

In this case, (1) assigns a positive probability to each state.

The intended application of formula (1) is for the assignment of prob-

abilities given databases that are large, but that are not large enough to

condition on every possible combination of values of (X1, ..., Xk). Indeed,

one may assume that the function p is defined only on a restricted domain of

large databases, such as C∗
L = ∪n≥LCn for a large L ≥ 1. It is straightforward

to extend our result to such restricted domains.

The Concatenation axiom that we use in this paper is very similar in spirit

to the Combination axiom used in Gilboa and Schmeidler (2003). Much of

the discussion of this axiom in that paper applies here as well. In particular,

there are two important classes of examples wherein the Concatenation axiom

does not seem plausible. The first includes situations where the similarity

function is learnt from the data.4 The second class of examples involves

both inductive and deductive reasoning. For instance, if we try to learn the

parameter of a coin, and then use this estimate to make predictions over

several future tosses, the Concatenation axiom is likely to fail.

3 Appendix: Proof

It is obvious that (ii) implies the Invariance axiom. Hence we may restrict

attention to functions p that satisfy the Invariance axiom, and show that for

such functions, (ii) is equivalent to the Concatenation axiom combined with

4The estimation procedure in Gilboa, Liebermen, and Schmeidler (2004) estimates the
similarity function from the data, but assumes that these data were generated according to
a fixed (though unknown) similarity function. However, when the data generating process
itself involves an evolving similarity function, our formulae and estimation procedures are
no longer valid.
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the condition that not all {p(D)}D∈C∗ are collinear.

In light of the Invariance axiom, a database D ∈ C∗ can be identified

with a counter vector ID : C → Z+, where ID(c) is the number of times that

c appears in D. Formally, for D = (c1, ..., cr) let ID(c) = #{ i ≤ r | ci = c }.
The set of counter vectors obtained from all databases D ∈ C∗ is I = { I :

C → Z+ | 0 <
∑

j∈C I(j) < ∞}. For I ∈ I, define p(I) = p(D) for a D ∈ C∗

such that I = ID. It is straightforward that for each I ∈ I such a D exists,

and that, due to the Invariance axiom, p(D) is well-defined.

We now turn to state a version of our theorem for the counter vector set-

up. Observe that the concatenation of two databases D and E corresponds

to the pointwise addition of their counter vectors. Formally, ID◦E = ID + IE.

The Concatenation axioms is therefore re-stated as the following.

Combination: For every I, J ∈ I, p(I + J) = λp(I) + (1 − λ)p(J) for

some λ ∈ (0, 1).

Theorem 2 Let there be given a function p : I → ∆(Ω). The following are

equivalent:

(i) p satisfies the Combination axiom, and not all {p(I)}I∈I are collinear;

(ii) There are probability vectors {pj}j∈C ⊂ ∆(Ω), not all collinear, and

positive numbers {sj}j∈C such that, for every I,

p(I) =

∑
j∈C sjI(j)pj

∑
j∈C sjI(j)

. (∗)

Moreover, in this case the probabilities {pj}j∈C are unique, and the weights

{sj}j∈C are unique up to multiplication by a positive number.

Observe that Theorems 1 and 2 are equivalent. We now turn to prove

Theorem 2. It is straightforward to see that (ii) implies (i). Similarly, the

uniqueness part of the theorem is easily verified. We therefore only prove

that (i) implies (ii).

We start with the case of a finite C, say, C = {1, ..., m}.
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Remark: For every I ∈ I, k ≥ 1, p(kI) = p(I).

Proof: Using the fact that p(I + J) ∈ [p(I), p(J)] inductively.5¤
This Remark allows an extension of the domain of p to rational-coordinate

vectors. Specifically, given I ∈ QC
+, choose k such that kI ∈ ZC

+, and define

p(I) as identical to p(kI). The Remark guarantees that the selection of k

is immaterial. It follows that one may restrict attention to p(I) only for

I ∈ QC
+ ∩∆(C), that is, for rational points in the simplex of the case types.

