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Abstract

People may be surprised by noticing certain regularities that hold
in existing knowledge they have had for some time. That is, they may
learn without getting new factual information. We argue that this
can be partly explained by computational complexity. We show that,
given a database, finding a small set of variables that obtain a certain
value of R2 is computationally hard, in the sense that this term is
used in computer science. We discuss some of the implications of this
result and of fact-free learning in general.
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“The process of induction is the process of assuming the sim-

plest law that can be made to harmonize with our experience.” —

Wittgenstein (1922)

1 Introduction

Understanding one’s social environment calls for the collection of informa-

tion (or data) and for finding regularities in these data. Many theoretical

models of learning focus on learning new facts, on their integration in an

existing database, and on the way they modify beliefs. Within the Bayesian

framework the integration of new facts and the modification of beliefs is done

mechanically according to Bayes’s rule. However, much of human learning

has to do with finding regularities that, in principle, could have been de-

termined using existing knowledge, rather than with the acquisition of new

facts.1 In this paper we model regularities in database and explain the diffi-

culty in finding them.

The immediate consequence of this difficulty is that individuals typically

will not discover all the regularities in a database, and may overlook the most

useful regularities. Two people with the same database may notice different

regularities, and may consequently hold different views about a particular

issue. One person may change the beliefs and actions of another without

communicating new facts, but simply by pointing to a regularity overlooked

by the other person. On the other hand, people may agree to disagree even if

they have the same database and are communicating. We elaborate on these

consequences in Section 4.

For illustration, consider the following example.

Ann: “Russia is a dangerous country.”
1To consider an extreme case, assume that an agent follows a mathematical proof of a

theorem. The knowledge she thus acquires has always been, in principle, available to her.
Yet, mathematics has to be studied.
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Bob: “Nonsense.”

Ann: “Don’t you think that Russia might initiate a war against

a Western country?”

Bob: “Not a chance.”

Ann: “Well, I believe it very well might.”

Bob: “Can you come up with examples of wars that erupted

between two democratic countries?”

Ann: “I guess so. Let me see... How about England and the US

in 1812?”

Bob: “OK, save colonial wars.”

Ann: “Well, then, let’s see. OK, maybe you have a point. Per-

haps Russia is not so dangerous.”

Bob seems to have managed to change Ann’s views. Observe that Bob has

not provided Ann with any new factual information. Rather, he pointed out

a regularity in Ann’s database of which she had been unaware: democratic

countries have seldom waged war on each other.2

Why has Ann failed to notice that the democratic peace phenomenon

holds in her own database? It appears most likely that it has simply not

occurred to her to categorize wars by the type of regime of the countries

involved. For most people, wars are categorized, or “indexed”, by chronology

and geography, but not by regime. Once the variable “type of regime” is

introduced, Ann will be able to reorganize her database and observe the

regularity she has failed to notice earlier.

Yet, fact-free learning is not always due to the introduction of a new

variable, or categorization, that the individual has not been aware of. Often,

one may be aware of all variables involved, and yet fail to see a regularity
2In the field of international relations this is referred to as the democratic peace phe-

nomenon. (See Russett (1993), Maoz and Russett (1992, 1993), and Maoz (1998).)
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that involves a combination of such variables. Consider an econometrician

who wants to understand the determinants of the rate of economic growth.

She has access to a large database of realized growth rates for particular

economies that includes a plethora of variables describing these economies in

detail.3 Assume that the econometrician prefers fewer explanatory variables

to more. Her main difficulty is to determine what set of variables to use

in her regression. We can formulate her problem as determining whether

there exists a set of k regressors that give a particular level of R2. This is a

well-defined problem that can be relegated to a computer software. However,

testing all subsets of k regressors out of, say, m variables involves running¡
m
k

¢
= O(mk) regressions. When m and k are of realistic magnitude, it is

impractical to perform this exhaustive search. For instance, choosing the

best set of k = 13 regressors out of m = 100 potentially relevant variables

involves
¡
100
13

¢ ≈ 7 ∗ 1015 regressions. On a computer that can perform 10

million regression analyses per second, this task would take more than 22

years.

But linear regression is a structured and relatively well-understood prob-

lem. One may hope that, using clever algorithms that employ statistical

analysis, the best set of k regressors can be found without actually testing

all
¡
m
k

¢
subsets. Our main result is that this is not the case. Formally, we

prove that finding whether k regressors can obtain a pre-specified value of

R2, r, is, in the parlance of computer science, NP-Complete.4 Moreover, we

show that this problem is hard (NP-Complete) for every positive value of

r. Thus our regression problem belongs to a large family of combinatorial

problems for which no efficient (polynomial) algorithm is known. An impli-
3As an example of the variety of variables that may potentially be relevant, consider the

following quote from a recent paper by La Porta, Lopez-de-Silanes, Shleifer, and Vishny
(1998) on the quality of government: “We find that countries that are poor, close to
the equator, ethnolinguistically heterogeneous, use French or socialist laws, or have high
proportions of Catholics or Muslims exhibit inferior government performance.”

4In Section 3 we explain the concept of NP-completeness and provide references to
formal definitions.

4



cation of this result is that, even for moderate size data sets, it will generally

be impossible for the econometrician to know the trade-off between increas-

ing the number of regressors and increasing the explanatory power of those

regressors.5

Our interest lies not in the difficulties facing social scientists, but in the

problems encountered by nonspecialists attempting to understand their envi-

ronment. That is, we wish to model the reasoning of actual economic agents,

rather than of economists analyzing data. We contend, however, that a prob-

lem that is difficult to solve for a working economist will also be difficult for

an economic agent. If an econometrician cannot be guaranteed to find the

“best” set of regressors, many economic agents may also fail to find it.6

Economic agents, as well as social scientists, do not generally look for the

best set of regressors without any guiding principle. That is, they do not en-

gage in data mining. Rather, they espouse and develop various theories that

guide their search for regularities. Our econometrician will often have some

idea about which variables may be conducive to growth. She therefore need

not exhaust all subsets of k regressors in her quest for the “best” regression.

