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Abstract

Consider a principal who hires heterogeneous agents to work for
him over T periods, without prior knowledge of their respective skills,
and intends to promote one of them at the end. In each period the
agents choose effort levels and produce random outputs, independently
of each other, and are fully informed of the past history of outputs.

The principal’s major objective is to maximize the total expected
output, but he may also put some weight on detecting the higher-
skilled agent for promotion. To this end, he randomly samples n
out of the T periods and awards the promotion to the agent who
produces more on the sample. This determines an extensive form
game I' (T,n), which we analyze for its subgame perfect equilibria in
behavioral strategies.

We show that the principal will do best to always choose a small
sample size n. More precisely, if 7 (T) is the maximal optimal sample
size, then n (T') /T — 0 as T' — oo.
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1 Introduction

The literature on tournaments considers a principal who awards prizes to his
agents according to the relative ranking of their outputs (see, e.g., Lazear
and Rosen (1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983),
Rosen (1986)). The objective of the principal is to maximize total expected
output net of the prizes he hands out. Agents, on the other hand, have a
natural disutility for effort and the prizes must be sufficiently lucrative in
order to induce them to work. The output of each agent is stochastic but
positively correlated with his effort level.

While the prize awarded to an agent is highly dependent on his rivals’
outputs, his effort level itself is mostly assumed to be unconditional on what
they may be doing. In effect, tournaments are viewed as one-shot strategic
games in which all agents choose effort levels simultaneously and indepen-
dently of each other. However, there are many situations in which agents in
fact compete over a long run prior to being evaluated for awards, and are able
to observe each other as the competition unfolds over time. The one-shot
model is not appropriate here. Agents’ behavior tends to get conditioned
quite delicately on the observed history of past outcomes. For instance, an
agent would see no reason to work if he had sufficient lead over his rivals and
was close to the end of the tournament. But, if he lagged behind, he would
carefully estimate his chances of overtaking others before deciding how much
effort to put in, and strive hard if there remained sufficient hope to win. Our
concern in this paper is with long-run tournaments which are played over T
periods by highly observant agents. To make room for sophisticated dynamic
behavior, we model such tournaments as T-period extensive form games with
perfect information (modulo simultaneous moves of agents in each period).

We consider agents with heterogeneous skills (measured, for any agent,
by the maximal output he can produce on average in a period), and focus
on T-period tournaments in which the principal awards a prize only to the
best-performing agent. Since such tournaments most frequently occur in
hierarchical organizations, where agents compete with their peers on a daily
basis for a “prize” - the coveted promotion to the next higher echelon, - we call
them promotion tournaments. We assume that the principal is constrained
to make his decision based solely on the observation of agents’ outputs. This
could be because he is not aware of agents’ individual characteristics such as
their skills, or simply because the law requires awards to be commensurate
with performance and to be based on outputs alone, with no other form of



discrimination permitted.

In any outcome of a T-period promotion tournament each agent produces
a stream of outputs over time. A very interesting question, which was hidden
from view in the one-shot model, now comes to the surface. How should the
principal compare the different streams to decide on the winner? At first
glance the aggregate outputs across all T" periods seem to provide the natural
criterion. But, if there are costs to monitoring, this may be infeasible. In
this event one is tempted to think of sampling: the principal could randomly
sample n out of the T" periods, and promote the agent with the highest output
on the sample. We argue here that sampling should indeed be introduced,
but for entirely different reasons. Even if the entire stream of outputs is
susceptible of costless observation by the principal, he would do best to choose
a small sample size n.

The specification of a sample size n determines agents’ probabilities of
winning the promotion, and thereby their payoffs, for any profile of strategies
that they employ in a T-period promotion tournament. This allows us to
view the tournament as an extensive form game I' (T',n), which we analyze
for its subgame perfect strategic equilibria (PSE) in behavioral strategies.
The principal, as was said, values the total expected output produced by
agents. But it is natural for him to also care about the probability with
which he promotes the strongest (most skilled) agent, provided this does
not reduce output to zero. We therefore describe the principal’s utility as a
function of both variables. It induces a preference relation on the set of PSE
of all T-period promotion tournaments. From the principal’s perspective, it
is evident that sample size k dominates sample size n if each PSE of I' (T, k)
is preferred to every PSE of I' (T, n). In Theorem 1 of our paper we prove
that if n(7T") is the largest undominated sample size, then ﬂTD — 0asT — oo,
i.e., n(T') is a vanishing fraction of T

In fact, we show somewhat more. Sample sizes which are non-vanishing
fractions of T" turn out to be quite disastrous asymptotically in T": they lead
to expected outputs that are vanishing fractions of 7" (Theorem 2). The
intuition behind this result lies in the fact that the strongest (most skilled)
agent can develop a noticeable lead over others in the very beginning of the
tournament, by doing relatively little work (on a vanishing fraction of the 7'
periods). Any large sample size almost surely makes the principal aware of
this lead. This causes all agents to abandon work at later periods in PSE, as
shown in Lemma 9 using backward induction arguments.



In contrast, a better outcome is engendered for the principal through
sample sizes 1 or 2. The strongest agent is then forced to work in at least
some non-vanishing fraction of the 7' periods, for otherwise there is a high
probability that the principal will fail to take notice of his superior skills
(Proposition 3). Moreover, even the weakest agent now stands a reasonable
chance to win by working at full capacity throughout the 7' periods, since
his performance on a small sample may far exceed his average. Thus, if the
agents value promotion highly enough, they will exert maximal effort in all
periods (Propositions 4 and 5). Yet, this does not necessarily imply that
sampling once or twice is optimal: the principal may choose a larger sample
size, if it does not reduces the total output by much, since the probability of
detecting the strongest agent increases significantly. However, the principal
must sample on a vanishing fraction of the T periods, otherwise the output
falls dramatically by Theorem 2.