Restricted to this domain, p is a mapping from QC
+ ∩∆(C) into ∆(Ω). We

now state an auxiliary result that will complete the proof of (ii).6

Proposition 3 Assume that p : Qm
+ ∩∆m−1 → ∆n−1 satisfies the following

conditions: (i) for every q, q′ ∈ Qm
+ ∩ ∆m−1, and every rational α ∈ (0, 1),

p(αq + (1− α)q′) = λp(q) + (1− λ)p(q′) for some λ ∈ (0, 1); and (ii) not all

{p(q)}q∈Qm
+∩∆m−1 are collinear. Then there are probability vectors {pj}j≤m ⊂

∆n−1, not all of which are collinear, and positive numbers {sj}j≤m such that,

for every q ∈ Qm
+ ∩∆m−1,

p(q) =
∑

j≤m sjqjpj

∑
j≤m sjqj

(•).

Proof.

For j ≤ m, let qj denote the j-unit vector in Rm, i.e., the j-th extreme

point of ∆m−1. Obviously, one has to define pj = p(qj). Observe that,

since p(αq + (1 − α)q′) is a convex combination of p(q) and p(q′), not all

{p(qj) = pj}j≤m are collinear.

We have to show that there are positive numbers {sj}j≤m such that (•)
holds for every q ∈ Qm

+ ∩∆m−1.

Step 1: m = 3.

5Throughout this paper, the interval defined by two vectors, p and q, is given by
[p, q] = {λp + (1− λ)q |λ ∈ [0, 1] }.

6The following proposition is a manifestation of a general principle, stating that func-
tions that map intervals onto intervals are projective mappings. Another manifestation of
this principle in decision theory can be found in Chew (1983).
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Let q∗ = 1
3
(q1 + q2 + q3). Choose positive numbers s1, s2, s3 such that

(•) holds for q∗. Observe that such s1, s2, s3 exist and are unique up to

multiplication by a positive number. Define ps(q) =
∑

j≤m sjqjpj

∑
j≤m sjqj

for all q ∈
Q3

+ ∩ ∆2. Denote E = { q ∈ Q3
+ ∩ ∆2 | ps(q) = p(q) }. We know that

{q1, q2, q3, q∗} ⊂ E, and we wish to show that E = Q3
+ ∩∆2.

Step 1.1: Simplicial points are in E:

The first simplicial partition of Q3
+ ∩ ∆2 is a partition to four triangles

separated by the segments connecting {(1
2
q1 + 1

2
q2), (1

2
q2 + 1

2
q3), (1

2
q3 + 1

2
q1)}.

The second simplicial partition is obtained by similarly partitioning each of

the four triangles to four smaller triangles, and the k-th simplicial partition

is defined recursively. The simplicial points of the k-th simplicial partition

are all the vertices of triangles of this partition.

We now state the following

Claim: If the vertices and the center of gravity of a simplicial triangle are

in E, then so are the vertices and center of gravity of all of its four simplicial

sub-triangles.

Proof:

————————————-

Insert Figure 1 Here

————————————-

If four points that are not collinear, a, b, c, d, are in E, then the point

defined by the intersection of the segments [a, b] and [c, d] is also in E. The

proof is conducted by applying this fact inductively as suggested by Figure

1.

Explicitly, let {q1
k, q

2
k, q

3
k} be the vertices of a triangle in the k-th simplicial

partition. Assume that q1
k, q

2
k, q

3
k,

1
3
(q1

k + q2
k + q3

k) ∈ E. We first show that

(1
2
q1
k+ 1

2
q2
k), (

1
2
q2
k+ 1

2
q3
k), (

1
2
q3
k+ 1

2
q1
k) ∈ E. Indeed, (1

2
q1
k+ 1

2
q2
k) is the intersection

of the line connecting q3
k and 1

3
(q1

k + q2
k + q3

k), and the line connecting q1
k and

q2
k. Hence both p(1

2
q1
k + 1

2
q2
k) and ps(

1
2
q1
k + 1

2
q2
k) have to be the intersection of
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the line connecting p(q3
k) = ps(q

