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Competitive prizes: when less scrutiny

induces more e�ort

May 8, 2000

Pradeep Dubey & Chien-wei Wu 1

Abstract

We consider a principal who is keen to induce his agents to work at
their maximal e�ort levels. To this end, he samples n days at random out
of the T days on which they work, and awards a prize of B dollars to the
most productive agent. The principal's policy (B;n) induces a strategic
game �(B;n) between the agents. We show that to implement maximal
e�ort levels weakly (or, strongly) as a strategic equilibrium (or, as dominant
strategies) in �(B;n), at the least cost B to himself, the principal must
choose a small sample size n. Thus less scrutiny by the principal induces
more e�ort from the agents.

The need for reduced scrutiny becomes more pronounced when agents
have information of the history of past plays in the game. There is an
inverse relation between information and optimal sample size. As agents
acquire more information (about each other), the principal|so to speak|
must \undo" this by reducing his information (about them) and choosing
the sample size n even smaller.

Journal of Economic Literature Classi�cation Numbers: C720, D820,
J410.

Key words: competitive prizes, extensive form games, information pat-
terns, strategic equilibria, optimal sample sizes.
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1 Introduction

The intuition behind this paper is simple. Suppose a principal writes an
anonymous contract between several agents, basing his reward on their rel-
ative performance. To induce them to work (at their maximal e�ort levels),
he would do well to ensure that the least skilled agent has a suÆciently good
chance of obtaining the reward. For then this agent works hard, which gen-
erates the competition spurring the next-best agent to also work, which in
turn spurs the agent just above him and so on. By designing a contract
which is favorable to the weakest agent, the principal can trigger compe-
tition which elicits maximal e�ort from all of them. We believe that this
basic principle is of quite wide application2, even though for concreteness
we consider here a stylized model from the principal-agent literature. In
this model, it turns out that to favor the weak is tantamount to observ-
ing agents' outputs on a small sample, since all large samples would almost
surely distinguish the weak from the strong and destroy incentives for the
weak. In short, less scrutiny by the principal induces more e�ort from the
agents.

The principal-agent literature is well-known and we make no attempt
to summarize it here (see, e.g., Green & Stokey (1983), Grossman & Hart
(1983), Lazer & Rosen (1981), Mookherjee (1984), Nalebu� & Stiglitz (1983)
and Rosen (1986) and the references therein). Our focus is on a special sce-
nario. There is a principal who values his agents' outputs so highly (e.g.,
because they fetch a very remunerative market price) that even after com-
pensating them for any additional e�ort, he makes a pro�t on the margin.
An optimal policy for the principal thus necessarily entails maximal e�ort

from the agents.
Agents, on the other hand, have to be induced to work by o�ers of suit-

ably large performance-related rewards of money, since they have a natural
disutility for work. Their outputs are random but positively correlated with
their e�ort levels. If an agent produces small output, it could be because
he did not work much or because he had bad luck despite hard work. Of
course, the probability of small output is reduced if his e�ort level goes up.

We suppose that the principal is constrained to write non-discriminatory

contracts which are based on output alone. This could be because he cannot
observe the inputs of e�ort made by the agents, nor can he tell them apart

2e.g., the handicap o�ered to the weaker opponent in golf or chess.
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in terms of their private characteristics, such as their skill (probability of
being productive) or their utility for money and leisure. Alternatively, even
if the principal were fully cognizant of these, it could be that the law requires
rewards to be commensurate with performance, and to be based solely on
the outputs agents produce, with no other form of discrimination permitted.
In any case, we con�ne attention to contracts that are de�ned anonymously
on the outputs of the agents.

Contracts may be independent in that the reward to any agent depends
just on his own output, i.e., it is invariant of others' outputs; or they may be
competitive rewarding agents according to the rank-order of their outputs.

The focus of this paper is on non-discriminatory competitive contracts,
which take the form of a prize to the most productive agent. Such contracts
can often be more favorable to the principal than independent contracts
(see section 12). But, apart from their theoretical raison d'être, competitive
prizes are simply a fact of everyday life. Think, for example, of a bonus
to the best salesman of the year; or a promotion awarded to the branch
manager who produced the highest pro�ts, etc. The question arises: how
is best performance to be measured? We point out that, even if the entire
stream of agents' outputs is susceptible of costless observation, there are
many situations in which the principal would be wise to deliberately create
uncertainty by observing outputs only on random samples of small size.

Let us consider a concrete instance of our model. Suppose a government
(the principal) has commissioned two manufacturers (the agents) to produce
T units each of some vital defence equipment3, e.g., timed fuses for bombs.
Each manufacturer � 2 f1; 2g must choose an e�ort level e� from E� �
f1; ::::; e��g, which in turn determines the probability pe�� that any one of
his fuses will be of high quality. The disutility incurred by � on account
of e�ort e� is d�(e�). We may think of the e�ort as being used to upgrade
the production technology. It is then natural to assume pe�� > p ~e�

� and
d�(e�) > d�( ~e�) whenever e� > ~e�.

The government buys the T fuses from 1,2 for some previously con-
tracted amounts. But it is evidently crucial to the government that both
manufacturers commit themselves to maximal e�ort. To motivate them, it
announces an award to be bestowed as follows. It will sample n fuses at
random at both production sites, and give a bonus of B dollars to the man-
ufacturer with more high quality pieces in the sample. In the event of a tie,

3More generally, the government could commission T1, T2 units and sample n1, n2
units and award the bonus to the manufacturer with the higher percentage of high quality
pieces. Our main point remains intact. At least one of n1, n2 must be small to avoid the
need for huge bonuses. We take T1 = T2 = T and n1 = n2 = n for simplicity.
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it will award B to each with probability 1=2.
A policy (B;n) induces a strategic game �(B;n) between the two man-

ufacturers. The problem facing the government is how to choose (B;n) so
as to minimize B while, at the same time, ensuring that (e�1; e

�
2) is a strate-

gic equilibrium of �(B;n). For any �xed sample size n it is clear that, if
B is large enough, then (e�1; e

�
2) is a strategic equilibrium of �(B;n). We

prove somewhat more: there exists a threshold bonus B(n) such that, if
B > B(n), then (e�1; e

�
2) is the unique strategic equilibrium (SE) of �(B;n);

and, if B < B(n), then (e�1; e
�
2) is not an SE of �(B;n).