By contrast, our model does not capture the development of and selection

among causal theories. Yet, even the set of variables that the econometri-

cian deems relevant according to her theory is typically large enough to raise

computational difficulties. More importantly, if the econometrician wants to

test her scientific paradigm, and if she wants to guarantee that she is not

missing some important regularities that might cause a paradigm shift and

unveil new causal theories, she cannot restrict her attention to the regressors

she has already focused on.

In conclusion, while computational complexity is not the only reason

for which individuals may be surprised to discover regularities in their own
5In particular, principle components analysis, which finds a set of orthogonal compo-

nents, is not guaranteed to find the best combination of predictors (with unconstrained
correlations).

6We support this claim in Section 4 below.
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databases, it is one of the reasons that knowledge of facts does not imply

knowledge of all their implications. Hence computational complexity, along-

side unawareness, is among the reasons that make fact-free learning a rather

common phenomenon.

In the next section we lay out our model of individuals’ databases. In this

context we discuss several notions of regularities and the criteria to choose

among them. The difficulty of discovering satisfactory sets of regressors is

proven in Section 3. In the last section we discuss the result, its implications

and related literature.

2 Regularities in a Data Base

An individual’s database consists of her observations, past experiences, as

well as observations that were related to her by others. An assumption that

greatly simplifies the discussion is that observations are represented as vectors

of numbers. An entry in the vector might be the value of a certain numerical

variable, or a measure of the degree to which the observation has a particular

attribute. Thus, we model the information available to an individual as

a database consisting of a matrix of numbers, where rows correspond to

observations (distinct pieces of information) and columns to attributes.

We show below a fraction of a conceivable database pertinent to the de-

mocratic peace example. Rows correspond to observations in the database,

and columns the attributes. The value in a given entry represents the de-

gree to which the attribute (column) holds for the observation (row). (The

numbers are illustrative only.)

Observation M1 M2 D1 D2 T W
WWII7 .7 1 1 0 0 1

Cuban missile crisis 1 1 1 0 1 0
1991 Gulf war 1 .3 1 0 1 1

7We refer here to England’s declaration of war on Germany on September 3, 1939.

6



Mi — how strong was country i?

Di — was country i a democracy?

T — was it after 1945?

W — did war result?

The democratic peace regularity states that if, for any given item the at-

tribute W assumes the value 1, then at least one of the attributes {D1, D2}
does not assume that value. (More precisely, this is the contrapositive of the

democratic peace regularity.)

It is important to observe that this model is highly simplified in several

respects. For instance, it assumes that the individual has access to a complete

matrix of data, whereas in reality certain entries in the matrix may not be

known or remembered. The model implicitly assumes also that all variables

are observed with accuracy. More importantly, in our model observations

are already encoded in a particular way. For instance, in this matrix above

country “1” is always the democratic one. But, when representing a real-life

case by a row in the matrix, one may not know which country should be

dubbed “1” and which — “2”. This choice of encoding is immaterial in the

democratic peace phenomenon, because this rule is symmetric with respect

to the countries. If, however, we were to consider the rule “a democratic

country would never attack another country”, encoding would matter. If the

encoding system keeps country “1” as a designator of a democratic country

(as long as one of the countries involved is indeed a democracy), this rule

would take the form “if D1 = 1 then A1 = 0”, where Ai stands for “country

i attacked”. If, however, the encoding system does not retain this regularity,

the same rule will not be as simple to formulate. In fact, it would require a

formal relation between variables, allowing to state “For every i, if Di = 1

then Ai = 0”. Since such relations are not part of our formal model, the

model would give rise to different regularities depending on the encoding

system. Indeed, finding the “appropriate” encoding is part of the problem

of finding regularities in the database. We abstract from this problem here,

7



and assume that the database is already encoded in a way that suggests the

relevant regularities.

We will prove that despite all these simplifying assumptions, it is hard to

find regularities in the database. It follows that finding regularities in real

databases, which are not so tidy, is an even harder problem.

The democratic peace phenomenon is an example of an association rule.

Such a rule states that if, for any given observation, the values of certain

attributes are within stipulated ranges, then the values of other attributes

are within prespecified ranges. Association rules are used in data mining (see,

e.g., Hastie et al. (2001)). An association rule does not apply to the entire

database: its scope is the set of observations that satisfy its antecedent. It

follows that association rules differ from each other in their generality, or

scope of applicability. Adding variables to the antecedent (weakly) decreases

the scope of such a rule, but may increase its accuracy. For example, we may

refine the democratic peace rule by excluding observations prior to the first

world war. This will eliminate some exceptions to the rule (e.g., the War of

1812 and the Boer War) but will result in a less general rule.

A second type of regularity is a functional rule: a rule that points to a

functional relationship between several “explanatory” variables (attributes)

and another one (the “predicted” variable). A well-known example of such

a rule is linear regression, with which we deal in the formal analysis. All

functional rules on a given database have the same scope of applicability, or

the same generality. Yet, when different rules are obtained from different

databases, they may differ in generality (we return to this point in Section 3

below).

Both association rules and functional rules may be ranked according to

three criteria of interest: accuracy, simplicity, and generality. Each criterion

admits a variety of measures, depending on the specific model. In the case

of linear regression, it is customary to measure accuracy by R2. Simplicity

is often associated with a low number of variables. That is, the number of
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variables measures the complexity of the rule. Finally, generality might be

measured by the number of observations.

