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Abstract

Prediction is based on past cases. We assume that a predictor can
rank eventualities according to their plausibility given any memory
that consists of repetitions of past cases. In a companion paper, we
show that under mild consistency requirements, these rankings can
be represented by numerical functions, such that the function corre-
sponding to each eventuality is linear in the number of case repetitions.
In this paper we extend the analysis to rankings of events. Our main
result is that a cancellation condition a la de Finetti implies that these
functions are additive with respect to union of disjoint sets. If the set
of past cases coincides with the set of possible eventualities, natural
conditions are equivalent to ranking events by their empirical frequen-
cies. More generally, our results may describe how individuals form
probabilistic beliefs given cases that are only partially pertinent to
the prediction problem at hand, and how this subjective measure of
pertinence can be derived from likelihood rankings.

1 Introduction

The Bayesian approach holds that, facing uncertainty, one should form a prior

and, given new information, update it according to Bayes rule. It relies on
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sound axiomatic foundations: Ramsey (1931), de Finetti (1937), and Savage
(1954) argue that Bayesian expected utility maximization is the only norma-
tively acceptable decision rule, and that in-principle-observable preferences
can uniquely define a prior. Probabilities have also been axiomatically de-
rived from qualitative plausibility judgments, where the latter are modeled as
binary relations (see Kraft, Pratt, and Seidenberg (1959), Krantz, Luce, Sup-
pes, and Tversky (1971), Fine (1973), Fishburn (1986)) or as propositions
(see Fagin, Halpern, and Megiddo (1990), Fagin and Halpern (1994), Au-
mann (1995), Heifetz and Mongin (1999)).! But these axiomatic derivations
do not explicitly model the information based on which a prior is formed.
Further, they do not attempt to provide an account of this cognitive process.
Thus, the axiomatizations of Bayesian beliefs and of Bayesian expected util-
ity maximization may convince one that one would like to be Bayesian, but
they do not provide the self-help tools that are needed to become a practising
Bayesian.

The goal of this paper is to model explicitly the link between factual
knowledge and derived beliefs. A special case of such a model should be a
frequentist approach: when observing an experiment that is repeated under
(seemingly) identical conditions, one may use past empirical frequencies as
probabilities of future occurrences. But we wish to discuss also situations
that are not repeated under precisely the same conditions. For instance, a
physician encounters a new patient, who is not identical to any past patient
she has treated, but may be similar to some. How is she to form a prior
probability over the outcome of various treatments?

In a companion paper (Gilboa and Schmeidler (1999)) we suggest and
axiomatize a rule for ranking of possible eventualities: each past case ¢ and
each possible eventuality = are assigned a number v(z, c), and, given a col-

lection of cases M, eventuality = is considered more likely than eventuality

!The idea of postulating qualitative probabilities as a basis for numeric probabilities
originates with de Finetti, and consists a main step in Savage’s derivation of subjective
probabilities.



y if and only if

ZceMU(xaC) > ZceMv(yaC) )

This rule can be viewed as a description of a cognitive process by which
the predictor decides which of two eventualities is more likely. But it falls
short of generating a prior over all possible events. It does not assume that
the eventualities have any logical or algebraic structure. Further, the ax-
iomatic derivation demands that, for every four eventualities, every permu-
tation is a possible ranking (for an appropriately chosen M). This condition
is counter-intuitive if eventualities are endowed with some additional struc-
ture. Specifically, if y is logically derived from x, one cannot expect x to be
strictly more likely than y.

In this paper we deal with the case in which the objects of the likelihood
rankings are events in a given algebra. We first show how, in this set-up,
one may appropriately weaken the axioms of Gilboa and Schmeidler (1999)
to obtain a result for the ranking of pairs events, none of which is included
in the other. We then proceed to impose an additional condition of event
cancellation a la de Finetti. Our main result is that this condition is equiv-
alent to the condition that the functions v(-,c), for each case ¢, are additive
with respect to the union of disjoint sets. It therefore describes the way
that a predictor, who is committed to this cancellation condition, may form
probabilistic beliefs over events given any possible memory.

We then proceed to test our model in the benchmark example of frequen-
tism. That is, we assume that each case observed in the past can only be one
of the possible eventualities in the problem at hand. Under this structural
assumption it is natural to state two additional assumptions on plausibil-
ity rankings, which are shown to be equivalent to frequentism, namely, to
ranking events by their empirical frequencies.

While it is reassuring to know that frequentism is a special case of our

model, we consider it a conceptually simple problem. The more interesting



problems, as in the example of the physician above, are those in which each
past case is pertinent to the present problem to a certain subjective degree.
Our results show how one may form probabilistic beliefs based on partially
relevant information. Conversely, they also show how qualitative “at least
as plausible as” comparisons may be used to elicit the subjective similarity
judgments, and when these can be assumed additive with respect to set
union.

The rest of this paper is organized as follows. Section 2 contains the main
results. Sub-section 2.1 quotes relevant results from a companion paper. Sub-
section 2.2 presents adapts the representation result to an algebra of events,
while sub-section 2.3 contains the result about additivity of the set functions
v(-,¢). Section 3 deals with the situation in which the set of past cases
coincides with the set of possible eventualities, and how frequentism then
follows as a special case of our approach. Finally, an appendix contains all

proofs.

2 Main Results

2.1 States

In this sub-section we describe a result that is proven in a companion paper,
and which is the basis of the analysis that follows. Consider a prediction
problem, in which one is asked to rank eventualities in a non-empty set
X. For concreteness, one may think of these eventualities as states of the
world throughout this sub-section. But the axioms that we use here do not
presuppose that the eventualities to be ranked are mutually exclusive or
exhaustive. Indeed, the result reported in this sub-section will later be used
for various collections of events.

The predictor is equipped with knowledge of cases, facts, observations,
or stories. Let M be a finite and non-empty set of cases, representing the

predictor’s knowledge. The person (or the machine) who is supposed to come



up with predictions is assumed to have a well-defined “at least as likely as”
relation on X, that presumably relies on M. Hence, for a different collection
of cases the predictor may have a different “at least as likely as” relation.
We assume that such a relation is given not only for the actual state of
knowledge, but also for all hypothetical ones, that are generated from it by
replication of cases.