Thus the competitive contract (B;n) implements (e�1; e
�
2) in a strong

sense: not merely as an SE of �(B;n) as in much of the literature (see,
e.g., Mookherjee (1984) for a synopsis), but as its unique SE. Uniqueness
overcomes the vexing uncertainty of how agents will coordinate upon the
\chosen" candidate SE when there are many of them. The only uncertainty
that remains is whether the agents will somehow settle down to an SE of the
game at all. There is, in this context, the much stronger notion of imple-
mentation of (e�1; e

�
2) as a dominant strategy equilibrium (DSE), whereby this

uncertainty is considerably reduced. But the reduction comes with a price.
The threshold ~B(n), needed to ensure that (e�1; e

�
2) is a DSE of �(B;n), is

generally much higher than B(n).
An optimal competitive prize is obtained by choosing a sample size for

which the threshold bonus is minimized, i.e., (B(k); k) is optimal if

B(k) = min fB(n) : 1 � n � Tg:

It is easy to see that k must be small. Let manufacturer 1 be more skilled

than 2, i.e., p
e�1
1 > p

e�2
2 . If k were big then, by the law of large numbers, 1

would almost surely produce p
e�1
1 k high quality fuses in any sample at (e

�
1; e

�
2),

while his rival would almost surely produce only p
e�2
2 k < p

e�1
1 k such fuses. To

induce 2 to choose e�2, B must be huge, compensating 2 for his extremely
low probability of winning B. It follows that an optimal sample size k must
be small, justifying the title of our paper. (This argument incidentally also
shows that an optimal sample size ~k for implementing (e�1; e

�
2) as a DSE, i.e.,

~B(~k) = min f ~B(n) : 1 � n � Tg, is also small.)
The need for reduced scrutiny comes even more to the fore when agents

have information of the history of past plays in the game. It is useful here
to distinguish two scenarios. In the �rst, agents are ignorant of their rivals'
outputs4, but may have memory of their own outputs. In the second, they

4We assume throughout that no agent can observe the inputs of e�ort made by his
rival.
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can observe rivals' outputs as well. Let �� denote the strategies wherein all
agents exert maximal e�ort in all circumstances of the game. We show that
while all sample sizes are feasible in the �rst scenario (in that they implement
�� for suitably large bonuses), optimal sample sizes are small and tend to fall
as memory is re�ned. In the second scenario, even feasible sample sizes must
be small. More precisely, there is an upper bound on feasible sample sizes,
which depends on the information pattern in the game. As information is
re�ned, this bound falls sharply. (We note, in passing, that the automatic
privilege enjoyed by �� of being the unique SE is lost in the second scenario.
The bonus needs to be raised further to bring back uniqueness.)

Two authors (Cowen & Glazer (1996)) have commented on a similar
phenomenon. Their analysis has been in the context of a contract between
a principal and a single agent. We report on their work in some detail in
section 13 and contrast it with our own. But to the best of our knowledge
no one has considered the impact of the principal's observation on agents'
behaviour in a competitive framework.

The scope of our analysis has a natural limitation. We �x the behaviour

of agents at �� (i.e., maximal e�ort) and examine variable prizes which
implement �� This is consistent with pro�t-maximization for the principal if
he values agents' outputs suÆciently and if agents' information in the game

is not too �ne. Our analysis reveals that, with very �ne information, it is not
possible to implement �� without handing out huge bonuses (for all but very
small sample sizes). Then it becomes more natural to take a complementary
viewpoint: to �x the prize and examine the variable behaviour of agents
that is induced by the prize. We do so in a companion paper (Dubey &
Haimanko (2000)). An optimal policy no longer induces maximal e�ort in
all circumstances of the game, but it still requires sample size to be small,
and our main theme remains intact.

For ease of exposition, we carry out the analysis for the case of two
agents. But all our results, except for Theorem 3 (on uniqueness of SE)
hold for any number of agents with obvious modi�cations in the de�nitions
and the proofs.

2 The Extensive Form Game (	; B; n)

We present an extensive form game between the agents which involves T
time periods. To keep notation simple, we assume that all the data of the
game, except for agents' information, is stationary.
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Each agent � 2 f1; 2g has a �nite set E� of e�ort levels available every
period, with a distinguished element e�� which represents his maximal e�ort
level. Any e 2 E� induces a probability distribution pe� with full support

on a �nite set of nonnegative outputs Q� � (q1�; :::; q
m(�)
� ) producible by �,

where we have arranged q1� < ::: < q
m(�)
� . Denote the rival of � by �, and

denote q� � q
m(�)
� , q

�
� q1�. We assume, for any agent �, that q� > q

�
.

The game is played iteratively follows. In each period both agents make
a simultaneous choice of e�ort levels which leads to random outputs, in
accordance with the speci�ed probabilities, and brings the game into period
t+ 1. Agents then choose e�ort levels again.

For the formal description, let 
(t) denote the set of agents' nodes in
period t 2 T � f1; :::; Tg. The set 
(1) � f!�g is a singleton, and !�

signi�es the start of the game.
At any ! 2 
(t), both agents 1; 2 simultaneously choose e�ort levels

from E1; E2. After (e1; e2) 2 E1 � E2, there is a move of chance. Chance
selects (q1; q2) 2 Q1 � Q2 with positive probability5 pe1(q1)p

e2(q2), leading
to an agents' node �! � (!; e1; e2; q1; q2) in 
(t+ 1). See Figure 1.

Figure 1

Thus, for t > 1, 
(t) is isomorphic to (E1 �E2 �Q1 �Q2)
t�1; and any

! 2 
(t) is speci�ed by its history (e1(�); e2(�); q1(�); q2(�))
t�1
�=1.

Let 
 �
`
t2T 
(t) be the set of all agents' nodes in the game tree (where`

denotes disjoint union). Each agent � has an information partition I� of

 which re
ects what he knows of his own and his rival's past history in the
game. We assume throughout that any agent � can observe only the outputs
produced by his rival and not the rival's inputs of e�ort, i.e., for any pair of
nodes !; ~! in 
(t) � 
 and any agent � in f1; 2g:

5i.e., agents' probabilities are independent (for correlated probabilities, see Section 11).
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(I)

8>>><
>>>:
! � (e�(�); e�(�); q�(�); q�(�))

t�1
�=1

~! � (e�(�); ~e�(�); q�(�); q�(�))
t�1
�=1

i.e., ! and ~! have the same history
except perhaps for the e�ort of �

9>>>=
>>>;
)

8><
>:

! and ~! are in
the same information

set of I�

9>=
>;

There is a positive correlation between e�ort and productivity. Our key
assumption on pe� states that when an agent exerts maximal e�ort, his
outputs go up, in the sense of �rst-order stochastic dominance:

For any � 2 f1; 2g and e 2 E� n fe
�
�g,

(II)
X
q�x

pe
�
�
� (q) >

X
q�x

pe�(q) for all x 2 Q� n fq�g:

This completes the description of the extensive form of the game, but it
still remains to specify agents' payo�s at each terminal node ! 2 
(T + 1).