3
k) and p(1

3
(q1

k +q2
k +q3

k)) = ps(
1
3
(q1

k +q2
k +q3

k)),

and the line connecting p(q1
k) = ps(q

1
k) and p(q2

k) = ps(q
2
k). Since not all p(q)

are collinear, this intersection is unique. Hence (1
2
q1
k + 1

2
q2
k) ∈ E. Similarly,

we also have (1
2
q2
k + 1

2
q3
k), (

1
2
q3
k + 1

2
q1
k) ∈ E.

Next consider the center of gravity of the four sub-triangles. For the

triangle conv{(1
2
q1
k + 1

2
q2
k), (

1
2
q2
k + 1

2
q3
k), (

1
2
q3
k + 1

2
q1
k)}, the center of gravity is

equal to that of conv{q1
k, q

2
k, q

3
k}, which is already known to be in E. Next

consider the center of gravity of one of the three sub-triangles that have a

vertex is common with conv{q1
k, q

2
k, q

3
k}. Assume, without loss of generality,

that it is the triangle defined by {q3
k, (

1
2
q1
k + 1

2
q3
k), (

1
2
q2
k + 1

2
q3
k)}. We first note

that 1
2
(1

2
q1
k + 1

2
q3
k) + 1

2
(1

2
q2
k + 1

2
q3
k) is in E because it is the intersection of

[q3, (1
2
q1
k + 1

2
q2
k)] and [(1

2
q2
k + 1

2
q3
k), (

1
2
q3
k + 1

2
q1
k)]. Similarly, 1

2
(1

2
q1
k + 1

2
q3
k) +

1
2
(1

2
q1
k + 1

2
q2
k) is in E. The point 1

2
q3
k + 1

2
(1

2
q2
k + 1

2
q3
k) = 3

4
q3
k + 1

4
q2
k is on the

line connecting 1
2
(1

2
q1
k + 1

2
q3
k) + 1

2
(1

2
q2
k + 1

2
q3
k) and 1

2
(1

2
q1
k + 1

2
q3
k) + 1

2
(1

2
q1
k + 1

2
q2
k)

and on the line connecting q2
k and q3

k. Hence 3
4
q3
k + 1

4
q2
k is in E. The center of

gravity of the triangle conv{q3
k, (

1
2
q1
k + 1

2
q3
k), (

1
2
q2
k + 1

2
q3
k)} is the intersection

of [q3, 1
2
q1
k + 1

2
q2
k] and [(1

2
q1
k + 1

2
q3
k), (

3
4
q3
k + 1

4
q2
k)]. Hence the center of gravity

of the triangle conv{q3
k, (

1
2
q1
k + 1

2
q3
k), (

1
2
q2
k + 1

2
q3
k)} is in E.¤

Applying the claim inductively, we conclude that E contains all points

that are vertices of simplicial sub-triangles of conv{q1
k, q

2
k, q

3
k}. ¤

Step 1.2: Completion:

Observe that, if q ∈ Q3
+∩conv(q, q′, q′′), then p(q) ∈ conv(p(q), p(q′), p(q′′)).

Consider an arbitrary q ∈ conv{q1, q2, q3}. Take a sequence of simplicial tri-

angles, conv{q1
k, q

2
k, q

3
k}, such that q ∈ conv{q1

k, q
2
k, q

3
k} and that limk→∞ qj

k = q

for all j = 1, 2, 3. Since ps is a continuous function, limk→∞ ps(q
j
k) = ps(q) for

all j = 1, 2, 3. Moreover, because both p and ps satisfy the Combination ax-

iom, it follows that p(q), ps(q) ∈ conv{p(q1
k) = ps(q

1
k), p(q2

k) = ps(q
2
k), p(q3

k) =

ps(q
3
k)}. This is possible only if p(q) = ps(q). Hence q ∈ E. Since the choice

of q was arbitrary, E = Q3
+ ∩∆2.