Irrespective of the particular measures used, people generally prefer high

accuracy, low complexity, and high generality. The preference for accuracy is

perhaps the most obvious: rules are supposed to describe the database, and

accuracy is simply the degree to which they succeed in doing so. The prefer-

ence for generality, other things being equal, has obvious pragmatic sources:

a more general rule is more likely to come to bear on future cases. The

preference for simplicity, is, however, somewhat more intriguing. William

of Occam offered simplicity as a guiding normative principle. Wittgenstein

(1922) suggested simplicity as a descriptive criterion, modeling the process

of induction. The preference for simplicity may be viewed as axiomatic, or

as deriving from other principles. For example, simple rules are sometimes

more general than complex rules (though this need not always be the case;

see Gilboa (1994)). Simple rules may be viewed as identifying causal rela-

tionships.8 For example, in the democratic peace example above, one reason

Ann may have been convinced by the democratic peace rule is that she could

construct a causal story of why democratic countries might not go to war

with each other: politicians who are answerable to the public via elections

may be unwilling to go to war unless forced to.9 A causal story that supports

a rule is easier to uncover when there are fewer variables than when there

are more, hence simpler rules will generally be preferred.

Another reason to prefer simplicity is the confidence it provides for predic-

tions beyond the given database. Consider the example of linear regression.
8See Pearl (2000) who bases his theory of causality on simplicity.
9Kant (1795) gave essentially this explanation: “The republican constitution, besides

the purity of its origin (having sprung from the pure source of the concept of law), also
gives a favorable prospect for the desired consequence, i.e., perpetual peace. The reason is
this: if the consent of the citizens is required in order to decide that war should be declared
(and in this constitution it cannot but be the case), nothing is more natural than that
they would be very cautious in commencing such a poor game, decreeing for themselves all
the calamities of war.” Observe that Kant wrote in favor of the republican constitution,
rather than democracy per se.
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For a given accuracy level R2, one generally prefers a small set of variables

to a larger one.10 It is well known that adding variables to a regression

can only increase R2, and can generically obtain perfect accuracy, that is,

R2 = 1 when the number of regressors equals n− 1 (where n is the number
of observations). But in this case one tends to feel that the theory (rule)

is as complex as the data, and that, correspondingly, there is no reason for

the theory to have any predictive power outside the given database. Finally,

rules or regularities that employ large numbers of variables may be hard to

remember or to convey to other people.

In this paper we assume that people generally prefer rules that are as

accurate, as simple, and as general as possible. Of course, these three prop-

erties present one with non-trivial trade-offs. In the next section we discuss

functional rules for a given database, ignoring the criterion of generality, and

focus on the accuracy-simplicity trade-off. We will show that the feasible set

in the accuracy-simplicity space cannot be easily computed. A similar result

can be shown for association rules. We choose to focus on linear regression

for two reasons. First, in economics it is a more common technique for un-

covering rules. Second, our main result is less straightforward in the case of

linear regression.

3 The Complexity of Linear Regression

We devote this section to the study of the trade-off between simplicity and

accuracy of functional rules in the case of linear regression. While regression

analysis is a basic tool of scientific research, we here view it as an admittedly

idealized model of non-professional human reasoning.11 Given a set of pre-

dicting variables, one attempts to provide a good fit to a predicted variable.
10This prefence is uncontroversial if “smaller” means “is a subset of”. Yet, we will

assume that this preference also holds when “smaller” means “has fewer variables than”.
11See Bray and Savin (1986), who used regression analysis to model the learning of

economic agents.

10



A common measure of accuracy is the coefficient of determination, R2. A

reasonable measure of complexity is the number of explanatory variables one

uses. The “adjusted R2” is frequently used as a measure of the quality of

a regression, trading off accuracy, simplicity, and generality. Adjusted R2

essentially levies a multiplicative penalty for additional variables to offset

the spurious increase in R2 that results from an increase in the number of

predicting variables. In recent years statisticians and econometricians mostly

use additive penalty functions in model specification (choosing the predicting

variables) for a regression problem.12 The different penalties are associated

with different criteria determining the trade-off between parsimony and pre-

cision. Each penalty function can be viewed as defining preferences over

the number of included variables and R2, reflecting the trade-off between

simplicity and accuracy. Rather than choose a specific penalty function, we

assume that an individual can be ascribed a function v : R+ × [0, 1] → R
that represents her preferences for simplicity and accuracy, where v(k, r) is

her utility for a regression that attains R2 = r with k explanatory variables.

Thus, if v(·, ·) is decreasing in its first argument and increasing in the second,
a person who chooses a rule so as to maximize v may be viewed as though

she prefers both simplicity and accuracy, and trades them off as described

by v.

Our aim is to demonstrate that finding “good” rules is a difficult com-

putational task. We use the concept of NP-Completeness from computer

science to formalize the notion of difficulty of solving problems. A yes/no

problem is NP if it is easy (can be performed in polynomial worst-case time

complexity) to verify that a suggested solution is indeed a solution to it.

When an NP problem is also NP-Complete, there is no known algorithm,

whose (worst-case time) complexity is polynomial, that can solve it. How-

ever, NP-Completeness means somewhat more than the fact that there is no
12See, e.g., Hastie et al. (2001) for a discussion of model specification and penalty

functions.
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such known algorithm. The non-existence of such an algorithm is not due to

the fact that the problem is new or that little attention has been devoted to

it. For NP-Complete problems it is known that, if a polynomial algorithm

were found for one of them, such an algorithm could be translated into algo-

rithms for all other problems in NP. Thus, a problem that is NP-Complete

is at least as hard as many problems that have been thoroughly studied for

years by academics, and for which no polynomial algorithm has yet been

found.

We emphasize again that the rules we discuss have no pretense to offer

complete theories, identify causal relationships, provide predictions, or sug-

gest courses of action. Rules are merely regularities that happen to hold in a

given database, and they may be purely coincidental. Rules may be backed

by theories, but we do not purport to model the entire process of developing

and choosing among theories.