Each agent � has a continuous, strictly monotonic utility for money given
by u� : R+ ! R, where u�(B) � the utility to � of receiving B dollars by
way of reward the end of the T days. We need to assume that agents value
money suÆciently. Precisely (and, for the sake of simplicity, stating it in a
stronger form than necessary) we postulate:

(III) u�(B)!1 as B !1:

The disutility for e�ort is given by a function d� : (E�)
T ! R+, for

� 2 f1; 2g. We assume that maximal e�ort incurs the most disutility, i.e.,

(IV ) d�((e
�
�; :::; e

�
�)) > d�(e)

for all e 2 (E�)
T n f(e��; :::; e

�
�)g.

Rewards at the terminal nodes are determined by the principal's policy

(B;n) which operates as follows: n days are sampled at random6 and the
bonus of B dollars is awarded to the agent with the higher total output
across the days in the sample; in the event of a tie, it is given to each agent
with probability half. The principal samples secretly. Agents know that
exactly n days are sampled, but not know which n; this is revealed to them
only ex post at the end of the game.

For 1 � n � T , let Cn � f= � T : j=j = ng and P (n) � 1=C(T; n), where
C(T; n) = T !=(T�n)!n!. Consider a terminal node ! � (e1(�); e2(�); q1(�); q2(�))

T
�=1 2

6We will assume that the same set of n days is sampled for each agent. But, given our
stationary set up, not much changes if these sets are sampled independently for the two
agents.
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(T + 1). Given !, the total produced by � on = 2 Cn, is Z�(!;=) �P
�2= q�(�). Recall that � denotes the rival of � 2 f1; 2g, and de�ne7

u�(!;=) �

8><
>:

u�(B) if Z�(!;=) > Z�(!;=)
u�(0) = 0 if Z�(!;=) < Z�(!;=)
1
2u�(B) if Z�(!;=) = Z�(!;=)

Then, abusing the notation u� yet again, the expected utility frommoney
at ! is

u�(!) � P (n)
X
=2Cn

u�(!;=)

On the other hand, the disutility of e�ort at ! is

d�(!) � d�((e�(�))
T
�=1)

We assume separability, and write the payo� to agent � at ! as

��(!) � u�(!)� d�(!)

This completes the description of the extensive form game between the
agents. Since we hold u�; d� �xed throughout, we will denote the game
(	; B; n) where 	 is the extensive form of the game, i.e., the game tree with
the payo�s missing at the terminal nodes.

Remark 1 The example of \fuses" given in the introduction, can be seen
to be a special case of our model by setting I1 = I2 = 
. (There is no loss
of generality in ignoring the �xed contracted payment to the manufacturers,
since aÆne transformations of their utilities leaves only the bonus term.)

When I1 = I2 = 
, we say that there is zero-information in the game. In
this case, our theorems hold without the full-support assumption: pe�(q) > 0
for all q 2 Q� and all e 2 E�.

Remark 2 When I1 = I2 = f
(t) : 1 � t � Tg, we say that there is
low-information in the game. Agents now know only the time period they
are in. Low information may be interpreted in terms of a locations model.
Suppose the principal hires agents 1, 2 to work for him in two isomorphic
sets of locations 1; ::::; T and 10; ::::; T 0 respectively, and that all the work
has to be carried out simultaneously in the di�erent locations. (One could
think of a government that has appointed two service-providers, and wants

7W.l.o.g. (using aÆne transformations for each agent's utility), we take u�(0) = 0, to
avoid writing (1=2)[u�(0) + u�(B)] in place of (1=2)u�(B)
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them to undertake one-shot improvements in their respective territories; or
of a manufacturer who has engaged two distributors to operate in disjoint
locations.) The principal samples n corresponding locations from each set
and awards B dollars to the agent who is more productive on the sample.

3 The Normal Form Game �(	; B; n)

We next describe the game in normal (or strategic) form that arises from
the extensive form game.

A strategy �� of agent � speci�es an e�ort level ��(!) in E� for each
! 2 
, and is measurable with respect to �'s information partition I�.

It will be useful to de�ne an equivalence relation on the set of all strate-
gies of agent �, so that any two strategies which have the same \reduced
form" get identi�ed. To this end, we �rst de�ne the set of irrelevant nodes
in 
(t) for strategy ��, inductively on t. At t = 1, the set of irrelevant nodes
is the empty set. Let ~! = (!; e1; e2; q1; q2) be a node in 
(t+1) that follows
from ! in 
(t). Then de�ne ~! to be irrelevant for �� if either ! 2 
(t) is
irrelevant for ��; or if ��(!) 6= e�. Denote the set of all irrelevant nodes of
�� by 
�� � 
. We say that �� � ~�� i� 
�� = 
 ~�� and ��(!) = ~��(!) for
all ! 2 
 n 
�� .

It is clear that � is an equivalence relation, and from now on a strategy

will be thought of as an equivalence class.
The set of all (reduced as above) strategies of agent � is denoted ��.
Any pair of unreduced strategies � � (�1; �2) induces a probability dis-

tribution on the set of terminal nodes in the obvious manner. Indeed, let ~! �
(!; e1; e2; q1; q2) be an immediate follower of ! in the game tree, and de�ne
the probability p�(!; ~!) of reaching ~! from ! under � to be pe11 (q1)p

e2
2 (q2)

if ��(!) = e� for both � = 1 and � = 2, and to be 0 otherwise. Then the
probability8 p�(!) of reaching the node ! = (e1(�); e2(�); q1(�); q2(�))

~t
�=1

is p�(!) =
Q~t
t=1 p

�(!t; !t+1) where !t+1 � (!t; e1(t); e2(t); q1(t); q2(t)) for
t = 1; :::; ~t. (We de�ne p�(!�) = 1 where, recall, !� is the start of the game.)
The payo� to agent � from � is then

P
!2
(T+1) p

�(!)��(!) � ��(�).
If (�1; �2) and ( ~�1; ~�2) are two equivalent pairs (i.e., �� � ~�� for � 2

f1; 2g), it is easy to check that they induce the same probability distribution
on 
(T + 1). Thus equivalent pairs give rise to the same expected payo�s

8Note: p(�1;�2)(!) is in fact de�ned for arbitrary maps �� : 
 ! E�, not necessarily
just strategies �� 2 ��
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and the normal form game, with strategy-sets �1 and �2, is well-de�ned.
We denote it by �(	; B; n).

Let �� 2 �� and �� 2 ��. Then �� is called a best reply to �� if

��(��; ��) � ��( ~��; ��) for all ~�� 2 ��

The pair (�1; �2) is called a strategic equilibrium (and denoted SE) of �(	; B; n)
if �1 is a best reply to �2, and �2 is a best reply to �1. If, moreover, both
strategies are unique best replies then the SE is called strict.