Our main results, Theorems 1 and 2, depend crucially on the subgame
perfection of the strategic equilibria. Without subgame perfection several
other equilibria can be sustained. For instance, if the sample size is large,
inactive rivals may force the strong agent to work on a constant fraction of
all periods, more than he needs to establish a safe lead over them: for if he
did anything else, they would become active and “punish” him by working
forever after detecting his deviation one period later, and considerably reduce
his probability to win. By the use of more sophisticated threat strategies
other equilibria can be exhibited, in which all agents work for a constant
fraction of time, provided the sample size is large enough. These equilibria,
however, are built with the help of “incredible” threats, which are ruled out
by subgame perfection.

The fact that less monitoring by the principal can sometimes elicit more
work from agents was pointed out by Cowen and Glazer (1996). Their model
is quite different from ours. It has just one agent. The principal offers him
a contract specified by means of two parameters: a “threshold” and a “level
of scrutiny”!. The agent must choose a uniform “shirking rate” across all
periods. He wins the prize if he is observed to work a fraction of times
that exceeds the threshold. For any fixed level of scrutiny, the probability
of winning declines as the shirking rate increases, defining an “opportunity

I More precisely, countably many periods are scrutinized according to a Poisson distri-
bution with mean M, where M is the level of scrutiny (i.e., asymptotically in T, every day
is scrutinized with probability %)



curve” on which the agent optimizes. When the level of scrutiny is raised, the
opportunity curve falls for the most part, i.e., this probability falls for most
shirking rates. Then it can happen, for some indifference curves (between
the probability of winning and the shirking rate), that the agent optimizes
by shirking more when the level of scrutiny goes up.

The contrast with our model is clear. The need for reduced scrutiny
holds in our model in general (for sufficiently large 7'), not just for suitably
chosen configurations of preferences. Moreover, it arises fundamentally from
the competition between the agents who choose complicated non-stationary
strategies at equilibrium. To interpret their result within our framework, one
could imagine a “partial” equilibrium scenario: the agent chooses a stationary
“best reply” to an imaginary opponent who is presumed to produce the
threshold amount in every period.

In a companion paper, Dubey and Wu (2000), the behavior of agents is
fixed at maximal effort levels and variable prizes that induce this behavior
are examined. This complements our approach, in which we fix the prize and
examine the variable behavior induced by the prize. The analysis in Dubey
and Wu (2000) is geared towards games with coarse information and concerns
the effects of refining the information, while we deal with perfect information.
But in both cases the main theme remains intact: optimal sample sizes of
the principal must be small.

The paper is organized as follows. We present our model in Section 2,
and state the main results in Section 3. Generalizations, variations, and open
problems are in Section 4, and proofs are in the last Section 5.

2 The Model

For ease of exposition, we present here a stripped down version of the model,
with just two agents, and defer all generalities to Section 4.

A T-period promotion tournament is conducted as follows. At the start of
any period t € {1,...,T'} agents 1 and 2 simultaneously choose to either work
or shirk. We assume that if agent ¢ shirks, his output is 0; but, if he works,
there is a move of chance which selects output 1 with probability p; and
output 0 with probability 1 — p;. Once the outputs of agents are determined,
the tournament enters period ¢ + 1, when agents simultaneously move again
(unless ¢ = T, in which case the game ends). At any time, each agent is
fully informed of the entire past history of efforts undertaken and outputs



realized. Thus the tournament may be viewed as a tree of perfect information
with simultaneous moves. Figure 1 shows the section of the tree when agents
choose a pair of effort levels (e, ey) € {work, shirk}® at the node w, and
then chance selects outputs (q1,¢2) € {0, 1}2 , leading to node @ in the next
period:

(€1,8) (&%, D)
w ch

s O

Figure 1

(The pair (g1, g2) is chosen with probability p{* (¢1)-p5? (g2) , where p§' (¢;) =
1 if e; = shirk and ¢; = 0; and pi’ (¢;) = p; if e, = work and ¢; = 1.) This
completes the description of the extensive form of the game. It still remains
to define agents’ payoffs at the terminal nodes.

Let B; denote i’s utility for getting the promotion; by affine transforma-
tions of agents’ utilities, if necessary, we may assume that By = B, = B
and that the status-quo utility of no promotion is 0 for both agents. Let ¢;
denote the disutility incurred by agent ¢« when he works in all 7" periods. We
suppose that this disutility is uniform and additive across time. Thus # is
i’s disutility from work in any single period. For simplicity of exposition we
also suppose ¢; = ¢y (see, however, Subsection 4.2).

To define the payoff of an agent ¢ at any terminal node w, consider the
unique path in the tree from w* (the start of the game) to w. Agent i’s
disutility Dy at w is the sum of the one-period disutilities of his effort on
this path. The probability py that i gets promoted at w is determined as
follows. The principal samples n different periods from 1 to 7', uniformly
and randomly, and compares total outputs of agents 1 and 2 at the sampled
periods along the path from w* to w. An agent is promoted if his total
output is higher than his rival’s. In the event of a tie, each is promoted with
probability % Thus the expected payoff to agent ¢ at the terminal node w is:

pi - B—Dy.



This defines a T-period promotion tournament with sample size n, which
we denote by I'y, , 5 (T, n) (or just I' (7, n)). Notice that agents know the
number n of days being sampled, but not which days; this is revealed to them
only ex-post after the game is over.

Let 2 (T) denote the set of all nodes in the T-period game tree, at which
agents move (i.e., all non-terminal nodes that do not correspond to chance
moves). For any w € Q (7T) we denote by I', ,, .5 (T,w,n) (orjust I' (T, w, n))
the subgame of 'y, ,, . g (T, n) that starts at w.