Formally, consider the set of repetitions of cases J = Z} = {I|I : M —
Z. } where Z, denotes the non-negative integers. For simplicity, we will refer
to elements of J as memories. We assume that for every I € J the predictor
has a binary relation “at least as likely as” 7Z; on X (i.e., Z; € X x X).

Algebraic operations on J are performed pointwise. We define »; and =~
to be the asymmetric and symmetric parts of 2~ ;, as usual.

~1

We will use the following axioms:
A1 Order: For every I € J, 77, is complete and transitive on X.

A2 Combination: For every I,J € J and every z,y € X, if 277,y
(z =1 y) and 27 5y, then 222,y (¥ =147 y)-

A3 Archimedeanity: For every I,J € J and every z,y € X, if z > vy,
then there exists k£ € N such that z >x7.; y.

Observe that in the presence of A2, A3 also implies that for every I, .J € J
and every z,y € X, if x > y, then there exists [ € N such that for all £ > [,
T 7 kivJ Y-

Axiom 1 simply requires that, given any conceivable memory, the deci-
sion maker’s preference relation over acts is a weak order. Axiom 2 states
that if eventuality = is more plausible than eventuality y given two disjoint
memories, x should also be more plausible than y given the combination of
these memories. In our set-up, combination (or concatenation) of memories
takes the form of adding the number of repetitions of each case in the two
memories. Axiom 3 is a continuity, or an Archimedean axiom. It states that

if, given the memory I, the predictor believes that eventuality z is strictly



more plausible than y, then, no matter what her ranking is for another mem-
ory, .J, there is a number of repetitions of I that is large enough to overwhelm
the ranking induced by J.

We also need a diversity axiom that is not necessary for the functional
form we would like to derive. While the theorem we present is an equivalence
theorem, it characterizes a more restricted class of plausibility rankings than
those discussed in the introduction. Specifically, we require that for any four
eventualities, there is a memory that would distinguish among all four of

them.

A4 Diversity: For every list (z,y, z,w) of distinct elements of X there
exists I € J such that x >; y =7 z =; w. If | X| < 4, then for any strict
ordering of the elements of X there exists I € J such that >;is that ordering.

Finally, we need the following definition: a matrix of real numbers is
called diversified if no row in it is dominated by an affine combination of
three (or fewer) other rows in it. Formally:

Definition: A matrix v : X XY — R, where |X| > 4, is diversified
if there are no distinct four elements z,y,z,w € X and A\, u,0 € R with
A+ p+ 6 =1 such that v(z,-) < Mv(y,-)) + po(z, ) + 0v(w,-). If | X| < 4,
v is diversified if no row in v is dominated by an affine combination of the

others.

We now quote a result of a previous work which will be used in this paper.

Theorem 2.1 (Gilboa and Schmeidler (1999, 2001)): Let X, M, and {21} o5

be given as above. Then the following two statements are equivalent:
(i) {Zr}rey satisfy A1-A4;

(ii) There is a diversified matriz v : X x M — R such that:
for every I € J and every z,y € X,

()
v Zry Yy I()o(,0) 2 ) e I(c)vly,c)



Furthermore, in this case the matrix v is unique in the following sense:
v and u both satisfy (xx) iff there are a scalar X > 0 and a matriz § :
X X M — R with identical rows (i.e., with constant columns) such that

u=v+p .

This theorem has several applications mentioned in Gilboa-Schmeidler
(1999, revised version 2001). In particular, it can be viewed as axiomatizing
kernel methods for estimation of density functions, as well as for classifica-
tion problems. The theorem can also be interpreted as an axiomatization
of maximum likelihood estimation: assume that X is a set of theories, or
general rules one is to rank according to plausibility given memory. Axioms
A1-4 appear reasonable for this case, and one can derive the representation
(+). If we shift the weights v(x, ¢) so that they are all negative, they can be
interpreted as logarithms of the conditional probability of case ¢ given theory
2. Thus Theorem 2.1 can be viewed as an axiomatization of ranking theories,
or probability distributions, based on the likelihood function, together with

a derivation of the conditional probabilities used in the likelihood function.

2.2 Events

The predictions discussed in sub-section 2.1 are abstract eventualities, lacking
any logical or algebraic structure. It is natural to ask how similarity-based
ranking of prediction relates to basic logical or set operations. In an attempt
to address this question, we focus here on the case in which the alternatives
to be ranked are events.

Let ) be a state space. Let X be an algebra of events on 2. Assume that
Y contains all singletons. Assume further that {2 contains at least 5 states.
We assume that a “at least as likely as” relation between events in X that
are not included in each other. More precisely, two events A, B € ¥ are said
to be non-included if A\B, B\A # (. We assume that only such pairs are
ranked. In particular, we are interested only in proper non-empty subsets

of € in ¥. For reasons that will be clarified in the proof, it is convenient
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to rule out of the discussion all proper subsets of {2 whose complement is a
singleton. We therefore focus on ¥’ = {4 € ¥ | A # () and |A¢| > 1}.

The application of Theorem 2.1 to the case of events is not immediate,
because we only assume ranking between non-included events, and because
the diversity axiom would require some modifications. We start by re-stating

the first three axioms for the case at hand.

A1* Order: For every I € J, for every pair of non-included events
A B € ¥/, Az, B or B, A. Further, if A, B,C € ¥’ are pairwise non-
included, then Az, B and BZ,C imply Az,C.

A2* Combination: For every I,J € J and every pair of non-included
events A, B € X', if A7, B (A7 B) and AZ;B, then Az, ;B(A >~ 5 B).

A3* Archimedeanity: For every I, J € J and every pair of non-included
events A, B € ¥/, if A >, B, then there exists k € N such that A >;.; B.

Next we turn to the diversity axiom used in sub-section 2.1. Observe
that, as stated, it cannot hold for any four-tuple of events. First, one cannot
expect an event A to be strictly more plausible than an event B if A C B.
Second, if one ranks plausibility according to a probability measure, and if
la+1lg<lg+1porly+1c <1+ 1p (where 15 denotes the indicator
function of £ € ¥), one cannot expect any memory to induce the ranking
A1 B > C =1 D. The proposition that follows shows that the exceptions

above are the only ones.