Finally we de�ne �� 2 �� to be a dominant (strictly dominant) strategy

of � in �(	; B; n) if �� is a best reply (unique best reply) to every �� 2 ��.
If �1 and �2 are both dominant strategies in �(	; B; n), we say that (�1; �2)
is a dominant strategy equilibrium (DSE) of �(	; B; n).

4 Thresholds for the Bonus

The strategy (modulo the equivalence relation) wherein � puts in maximal

e�ort is denoted ���, i.e.,

���(!) = e�� for all ! 2 
:

We denote (��1 ; �
�
2) � ��.

First let us �x the extensive form 	 and the sample size n, and ask how
large the bonus needs to be to implement �� either as an SE or as a DSE.
De�ne

B(	; n) � minfB : �� is an SE of �(	; B; n)g
~B(	; n) � minfB : �� is a DSE of �(	; B; n)g

(The minimum on an empty set is taken to be in�nity.)
It is straightforward to check

Theorem 1

(i) B > B(	; n) , (��1 ; �
�
2) is a strict SE of �(	; B; n)

(ii) B > ~B(	; n) , ��� is a strictly dominant strategy
of �(	; B; n) for � 2 f1; 2g

This theorem justi�es the use of the word \threshold" for B(	; n) and
~B(	; n).
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5 Feasible and Optimal Sample Sizes

Since the principal is interested in implementing �� with the smallest pos-
sible bonus, it is useful to make some de�nitions.

A sample size n is called

(i) SE-feasible for 	 if B(	; n) <1

(ii) DSE-feasible for 	 if ~B(	; n) <1
(iii) SE-optimal for 	 if

B(	; n) = minfB(	; k) : 1 � k � Tg <1
(iv) DSE-optimal for 	 if

~B(	; n) = minf ~B(	; k) : 1 � k � Tg <1

6 Ignorance of the Rival: Memory and Sample

Size

We shall say that agent � is ignorant of his rival � in 	 if, for any pair of
nodes !; ~! in 
(t) � 
 and any agent �,8>>><
>>>:
! � (e�(�); e�(�); q�(�); q�(�))

t�1
�=1

~! � (e�(�); ~e�(�); q�(�); ~q�(�))
t�1
�=1

i.e., ! and ~! have the same history
of the e�orts and outputs of agent �

9>>>=
>>>;
)

8><
>:

! and ~! are in
the same information

set of I�

9>=
>;

When each agent is ignorant of his rival, �� can be sustained as an
SE for many sample sizes with �nite (albeit large) bonus. Indeed de�ne
~� � maxfjq

1
� q

2
j; jq1 � q2jg, � � minfq1 � q

2
; q2 � q

1
g. Then we have

Theorem 2 (Existence of SE)

Suppose each agent is ignorant of his rival in 	. Then, if n � (�= ~�)+1,
n is SE-feasible and DSE-feasible for 	.

Corollary Suppose each agent is ignorant of his rival in 	 and q1 = q2
and q

1
= q

2
. Then all sample sizes are SE-feasible and DSE-feasible for 	.

(This follows since ~� = 0.)

Whenever the bonus is higher than the threshold, �� is the unique SE.
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Theorem 3 (Uniqueness of SE)

Suppose each agent is ignorant of his rival in 	. Let n be any feasible
sample size for 	. Then

B > B(	; n)) �� is the unique SE of �(	; B; n)

(In fact, �� is the unique SE in the mixed extension of �(	; B; n).)

According to Theorem 3, whenever the principal can implement �� as
an SE at all, he need not further worry about the vexing issue of multiple
equilibria: adding a penny to the threshold will make �� the unique SE. (It
is only at the threshold B(	; n) that �� may have to coexist with other SE
of the game.)

Suppose memory is re�ned in the game, i.e., I� is re�ned to ~I�, still
leaving � ignorant of his rival. This will tend to reduce optimal sample
sizes. The intuition is clear. Suppose an agent has succeeded on most days
over a long past and knows so on account of re�ned memory. If the sample
size is large, he will tend to shirk on the remaining few days because this
hardly a�ects his probability of winning the bonus. To get him to work
there, B would have to be huge. But if the sample size is small, he gives up
a good chance of winning B by shirking. Thus a smaller B will sustain full
e�ort once the sample size is lowered. Indeed, in the extreme case when the
sample size is 1, the increase in the probability of winning through an extra
day's work remains invariant of memory.

It might help to see a concrete calculation.

Example 1

Suppose each agent � has just two e�ort levels and two output levels
denoted E� � f0; 1g, Q� � f0; 1g. Let p11(1) = 0:7, p01(1) = � and p12(1) =
0:6, p02(1) = � for small �. Thus agent 1 is more \skilled" than his rival, in
that he produces output 1 with higher probability when he works. Suppose
there are 180 periods, i.e., T = f1; :::; 180g and low information, i.e., I1 =
I2 = f
(t) : 1 � t � 180g. For any sequence of e�orts e 2 f0; 1g180, let jej �
number of 1's in the sequence, i.e., the number of days of maximal e�ort.
Put d1(e) = 2jej, d2(e) = jej. Finally let u1(x) = u2(x) = x. This de�nes
the extensive form game between the two agents. The optimal sample size
is 26, as we show in Section 8.

Now suppose both agents have perfect memory (while remaining ignorant
of each other). Then the optimal sample size must be 2. To see this, consider
any sample size 1 � k � 180 and suppose the last day has arrived, with the
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weak agent 2 fully aware that he has produced 0 on all the previous 179
days. This is the worst scenario in which to incentivize him to work. (If the
bonus makes him work here, it will make him work at all other positions in
the game tree.) It is clear that he will not work if he lags by more than 1
unit (in total output) over the previous days of the sample. So de�ne, for
j = 0 or 1, Rj(k) = probability that the rival agent 1 produces exactly j
units across the previous random k � 1 days of the sample (given that 1 is
putting in maximal e�ort on all days). Let P (k) be the probability that the
last day is in the sample. Then, by switching from e�ort 0 to 1 on the last
day, agent 2 increases the probability of winning the bonus by

�(k) = P (k)[R1(k)f1(p1; p2) +R0(k)f2(p1; p2)]

where f1(p1; p2) = [(1=2)(1 � p11)(p
1
2 � p02)] and f2(p1; p2) = (1 � p11)[(p

1
2 �

p02) + (1=2)((1 � p12)� (1� p02))] + p11[(1=2)(p
1
2 � p02)]

The bonus B needed to make 2 work on the last day must satisfy

�(k)u2(B) � 1 � 2's disutility to work on the last day.