A (behavioral) strategy of an agent is given by a choice of probability
distributions over his effort levels (work or shirk) at every node in 2 (7"). We
assume that the probabilities p;, ps of production are common knowledge
to the agents. Thus any pair of strategies of the two agents determines a
probability distribution on the terminal nodes in the obvious manner, and
thereby expected payoffs.

A pair of strategies in a game is called a strategic equilibrium (or SE) if
no player can improve his payoff by unilaterally changing his own strategy.
An SE (01,02) of I'(T',n) is called a (subgame) perfect SE (or PSE) if, for
every w € §2(T'), the restriction of strategies (01, 02) to nodes of the subtree
starting at w constitute an SE of the subgame I' (T, w,n) .

Remark 1 A PSE always exists in a promotion tournament. Moreover, it
exists even in strategies that are not conditioned on past effort levels, but only
on past outcomes. We prove this in Section 5.

3 The Main Results

Fix the parameters pi,ps,c, B, and w.l.o.g. assume that p; > py. Let U :
[0,1]> — Ry be a continuous non-decreasing function, and assume U (z,y) =
0 if and only if x = 0. The principal’s objective in our world is to maximize
U (-%,p) , where ¢ is the expected total output of the agents, and p is the
probability that the “right guy” (i.e., agent 1) is promoted. It is implicit
in this formulation that the principal does not know agents’ skills, i.e., their
probabilities p; of being productive. He values their output, and may also
be interested in the correct promotion, provided its implementation does
not reduce output to zero. (Such a function U can arise, for a risk-neutral
principal, as an expectation of utility defined on pure outcomes: if agent i is
promoted and the total output is ¢, the principal obtains a;q utiles from this



outcome, where a; > as. When a; = as the principal cares only about the
total expected output.)

Let 0 = (01, 02) be a pair of agents’ strategies in I' (T',n). Denote ¢ (o) =
the total expected output under o, p (¢) =the probability that 1 is promoted
under o, and U (¢) = U (@,p (U)) . Define?

U(T,n)=max{U (0) |cisa PSEof I'(T,n)}
and
U(T,n) =min{U (0) | cisa PSEof I'(T,n)}.

We say that sample size n dominates sample size k in T-period promotion
tournaments if U (n) > U (k) . Sample size k is said to be undominated if no
sample size dominates it. Let

n(T) =max{k=1,...,T | k is undominated} .

No matter how pessimistic and cautious the principal may be, he will reject
any sample size k > 1 (7T') because the worst PSE outcome under 7 (7') is
still better for him than the best PSE outcome under k. Thus 7 (T) serves
as natural upper bound on acceptable sample sizes in T-period promotion
tournaments.
We make the following assumptions on the parameters pq, po, c and B:
(I) Agent 1 is sufficiently more skilled® than 2:

p1 > 3pa.

(IT) Agents’ disutility from work is not too high relative to their produc-
tivity and the value they place on promotion:

1
a) ¢ < <p1(1—p2)—§>B;
b) c<ps(1—p1)B.
Theorem 1 Assume (I) and either (Ila) or (IIb). Then for fixed py,pa,c, B

n(T)
T 0

as T — oo.

2We write max, min instead of sup,inf because the set of PSE’s is compact in every
I'(T,n), and nonempty by Remark 1.
3We do not know if this condition can be dropped (see Subsection 4.3).
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Theorem 1 is based upon the following three results, which are of interest
in their own right.

Theorem 2 Assume (I) and let ,s € (0,1]. There exists T > 0 such that,
if T and n are integers with T > T and T > n > sT, then the expected
number of workdays of each agent does not exceed €T in any PSE of the
game L'y, o g (T,n).

Theorem 2 reveals that large samples (which are non-vanishing fractions
of T') are quite disastrous: the number of workdays, and hence expected
output, becomes an arbitrarily small fraction of T" for large enough T" (choose
e small for fixed s).

The other two results (Propositions 3 and 4 below) show that, under
sample size 1 or 2, the expected output at any PSE is asymptotically above
a positive constant fraction of 7. Thus, in conjunction with Theorem 2, they
immediately yield Theorem 1: large samples (non-vanishing fractions of 7T')
are dominated by samples even as small as 1.

(p1(1-p2)-3)B
B

Proposition 3 Assume (Ila). Then I works at least T peri-

ods (in expectation) in every SE of Iy py c.5 (T, 1) .

Proposition 4 Assume (IIb). Then both agents work in every period with
probability 1 in any PSE of Ty, 1, 5 (T,1).

Under a stronger condition, Proposition 5 below guarantees that both
agents work all the time in any PSE if the sample size is 2. Thus, so long
as the principal cares about the correct promotion, sample size 2 dominates
sample size 1 because the probability of detecting agent 1 as a winner goes

up. This indicates that in general 7 (T") exceeds 1.

Proposition 5 Assume that

B .
c<p2T-m1n(p1,1—p1). (1)

Then both agents work in every period with probability 1 in any PSE of
Lpipe,s (1,2) for T > 6.

Proofs of all our results are given in Section 5.



4 Remarks

4.1 The rate of drop of sample size in Theorem 1

1. Theorem 2 shows that, given 0 < s < 1, all sample sizes above sT" make
the total output fall below an arbitrarily small fraction of T, provided T is
large enough. It can be shown, by mimicking the existing proof, that this
upper bound on undominated sample sizes can be lowered to sv/T, or in
general any function o(T") that has the following two properties:

(i) o(T) is a vanishing fraction of T} i.e.,

. o(T)
Am =

(ii) o(T) grows much faster than InT) i.e.,

. o(T)
1 —
o I

Thus 1 (T') is (asymptotically in T') bounded from above by any such function
o(T).