Assume that we are trying to predict a variable Y given the explanatory

variables X = (X1, ...,Xm). For a subset K of {X1, ..., Xm}, let R2K be

the value of the coefficient of determination R2 when we regress (yi)i≤n on

(xij)i≤n,j∈K. We assume that the data are given in their entirety, that is,

that there are no missing values.

How does one select a set of explanatory variables? First consider the

feasible set of rules, projected onto the accuracy-complexity space. For a set

of explanatory variables K, let the degree of complexity be k = |K| and a
degree of accuracy — r = R2. Consider the k-r space and, for a given database

X = (X1, ..., Xm) and a variable Y , denote by F (X,Y ) the set of pairs (k, r)

for which there exists a rule with these parameters. Because the set F (X)

is only defined for integer values of k, and for certain values of r, it is more

convenient to visualize its comprehensive closure defined by:

F 0(X,Y ) ≡ { (k, r) ∈ R+ × [0, 1] |∃(k0, r0) ∈ F (X,Y ), k ≥ k0, r ≤ r0 }
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The set F 0(X,Y ) is schematically illustrated in Figure 1. Note that it

need not be convex.

_________________________

Insert Figure 1 about here

_________________________

The optimization problem that such a person with utility function v(·, ·)
faces is depicted in Figure 2.

_________________________

Insert Figure 2 about here

_________________________

This optimization problem is hard to solve, because one generally cannot

know its feasible set. In fact, for every r > 0, given X,Y, k, determining

whether (k, r) ∈ F 0(X,Y ) is computationally hard:

Theorem 1 For every r ∈ (0, 1], the following problem is NP-Complete:

Given explanatory variables X = (X1, ...,Xm), a variable Y , and an integer

k ≥ 1, is there a subset K of {X1, ...,Xm} such that |K| ≤ k and R2K ≥ r?
Theorem 1 explains why people may be surprised to learn of simple regu-

larities that exist in a database they have access to. A person who has access

to the data should, in principle, be able to assess the veracity of all linear

theories pertaining to these data. Yet, due to computational complexity, this

capability remains theoretical. In practice one may often find that one has

overlooked a simple linear regularity that, once pointed out, seems evident.

Our discussion here presupposes a fixed database X. In reality, however,

one may have to choose among prediction rules that were obtained given

different databases. For example, assume that two researchers collected data
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in an attempt to predict a variable Y . Researcher A collected 1,000 observa-

tions of the variablesW , Z, and Y , and obtained R2 = .9 (for Y regressed on

W and Z). Researcher B collected two observations of the variables T and

Y and, quite expectedly, obtained R2 = 1 (for Y regressed on T ). Observe

that the two databases cannot be combined into a single database, since

they contain information regarding different variables.13 Which prediction

rule should we use?

While database A suggests a rule that is both less accurate and more

complex than the rule suggested by database B, one would be expected to

prefer the former to the latter. Indeed, obtaining R2 = .9 with two variables

and 1,000 observations is a much more impressive feat than obtaining a per-

fect fit with one variable and two observations. Rules should be accurate and

simple, but also general. Other things being equal, a rule that has a higher

degree of generality, or a larger scope of applicability, is preferred to a rule

that was found to hold in a smaller database. With a given database, all pre-

diction rules have the same scope of applicability, and thus this criterion may

be suppressed from the rule selection problem. Yet, in a more general set-up,

we should expect accuracy and simplicity to be traded off with generality as

well.

We show that, for any positive value of r, it is hard to determine whether

a given k is in the r-cut of F 0(X,Y ) when the input is (X,Y, k). By contrast,

for a given k, computing the k-cut of F 0(X,Y ) is a polynomial problem (when

the input is (X,Y, r)), bounded by a polynomial of degree k. Recall, however,

that k is bounded only by the number of columns in X. Moreover, even if

k is small, a polynomial of degree k may assume large values if m is large.14

13To be precise, a combination of the databases would result in a database with many
missing values. Indeed, a theory of induction that is general enough to encompass data-
bases with missing values will be able to deal with induction given different databases as
well.
14The number of observations, n, directly affects the computational complexity of the

regression analysis for every subset of k variables. If n is smaller than k + 1, we would
expect, generically, that any k variables will provide a perfect fit, so that r = 1 will be
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We conclude that, in general, finding the frontier of the set F 0(X,Y ), as a

function of X and Y , is a hard problem. The optimization problem depicted

in Figure 2 has a fuzzy feasible set, as described in Figure 3.

_________________________

Insert Figure 3 about here

_________________________

A decision maker may choose a functional rule that maximizes v(k, r) out

of all the rules she is aware of, but the latter are likely to constitute only a

subset of the set of rules defining the actual set F 0(X,Y ). Hence, many of

the rules that people formulate are not necessarily the simplest (for a given

degree of accuracy) or the most accurate (for a given degree of complexity).

We conclude this section with the observation that one may prove theo-

rems similar to Theorem 1, which would make explicit reference to a certain

function v(k, r). The following is an example of such a theorem.

Theorem 2 For every r ∈ (0, 1], the following problem is NP-Complete:

Given explanatory variables X = (X1, ..., Xm) and a variable Y , is there a

subset K of {X1, ...,Xm} that obtains an adjusted R2 of at least r?
As will be clear from the proof of Theorem 2, this result does not de-

pend on the specific measure of the accuracy-simplicity trade-off, and similar

results can be proven for a variety of functions v(k, r).15

obtained in time O(k).
15There are, however, functions v for which the result does not hold. For example,

consider v(k, r) = min(r, 2 − k). This function obtains its maximum at k = 1 and it is
therefore easy to maximize it.
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4 Discussion

4.1 The relevance of NP-Completeness

We maintain that a problem that is NP-Complete will be hard for economic

agents to solve. Agents may obtain or learn the optimal solutions to particu-

lar instances of the general problem, especially if they are only interested in

instances described by small inputs. But should economic agents encounter

new instances of reasonable sizes on a regular basis, high computational com-

plexity implies that it is unlikely to assume that all or most agents in the

economy would determine the optimal solutions to these instances.