Proposition 2.2 Suppose that (A, B,C, D) are four events in a measur-
able space (2, %). Then there exists a probability measure P on ¥ such that
P(A) > P(B) > P(C) > P(D) iff

(i) No event in the list (A, B,C, D) is a subset of a follower in the list;

and

(ii) Neither 14+ 1 <1lc+1p norla+1c <l1lp+1p.



It follows that, for a quadruple of pairwise non-including events, condition
(ii) is necessary and sufficient for the existence of a measure that strictly
ranks the four events in the given order. The proposition above motivates
the following definitions: (A, B,C, D) € ¥ is a list of orderly differentiated
events if no event in the list is a subset of a follower in the list, and neither
la+1g < lg+1p nor 14+ 1¢g < 1g + 1p. The events {A, B,C, D}
are properly differentiated if every permutation thereof generates a list of
orderly differentiated events. In order not to rule out rankings that agree
with probability measures, we will restrict the requirement of diversity as
follows:

A4* Restricted Diversity: For every list of orderly differentiated events
(A, B,C, D), there exists I € J such that A >; B >=; C =, D.

We can now state

Theorem 2.3 Under the structural assumptions above, the following two

statements are equivalent:

(i) {Z;}ies satisfy A1*-A4%;

(ii) There is a diversified matriz v : ¥ x M — R such that:

for every I € J and every pair of non-included events A, B € ¥,
()
Az B it Y I(0)v(A c) = 3 cp I(c)v(B, c),
Furthermore, in this case the matriz v is unique in the following sense:
v and w both satisfy (xx) iff there are a scalar A > 0 and a matriz u :
¥ x M — R with identical rows (i.e., with constant columns) such that

w=MN+u.

2.3  Additivity

Theorem 2.3 states that a method that ranks events by their likelihood, given

any possible repetition of known cases, has to be equivalent to a numerical



ranking where the number attached to each event is a linear function of the
numbers of case repetitions. One naturally wonders, what would it take
to make these numbers probabilities. That is, when is there a probability
measure p, for each case ¢, such that memory / induces the same ranking of
events as the measure ), I(c)p,?

Obviously, a necessary condition for a representation by additive measures
is that, for every I € J, =, satisfies de Finetti’s cancellation axiom: for
every three events A, B,C such that (AU B) N C = 0, we have AZ,;B <
AUCZ,;BUC. A key result is that, if we impose this condition (restricted to
non-included events) on top of the conditions of Theorem 2.3, the resulting
matrix v can be normalized so that it is additive in events, namely, so that
v(AUB,-) =v(A4,-) + v(B,-) whenever AN B = (). Moreover, in this case
we obtain uniqueness of the representation up to multiplication by a positive

constant. Formally, we introduce the following axiom:

A5 Cancellation: For every I € J, and for every three pairwise non-
included events A, B,C such that (AU B) N C = (), we have AZ,B <
AuCz,BUC.

Theorem 2.4 Under the structural assumptions above, the following two

statements are equivalent:
(i) { Zitier satisfy A1*-A4* and A5;

(i) There are finite, signed, and finitely additive measures {u,}ceps such

that:
for every I € J and every pair of non-included events A, B € ¥,
()
A i:]B iff ZCE]V[ I(C)/’LC(A) 2 ZCEJM I(C)/’LC(B) )
and, for every list of orderly differentiated events (A, B,C, D), the vec-
tors (fe(A))e,(1e(B))es(1(C))es and (p.(D))c define a diversified ma-

trix.
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Furthermore, in this case the measures {i,}eeprr are unique up to mul-

tiplication by a positive number.
Remark 2.5 Theorem 2.4 may not hold if {2 contains less than 5 states.

The statement (and proof) of Theorem 2.4 does not restrict €2 to be finite.
Yet, the restricted diversity axiom may do so. For instance, it is easy to see
that, if the measures p,. are non-negative, A4* can be satisfied only if (2 is,
indeed, finite. However, one may have versions of the theorem that allow
infinite 2 (say, with an infinite set of cases).

Theorem 2.4 only guarantees representation by signed measures. Indeed,
since we only use comparisons of pairwise non-included events, the data
{7/ }1er do not imply that likelihood rankings are monotone with respect
to set inclusion. One may require that, for each I € J, 7;, be a qualitative

probability according to de Finetti (1931), namely that:

(i) z; is complete and transitive on ¥;

~

(i) for every three events A, B,C such that (AU B) N C = (, we have
Az, B< AUuCr,BUC;

(iii) for every event A, AX,0;
(iV) Q bl 0.

This condition strengthens both A1* and A5. One may conjecture that
imposing it would yield a representation such as in (xx) of Theorem 2.4 for all
pairs of events. As stated, the answer cannot be in the affirmative since any
numerical representation by {p,}ccrsr would yield A =~ B for all A,B € &
(where 0 € J denotes the memory in which all cases appear zero times),

contradicting (iv). A more natural condition to impose is, therefore,

A1’ Qualitative Probability: For every I € J, 77, satisfies (i)-(iii) of
the definition above, and if I # 0, 7, also satisfies (iv).

Yet, even with this weakening the conjecture is false:

11



Remark 2.6 Assume that {7, }scy satisfy A1’, A2* A3* A4*. It is possible
that the signed measures {y,}ccps obtained in Theorem 2.4 fail to be non-

negative.

3 Frequentism

The framework of Section 2 does not assume any formal relationship between
past cases and states of the world. Indeed, one of the strengths of the ap-
proach outlined above is that any such relationships may be inferred from
plausibility rankings given various memories, rather than assumed a-priori.
Still, an interesting special case, which is also an important test case, is the
situation where memory consists only of past occurrences of the same states
that are now possible. For instance, one may be asked to rank the possible
outcomes of a roll of a die based on empirical frequencies of these outcomes in
past rolls of the same die. It would be reassuring to know that our approach
is compatible with frequentism, i.e., that the numerical rankings derived in
sub-section 2.3 may boil down to relative empirical frequencies in this case.
Assume, then, that M = Q = {1,... ,n}, where I € J is interpreted as
the empirical frequencies of the possible outcomes. Assume that the relations
in {7, }1er are qualitative probability relations. We impose two additional
assumptions. The first is a symmetry axiom, stating that the names of the
outcomes are immaterial. The second is specificity axiom, requiring that an
outcome that has never been observed does not increase the plausibility of
events containing it. For the symmetry axiom, we introduce the following
notation: let = : {1,... ,n} — {1,...,n} be a permutation. For I € J,
define T o € J by I om(c) = I(m(c)) and for A € ¥ let A, € ¥ be defined

by A, = {7n7'(i) | i € A}. Using this notation,
A6 Symmetry: For every permutation m, every I € J, and every

A, B€Y, A=, B,iff A,=,B.