Now P (k) = k=T increases linearly with k, while both Rj(k) fall geomet-
rically. Thus for all large enough k, Rj(k) will be very small necessitating
a huge bonus, much bigger than the bonus corresponding to sample size 1.
In our example, it is easy to calculate that this happens for k � 3. On the
other hand, for small k, the rise of P (k) may dominate the fall of Rj(k), so
that �(k) increases with k. In our example this occurs when we go from
k = 1 to k = 2, explaining why sample size 2 is always better than sample
size 1, and is the optimal sample size. (Indeed this is so for all T � 3.)

7 Information of the Rival and Sample Size

When agents have information regarding each other's outputs in 	, a dra-
matic change occurs. Feasible sample sizes have an upper bound (i.e., for
sample sizes that exceed the bound, no amount of bonus can sustain �� as
an SE). There is an intimate inverse relationship between the information
pattern in the game tree and this bound. As information is re�ned, the
bound falls. To put it another way: in order to restore �� as an SE, the
principal must \undo" the gain in agents' information (about each other)
by reducing his own information (about them) via a smaller sample size.

We shall assume throughout this section that an agent has perfect recall.
Furthermore his information of past outputs, achieved by him and his rival,
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is invariant of his memory of his own past e�orts9. (This is tenable since
random outputs have the same support for every e�ort level.) To be precise,
let us de�ne ! � (I�)~! if ! and ~! are in the same information set in I�.
Also for ! � (e�(�); e�(�); q�(�); q�(�))

t�1
�=1 and 1 � t0 � t � 1, denote

(!jt0) � (e�(�); e�(�); q�(�); q�(�))
t0
�=1. Keeping in mind that (see (I)) that

� does not observe his rival's e�orts, we postulate:

(V) (i) (Perfect recall)

8><
>:
! � (I�)~!;

! � (e�(�); e�(�); q�(�); q�(�))
t�1
�=1;

~! � (~e�(�); ~e�(�); ~q�(�); ~q�(�))
~t�1
�=1;

9>=
>;)

8><
>:

t = ~t;
e�(�) = ~e�(�) for 1 � � � t� 1;

(!jt0) � (I�)(~!jt
0) for 1 � t0 < t� 1:

9>=
>;

(ii) (Invariance of Output Information on Memory of E�ort)

There exist partitions J�(~t) of Q
~t�1
� �Q

~t�1
� for 1 < ~t � T which charac-

terize I� in the following sense: S 2 I� implies

9t 2 T; (e�(�))
t�1
�=1 2 E

t�1
� ;K 2 J�(t) such that

S = f(e�(�); e�(�); q�(�); q�(�))
t�1
�=1 : e�(�) 2 E� ; (q�(�); q�(�))

t�1
�=1 2 Kg

We shall need one more assumption for this section.

(VI) (SuÆciently Fine Grid on Outputs)For any � 2 f1; 2g,
ql+1� � ql� < q� � q

�
for 1 � l < m(�).

This is not too restrictive, e.g., it automatically holds if the sets Q� =

fq
�
� q1�; :::; q

m(�)
� � �q�g consist of consecutive integers, for � 2 f1; 2g.

We de�ne a positive integer f�(!) at each node ! 2 
 and for each
agent �. The functions f� do not depend on the information pattern or the
probabilities of production in 	. Intuitively, f�(!) is the largest sample size
which still leaves some incentive for agent � to put in maximal e�ort e�� at
the node !, when he knows ! perfectly.

Then we de�ne, for the extensive form 	,

g(	) = min
�2f1;2g

min
S2I�

maxff�(!) : ! 2 Sg

9There are many situations in which agents may possess perfect information of the
history of their own past e�orts, but not of the outputs they have produced. Suppose, for
instance, that there is time lag in production, and that the output corresponding to day
t's e�ort comes to light only some days later.
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Thus g assigns a positive integer to every extensive form 	. In contrast
to the functions f�, the function g is highly sensitive to the information in
	.

Pending the precise de�nition of f� to the proof of Theorem 4 in Section
17.2.1, we are ready to state

Theorem 4 Assume10 I, II, III, IV, V, VI. Then

the sample size n is SE-feasible for 	, n � g(	):

Theorem 4 makes precise our intuition that, in order to sustain �� as an
SE with �nite bonus, the principal must lower his sample size when agents'
information is increased. Let us say that ~	 is an information-re�nement of
	 (and write ~	 � 	) if, for each agent �, his information partition ~I� in ~	
is a re�nement of his information partition I� in 	; and, other than that,
the extensive forms 	 and ~	 are identical. It is evident from our formula
for g that

~	 � 	) g( ~	) � g(	)

In general g( ~	) falls sharply below g(	) when the re�nement is signi�-
cant. This says that if agents have more information about each other, then
the principal must reduce his sample size in order to elicit maximal e�ort
from them at an SE. Indeed, it is easy to check that if the game has three
or more periods and if information is at its �nest in 	(i.e., agents observe
everything except each other's e�orts), then g(	) = 2. The need for reduced
scrutiny is then indeed obvious!

Remark 3 When agents can observe each others' outputs, Theorem 3 is no
longer true. We nevertheless can sustain �� as a unique SE for suÆciently
large bonus. Indeed, for any sample size n � g(	), de�ne

B�(	; n) � inf fB 2 R+ : �� is the unique SE of �(	; B; n) for all ~B � Bg

Then B�(	; n) < 1 as we prove in Section 17. (Of course, typically
B�(	; n)� B(	; n).)

10Assumptions V and VI are invoked only in Theorem 4. All the other results invoke
only our general assumptions I, II, III, IV; except for Theorem 5 to follow, which needs
Assumption VII and VIII in addition to I, II, III, IV.
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8 The Principal's Optimal Policy

De�ne, for � 2 f1; 2g,

B�(	; n) = min fB : ��� is a best reply to ��� in the game �(	; B; n)g;

Then
B(	; n) = max fB1(	; n); B2(	; n)g;

An optimal SE-policy (B(	; k); k) in 	 must satisfy

B(	; k) = min fB(	; n) : 1 � n � Tg:

(In the same vein, an optimal DSE-policy ( ~B(	; ~k); ~k) in 	 must satisfy
~B(	; ~k) = min f ~B(	; n) : 1 � n � Tg where ~B(	; n) = maxf ~B1(	; n); ( ~B2(	; n)g
and ~B�(	; n) = minfB : ��� is a dominant strategy in �(	; B; n)g.)

Consider again Example 1 of Section 5 in the low information case. For
small �, we obtain the computer-aided graph of Figure 1. (The calculations
were done for � = 0:001).

Notice that B1(n) is downward-sloping, while B2(n) has a U-shape. As
was said before, raising n increases the probability of sampling any particular
day, and therefore tends to lower the bonus at which agents will work. But as
n increases, the probability that the weak agent has been strongly overtaken
by his rival (on the other n � 1 days of the sample) is high. This tends to
raise the required bonus for the weak agent and to lower it for the strong
agent. The two e�ects on the bonus go in the same direction for the strong
agent, hence B1(n) is downward-sloping. However they work in opposite
directions for the weak agent and so B2(n) turns and starts rising, when
the second e�ect dominates the �rst. Indeed the turn comes rather quickly
at n = 3 in our example. (As p2 rises, keeping p1 �xed, the turn occurs at
larger sample sizes.)