In the case of fact-free learning, economic agents are called upon to find

regularities in large databases. These regularities cannot be uncovered once

and for all. The economic and political environment changes constantly

and the lore of yesterday does not provide a blueprint for the decisions of

tomorrow. It is therefore reasonable to model economic agents as problem

solvers who constantly need to cope with new and large problems.

One can argue that NP-Completeness is a concept that relates to the way

computers perform computations, and has little or no bearing on human rea-

soning. Indeed, there are problems such as natural language understanding

or face recognition that toddlers perform better than do computers. But

these are problems for which finding an appropriate mathematical model is a

major part of the solution. By contrast, for well defined combinatorial prob-

lems such as those in the class NP it is rarely the case that humans perform

better than do computers. It therefore seems safe to assume that neither

people nor computers can solve NP-Complete problems optimally.

We do not claim that the human brain is a machine that can be mimicked

by a Turing machine, in theory or in practice. Our proposition is much more

modest: if a well-defined, combinatorial problem is NP-Complete, then it is

probably hard to solve for human beings (for moderate size inputs). This

proposition does not imply that the human brain is a machine, let alone a
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machine that one may simulate on a digital computer.

Since we do not know what the brain actually does, it is still possible that

the brain can efficiently solve problems that are NP-Complete. That is, one

cannot rule out the possibility that a statistician or an economist would have

an uncanny ability to find an optimal set of k regressors (for every problem

and every k). But even if this were the case, they would not be able to share

this ability: any description of a procedure by which one may optimally solve

the problem would give rise (by Church’s thesis16) to a Turing machine that

can mimic this procedure. Hence, should a human being have such magical

ability, it would not be transferable.

One may question the use of complexity concepts that are defined by

worst-case analysis. Indeed, why would we worry about an algorithm whose

worst-case performance is exponential, if it is polynomial on average? Expe-

rience of computer scientists, however, indicates that NP-Complete problems

do not tend to be efficiently solvable even in expectation, under any reason-

able assumptions on the distribution of inputs.17

As all problems in NP, the problems we study have only two possible

answers: “yes” or “no”.18 But as is often the case, they are binary manifes-

tations of optimization problems, say “Find the minimal number k of regres-

sors that obtain an R2 of r”, or “Find a set of regressors that maximize the

adjusted R2”. When our problems are formulated thus, it is natural to ask

whether one can find approximations to the optimal solution. For example,

if one can find, in polynomial time, a set of regressors that is guaranteed not

to be more than 2% away from the highest possible adjusted R2, one may be
16See Odifreddi (1989) on the Turing-Church theses and the different variants thereof.
17See Papadimitriou (1994) who makes this point, and emphasizes that the example

of linear programming confirms this experience. Indeed, the simplex algorithm has ex-
ponential worst-case time complexity but very good expected complexity. Yet, linear
programming is not an NP-Complete problem and it now has algorithms with polynomial
worst-case performance.
18These are called “decision problems” in the computer science literature. For econo-

mists, this term is quite misleading.
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content with this result. We do not know whether there exists polynomial

algorithms that guarantee such approximations.19.

We do not claim that the inability to solve NP-Complete problems is

necessarily the most important cognitive limitation on people’s ability to

perform induction. As mentioned above, even polynomial problems can be

difficult to solve when the database consists of many cases and many at-

tributes. Moreover, it is often the case that looking for a general rule does

not even cross someone’s mind. Yet, the difficulty of performing induction

shares an important property with NP-Complete problems: while it is hard

to come up with a solution to such a problem, it is easy to verify whether a

suggested solution is valid. Similarly, it is hard to come up with an appropri-

ate generalization, but it is relatively easy to assess the applicability of such

a generalization once it is offered.

We need not assume that people are lazy or irrational to explain why

they do not find all relevant rules. Rather, looking for simple regularities

is a genuinely hard problem. There is nothing irrational about not being

able to solve NP-Complete problems. Faced with the problem of selecting a

set of explanatory variables, which is NP-Complete, people may use various

heuristics to find prediction rules, but they cannot be sure, in general, that

the rules they find are the simplest ones.
19A related problem is the satisfaction of a system of linear equalities and inequalities

by a minimal number of variables (obtaining non-zero values). Amaldi and Kann (1998)
showed that no polynomial algorithm can compute approximations to this problems (unless
all problems in NP are polynomial). However, in our case a reasonable definition of
approximation will also use the r axis. Generally, all NP-Complete problems are equivalent
to each other in the sense that the existence of a polynomial algorithm that perfectly solves
one of them implies the existence of such an algorithm for all others. But the existence of
a polynomial algorithm that approximates (the optimization version of) one such problem
does not imply a similar result for other problems. See Papadimitriou (1994, Ch. 13).
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4.2 Implications

Agreeing to disagree. Our model suggests two reasons for which people, who

have access to the same database, may have different beliefs, even if these

beliefs are defined by rules that are derived from the shared database. First,

two people may notice different regularities. Since finding the “best” regular-

ities is a hard problem, we should not be surprised if one person failed to see

a regularity that another came up with. Second, even if the individuals share

the rules that they found, they may entertain different beliefs if they make

different trade-offs between the accuracy and the simplicity of rules. Different

people may well have different v functions, with some people more willing to

sacrifice accuracy for simpler rules. If two individuals choose different levels

of simplicity, they may also disagree on the relevance of a characteristic. In

particular, a variable that is important when there are relatively few other

variables in a regression may not be important if the number of variables

considered increases. Thus, a particular attribute may play a large role in

the rule one person uses but no role in the rule another employs.

Locally optimal rules. Our central point is that people use rules that are not

fully optimal because of the complexity of the problem of finding such rules.