~Iom

Next we introduce

12



AT Specificity: Assume that for j € Q and I € J, I(j) = 0. For every
A, B € ¥, such that BZ; A, we also have B2, AU {j}.

Theorem 3.1 Assume that n > 5 and that {77, } ey satisfy A1, A2%, A3%
A4* A6, and A7. Let {u,;} be the measures provided by Theorem 2.4. Then
(1:({3}))1<i j<n 18 the identity matriz, up to multiplication by a positive num-

ber.

When n < 5 Theorem 2.4 does not provide a representation of {77, }/cr
by measures p,. Yet, we can simply assume a representation along the lines

of Theorem 2.4 and obtain a similar result:

Remark 3.2 Let { =;};c7 be a collection of binary relations on ¥ = 2%
and let {y;} be non-negative measures on 2 such that for every I € J and
every A, B € ¥,

AZB i Y IEn(A) > Y 10n(B) -

ceM ceM

Assume that { Z;}rey satisfy A1',A6 and A7. Then (u;({j}));<; <, is the

identity matrix, up to multiplication by a positive number.

Observe that A6 and A7 are obviously necessary for the two results.

13



Appendix: Proofs and Related Analysis

Proof of Proposition 2.2:

Let there be given four events A, B,C, D in a measurable space (£2,%). It
suffices to consider the minimal algebra containing these events, which is
finite. Assume that the atoms in this algebra are ' = {1,... ,n}. Tt is easy
to see that there exists a probability measure P on X such that P(A) >
P(B) > P(C) > P(D) iff the following LP problem is feasible:

(P) Min,egu0 - x

s.t. (1y—1p)-z>1
(I —1¢g)-z>1
(I —1p)-x>1.

Problem (P) is feasible iff its dual is bounded. The dual is

(D) Mazx a+ B+ v
s.t. ally—1g)+ B —1c)+ Y(le—1p) <0 (%)
o, f,7=0

Clearly, (D) is bounded iff it is bounded by zero, and this is the case iff
its only feasible point is «, 3,y = 0.

We now prove that conditions (i) and (ii) imply these equalities. Assume,
by way of negation, that (x) holds and let «, 3,7 > 0 but not all three are
equal to zero.

Observe first that if exactly one of «, 3,and ~y is positive, it follows that at
least one of the inclusions; A C B, B C C, or C' C D holds, in contradiction
to (i).

Next assume that exactly two of a, (3, and v are positive. Suppose first
that 8 = 0 . Condition (ii) implies that for some k , 14(k) + 1c(k) >
15(k) + 1p(k). Since the indicator vectors take only the values 1 or 0, there

14



are five possibilities in which this inequality may be satisfied: 1 +1 > 1+ 0,
0+1,04+00r140,0+1> 040 . Evaluating () at k for these five
possibilities leads to one of the following: « —a +v < 0, a+v—7v < 0,
a+v<0,a<0,or~vy <0. All these inequalities are inconsistent with
positivity of a and v , so this case is ruled out. If v = 0 , consider i € A\C'
(whose existence follows from (i)). Now (x) implies a < 0 or o — 4 3 < 0.
Both contradict positivity of a. The last case is « = 0. Let [ € B\ D (again,
such a state exists by (i)). In this case (%) implies 5 <0or f—3+7 <0 —
a contradiction to 3,y > 0 .

So we are left with the case where all three, «, 3, and v , are positive.
Since the first inequality in (ii) does not hold, there exists i for which 14(4) 4+
15(i) > 1¢(i) + 1p(i). We consider the five possibilities, as above: 141 >
1+40,0+1,0400r1+4+0,04+1>0+40 . Substituting the corresponding
values in (%) we get that at least one of the following five inequalities holds:
a—a+f—-0F+v<0,a—a+f—7<0,a—a+0<0,a<0, —a+3<0
. The positivity of « , 3, and v leaves only 3 < a or 3 < .

By (i), there is a state j € A\D . Again, using (x) , we get one of the
following four inequalities: a <0, a—a+6<0,a—F+y<0,and a—«
+0 — B+ v < 0, depending on whether j belongs to B and to C' or not.
Three of the inequalities are directly inconsistent with positivity of «, 3, and
v. The fourth, namely, a +v < 3, is also inconsistent with positivity when
coupled with either of 3 < « or # <  obtained previously. This concludes
the proof that (i) and (ii) suffice for the existence of a probability measure
P such that P(A) > P(B) > P(C) > P(D). The necessity of (i) and (ii) is
obvious. U]

Proof of Theorem 2.3:

We will construct the numerical representation by “patching” together

numerical representations for subsets of events that are properly differenti-

ated. In doing so, a few auxiliary results will be of help. We start by the
following definition. Suppose that for a subset of events A C ¥ there is a

15



matrix v2 : A x M — R. Let A’ be a subset of A. We say that v® ranks A’
if for every non-included E, F' € A’, and every I € J,

Bz Bt Y ep 1) (B ) = Yeep I(e)v®(Fle) .

In order to extend a numerical representation v® to a larger set A,
we would like to know that such a representation is unique on relatively
small subsets A’. For instance, when we consider triples of pairwise non-
included events A, B,C, it would be nice to know that a function v that
ranks {A, B,C} is unique as in Theorem 2.1. For this one would need to
have a diversity axiom for triples of events, namely that for any permutation
thereof there exists an I € J such that >; agrees with the given permu-
tation. One would expect this to follow from the seemingly more powerful
diversity assumption A4*, stated for all quadruples of orderly differentiated
events. However, not every triple of pairwise non-included events can be
complemented to a quadruple of orderly differentiated events. Consider, for
instance, n = 5, A = {1,2,3}, B = {4}, C = {5}. These are pairwise non-
included, but there is no event D that is pairwise non-included with respect
to all of them.