16



Figure 2

9 Optimal Sample Size for Long Horizons

Let 	(1), 	(2),... be a sequence of extensive forms of length 1,2,... with
�xed underlying E�, Q�, p� for � 2 f1; 2g. Let the information partitions
I1(T ), I2(T ) in 	(T ) be arbitrary for T = 1; 2; ::: Denote the utility for
money and the disutility for work in 	(T ) by uT� , d

T
� . We assume that the

disutility of working all the time increases linearly with T and is distributed
in a non-skewed manner between the periods:

(VII) there exists 
 > 0 such that, for � 2 f1; 2g and any T we have

(i) dT�((e
�
�(�))

T
�=1) > T=


(ii) Consider (e��(�))
T
�=1and(~e

�
�(�))

T
�=1: Suppose, for some t 2 T;

e�(t) = e�� 6= ~e�(t); and e�(�) = ~e�(�) for all � 2 T n ftg: Then
dT�((e�(�))

T
�=1)� dT�((~e�(�))

T
�=1) < 


Finally assume that agent 1 is more skilled than agent 2:

(VIII)
X
q2Q1

p
e�1
1 (q)q >

X
q2Q2

p
e�2
2 (q)q
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i.e., if both agents put in maximal e�ort, 1 produces a strictly higher average
than 2. De�ne11

B(n; T ) � min fB : �� is an SE of the game �(	(T ); B; n)g

and suppose

n(T ) 2 Argmin1�n�TB(n; T ):

Then we have, justifying the title of this paper,

Theorem 5 Assume VII and VIII, and that each T -period game satis�es
I, II, III, IV. Then

n(T )

T
! 0 as T !1:

10 Promotion or Reputation

When the reward for producing more is not a variable amount of money (i.e.,
a bonus of B dollars), but a �xed prize such as a promotion or enhanced
reputation, we obtain a variant model. But the key to its analysis is provided
by the bonus-model we have studied so far.

Consider again the special example of Section 7 with low information.
Let u�� be the utility to � of the �xed prize, for � 2 f1; 2g, and by scaling
utilities assume w.l.o.g. that u�1 = u�2.

Suppose12 u�� > u�(B(n)) for � 2 f1; 2g and for some n. Then, by
sampling an optimal size k, the principal can ensure that both agents will
put in maximal e�ort. Of course he can achieve the same e�ect by choosing
any sample size n for which u�� > u�(B(n)) for � 2 f1; 2g. But the set
of such n will always contains every optimal size k. (See Figure 3, where
the u�� have been superimposed on Example 1 and where this set forms an
interval.). Thus k is optimal in the promotions-model as well.

11The strategy ��(T ), of always putting in maximal e�ort in 	(T ), is denoted �� without
confusion.

12Otherwise the promotion cannot induce the agents to put in maximal e�ort.
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Figure 3

So, in the promotions-model too, the advantages to be gained from re-
duced scrutiny are quite evident. (For an indepth discussion of promotions,
see Dubey & Haimanko (2000).)

11 Correlated Probabilities

We can permit weak correlation in agents' productivity without a�ecting
many of our results. Indeed suppose that when agents choose (e1; e2) 2
E1�E2 at ! 2 
(t), this gives rise to a probability distribution p(e1;e2) with
full support onQ1�Q2. (Notice that while we have dropped independence of
probabilities across agents at any given time, we still maintain independence
across time.) The assumption that more e�ort boosts productivity now takes
the following form. For any � 2 f1; 2g, e 2 E� n fe

�
�g, q̂ 2 Q� n fq�g and

~q� 2 Q�: X
q2Q�;q�q̂

pe
�
�;e

�
�(q; ~q�) >

X
q2Q�;q�q̂

pe�;e
�
�(q; ~q�)

This says, in e�ect, that when agent � shifts to his maximal e�ort he
boosts his own productivity, given any �xed quantity of his rival.
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With this hypothesis, Theorems 1,2 and 4 still hold. Theorem 5 holds if
we assume that agent � is more skilled than � in the sense:X

(x;y)2Q��Q�

pe
�
�;e

�
�(x; y)(x � y) > 0

(The proofs require only obvious changes in notation.) But Theorem 3
breaks down, except for T = 1. Notice that the basic compulsions for
reducing scrutiny remain intact (by Theorems 4 and 5).

12 Optimality of Competitive Prizes

Both Green & Stokey (1983) and Mookherjee (1984) provide examples when
competitive contracts are better for the principal than independent con-
tracts. We will illustrate the same phenomenon with a simple example
based on our competitive prizes. There is just one day, i.e., T = n = 1.
Each agent � 2 f1; 2g has two e�ort levels, corresponding to low or high
e�ort, and denoted 0 or 1; and each can produce 0, 0:1 or 1 units of output.
Probabilities of production are given by the tables

(�1; �2) = (1; 1) (�1; �2) = (1; 0)

0 0.1 1

0 0.8-8 � 0.5 � 1.5 �

0.1 0.5 � � 1.5 �

1 1.5 � 1.5 � 0.2

0 0.1 1

0 � � �

0.1 1-8 � � �

1 � � �

(�1; �2) = (0; 0) (�1; �2) = (0; 1)

0 0.1 1

0 1-8 � � �

0.1 � � �

1 � � �

0 0.1 1

0 � 1-8� �

0.1 � � �

1 � � �

where we suppose 0 < � < 0:01. Here columns (rows) are labeled by outputs
of agent 1 (2), and the entries of the matrix give probabilities for any pair of
outputs. (It is easy to check that the condition on correlated probabilities
in Section 11 is met.)

Thus the probabilities of production are correlated: when both agents
work, an externality (\spillover" e�ect) comes into play, enabling each to
produce a lot (i.e., 1 unit), albeit with low probability (i.e., 0:2); if only one
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agent works, the bene�ts of this externality are removed, and he is only able
to produce 0:1.

Disutility of e�ort is given by d1(0) = d2(0) = 0, d1(1) = 1, d2(1) = 2;
and the utility of money by u1(x) = x1=2 and u2(x) = 2x1=2.

It is easy to check that, in order to implement (1; 1) as an SE, the
bonus must be just high enough to satisfy (12 �

9
2�)u�(B) � d�(1) � d�(0)

for � 2 f1; 2g. For B � 5 the inequality becomes strict. Thus the SE-
threshold bonus is less than 5 dollars; and, for B = 5, (1; 1) is the unique
SE, as predicted by Theorem 3 (which still applies since T = 1). Thus the
principal can induce both agents to work by putting up 5 dollars by way of
a competitive prize.