When an individual uses a rule that is less than fully optimal, she may im-

prove upon the rule by considering alternatives to it. A person faced with the

regression problem may think of alternatives to her current “best” regression

by adding or deleting variables from her current included set, or by replacing

variables in the included set with others. While we do not formally model

this search and revision process, one can imagine two distinct ways people

may update the rules they use. One can search “locally”, that is, consider

relatively minor changes in the current rule such as adding, deleting, or re-

placing one or two variables, or one can search globally by considering sets

of variables that have no relation whatsoever to the current set of variables.

Local search may find local optima that are not global optima. Differently

put, people may get “stuck” with suboptimal rules that can be improved

19



upon only with a “paradigm shift” that considers a completely different way

of looking at a problem.

Path dependence. When individuals search locally for improved rules, their

reasoning is likely to exhibit path dependence. Two individuals who begin

with different initial sets of variables can settle on very different rules, even

after very long search times.

Regret. Our model suggests different notions of regret. In a standard model,

individuals make optimal choices given the information available to them at

the time they decide. In a stochastic environment, an individual may wish

ex post that she had decided differently. However, a rational person has no

reason to regret a decision she had taken since she could have done no better

at the time of her decision, given the information available to her at that time.

In our model there are two notions in which information can be “given”, and

correspondingly, two possible sources of regret. As usual, one may learn the

realization of a random variable, and wish that she had decided differently.

But one can also learn of a rule that one has not been aware of, even though

the rule could be derived, in principle, from one’s database. Should one feel

regret as a result? As argued above, one could not be expected to solve NP-

Complete problems, and therefore it may be argued that one could not have

chosen optimally. Yet, one might expect individuals to experience a stronger

sense of “I could have known” as a result of finding rules that hold in a given

database, than as a result of getting new observations.

4.3 Modeling choices

There is an alternative approach to modelling induction that potentially pro-

vides a more explicit account of the components of cases. The components

should include entities and relations among them. For example, our moti-

vating examples give rise to entities such as countries and governments, and

to the relations “fought against” and “exhibits inferior performance”, among

others. In a formal model, entities would be elements of an abstract set, and

20



relations, or predicates, would be modeled as functions from sequences of en-

tities into [0, 1]. Such a predicate model would provide more structure, would

be closer to the way people think of complex problems, and would allow a

more intuitive modelling of analogies than one can obtain from our present

model. Moreover, while the mathematical notation required to describe a

predicate model is more cumbersome than that used for the present model,

the description of actual problems within the predicate model may be more

concise. In particular, this implies that problems that are computationally

easy in the attribute model may still be computationally hard with respect

to the predicate model.20

Observe that neither the model presented here nor the alternative predi-

cate model attempts to explain how people choose the predicates or attributes

they use to describe cases. The importance of this choice has been clearly

illustrated by Goodman’s (1965) “grue-bleen” paradox.21 This problem is,

however, beyond the scope of the present paper.

4.4 Related literature

Most of the formal literature in economic theory and in related fields adheres

to the Bayesian model of information processing. In this model a decision

maker starts out with a prior probability, and she updates it in the face of new

information by Bayes’s rule. Hence, this model can easily capture changes in
20In Aragones, Gilboa, Postlewaite and Schmeidler (2001), we present both the attribute

and the predicate models for the study of analogies, prove their equivalence in terms of
the scope of phenomena they can describe, and show that finding a good analogy in the
predicate model is a hard problem.
21The paradox is, in a nutshell, the following. If one wishes to test whether emeralds are

green or blue, one can sample emeralds and conclude that they seem to be green. Based on
this, one may predict that emeralds will be green in the year 2010. Next assume that one
starts with two other primitive predicates, “grue” and “bleen”. When translated to the
more common predicates “green” and “blue”, “grue” means “green until 2010 and blue
thereafter” and “bleen” — vice versa. With these predicates, emeralds appear to be grue,
and one may conclude that they will appear blue after the year 2010. This paradox may
be interpreted as showing that inductive inference, as well as the concept of simplicity,
depend on the predicates one starts out with.

21



opinion that result from new information. But it does not deal very graciously

with changes of opinion that are not driven by new information. In fact, in a

Bayesian model with perfect rationality people cannot change their opinions

unless new information has been received. It follows that the example we

started out with cannot be explained by such models.

Relaxing the perfect rationality assumption, one may attempt to provide a

pseudo-Bayesian account of the phenomena discussed here. For instance, one

can use a space of states of the world to describe the subjective uncertainty

that a decision maker has regarding the result of a computation, before this

computation is carried out. (See Anderlini and Felli (1994) and Al-Najjar,

Casadesus-Masanell, and Ozdenoren (1999).) In such a model, one would be

described as if one entertained a prior probability of, say p, that “democratic

peace” holds. Upon hearing the rhetorical question as in our dialogue, the

decision maker performs the computation of the accuracy of this rule, and is

described as if the result of this computation were new information.

A related approach employs a subjective state space to provide a Bayesian

account of unforeseen contingencies. (See Kreps (1979, 1992), and Dekel,

Lipman, and Rustichini (1997, 1998).) Should this approach be applied to the

problem of induction, each regularity that might hold in the database would

be viewed as an unforeseen contingency that might arise. A decision maker’s

behavior will then be viewed as arising from Bayesian optimization with

respect to a subjective state space that reflects her subjective uncertainty.

Our approach models the process of induction more explicitly. In com-

parison with pseudo-Bayesian approaches, it allows a better understanding

of why and when induction is likely to be a hard problem.