This case is anomalous enough to deserve a definition. We say that three
events A, B, C' € Y form an all-but-two partition if two of them are singletons

and the third is the complement of the (union of the) first two. We now state

Lemma 1: Let A, B,C € X' be three pairwise non-included events that
do not form an all-but-two partition. Then there exists I € J such that
A= B=;C.

Proof: First observe that, since A, B, C' are pairwise non-included, there
exist probability measures P on €2 such that P(A) > P(B) > P(C). We will
shortly prove that there exists an event D that is non-included with respect
to each of A, B, and C. We can choose a probability P such that P(A) >
P(B) > P(C) and that P(D) differs from each of { P(A), P(B), P(C)}. This

16



would mean, by Proposition 2.2, that one of the four lists, {(D, 4, B,C),
(A,D,B,C), (A,B,D,C), (A,B,C,D)} is orderly differentiated. We can
then use the diversity axiom for that list to deduce the desired result.

We therefore wish to prove that there exists an event D that is non-
included with respect to each of A, B, and C. If there exists a state i €
(AU B U Q) , then choosing D = {i} will do. Assume, then, that AUBUC =
Q. Next, if A, B, and C are pairwise disjoint, since they do not form an all-
but-two partition, it has to be the case that at least two of them contain
more than one element. Assume, without loss of generality, that {i,j} C A
and that {k,{} C B. In this case, D = {i, k} is non-included with respect to
each of A, B, and C.

We now deal with the cases where AU B U C = () and the three events
are not pairwise disjoint. Assume that one of them is disjoint from the other
two, say, AN (BUC) =0. Let i € B\C and j € C\B. Since not all three
events are disjoint, BNC' # (), and it follows that D = {i, j} is non-included
with respect to all three.

We therefore assume that AU B U C = 2 and that each event intersects
the union of the other two. Observe that this implies that none of A, B,C
is a singleton. Assume that one of them is not contained in the union of the
other two, say, A\ (BUC) # (. Then there exists i € A\ (B UC). Choose
j€ B\Aand let D = {i,j}.

Finally, we are left with the case where AU B U C = ) and where each
event is contained in the union of the other two. Hence every state in (2
is included in at least two of {A, B,C}. In this case A° = (BNC)\A4;
B® = (ANC)\B; and C° = (AN B)\C. Since A, B,C are in ', each of
these pairwise disjoint events includes at least two elements. Construct D

by selecting one of each. [

Lemma 2: Let there be given two subsets o,7 C X' with corresponding
matrices v° 10 X M — R and v™ : 7 x M — R. Assume that there are three

pairwise non-included events A, B,C € o N 1 that do not form an all-but-
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two partition, and that both v° and v rank {A, B,C}. If, for all ¢ € M,
v7(A,c) =v"(A,c¢) and v°(B,c) =v"(B,c), then also v?(C,c) = v"(C,c¢) for
all c € M.

Proof: In view of the previous lemma, the triple {A, B, C'} satisfies the
conditions of Theorem 2.1. The conclusion follows from uniqueness result of
the Theorem. []

Lemma 3: Let there be given a subset of events A C ¥/ and a matriz
v2 A x M — R. Assume that A,B,C,D € A are properly differentiated.
If v2 ranks {A,C, D} and {B,C, D}, then it also ranks {A, B}.

Proof: Since A, B,C, D are properly differentiated, we can apply Theo-
rem 2.1 to 0 = {A, B, C, D}, and conclude that there exists a matrix v that
ranks 0. Without loss of generality we may assume that v7(C, c) = v2(C, ¢)
and v?(D,c) = v2(D,c) for all ¢ € M. Since A, B,C, D are properly dif-
ferentiated, we know that none of {A,C, D}, {B,C, D} forms an all-but-
two partition. The previous remark therefore states that for all ¢ € M,
v7 (A, ¢) = v2(A, ¢) and v? (B, ¢) = v2(B, ¢) also hold. Since v? ranks {4, B},

so does v2. O

We now turn to the construction of a matrix v~ that ranks ¥'. The
strategy is as follows: we start by constructing a representation for all pairs.
(Recall that ¥ includes all singletons, and therefore also all pairs.) We then
extend it to singletons. Next we show that it can be extended to all events
in Y.

Define Ay = {A € ¥'| |A| = 2}.

Lemma 4: There exists v22 : Ay x M — R that ranks As.

Proof: Choose an element of €2, and call it 1. We first consider Al =
{{1,i}|i # 1}. Any four events in A} are properly differentiated, and The-
orem 2.1 can be applied to obtain a representation v23 : A} x M — R that
ranks Al.

Next we wish to extend v®2 to v22 on all of A,. Consider A = {i,j}

where i,j # 1. Any four events in Al U {A} are properly differentiated.
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Hence Theorem 2.1 offers a unique definition of v22(A, ¢) for c € M.

We claim that v22 ranks A,. Let there be given A, B € A,. Notice that
if at least one of them is in A}, we already know that Al ranks {A, B}.
Assume, then, that A, B € A\ Al. Distinguish between two cases: (i)
AN B =0;and (ii) AN B # 0.

In Case (i) we have A = {i,j}, B = {k,l} where i,7j,k, | are distinct
and differ from 1. Observe that any distinct four events out of Aj U {A, B}
are properly differentiated. It follows that there exists a matrix defined on
(AJU{A, B}) x M that ranks A} U {4, B}, and that it coincides with our
definition of vA2.

In Case (ii) we have A = {i,j}, B = {i,k} where i, 5,k are distinct
and differ from 1. Observe that {{1,:},{1,5},{i,j},{i,k}} are properly
differentiated. By the Lemma 3, since v? ranks {{1,i},{1,5},{i,j}} and

{{1,0%, {1, 3}, {i, b}, it also ranks {{7, }, {7, k}}. O
Our next step is to extend v™2 to singletons. Let Ay = {4 € Y| |A] < 2}.

Lemma 5: There exists v2? : Ny X M — R that ranks As.