2. It can also be shown that, under the above assumption on the sample
size, the expected total output in PSE is itself asymptotically bounded by a
function o' (T') with properties (i) and (ii).

4.2 Generalizations and Variations of the Model

1. The assumption of binary effort levels (work, shirk) and production levels
(zero, one) can be replaced by more general assumptions, and certain versions
of Theorems 1 and 2 will still hold. For instance, assume that there are
finitely many agents, whose effort levels and outputs lie in finite sets, and
whose disutilities from effort may differ but are positive whenever the effort
leads to positive expected output. Denote by E; the maximal expected one-
period output of agent ¢ over all possible effort levels. It can be shown that
there exists d > 1 which makes the following result true. Suppose there is an
agent ¢ with
Ei > dEj

for all j # i. Then, given ¢, s € (0,1], there exists T > 0 such that, for any
integers T and n with T" > T and T > n > sT, the expected number of
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workdays of each agent does not exceed €7 in any PSE of the promotion
tournament of length 7" with sample size n. The proof of this result follows
closely the one given in the paper, but is messier.

2. Suppose the agents move sequentially rather than simultaneously
(think of day and night shifts in a factory), and have perfect information
in the game. In this case Kuhn’s theorem guarantees the existence of PSE
in pure strategies. Our main results are affected only slightly. Suppose that
the periods in which agents 1 and 2 move have a “6-uniform” mix, for some
sufficiently small 6; i.e., there exists k£ independent of T such that in any
sequence of k periods each agent moves at least (% — 6) k times. Then there
exists d (6) > 1 such that the assertions of Theorems 1 and 2 hold, provided
assumption (I) is replaced by:

p1 > d () pe.

In fact, we may also allow any mix of simultaneous and sequential moves in
the above scenario.

When the game has only sequential moves, undominated sample sizes are
generically optimal. If we independently perturb, at every node of the game
tree, both the disutilities of work and the probabilities of production (in small
neighborhoods of ¢ and p;), our main results remain intact. Generically in
the perturbation, however, PSE is unique and consists of pure strategies for
all sample sizes. And then undominated sample sizes are just those that
maximize the principal’s utility.

4.3 Open Questions

1. Do Theorems 1 and 2 hold if assumption (I) is weakened to p; > po? If this
were the case, we could probably extend our analysis to general tournaments
and get similar results. In a promotion tournament there is only one prize,
but in a general tournament there are multiple prizes, awarded to agents
based on the ranking of their outputs. Our current analysis as it stands also
extends to general tournaments, but under progressively restrictive assump-
tions: agent 1 must be much stronger than agent 2, 2 much stronger than 3,
etc.

2. What happens when p; = py: is there ¢y > 0 such that the expected
number of workdays of the agents exceeds ¢¢7T, for any number of periods T’
and any sample size?

11



3. Do Theorems 1 and 2 hold if we require a winning player in I" (7', n)
to be ahead of his rival by o7, for some o > 07

4. Suppose that the principal does not care about the correct promotion,
but only about total output, i.e., U is a function of only the first coordinate.
It is easy to see that if the sample size n > 3 then, for all sufficiently large T,
there is no PSE in which agents work all the time with probability 1. Then
Propositions 4 and 5 imply that the only undominated sample sizes are 1
and 2, provided (1) holds. TIs this conclusion still true without assumption
(1), i.e., what happens when no sample size is capable of inducing full-time
work?

5 Proofs

5.1 Lemmas

Let N denote the set of natural numbers, and assume (I) throughout this
subsection.

Lemma 6 Let 0 < 6. Given D € N and a set of D periods, suppose that
agent i works unconditionally* in each of these periods. Then the probability
that he produces more than (p; + 6) D units of output during these periods,
and the probability that he produces less than (p; — 6) D units, are both at
most e P, for some a > 0 independent of D.

Proof. The proof is trivial if p; = 0 or 1, so we assume 0 < p; < 1. The
number of units Sp that agent ¢ produces in the D periods is a sum of
D independent and identically distributed random variables X;, such that
X; = 1 if i produces one unit of output in period ¢ (which happens with
probability p;), and X; = 0 otherwise. The variable Sp has mean p;D and

standard deviation y/p; (1 — p;) D. The probability that i produces more than
(p; + 6) D units is therefore

If an agent works at every node of a subset Q of Q(T), we say that he works un-
conditionally in Q. If € is the set of all nodes in period ¢, we say that the agent works
unconditionally in period t. Unconditional shirking is defined similarly.

12



Pr(Sp — p;D > 6D) = Pr ( Sp - p:D) > oD ) .

Vpi(l=p) D \pi(L=p) D~ \/pi(1—p)
(2)

Denoting
o

d; =min | ————=,\/ps (1 —p;i) |,
(pi(l—pz-) Pi ( p))

the probability in (2) is at most

Sp piD
Pr — >d;VD | .
(\/pi(l—pi)D \/Pz’(l—Pz’)D )

By A (i) on p. 254 of Loeve (1960), this probability is at most

exp —Li\/ﬁf (1— di\/ﬁ ) < exp (-ng)
2\/pi(l—p)D) | ~ 4 )

2
It can be shown similarly that exp <— daD) bounds Pr (Sp —p;D < —6D)

from above. Taking a = min;—; » <d7?> finishes the proof. B

Lemma 7 Let 0 < 6 < p; — po. Given D € N and a set of D periods,
suppose that agent 1 works unconditionally in each of these periods. The
probability that he produces at least (p1 — pa — 6) D units more than 2 during
these periods is bounded from below by 1 —2e~%P for some a > 0 independent
of D.