Step 2: m > 3.

12



Step 2.1: Defining sj:

Consider a triple j, k, l ≤ m such that {pj, pk, pl} are not collinear. Apply

Step 1 to obtain a representation

p(q) =
∑

ν∈{j,k,l} s
{j,k,l}
ν qνp

ν({j, k, l})/ ∑
ν∈{j,k,l} s

{j,k,l}
ν qν

for all q ∈ Qm
+∩conv({qj, qk, ql}). Moreover, for all ν ∈ {j, k, l}, pν({j, k, l}) =

p(qν) = pν , and the coefficients {s{j,k,l}
ν }ν∈{j,k,l} are unique up to multiplica-

tion by a positive number.

Next consider all triples j, k, l ≤ m such that {pj, pk, pl} are not collinear.

We argue that, for given j, k, s
{j,k,l}
j /s

{j,k,l}
k is independent of l. To see this,

assume that l and l′ are such that neither {pj, pk, pl} nor {pj, pk, pl′} are

collinear. Restricting attention to rational combinations of qj and qk, one

observes that s
{j,k,l}
j /s

{j,k,l}
k = s

{j,k,l′}
j /s

{j,k,l′}
k . Denote this ratio by γjk. Ob-

serve that it is defined for every distinct j, k ≤ m, because for every j, k there

exists at least one l such that {pj, pk, pl} are not collinear. Further, note that

if {pj, pk, pl} are not collinear, then γjkγklγlj = 1.

Define s1 = 1 and sj = γj1 for 1 < j ≤ m. We wish to show that, for every

triple j, k, l ≤ m such that {pj, pk, pl} are not collinear, {s{j,k,l}
ν }ν∈{j,k,l} is

proportional to {sj, sk, sl}. Without loss of generality, it suffices to show that

s
{j,k,l}
j /s

{j,k,l}
k = sj/sk, or that γjk = sj/sk. If {p1, pj, pk} are not collinear,

then this equation follows from γ1jγjkγk1 = 1. If, however, {p1, pj, pk} are

collinear, then {p1, pj, pl} and {p1, pk, pl} are not collinear. Hence γkl = sk/sl

and γlj = sl/sj. In this case, γjk = 1/γklγlj = sj/sk.

Given s = (sj)j≤m, define ps(q) =
∑

j≤m sjqjpj

∑
j≤m sjqj

. Thus, we wish to show

that p(q) = ps(q) for all q ∈ Qm
+ ∩∆m−1.

Step 2.2: Completion:

We prove the following claim by induction on k, 3 ≤ k ≤ m:

Claim: For every subset K ⊂ {1, ...,m} with |K| = k, if {pj}j∈K are not

collinear, then p(q) = ps(q) holds for every q ∈ ∆K ≡ Qm
+ ∩ conv({ qj | j ∈

K }).

13



Proof: The case k = 3 was proven in Step 1. We assume that the

claim is correct for k ≥ 3, and we prove it for k + 1. Let there be given

K ⊂ {1, ...,m} with |K | = k + 1, such that {pj}j∈K are not collinear. Let

J = { j ∈ K | {pl}l∈K\{j} are not collinear}. Observe that, for every j ∈ J ,

p(q) = ps(q) holds for every q ∈ ∆K\{j}.

We argue that | J | ≥ k. To see this, assume that there were two distinct

elements j and k, in K\J . Then all {pl}l 6=j are collinear, as are all {pl}l 6=k.

Since |K | = k + 1 ≥ 4, there are at least two distinct elements in K\{j, k}.
Both pj and pk are collinear with {pl}l 6=j,k, and it follows that all {pl}l∈K are

collinear, a contradiction.