Proof: Let v2 equal v2? on all pairs. We now extend it to all singletons,
and then show that this extension indeed ranks A,. Let there be given i € €.
Choose distinct j,k,1 # i. There is a unique definition of v22({i},¢) (for
¢ € M) such that v ranks {{i}, {j, k}, {j,1}}. We first claim that v2* thus
defined ranks A, U {{i}}. Indeed, for any event B € A, that differs from
{4, k},{4,1}, {B,{j,k},{j,1}} are pairwise non-included, and they do not
form an all-but-two partition. Hence v22 ranks {B, {j, k}, {j,1}}. Further,
if 1 ¢ B, then {B,{i},{j,k},{j,}} are also properly differentiated, and, by
Lemma 3, v®2 also ranks {B, {i}}.

Let this be the definition of v22({i}, ¢) for each i € . We need to show
that for every distinct 4, j € Q, v22 ranks {{j}, {i}}. Since Q| > 5, there are
two distinct C, D € A, that are disjoint from {4, j}. Thus, {{i},{j},C, D}
are properly differentiated, while v ranks both {{i},C, D}} and {{j},C, D}},
which completes the proof. [J
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The following combinatorial lemma will prove useful.

Lemma 6: Let A and B be two non-included events in Y'. Then there
are C and D in ¥/, with |C|,|D| = 2, such that {A, B,C, D} are properly
differentiated.

Proof: Assume without loss of generality that |A| > |B|, and distinguish
between two cases: Case 1: |A\B| > 2; Case 2: |A\B| = |B\A| = 1. In Case
1seti,j€ A\B,i# j,and k € B\A. Define C = {i, k} and D = {j,k}. By
direct verification one can check that the conclusion of the lemma holds.

Next consider Case 2. Since |[Q\A|,|Q\B| > 2, there is a state p €
O\(A U B). Assume first that there also is a state ¢ # p, such that ¢ €
O\(AUB). Let i € A\B, and k € B\A. If A and B are singletons, there
exists j € Q\{i,k,p,q} and we can choose C' = {j,p} and D = {j,q}.
Otherwise (namely, AN B # () defining C' = {i,p} and D = {k, g} results
in the desired conclusion.

We are now left with Case 2 under the additional restriction that |2\ (AU
B)| = 1. Since || > 5, we know that |[A N B| > 2. Define C' = {p, k} and
D = {p,l}, where k # [, k,l € AN B. Once again, direct verification
completes the proof. [

Completion of the Proof of Theorem 2.3: We now proceed to define
v =1 :Y'xM — R that ranks X', as an extension of v22. Let there be given
an event A € ¥’ with |A| > 2. Let ¢ be an element in € that is not included
in A, and let j,k be two elements that are in A. Since {A,{i,j},{i,k}}
are pairwise non-included and they do not form an all-but-two partition,
Theorem 2.1 applies to them and offers a unique definition of v(A4, ¢) (for all
c € M) such that v ranks {4, {7, 7}, {7, k}}.

We now wish to show that v thus defined ranks { A, B} for all non-included
A B e ¥ If |A],|B| < 2, the result follows from the definition of v as an
extension of v22. Assume, then, that |A| > 2. We split the proof into three
parts according to the number of elements in B.

First assume that |B| = 2. Recall that i is an element in 2 that is not
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included in A, and that j, k are two elements that are in A. There are four
cases to check, according to whether ¢ € B and whether A and B are disjoint.
In all cases, direct verification shows that {A, B, {i,j},{i,k}} are properly
differentiated, and Lemma 3 implies that v ranks {A, B}.

Next assume that |B| = 1, i.e., that B = {l} where | ¢ A. Choose s ¢
AU{l}. Since j,k are in A, {A, B,{s,j},{s,k}} are properly differentiated,
and Lemma 3 implies that v ranks {A, {i}}.

Finally, assume |B| > 2. By Lemma 6 there are C and D in ¥/, with
|C|, |D| = 2, such that {A, B,C, D} are properly differentiated. We already
know v ranks {A,C, D} and {B,C, D}, since C' and D are pairs. Again,
Lemma 3 implies that v ranks { A, B}.

It is easy to see that, if for some list of orderly differentiated events
(4, B,C, D), the vectors (u,(A)), (1e(B))e, (1(C))e, and (pe(D))c form a
matrix that is not diversified, then A4* is violated. This was also proven in
detail in Gilboa-Schmeidler (1999). [

The proof of sufficiency and of uniqueness are as in Gilboa-Schmeidler
(1999). OO

Proof of Theorem 2.4:
The fact that (ii) implies (i) is immediate. We will show that (i) implies (ii)
and the uniqueness result for the case of a finite algebra.

Assume, then, that Q = {1,... ,n} (recall that n > 5) and that 3 = 2%,
and let v be the matrix provided by Theorem 2.3. Set w () = 9({1,2},-) —
o({1},-) — 9({2},-), and define a matrix v by v(A,:) = v(A,:) + w(-) so
that v({1,2},-) = v({1},-) + v({2},:). We wish to show that for this v,
v(A,) = Y cav({i},-) for every A € ¥'. Observe that if we find such a
v, it is unique up to positive multiplication, since a shift by a vector w can
preserve additivity only if w = 0.

Some notation may prove useful. We will use event superscripts to denote
rows in the matrix. Thus, v4 denotes the vector v(A, -). Also, for A, B € ¥/,

AB _ A

define v »4 —vB. Note that for any three pairwise non-included events
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A, B, C, we have the Jacobi identity v = v8 + 08¢, A key observation

is the following

Lemma 1: For every three pairwise non-included events A, B,C such that
(AUB)NC =0, there exists a unique X > 0 such that vA9GBYC = \pAB.

Proof: By the cancellation axiom we know that the set of memories I
for which AU CZ,;B U C is precisely the same set for which A7, B. The
conclusion follows from the uniqueness result of Theorem 2.1 applied to the
events A, B. [J

Next we show that, when we focus on a singleton C' = {i}, the coefficient
A does not depend on the sets A, B:

Lemma 2: For every i € () there exists a unique \; > 0 such that, for

every non-included A, B € X' such that i ¢ AU B and |A|,|B| < n — 2,
pAULBUGY — ) AB,

Proof: Consider three events A, B, D that are pairwise non-included,
none of which includes ¢, and none of which has more than n — 3 elements.
We know that

pAVERBUiY ) AU}, DULi} 4 DU{i},BU}
applying Lemma 1 to each of the three elements above we obtain numbers
A, i, > 0 such that
pANHIHBU{I} _ \  AB
pASERDUY _ AD
pPILBUL} — DB
hence
AAE = AP | DB
or
VAB — EUA,D n " DB ‘

-

A A
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But since we also have the Jacobi identity

pAB — yAD | ,D.B

the restricted diversity axiom implies that A = p = 7.