Gilboa and Schmeidler (2001) offer a theory of case-based decision mak-

ing. They argue that cases are the primitive objects of knowledge, and that

rules and probabilities are derived from cases. Moreover, rules and probabili-

ties cannot be known in the same sense, and to the same degree of certitude,

that cases can. Yet, rules and probabilities may be efficient and insight-
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ful ways of succinctly summarizing many cases. The present paper suggests

that summarizing databases by rules may involve loss of information, because

one cannot be guaranteed to find the “optimal” rules that a given database

induces.
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5 Appendix: Proofs

Proof of Theorem 1:

Let there be given r > 0. It is easy to see that the problem is in NP:

given a suggested set K ⊂ {1, ...,m}, one may calculate R2K in polynomial
time in |K|n (which is bounded by the size of the input, (m + 1)n).22 To
show that the problem is NP-Complete, we use a reduction of the following

problem, which is known to be NP-Complete (see Gary and Johnson (1979),

or Papadimitriou (1994)):

Problem EXACT COVER: Given a set S, a set of subsets of S, S,
are there pairwise disjoint subsets in S whose union equals S?

(That is, does a subset of S constitutes a partition of S?)

Given a set S, a set of subsets of S, S, we will generate n observations of

(m+1) variables, (xij)i≤n,j≤m and (yi)i≤n, and a natural number k, such that

S has an exact cover in S iff there is a subset K of {1, ...,m} with |K| ≤ k
and R2K ≥ r.
Let there be given, then, S andS. Assume without loss of generality that

S = {1, ..., s}, and thatS = {S1, ..., Sl} (where s, l ≥ 1 are natural numbers).
We construct n = 2(s + l + 1) observations of m = 2l predicting variables.

It will be convenient to denote the 2l predicting variables by X1, ..., Xl and

Z1, ..., Zl and the predicted variable — by Y . Their corresponding values will

be denoted (xij)i≤n,j≤l, (zij)i≤n,j≤l, and (yi)i≤n. We will use Xj, Zj, and

Y also to denote the column vectors (xij)i≤n, (zij)i≤n, and (yi)i≤n, respec-

tively. Let M ≥ 0 be a constant to be specified later. We now specify the
vectors X1, ..., Xl, Z1, ..., Zl, and Y as a function of M .

For i ≤ s and j ≤ l, xij = 1 if i ∈ Sj and xij = 0 if i /∈ Sj;
For i ≤ s and j ≤ l, zij = 0;

22Here and in the sequel we assume that reading an entry in the matrix X or in the
vector Y , as well any algebraic computation require a single time unit. Our results hold
also if one assumes that xij and yi are all rational and takes into account the time it takes
to read and manipulate these numbers.
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For s < i ≤ s+ l and j ≤ l, xij = zij = 1 if i = s+ j and xij = zij = 0 if
i 6= s+ j;
For j ≤ l, xs+l+1,j = zs+l+1,j = 0;
For i ≤ s+ l, yi = 1 and ys+l+1 =M ;
For i > s + l + 1, yi = −yi−(s+l+1) and for all j ≤ l, xij = −xi−(s+l+1),j

and zij = −zi−(s+l+1),j.
Observe that the bottom half of the matrix X as well as the bottom half

of the vector Y are the negatives of the respective tops halves. This implies

that each of the variables X1, ...,Xl, Z1, ..., Zl, and Y has a mean of zero.

This, in turns, implies that for any set of variables K, when we regress Y on

K, we get a regression equation with a zero intercept.

Consider the matrix X and the vector Y obtained by the above construc-

tion for different values of M . Observe that the collection of sets K that

maximize R2K is independent of M . Hence, it is useful to define bR2K as the
R2 obtained from regressing Y on K, ignoring observations s + l + 1 and

2(s+ l + 1). Obviously, minimizing bR2K is tantamount to minimizing R2K.
We claim that there is a subset K of {X1, ...,Xl}∪{Z1, ..., Zl} with |K| ≤

k ≡ l for which bR2K = 1 iff S has an exact cover from S.

First assume that such a cover exists. That is, assume that there is a set

J ⊂ {1, ..., l} such that {Sj}j∈J constitutes a partition of S. This means thatP
j∈J 1Sj = 1S where 1A is the indicator function of a set A. Let α be the

intercept, (βj)j≤l be the coefficients of (Xj)j≤l and (γj)j≤l — of (Zj)j≤l in the

regression. Set α = 0. For j ∈ J , set βj = 1 and γj = 0, and for j /∈ J set
βj = 0 and γj = 1. We claim that α1+

P
j≤l βjXj +

P
j≤l γjZj = Y where

1 is a vector of 1’s. For i ≤ s the equality

α+
P

j≤l βjxij +
P

j≤l γjzij =
P

j≤l βjxij = yi = 1

follows from
P

j∈J 1Sj = 1S. For s < i ≤ s+ l, the equality

α+
P

j≤l βjxij +
P

j≤l γjzij = βj + γj = yi = 1
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follows from our construction (assigning precisely one of {βj, γj} to 1 and
the other — to 0). Obviously, α +

P
j≤l βjxnj +

P
j≤l γjznj = 0 = yi = 0.

The number of variables used in this regression is l. Specifically, choose

K = {Xj | j ∈ J } ∪ {Zj | j /∈ J }, with |K| = l, and observe that bR2K = 1.
We now turn to the converse direction. Assume, then, that there is a

subset K of {X1, ..., Xl} ∪ {Z1, ..., Zl} with |K| ≤ l for which bR2K = 1. Since
all variables have zero means, this regression has an intercept of zero (α = 0

in the notation above). Let J ⊂ {1, ..., l} be the set of indices of the X
variables in K, i.e., {Xj}j∈J = K ∩ {X1, ..., Xl}. We will show that {Sj}j∈J
constitutes a partition of S. Set L ⊂ {1, ..., l} be the set of indices of the Z
variables in K, i.e., {Zj}j∈L = K ∩ {Z1, ..., Zl}. Consider the coefficients of
the variables in K used in the regression obtaining bR2K = 1. Denote them by
(βj)j∈J and (γj)j∈L. Define βj = 0 if j /∈ J and γj = 0 if j /∈ L. Thus, we
have P

j≤l βjXj +
P

j≤l γjZj = Y .