Consider a rational point q ∈ Qm
+ in the relative interior of conv({ ql | l ∈

K }). Denote q =
∑

l∈K αlq
l with αl > 0. For every j ∈ J , Let q(j) be the

point in conv({ ql | l ∈ K \{j}}) that is on the line connecting qj and q, that

is, q(j) =
∑

l∈K\{j}
αl

1−αj
ql. Obviously, ps(q

j) = p(qj) = pj. Moreover, since

j ∈ J , one may apply the claim to K\{j}, yielding ps(q(j)) = p(q(j)). Since

ps satisfies the Combination axiom, it follows that both p(q) and ps(q) are

on the interval [ps(q
j), ps(q(j))] = [pj, p(q(j))].

Next we wish to show that, for at least two elements j, k ∈ J , the intervals

[pj, p(q(j))] and [pk, p(q(k))] cannot lie on the same line. Assume not, that

is, that all intervals {[pj, p(q(j))]}j∈J lie on a line L. If J = K, this implies

that all {pj}j∈K are collinear, a contradiction. Assume, then, that there is

an i such that J = K\{i}. In this case, pi is not on L. For j ∈ J , consider

q(j) as a convex combination of qi and a point q′ ∈ conv({ ql | l ∈ K\{i, j} }.
By the Combination axiom, p(q′) is on the line L. Moreover, since pi 6= p(q′),

p(q(j)) is in the open interval (pi, p(q′)), and therefore not on L. But this

contradicts the assumption that all intervals {[pj, p(q(j))]}j∈J lie on L.

It follows that there are distinct j, k ∈ J for which the intervals [pj, p(q(j))]

and [pk, p(q(k))] do not lie on the same line. Hence these intervals can inter-

sect in at most one point. Since both p(q) and ps(q) are on both intervals,

p(q) = ps(q) follows.

14



We conclude that p(q) = ps(q) holds for every rational q in the rela-

tive interior of conv({ qj | j ∈ K }), as well as for all rational points in

conv({ ql | l ∈ K \{j}}) for j ∈ J . It is left to show that p(q) = ps(q)

for rational points in conv({ ql | l ∈ K \{i}}) for i ∈ K\J . Assume not.

Then, for some q ∈ Qm
+ ∩ conv({ ql | l ∈ K \{i}}), p(q) 6= ps(q). But p(qi) =

ps(q
i) = pi. Hence the interval (qi, q) is mapped by p into (pi, p(q)) and by

ps – into (pi, ps(q)). Note that these two open intervals are disjoint. But for

any q′ ∈ (qi, q) we should have p(q′) = ps(q
′), a contradiction. ¤

It is left to complete the proof of the sufficiency of the Combination axiom

in case C is infinite. For every B ⊂ C, let IB be the set of databases I ∈ I
such that

∑
j /∈B I(j) = 0. For every j ∈ C, define pj by p(Ij) where Ij is

defined by Ij(j) = 1 and Ij(k) = 0 for k 6= j. For every finite B ⊂ C, for

which not all {pj}j∈B are collinear, there is a function sB such that (∗) holds

for every I ∈ IB. Moreover, this function is unique up to multiplication by

a positive number. Fix one such finite set C0 and choose a function sC0 . For

every other finite B ⊂ C, for which not all {pj}j∈B are collinear, consider

B′ = C0 ∪ B. Over B′ there exists a unique sB′ that satisfies (∗) for all

I ∈ IB′ and that extends sC0 . Define sB as the restriction of sB′ to B. To

see that this construction is well-defined, suppose that B1 and B2 are two

such sets with a non-empty intersection. Consider B = B1 ∪ B2. Since sB1

and sB2 are both restrictions of sB, they are equal on B1 ∩B2. ¤¤
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The point m1 is the intersection of the lines q2q3 and q1c. The points m2 and
m3 are similarly constructed. The point n3 is the intersection on m1m2 and
q3c. The point n1 is similarly constructed. The point o2 is the intersection of
n1n3 and q2q3. Finally, the center of gravity of m1m2q3 is the intersection of
m2o2 and q3m3 at c′.