Proof. The required probability is minimal when 2 also works uncondition-
ally in each of the D periods. It is bounded from below by the probability that
1 produces at least (p1 — g) D units, and 2 produces at most (pg + g) D units
during these periods. By independence of production, this is the product of
the probabilities of the two events. By Lemma 6, the required probability is

2
at least (1 —e P} >1—-2e " for a > 0 independent of D. B

Given a node w, denote the total output of 7 on the path from w* to w
by A; (w), for i € {1,2}.

13



Lemma 8 Let e, s € (0,1]. There exists a > 0 such that, for every T and n
in N with T > max (n,2) > n > sT, and every terminal node w of the game
L' (T,n) with
Al (CU) > AQ (CU) + 6T,
al’

the probability that 1 wins the promotion is at least 1 —2e~%" | conditional on
the realization of w.

Proof. Denote by S* the number of i’s outputs sampled by the principal on
the path from w* to w; note that the expectation of S* is equal to ZA; (W) .
The probabilities below are all conditional on the realization of w :

En

Pr (1 wins the promotion) > Pr <Sl - %Al (w) > — 1

s M en
_ = < -
and S TAQ (w) < 1 >
(3)

21—Pr<51—%A1(w)<—%>—Pr<S2—%A2(w)>%>. (4)

Let us estimate the second term in (4). Suppose first that 4; (w) < ( - ﬁ) T.

aT
For an integer A between 7" and ( — %) T define
1 AN? AN?
=, |=— - = T—-A) (=] |
74 \IT—1<A<1 T) * )<T>)

o= max o4,
T>2, eT<A<(1-5)T

Also denote

g = min oa,
T>2, eTgAg(l—ETj)T

n . [
e = 7 nin <Z’Q2> ,

and note that co > & > g > 0. Now,

n en n "
Pr <Sl — ?Al (W) < —Z> S Pr <Sl — ?Al (Ld) < —€ T)
(S e er )
A VN TayVn  OawVn

14



By Lemma 6.3 of Rosen (1965) this probability is at most

er 2 T
~ \ TV (1_ UA1<w>\/ﬁ)

2 20'A1(w) \/ﬁ

exp

This expression equals

(6")2T e (6")2T (5”)2T
&Xpl\—5325 1— 22—n < exp _42—n S exp | — 4F2n
2054, ()" TAy()T Tay ()T o7

fod
=exp | — oz = exp (—nay)
Therefore -
n n
Pr (Sl — =4 (w) < ——> < exp (—nay).
T 4
Now, if A; (w) > (1 — %) T', then the principle samples at most < periods
on which 1 did not produce, and so at least n — ¢ (> ZA; (w) — &) units

of 1’s output are sampled. Therefore Pr (Sl —2A; (w) < —%) =0, and, in
particular, is below exp (—ajn) .
The existence of as > 0 such that

Pr (5’2 — %Ag (w) > % ) < exp (—agn)

for all T is shown similarly. It follows from (3) and (4) that
Pr (I wins the promotion) > 1 — 2 exp (— min (a;, az) n)

>1—2exp(—min(ay,as) sT) =1—2exp(—aT).
|

Lemma 9 Assume (I), and let e,5 € (0,1]. There exists T > 0 with the
following property: suppose that T and n are integers such that T > T and
T >n>sT, (01,02) is a PSE of I'p, py,e.5 (T,n), andw € Q(T) is such that

A (w) > Ay (w) + €T (5)
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then the strategies (o1,09), restricted to the subgame I' (T ,w,n), induce a
unique path along which both agents shirk. In other words, if agents employ
(o1,09) in T (T,w,n), they shirk at every period of the game with probability
1.

Proof. Set &' = £ and ¢ = %. Let T > g be such that for any 7' > T the
following inequalities hold for positive ay, as, ag that will be specified later:

(a)

% > 2B (e*‘“T + 67G3T> ;

(b)

2(1— (1—2¢77) (1 2e77T)) B4 (1 — 2¢77) 2T (p248) ywr, [ET]C

C
<2 "B — —;
(& T,

[ e (pg + 5)
p1—p2—06
where [m] stands for the integer part of the real number m. Also select and
fix a PSE in every promotion tournament I' (T, n) , for all T'and T' > n > sT.

Given integers T and n such that T > T and T > n > sT, we prove the
lemma for every w € 2 (T') satisfying (5), by backward induction on A; (w).
Fix one such w. Since only the subtree starting at w will be considered, we
can add to all payoffs of agent ¢ the number C; (w) - his disutility from work
incurred prior to w. The newly defined payoffs ignore costs from work prior
to w, and do not change strategic behavior in the subtree.

First suppose that there are at most [¢'T] periods from w to the end of
the game (which must be the case if A; (w) > (1 —¢")T). Let a; be the
positive constant from Lemma 8, applied for ¢’ and s. Then the probability
that 1 wins the promotion, conditional on the PSE path reaching w, is at
least 1 —2e %7 no matter what the agents do after w (indeed, the difference
A; (W) — Ay (') is at least 'T for any terminal node w’ following w). Thus
if agent 1 chooses to shirk at w and then follow his PSE strategy, he gets
at least (1 — 26_“1T> B (this payoff can be guaranteed by doing nothing). If
agent 1 works at w and then follows his PSE strategy, he incurs a disutility of

7 and can get at most B. The change in utility is thus at most 2Be T T

6\ ,
T] (p1 —p2—0) > <p2+§)€T,

16



Since T > T, (a) in the definition of T implies that it is always better to
shirk at w, and so 1’s PSE strategy will not put a positive probability on
work at w. Similarly, if 2 shirks at w and then follows his PSE strategy, he
receives some positive payoff (which can be guaranteed by doing nothing). If,
however, 2 works at w and then follows his PSE strategy, he can get at most
2e~"B, and incurs a cost of %. The change in utility is again negative by
(a), hence 2’s PSE strategy will tell him to shirk at w. A repetition of these
arguments shows that no agent works at any «’ following w, and so there is
no work after w.