Suppose, instead that he were to write an independent contract awarding
x; y; z dollars13 for 0; 0:1; 1 units of output respectively (Since we deal only
with non-discriminatory contracts, the reward does not depend on the name
of the agent). If x; y; z are to induce both agents to work at e�ort level 1,
we must have

(0:8)u�(x) + (0:2)u�(z) � d�(1)

and

(0:8)u�(x) + (0:2)u�(z)� d�(1) � u�(x)� d�(0) = u�(x)

These are the participation and incentive constraints respectively. It
is clear that the latter implies that former. The incentive constraint may
be rewritten (0:2)[u�(z) � u�(x)] � d�(1), hence we have u�(z) � u�(x) �
5d�(1). Since u�(x) � 0, it follows that u�(z) � 5d�(1) which reduces
to z � 25 for � 2 f1; 2g. Thus the principal's expected payout for the
independent contract is 2[(0:8)x + (0:2)z] � (2)(0:2)z � (2)(0:2)(25) = 10
dollars.

This is much higher than the payout of 5 dollars for the competitive
prize.

It is worth noting that, in this example, the principal would have to pay
out at least 10 dollars even if he were permitted to write discriminatory in-
dependent contracts (x�; y�; z�) for � 2 f1; 2g. (Indeed the same argument
shows that z� � 25 for � 2 f1; 2g.)

13For ease of computation we take x; y; z to be nonnegative. But in this example,
competitive prizes are optimal even if we allow for \punishment" (via negative values of
x; y; z.
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13 Related Literature

We report on the model of Cowen & Glazer (1996), rephrasing it slightly.
There is only one agent who undertakes countably in�nite activities and
chooses a uniform shirking rate S across all of them. The principal samples
activities according to the Poisson distribution with mean M . Thus the
probability that the principal samples H activities is e�MMH=H!. In e�ect
M is his strategic variable and, by increasingM , he can scrutinize the agent
more.

We may imagine that the agent tosses a coin (which comes heads with
probability 1�S) independently for each activity, and works on that activity
only if it has come up heads. Then the probability that he shirks on L
out of the H activities sampled is C(H;L)SL(1 � S)H�L (where, recall,
C(H;L) � H!=(H � L)!L!).

The agent receives the reward if the principal hears at least one message
and if the fraction of messages reporting shirking is no more than some
exogenously chosen critical value k. Thus the probability that the agent
with shirking rate S receives the prize is

P (S) =
1X
H=0

e�MMH=H!

int(Hk)X
L=0

C(H;L)SL(1� S)H�L:

where int(Hk) is the largest integer that does not exceed Hk.
If M > 0 and k > 0, P (S) is a downward sloping function of S. We

reproduce the Figure 4 from Cowen & Glazer (1996).
The solid lines show P (S) for M = 3 and M = 4. The dashed lines

represent indi�erence curves of the agent, who needs to be compensated
with a higher probability of the prize for shirking less. It can happen, for
certain con�gurations of the agent's preferences, that he shirks more when
the principal's scrutiny (i.e., M) goes up.

The agent's problem here may be thought of as his \best-reply" problem
in an appropriately de�ned game in which his rival's strategy is held �xed
in a particular way. Indeed, suppose that the rival works every day and
produces exactly14 k units of output each day, for 0 < k < 1. The agent
himself produces exactly 0 if he shirks, and exactly 1 if he works. He chooses
a \stationary mixed strategy" via a shirking rate. The principal samples
days according to the Poisson distribution, and awards the prize to whoever
produces more across the days in the sample. Finally the payo� of the agent
depends on his shirking rate and the probability of winning the prize.

14Or,with probability close to 1.
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Figure 4

The contrast with our model is clear. First, reduced scrutiny is always to
the principal's advantage in our model, provided T is large; but in Cowen &
Glazer (1996) this happens only sometimes for suitably chosen con�gurations
of preferences as is evident from Figure 3. Next, the \opportunity curves"
P (S) for each agent in our model arise fundamentally from the strategic
competition between them. Of course we could take a \partial equilibrium"
approach, imagining the external rival agent as above. If we set I1 = 
, the
\best-reply" problem for the agent reduces to the model in Cowen & Glazer
(1996). But the external agent's incentives remain unaccounted for in this
partial equilibrium scenario.

14 Many Agents

Much of our analysis clearly continues to hold when there are more than
two agents. In particular, for any �xed sample size n, there exist, as before,
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�nite thresholds

~B(n) � minfB 2 R+ : �� is a DSE of �(B;n)g

B�(n) � inf fB 2 R+ : �� is the unique SE of �(B;n) for all ~B > Bg
B(n) � minfB 2 R+ : �� is an SE of �(B;n)g

and the corresponding optimal sample sizes will again typically be much
smaller than T . We must have B(n) � B�(n) � ~B(n). Theorem 3 showed
that, with two agents who are ignorant of each other's outputs, B�(n) =
B(n) always (though, typically, B(n) < ~B(n)). We have not yet fully ex-
plored the relation between these three thresholds for multiple agents. But
it is curious that, if T = 1 and if all agents can produce just two out-
put levels and their probabilities of being productive are independent, then
~B(n) = B�(n) = B(n) (we get then a game of strategic substitutes as in
Bulow et al (1985)).

15 General Contracts

A more (though not most) general formulation15 of a non-discriminatory
contract, is in terms of a function

ZT+ � ZT+
 
! ([0; 1] �R+)� ([0; 1] �R+)

Let  (x; y) = (p;B; q;D). We understand the contract  to mean that if the
principal observes outputs x; y by agents 1; 2 then he awards B;D dollars
to agents 1; 2 with probability p; q respectively. Of course, we must require

 (x; y) = (p;B; q;D))  (y; x) = (q;D; p;B)

to maintain the non-discriminatory character of  .
Such general contracts are not easily susceptible to calculations. But

among them are contracts which operate as follows: the principal observes
z1; z2 and awards (p(z1; z2); B; 1 � p(z1; z2); B). They include our contracts
(B;n). Choosing n small is tantamount to making p(z1; z2) large even whenPT
t=1 z1(t) <

PT
t=1 z2(t), i.e., not always giving the bonus to the bigger

producer, but deliberately \making a mistake" and giving it with probability
p(z1; z2) to the smaller producer to stimulate him to work hard.