We argue that βj = 1 for every j ∈ J and γj = 1 for every j ∈ L. To
see this, observe first that for every j ≤ l, the s+ j observation implies that
βj + γj = 1. This means that for every j ≤ l, βj 6= 0 or γj 6= 0 (this also
implies that either j ∈ J or j ∈ L). If for some j both βj 6= 0 and γj 6= 0,
we will have |K| > l, a contradiction. Hence for every j ≤ l either βj 6= 0 or
γj 6= 0, but not both. (In other words, J = Lc.) This also implies that the
non-zero coefficient out of {βj, γj} has to be 1.
Thus the cardinality ofK is precisely l, and the coefficients {βj, γj} define

a subset of {S1, ...Sl}: if βj = 1 and γj = 0, i.e., j ∈ J , Sj is included in the
subset, and if βj = 0 and γj = 1, i.e., j /∈ J , Sj is not included in the subset.
That this subset {Sj}j∈J constitutes a partition of S follows from the first s
observations as above.

We now turn to defineM . We wish to do so in such a way that, for every

set of explanatory variables K, R2K ≥ r iff bR2K = 1. Fix a set K. Denote by
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[SSR and[SST the explained variance and the total variance, respectively, of
the regression of Y onK without observations s+ l+1 and 2(s+ l+1), where

SSR and SST denote the variances of the regression with all observations.

Thus, R2K = SSR/SST and bR2K =[SSR/[SST . Observe that[SST = 2(s+ l)
and SST = 2(s+ l) + 2M2. Also, SSR =[SSR is independent of M .

Note that ifK is such that bR2K = 1, then (SSR =)[SSR =[SST = 2(s+l).
In this case, R2K =

2(s+l)
2(s+l)+2M2 . If, however, K is such that bR2K < 1, then we

argue that (SSR =)[SSR ≤[SST − 1
9
. Assume not. That is, assume that K

is such that [SSR >[SST − 1
9
. This implies that on each of the observations

1, ..., s+ l, s+ l+ 2, ..., 2(s+ l) + 1, the fit produced by K is at most 1
3
away

from yi. Then for every j ≤ l, |βj + γj − 1| < 1
3
. Hence for every j ≤ l either

βj 6= 0 or γj 6= 0, but not both, and the non-zero coefficient out of {βj, γj}
has to be in (2

3
, 4
3
). But then, considering the first s observations, we find

that K is an exact cover. It follows that, if bR2K < 1, then R2K ≤ 2(s+l)− 1
9

2(s+l)+2M2 .

Choose a rationalM in the interval
µq

(1−r)(s+l)− 1
18

r
,
q

(1−r)(s+l)
r

¶
so that

2(s+l)− 1
9

2(s+l)+2M2 < r <
2(s+l)

2(s+l)+2M2 , and observe that for this M , there exists a K

such that R2K ≥ r iff there exists a K for which bR2K = 1, that is, iff K is an

exact cover.

To conclude the proof, it remains to observe that the construction of the

variables (Xj)j≤l, (Zj)j≤l, and Y can be done in polynomial time in the size

of the input. ¤
Proof of Theorem 2:

Let there be given r > 0. The proof follows that of Theorem 1 with the

following modification. For an integer t ≥ 1, to be specified later, we add
t observations for which all the variables ((Xj)j≤l, (Zj)j≤l, and Y ) assume

the value 0. These observations do not change the R2 obtained by any set

of regressors, as both SST and SSR remain the same. Assuming that t has

been fixed (and that it polynomial in the data), let r0 be theR2 corresponding

to an adjusted R2 of r, with l regressors. That is, (1− r0) = (1− r) t+2s+2l+1
t+2s+l+1

.
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Define M as in the proof of Theorem 1 for r0.

We claim that there exists a set of regressors that obtains an adjusted R2

of r iff there exists a set of l regressors that obtains an R2 of r0 (hence, iff

there exists an exact cover in the original problem). The “if” part is obvious

from our construction. Consider the “only if” part. Assume, then that a

set of regressors obtains an adjusted R2 of r. If it has l regressors, the same

calculation shows that it obtains the desired R2. We now argue that if no

set of l regressors obtains an adjusted R2 of r, then no set of regressors (of

any cardinality) obtains an adjusted R2 of r.

Consider first a set K0 with |K0| = k0 > l regressors. Observe that, by
the choice ofM , r0 is the upper bound on all R2K for all K with |K| = l, as r0
was computed assuming that an exact cover exists, and that, therefore, there

are l variables that perfectly match all the observations but s + l + 1 and

2(s+ l + 1). Due to the structure of the problem, r0 is also an upper bound

on R2K for all K with |K| ≥ l. This is so because the only observations that
are not perfectly matched (in the hypothesized l-regressor set) correspond to

zero values of the regressors. It follows that the adjusted R2 for K0 is lower

than r.

Next consider a set K0 with |K0| = k0 < l regressors. For such a set there
exists a j ≤ l such that neither Xj nor Zj are in K0. Hence, observations

s + j and 2s + l + j + 1 cannot be matched by the regression on K0. The

lowest possible SSE in this problem, corresponding to the hypothesized set

of l regressors, is 2M2. This means that the SSE of K0 is at least 2M2 + 2.

That is, the SSE of the set K0 is at least M2+1
M2 larger than the SSE used

for the calculation of r. On the other hand, K0 uses less variables. But if
t+2s+l+1
t+2s+k+1

< M2+1
M2 , the reduction in the number of variables cannot pay off,

and K0 has an adjusted R2 lower than r. It remains to choose t large enough

so that the above inequality holds, and to observe that this t is bounded by

the polynomial of the input size.¤
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