Next suppose that there are more than [¢T] periods from w to the end of
the game (and so A; (w) < (1 —¢’)T), and the assertion of the lemma holds
for all w' with A; (w') > A; (w). We will show that 2’s PSE strategy tells
him to shirk at w.

We first prove that if 2 decides to work at w and to follow his PSE strategy
thereafter, and 1 sticks to his PSE strategy at all times, then 2’s expected
payoff is negative. Denote by ' the set of nodes w’ € Q2 (T') subject to the
following three conditions:

i) 2 works at w';

ii) there are exactly [¢T] periods on the path leading from w to w’ on
which 2 works;

iii) there are more than [¢T| periods from w’ to the end of the game.

Let 2" be the set of nodes w’ € €' such that 2 produces at most (p2 + g) 'l
units of output during the [¢'T] workdays between w and w’. Denote by F'
the event that a node in ' is reached, and by E' C F' the event that a node
in 2" is reached. Conditional on F and w’ being a node reached in £, we
come to the game I' (T, w’,n) . Denote by G; (') the PSE payoff of agent 1
in this game, which ignores costs of work incurred prior to w'.

To bound G (w') from below we consider the following strategy of 1 (that
may differ from his PSE strategy): let 1 work unconditionally for [;;(_p;;:f%ﬂ
consecutive periods after w’ (until, say, w” € Q (7)), and then switch to his
PSE strategy. By Lemma 7 there is a; > 0 independent of T" such that, in the
[%T} periods following ', 1 produces at least [%T] (p1 — p2 — 9)
units more than 2 does during these periods, with probability at least 1 —
2¢=%T Since T > T, (c) in the definition of T implies that the probability
of A; (W") > Ag (") + T and A; (W) > A; (w) is at least 1 — 2e 2T, By
our induction assumption neither agent works after w” on the path induced
by the PSE strategies, with probability at least 1 — 2e~*T. Given that the
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agents do not work after w” on this path and A; (w”) > Ay (w") + €T, the
probability that 1 wins the promotion is at least 1 —2e~%7 by the definition
of a;. Thus

e (p2 +96)

Gy (W) > (1—2¢ 7 ((1 —2¢7T) B - P

c) —2e 2T .c. (6)

Using (6), the probability a that 1 wins the promotion in the game
['(T,w',n) can be estimated. Let § be the probability of a tie. Then we
must have

1
aB + ﬁEB > Gy (W)
"(p2 + 6)
> (1—2¢ ") (1 -2 4T B — (1 —2¢ T %c —2¢ 2T,
- ( ) ( ) ( ) p1—p2—06
and so (taking the worst case: f =1— «)

((1=2eT) (1 —2e70T) = 1) B — (1 - 2¢7T) 2t geaal
15 '

a >

Therefore 2’s probability of getting the promotion (through a win or a tie) is

1—(1-2e%T) (12 47T)) B+ (1 —2¢®T) 22t 4 9e-aTe
(- ) ) B+ ( )

p1—p2—~6
l-a < i
2

Thus the PSE payoff of 2 in the game I" (T, w’, n) is at most

(1-—a)B

—9 (1 _ (1 _ 2e—a2T) (1 - 25”)) B+ (1 - 2e—a2T) %c—i—%‘“ﬂc
1= M2 —

(ignoring costs incurred from work prior to w’). If the costs of work are
ignored prior to w only, 2’s payoff is at most

2(1— (1-2e77) (1 -2 97)) B+ (1 2¢7) pL (p; + 6&%@@%—@.
1 — P2 —

We now proceed to estimate the probability of F'— E. Consider a sequence
of independent and identically distributed random variables (Y;,)°,, such

n=1"
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that Y,, = 1 with probability p; and Y,, = 0 with probability 1 — p;. Let us
count only those periods, starting from w, on which agent 2 works. Think of
Y,, as the outcome of 2’s work at period n (of course only a finite number of

[£'T]
Y,’s are ever looked at). If the event F'— E occurs, then ijﬂ& > (pg + %) .

This inequality holds with probability at most 2e=%” for some a3 > 0 which

is independent of T' - this is shown by the same arguments as in Lemma 6.

Therefore the probability of F' — E is bounded from above by 2e=%7.
Conditional on F* (i.e., F' does not occur) it is clear that

A (w) > Ay (w) + (e —2") T = Ay (w) + £'T,

and so the probability that 2 wins or ties is at most 2“7, by the definition
of a;. Therefore 2’s payoff is at most 2e~“7 B — % (here we use our assumption
that 2 works at w, and thus incurs a disutility of at least ).

Therefore the payoff that 2 receives is bounded from above by

(20 (e (12 o (- 2emmr) S e )

x Pr(E) + BPr(F — E) + <2e—a1TB - %) Pr (F°) .
Using (b) in the definition of T, the above expression is maximal when
Pr(E) = 0, and so this expression is bounded from above by

BPr(F - E)+ <26_“4TB - 5) < 2e TR 4 2¢%TR — C
T T

By (a), this number is negative. Therefore 2 receives a negative payoff if he
works at w and follows his PSE strategy thereafter. On the other hand, if
2 shirks at all periods following w, he receives a non-negative payoff. This
implies that if 2 shirks at w and then follows his PSE strategy, he also receives
a non-negative payoff. We deduce that it is better for 2 to shirk at w and to
follow his PSE strategy thereafter, than to work at w and to follow his PSE
strategy thereafter, provided 1 sticks to his PSE strategy. It follows that 2’s
PSE strategy instructs him to shirk at w with probability 1.