Applying this result for the case that A, B, D are singletons, we conclude
that there exists A; > 0 such that the conclusion holds for all singletons
A, B. Next, for every A € ¥ such that i ¢ A and |A| < n — 2, and every
j & Au{i}, we also get vAYTIH{b7t = \;04U} | Similarly, consider such a set
A, and choose j,k ¢ AU{i} and [ € A. Define B = {l,k} and D = {j}.
We obtain that oAUtttk — )\ A4k Finally, consider two non-included
events A, B € ¥’ such that i ¢ AU B and |A|,|B| < n — 2. Choose [ € A\B
and k € B\A. Define D = {I, k} and apply the result above to these three

events. The desired result follows. [

Lemma 3: The exists a unique A > 0 such that A = \; for all i €
(where \; is the coefficient defined by Lemma 2). Further, this A satisfies,

for every distinct i, 5, k, 1 € €0,

plbab ikl — A tih{k} o UHE
Proof: By the Jacobi identity and Lemma 2,
U{ivj}7{k71} — U{iv.j}v{kvj} + U{kvj}v{kvl} — )\JU{Z}7{k} + )\]C/l){j}7{l}.

Similarly,

U{ivj}7{k7l} — v{ivj}v{lyj} + U{lvj}7{k7l} — )\]U{Z}v{l} + )\ﬂ){]}’{k}

hence

Aol o x o D — ) BH0 4 ) 8)

or

QR G ISR OIS WHUNC SISO
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That is,

DU — b M ) | AL G
J J

But the Jacobi identity also implies
MUSU ISR USUSITR USRI SRS L,

and, coupled with the diversity axiom this means that \; = Ay = A;.

Until the end of the proof we reserve the symbol A to the coefficient
defined by Lemma 3.

Lemma 4: For every distinct i € Q\{1,2},

Wl — T (1= Ao 4 pl®)
2 — (1= Nt 4o 4l

Proof: By symmetry between 1 and 2, it suffices to prove the first equation.
Since v4P = vA — P (applied to A = {1,i} and B = {1,2}) we get

Wit — o TLik{12) | {12
By Lemma 3

and, using the fact v{1% = v} 4{% and v4F = v4 —0” (applied to A = {i}
and B = {2})

= 2ol — o 4ot 42
o 4 (1= Mo 4+ a0l
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Lemma 5: For every distinct i,j € Q\{1,2},
ot = (1= XNt + (1 = Aot + Xl £ XU}

Proof: Since v4f = v4 —v® (applied to A = {i,5} and B = {1,2}) we get

plidh — (b2} | (12}
Using the Jacobi identity

Wlidh — lidh (i) | Lk} | {12}

By Lemma 3 the right hand side equals

Nl 4 aplih2) 4 12}
Using the facts v{12 = o} 4012 and 048 = 04 — 0P we get

MG VICL I V1S AR oD Y A VI SR IS A e
= (1 =XV + (1 =X 1 a0l £ Xl

O
Lemma 6: \ = 1.

Proof: Consider the set {3,4,5}. By definition of v4%,

p1345} _ (8451250 (25}
By Lemma 3 the right hand side equals
AoB3AhA2} ) {25F — 2 834F _ )\ {2} 4 {25}
AB A_ B

where the last equality follows from v** = v* —v”.

Using Lemma 5 for the set {3,4} and Lemma 4 for the set {2,5}, we get
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o345 = A[(1 = Mot + (1 = N2 + Xl 4 xo] — \oiZ
+(1 = Ao 4 otZ 4 N}
= (1= X0l 4 (1 = 2o 4 A28 £ A%t N3

By symmetry between 4 and 5, we also get
v = (1= M)l 4 (1 = Nt 4 X208 4 hlth 4 N2 62

Equating the two, it has to be the case that

P A A T ) VL&
or
(1= Nh®h =0,
By the diversity axiom, v{4:15} £ 0, hence the conclusion follows. [
Lemma 7: For every i, j € §, o107} = ol 4t}
Proof: Use Lemmata 4,5, and 6. []
Lemma 8: For every A€ X/, vA=3",_, vl

Proof: By induction on |A|. We already know that the lemma holds for
|A] < 2. Assume it is true for |A] < k and consider a set B with |B| =
k+1<n—1. Choosei € B and j ¢ B. Since B and {i, j} are non-included,

we may write

Denoting A = B\{i}, we can write v?{47} = pAV IV} where i ¢ AU {5}

Using lemmata 3 and 6,

pBlidt — AU ALY
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plugging this into the first equation we get

RUCSVRT) SN (X) S R 1 SR (X )

using the induction hypothesis

= Sl gl U = T

keA keB
This completes the proof of Theorem 2.4 for the finite case. [J

We now turn to the case of an infinite €2. Choose an element of €2, say, 1.
Consider all the finite sub-algebras ¥y of ¥ that include {1} and that have
at least five atoms. For each such Y there exists a matrix v> : X)) x M — R
that ranks 3 and that satisfies additivity with respect to the union of disjoint
sets. Further, such a matrix is unique up to multiplication by a positive
scalar. Choose one such ¥y and a corresponding v>0 for it. Let ¥; be another
sub-algebra of ¥ that includes {1} and that has at least five atoms. Let v™
be a matrix that ranks 3. Let ¥, be the minimal algebra containing both
Yo and ;. Applying the result to the (finite) sub-algebra ¥, there exists
v¥2 that ranks . Since v™ ranks both %) and ¥, (v™2({1}, c))ceM differs
from both (v ({1},¢)),.,, and (v ({1},¢)),.,, by a positive multiplicative
scalar. This implies that the latter two vectors are also differ by a positive
multiplicative scalar, and that there is a unique v> that ranks ¥ and agrees
with v> on the row of {1}. (Observe that this row is not the 0 vector due
to the diversity condition.)