Figure 1: The vertices and center of gravity of four sub-triangles
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4 Appendix for Referees: Compatibility with

Bayesianism

Whether our approach is compatible with Bayesianism depends on the exact

definition of the state space. In our problem, there are at least three levels at

which the Bayesian approach may be applied. The first, which is minimal in

terms of its information requirements, is to suggest that the physician have

a prior probability measure on the product space, Θ ≡ Rk × Ω, describing

the joint distribution of all the variables (X1, ..., Xk) as well as the possible

outcomes, Ω. If such a prior exists, all that the physician needs to do is to

update this prior, given the values of (X1, ..., Xk), and obtain a posterior on

Ω.

Our similarity-weighted relative frequencies can be viewed as a step to-

wards the generation of a prior over Θ. Specifically, formula (1) suggests a

method for the generation of beliefs over Ω given every possible combination

of values for (X1, ..., Xk). If these posteriors are coupled with some marginal

over (X1, ..., Xk), a prior over Θ will result. For prediction of the state ω ∈ Ω

given (X1, ..., Xk), a complete prior is not necessary. Yet, our approach is

consistent with the Bayesian approach, as applied to Θ, and may be viewed

as complementary to it.

At the other extreme, one may apply the Bayesian approach to a much

more informative state space, allowing all conceivable observations without

imposing any additional structure on the problem. This would mean that

the physician has a prior distribution over all the sequences of observations

she may obtain. Thus, the state space is Ψ = ∪t≥1Θ
t, and for every t

the prior induces a well-defined marginal distribution on Θt. This marginal

distribution can be updated given (t − 1) past observations, as well as the

t-th realization of (X1, ..., Xk), and the posterior on ωt can be computed.

This application of the Bayesian approach would result in beliefs over

Ω generated by Bayes’s updating. It is not clear, however, how one should
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generate a prior belief over the much larger state space Ψ = ∪t≥1Θ
t. Past

observations can hardly provide the required information, since such obser-

vations are already included in the Ψ, whereas the prior should reflect the

beliefs one has before obtaining these observations. At any rate, our approach

in consistent with the Bayesian approach when applied to the space Ψ. In-

deed, the only constraint imposed by the Bayesian approach at this level

is the following ”sure-thing principle”: the posterior on Ω given a sequence

of observations of length t is a weighted average of the posteriors given all

possible continuations of the sequence of length (t+1). (See Green and Park

(1996).) It is readily observed that our formula satisfies this constraint.

The standard application of the Bayesian approach in statistics is at an

intermediate level: it assumes that the observations are drawn from Θ in

an i.i.d. manner, but that the probability law of this process is not known.

Rather, there exists a prior over a certain set of possible probability laws.

This prior induces a probability over all Ψ, but it imposes additional structure

on the problem.

The prior of the probability law governing the data generating process

should be derived from some theory, or past instances of similar statistical

problems. However, if one uses Bayesian update at the level of the probabil-

ity laws, and then deduces beliefs over Ω from it, one will typically not satisfy

the Concatenation axiom.7 Hence our formula is inconsistent with this appli-

cation of the Bayesian approach. Indeed, this inconsistency is apparent even

if all observations in the database share their x values. In this case, our for-

mula reduces to estimating probabilities over Ω by relative frequencies, and

this method of estimation is, in general, inconsistent with Bayesian inference

about the underlying probability law.8

Our formula proposes a method for assigning probabilities, which is an

7See the Limitation sub-section below.
8To see this, one may consider replication of the database. Such a replication does not

change the relative frequencies, but it induces a higher posterior on the probability laws
that maximize the likelihood function.
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extension of simple relative frequencies. It is designed to deal with databases

that are not homogenous, that is, that differ in their x values. But it does not

attempt to deal with situations in which one can conceive of all the possible

probability laws, and feel confident enough to have a prior over them.
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