Now, let 1 unconditionally shirk, starting at w. We know that 2’s PSE
strategy tells him to shirk at w. This leads to a later node w’, in which
A (W) > Ay (W) + €T. By the same proof 2 also shirks at w’. Successive
repetitions of this argument show that if 1 unconditionally shirks, starting
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at w, so does 2. This gives 1 a payoff of at least (1 — Qe_alT) B. Thus, if
1 shirks at w and follows his PSE strategy thereafter, he is also getting at
least (1 — 26*‘“T) B. On the other hand, if 1 works at w and follows his PSE

thereafter, he gets at most B — #. Using (a), this is less than (1 — 26_“1T> B.
Thus the PSE strategy of 1 will instruct him to shirk at w.

We have shown that both agents shirk at w in PSE. This leads to a later
node, for which the same proof works: PSE strategies tell agents to shirk
there. Repetitive applications of this argument establish that neither agent
works on the PSE path starting at w. This completes the inductive step, and
concludes the proof. B

5.2 Proof of Theorem 2

Fix a PSE in every promotion tournament I' (7', n), for all T'and 7" > n > sT.
Let ¢’ = £. For ay, a, and T" that will be specified later, we take T >0 be
an integer such that for all integers T' > T

1)
(1 — Qe’alT) [(1 - 26’“2T) B — 5'0} —2e 9Te> B —ec;
2)
2 (1 - (1 - 2e—a1T) (1- 26—02T)) B+2(1- 26_‘”T) ge+demTe < ec;

3)
T>T.

Assume that 2 sticks to his PSE strategy at all times, and consider the
following strategy of 1 in I' (T, n): let 1 work for the first [¢'T| periods, and
then switch to his PSE strategy. With probability at least 1 — 2e~%7T he
will reach a node in which his output is at least ®5# - [¢'T] units ahead
of 2 (such a; > 0 exists independently of 7" and n > sT, by Lemma 7).
For some 7" = 71" (s) and every T' > T" and n > sT, the agents will shirk
starting at this node (Lemma 9), in which case the probability of 1 win-
ning the promotion is at least 1 — 2e®7" (for some ay > 0 independent
of T'and n > sT, by Lemma 8). Therefore 1 can guarantee a payoff of
at least (1 — Qe_alT) (gl — Qe_GZT) B — 6,‘62? — 2e~T¢ If, however, the ex-
pected number of workdays of 1 in the PSE exceeds €7, then 1 is getting at
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most B — ec, which is below the guaranteed payoff if "> T. So 1 does not
work more than 7" periods in expectation.

Employing an argument similar to the one used in Lemma 9 for the com-
putation of « (the probability of 1 winning the promotion) one can show that,
given that 1 can guarantee a payoff of at least (1 — 26_“1T> ((1 — 26_“2T> B —
2¢ 2 T'c the probability of 2 getting the promotion (through a win or a tie)
is at most

(1 _ (1 _ 2e*a1T) (1 _ 2e*a2T)) B+ (1 _ 2e*a1T) g+ 2euTec
1B '

So, if the expected number of 2’s workdays exceeds 7', then 2’s payoff in the
PSE is at most

2 (1 - (1 - 26_‘”T) (1 - 2e—a2T)) B 42 (1 - 2e—a1T) fetdeTe — cc.

Therefore, if T > T, 2 would be better off shirking, contradicting the defini-
tion of PSE. This finishes the proof.

5.3 Proof of Theorem 1

If (I1a) or (IIb) are assumed, then Propositions 3 and 4 guarantee an existence
of 6 > 0 such that q(—TU) > ¢ at any PSE o of I' (7',1) . Thus U (7,1) > 0.
Since lim._,o U (¢,1) = 0 by the continuity of U, we can find £ > 0 such
that U (e,1) < U(T,1). Theorem 2 implies that for any 1 > s > 0 there
exists T =T (g,s) > 0 such that, for all T > T and T > n > sT, and a PSE
oof I'(T,n),
g(o) <eT.

Since U is non-decreasing,

U(T.n) <U(e,1),
and so U (T,n) < U(T,1). Sample size 1 thus dominates all sample sizes
greater than sT" in T-period promotion tournaments, for 7' > T. Therefore

T
lim sup M <s.

T—o00

Since the inequality holds for any 1 > s > 0, we deduce that
T

lim n) (T)

Am =0.
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5.4 Proof of Proposition 3

If 1 works unconditionally in all periods, he guarantees a payoff of at least
—c+ p1 (1 — py) B against any strategy of 2 (this is the actual payoff in the
worst case scenario from 1’s perspective: 2 also works unconditionally). If
the expected number of workdays of 1 is at most €7, for 0 < € < 1, he gets
at most eB + %B (assuming the best case scenario from 1’s perspective: 2
shirks unconditionally, and 1 succeeds to produce whenever he works). For

(Pl(l—Pz)—%)B—c
B

every ) < e <

1
6B+§B< —Cc+ D, (1—p2)B.

This means that, if the expected number of 1’s workdays in any SE is less
than €7, then 1 does not get the minimum he can guarantee, contradicting
the definition of SE.

5.5 Proof of Proposition 4

Proof. We will show by backward induction that in every period both agents
work unconditionally in any PSE of " (7,1) . Let w € Q (T') be a node in the
last period T'. Then, by choosing to work rather than shirk at w, agent ¢
increases his probability to win by at least %pz- (1 —p;), whatever the action
of the other agent j may be at w (% is the probability that the last period is
sampled; p; (1 — p;) bounds from below the probability that ¢ produces one
unit of output at this period, whereas his rival j does not). It is thus clear
that the change in i’s payoff when he switches from shirk to work at w is
at least %pi (1 —p;) B— %, and this number is positive by assumption (IIb).
Thus agents’ PSE strategies will tell them to unconditionally work at the
last period.