Given an event A € Y/, choose a finite sub-algebra ¥; as above that
includes A, and define (v(A4,¢)),.,, by the unique v identified above. By
similar considerations one concludes that this definition of (v(A, ¢)).,, does
not depend on the choice of ¥; that includes A. Hence v is well-defined.
Finally, we wish to show that if A,B,AUB €Y', and AN B = (), we have

v(AUB,c) =v(A,c)+v(B,c) for all c € M.
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Choose a finite sub-algebra ¥; as above that includes both A and B, and

3

observe that v coincides with v>1 on ¥, where v™ satisfies this equality by

Lemma &. OO

Proof of Remark 2.5:

Consider M = = {1,2,3,4} and define {7, },; by the matrix v given by
the table below (where empty entries denote zeroes). It is straightforward to
check that {7} satisfies A5 for all triples of events, yet the matrix v is not

additive in events.

v4(c) Case ¢
1 2 3 4
1 2
2 2
3 2
4 2
Event A 1,2 2 2
13 2 1 1
14 2 1 1
2.3 1 2 1
2.4 1 2 1
3.4 1 1 1 1

Proof of Remark 2.6:
Consider M = Q = {1,2,3,4,5} and define {7, }, as follows: if A C B, then
A =; B for every I € J. If A is a proper subset of B, then A <; B for every
I #0. If A and B are non-included, define {7, }; by the signed measures

{1, }cerr given by the table below (where empty entries denote zeroes):
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ue{i)) Case ¢

1 2 3 4 5
1 -1 1 1 1
State ¢ 2 1
3 4 1
4 1
5 16 1

One may verify that {77;},; are qualitative probability relations satisfying
A2*-A4* even though u,({1}) < 0.

Proof of Theorem 3.1:
We first show

Lemma 1: The symmetry axiom implies that there are two numbers, a >
b >0, such that p,({j}) =bifi #j and p,({i}) = a.

Observe that this condition is also equivalent to the symmetry axiom.
Proof of Lemma 1:

Claim 1: For everyi < n there exists a numberb; € R, such that p,({j}) = b;

for all j # 1.
Proof: Consider the memory I = 1g; € J and a permutation 7 that swaps

only two states j,k # i. Since I = I o7, the symmetry axiom implies that
{4} =1 {k}, hence p,({j}) = w({£}). O

We denote a; = p;({i}).
Claim 2: For everyi,j <n, a; —b; = a; — b;.

Proof: Consider I = 1y; 5 € J and a permutation 7 that swaps only 4, j.
Since I = I om, the symmetry axiom implies that {i} ~; {j}, hence a; +b;, =
bj+a2-, oraj—bj:ai—bz-. |:|

Claim 3: For every distinct 3,5,k <n, {k} =1 {i,j} for I =1gyy € l.
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Proof: By the diversity axiom we know that there exists a memory [ € J
such that {k} >, {¢,5}. The combination axiom implies that there exists
s < n such that {k} =, {i,j} for I = 1¢,3. We claim that this can only hold
for s = k. Indeed, first observe that if s ¢ {i, j, k}, then for I = 1, we also
get, by symmetry, {i} > {j,k}. But, since 7, is a qualitative probability,
{k} = {3,j} implies {j, k} = {i}, a contradiction. Next assume that s = i.
By similar reasoning, {k} >, {4,j} implies {i,k} >=; {4, 7}, but this implies
{k} =1 {j}, which contradicts symmetry (as in Claim 1). s = j is similarly

excluded, and the conclusion follows. [J
Claim 4: For everyi,j <n, a; = a; > 0.

Proof: Let there be given distinct 7, j, k < n. Consider, for every two non-
negative integers m, [, the memory I = I(m,l) = mlg + 1y € J, and the
permutation 7 that swaps only ¢,j. Thus, I o m = mlg + [1g;. It follows
from the symmetry axiom that {i,j} >, {k} iff {i,j} >ror {k}. This means
that, for every m,{ > 0,

ma; + mb; + 2lby, > mb; + lay,  ift ma; + mbj + 2lby, > mbj + lay
or
ma; > l(ay — 2b,) iff  ma; > (ar — 2b;) . (%)

Further, we argue that a;, a;, (ax — 2b;) > 0. First observe that, by Claim 3
(corresponding to m = 0,/ = 1), it has to be the case that (ax — 2b;) > 0.
Also, Claim 3 implies that {i} >, {j, k} for I = 1 (corresponding tom =1,
[ =0), and {i,j} =1 {k} follows by monotonicity of 7, with respect to set
inclusion. Hence a; > 0. Similarly, a; > 0 has to hold as well. The desired

result now follows from (x). O

Combining Claims 1, 2, and 4, we conclude that there are two numbers,
a,b € R, such that p,({j}) = bif i # j and p,;({i}) = a. Furthermore, we
know that a > 0.
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Claim 5: a > b.
Proof: As in the proof of Claim 4, (a —2b) > 0 and this suffices since a > 0.
U

Claim 6: b > 0.
Proof: Let ¢,5,k < n be distinct. Consider I = 1y;;,. We know that
{i} =1 {j}, hence {i,k}7,{j}. Hence a+3b>a+b. O

This completes the proof of Lemma 1. It remains to show that the speci-
ficity axiom implies that b = 0 as well. To see this, consider again the proof
of Claim 6 above, and observe that if b > 0, it has to be the case that
{i,k} =1 {4}, where I = 1y; ;;. But this is a contradiction to the specificity
axiom, because {i} ~; {j} and I(k) = 0. OO

Proof of Remark 3.2:

Assume that for some 4, j € Q, p; ({j}) < 0. This means that for I = 1,
we have () >=; {j}, contradicting A1’. Hence p, are non-negative. Next we
consider i # j and show that p; ({j}) = 0. Assume, to the contrary, that
p; ({7}) > 0 for i # j. In this case, for I = 153 we have 07,0 and {5} =, 0
while I (j) = 0, contradicting A7. Also, since, by A1’, Q > () for I = 1y, it
follows that p; ({¢}) > 0 for all i € Q. Finally, consider I = 1y, ; for ¢ # j.
By A6, {i} ~; {j}. Hence p, ({i}) = p; ({5}). B0
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