Now, assume that w € Q(7T) is a node in period ¢t < T, and that the
agents work at every node following w. No matter what agents’ actions at w
may be, on subsequent periods both agents work by the inductive assump-
tion. Therefore, as in the above paragraph, the change in payoff when agent ¢
switches from shirk to work at w is at least 7p; (1 — p;) B — %, which is posi-
tive. Therefore the PSE strategies of both agents tell them to unconditionally
work at w. This finishes the inductive proof.
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5.6 Proof of Proposition 5

The proof proceeds by backward induction, in a manner similar to the proof
of Proposition 4 above. Let w € (T be a node in the last period T, and
let 7 be an agent whose total output along the path leading from w* to w is
no more than his rival’s.

We claim that the change in i’s payoff, when he switches from shirk to
work at w, is positive, no matter what action the other agent j chooses at w.
Indeed, consider the event E that the last period is sampled, together with
another period in which ¢ does not produce more than the other agent j; its
probability is bounded from below by 2 (% : %) since T' > 6. (In what follows
the disutility from work will be ignored.) Given E and that both agents
produce the same amount on the other sampled period, if j shirks at w then,

by working at w, i ensures the payoff of p;B + (1 — p;) %, compared to £

when he shirks. If 7 works at w then, by working at w, ¢ ensures the payo%f
of at least p; (1 — p;) B+ (1 — p;) (1 — p;) 2, compared to (1 — p;) & when he
shirks. Next, given E and that agents produce different amounts on the other
sampled period (i.e., j produces 1 and ¢ produces 0), if j shirks at w then, by
working at w, 7 ensures the payoff of ng, compared to 0 when he shirks. If j
works at w then, by working at w, ¢ ensures the payoff of at least p; (1 — p;) %,
compared to 0 when he shirks. To summarize: conditional on E, the switch
from work to shirk leads to a gain in payoff of at least p; (1 — p;) % Finally
observe that if £/ does not occur, the probability that ¢ gets a promotion does
not decrease when he switches at w from shirk to work. Thus the change in
the unconditional payoff (now taking the costs of work also into account) if

agent ¢ switches from shirk to work at w is at least

I

1 1 B ¢ 1 B
2(f'§>Pi(1—pj)5—fpri(l—pj)g—

Nl o

whatever is the action of j at w may be. This number is positive by as-
sumption (1). Therefore i’s PSE strategy will tell him to work at w with
probability 1.

Given that decision by ¢, the other agent 7 will also work at w with prob-
ability 1. Indeed, it can be shown as before that the change in j’s payoff
(ignoring the disutility from work) if he switches to work at w is at least
p; (1 —p;) %, provided the last period is sampled and that on the other sam-
pled period j does not produce more than . If the last period is sampled and
on the other sampled period j produces 1 and ¢ produces 0, then, by working
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at w, j can ensure the payoff of p, B+ (1 — p;) ((1 —pi)B +pi§) , compared
to (1 —p;) B+ plg when he shirks. Thus the change in j’s payoff resulting
from the switch to work at w is at least pjg min (p;, 1 — p;) , provided the last
day is sampled. Thus the unconditional payoff of j (now taking the disutility
from work into account) grows by

B
2

if j works, rather than shirks, at w, and this number is positive, as can be
seen from (1). Thus the PSE strategy of j tells him to work unconditionally
at w.

The proof of the inductive step is very close to the one just given above
for the last period, and we omit it (all comparisons must be done now con-
ditional on a path of outputs from the next period on, whose distribution is
determined by the inductive assumption that agents work unconditionally in
the sequel).

1
2fpj min (p;, 1 — p;)

5.7 Proof of Remark 1

We construct a PSE (01,02) by (backward) induction on the time period
to which a node in Q (7) correspond. Partition first the nodes of the last
period of the game (7-nodes) into types: two T-nodes are said to be of the
same type if the paths leading from w* to them have the same history of
outputs. At every T-node each agent has two actions (work, shirk), and a
pair of actions, once taken, leads to a payoff. Thus at each T-node we have
a one-shot two-person game, which possesses a mixed strategy equilibrium.
Let (71, 72) be one such equilibrium, and let o; tell agent i to employ 7; upon
reaching this node. Since this one-shot game is identical at all 7T-nodes of
the same type, so are the sets of equilibria, and we can make our selection
of (11, 79) invariant at all nodes of the same type. Thus the strategies o;
are “type-symmetric” in period T, i.e., prescribe identical behavior at all
T-nodes of the same type.

Suppose now that type-symmetric strategies (o1, 02) have been constructed
for all periods greater than t. Once again partition ¢-nodes into types based
on the past history of outputs. At any ¢-node a one shot two-person game
is defined, in which agents decide simultaneously to either work or shirk,
and the payoff is determined based on the t-period outputs, and on the as-
sumption that future behavior is according to the type-symmetric (o1, 03) .
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A mixed strategy equilibrium exists in this game, and we pick one: (71,75) .
Note that, at any two t-nodes of the same type, the same pair of actions
leads to identical expected payoffs. This is so because (01, 03), being type-
symmetric, does not distinguish between later nodes when they are preceded
by the same history of outputs. Therefore we can make the choice of (71, 72)
invariant at all t-nodes of the same type. As before, let o; tell agent i to em-
ploy 7; upon reaching a t-node. The strategies o; are clearly type-symmetric
in period t.

The construction is finished when we get to the root of the game tree.
The pair (01, 03) is a PSE, by standard backward induction arguments (e.g.,
Kuhn (1953)).
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