15This line of inquiry, which we have not pursued here, was indicated by Jean-Fran�cois
Mertens.
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16 Fine Information with Long Horizon: Further Con-

siderations

Our analysis suggests that the principal could think of creating several prizes
(T1; B1; n1); ::::(Tk ; Bk; nk), breaking the T periods into k intervals of lengths
T1; :::; Tk; and award the prize (Bl; nl) over the Tl days of the lth interval,
wiping the past clean. This might be more eÆcient than a single prize
(B;n) over the entire horizon, in that

Pk
l=1Bl < B. Optimality would now

determine an endogenous number of prizes and their timing.
We may also raise a di�erent question here. Suppose agents move se-

quentially. In any period t, agent 1 �rst chooses his e�ort level e1 2 E1,
after which chance moves and selects q1 2 Q1 with probability p1(q1). Then
agent 2, knowing both e1 and q1, picks e2 from E2 etc. We obtain an ex-
tensive form with perfect information. At its terminal nodes in 
(T + 1),
it is useful to add a move of chance which embodies the principal's policy
(B;n). Chance selects every = � T , for j=j = n, with probability 1=C(T; n).
Payo�s are determined at 
(T + 2) in the obvious manner.

In this extensive game, there exists a unique subgame perfect pure strat-
egy equilibrium (unique, for generic speci�cation of producible quantities q�
inQ� and probability distribution p�;! and disutilities d�;! at each node ! in
the tree) in which agents will not put in maximal e�ort everywhere (unless
B is huge). Suppose the principal's budget B is of medium size and is �xed.
For any sample size n in the above game �(B;n), there is an expected total
output q(n) produced by the agents at its unique subgame perfect SE. We
say that ~n(T ) is an optimal sample size if q(~n(T )) = maxfq(n) : 1 � n � Tg.
We conjecture that ~n(T )=T ! 0 as T ! 1 (for �xed B). This has been
proved, under certain additional assumptions, in Dubey & Haimanko(2000).

17 Proofs

17.1 Preliminaries

If ~! � (!; e1; e2; q1; q2) 2 
(t+1) for ! 2 
(t), we say that ~! is an immediate
follower of !. More generally, ~! is a follower of ! if there exists a sequence
!1; !2; :::; !k of nodes in �
 �

`T+1
t=1 
(t) = 


`

(T + 1) such that ! = !1,

~! = !k and each !l+1 is an immediate follower of !l for 1 � l � k � 1.
Denote

F (!) = f~! 2 �
 : ~! is a follower of !g:
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Next let ! � (e�(�); e�(�); q�(�); q�(�))
t�1
�=1 2 
(t) � 
. De�neQ(�; !) �

f((x�(�))�2Tnftg; (y�(�))�2T ) 2 Q
Tnftg
� �QT� : (x�(�); y�(�))

t�1
�=1 = (q�(�); q�(�))

t�1
�=1g

i.e.,Q(�; !) lists all possible outputs of both agents, across time, that are
consistent with ! and that leave �'s output at ! unspeci�ed. For any (x; y) 2
Q(�; !) and = � T , with t 2 =, put

Æ(x; y;=) �
X
�2=

y(�)�
X

�2=nftg

x(�):

It is clear that � wins the bonus at !, given = and (x; y), if he produces more
than Æ(x; y;=) at !; and ties for the bonus if he produces exactly Æ(x; y;=).
Let

W� = fq 2 Q� : q > Æ(x; y;=)g

W� = fq 2 Q� : q � Æ(x; y;=)g

W� = fq 2 Q� : q = Æ(x; y;=)g

Then, conditional on the realization of (x; y) 2 Q(�; !) and on the days in =
being sampled, the e�ort e 2 E� at ! induces the probability Prob�(x; y; e; !;=)
for � to win the bonus, where 16

Prob�(x; y; e; !;=) = pe�(W�) +
1

2
pe�(W�)

=
1

2
(pe�(W�) + pe�(W�))

(The second equality comes from:W� = W� n W� and W� � W�.) By

assumption (II), p
e��
� (V ) � pe�(V ) for all e 2 E� and sets V that are of

the type fq 2 Q� : q � xg or fq 2 Q� : q > xg, x arbitrary; hence we
immediately have

Prob�(x; y; e
�
�; !;=) � Prob�(x; y; e; !;=) (1)

for all e 2 E�. Moreover, if q
�
� Æ(x; y;=) � q� we have (again, by

assumption (II) and the fact that p
e��
� has full support)

Prob�(x; y; e
�
�; !;=) > Prob�(x; y; e; !;=) (2)

for all e 2 E� n fe
�
�g

16For any S � Q�, p
e
�(S) �

P
q2S

pe�(q)
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Next, suppose ! � (e1(�); e2(�); q1(�); q2(�))
T
�=1 2 
(T+1) is a terminal

node and = � T . De�ne

Prob�(!;=) =

8><
>:

1 if
P
�2= q�(�) >

P
�2= q�(�)

1=2 if
P
�2= q�(�) =

P
�2= q�(�)

0 if
P
�2= q�(�) <

P
�2= q�(�)

Consider two arbitrary maps17 ��; �� from 
 to E�, E� respectively. The
probability, induced by (��; ��), that the play of the game goes through !
and � wins the bonus under sample = is given by:

Prob�((��; ��)j=; !) =
X

~!2F (!)\
(T+1)

p(��;��)(~!)Prob�(~!;=)

When = ranges over all of Cn and all samples in Cn are picked with uniform
probability, this event has probability

Prob�((��; ��)jn; !) =
X
=2Cn

P (n)Prob�((��; ��)j=; !) (3)

Finally, the overall probability that � wins the bonus in the game, under
(��; ��) and sample size n, is

Probn�(��; ��) = Prob�((��; ��)jn; !
�)

It is obvious that

Probn�(��; ��) =
X

!2
(t)

Prob�((��; ��)jn; !) (4)

for every 1 � t � T + 1.
We now state two useful lemmas. First a

De�nition Fix ! 2 
. Suppose �̂� and ~�� are two maps from 
 to E�
which satisfy: (i)�̂�(~!) = ~��(~!) for ~! 2 
 n f!g; (ii) �̂�(~!) = ~��(~!) = e��
for ~! 2 F (!), (iii) �̂�(!) = e�� 6= ~��(!). Then we write: �̂� �! ~��.

Lemma 1 Fix ! 2 
(t) and = � T . Suppose �̂� �! ~��. Then

(a) Prob�((�̂�; �
�
�)j=; !) � Prob�((~��; �

�
�)j=; !)

(b) Prob�((�̂�; �
�
�)jn; !) � Prob�((~��; �

�
�)jn; !)

(c) Probn�(�̂�; �
�
�) � Probn�(~��; �

�
�)

17not necessarily strategies in ��;�� .
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Proof

It is evident that, if t 2 =,

Prob�((��; �
�
�)j=; !) = p(��;�

�
�
)(!)�

(
X

(x;y)2Q(�;!)

(
TY
�=t

p
e�
�

� (y(�)))(
TY

�=t+1

pe
�
�
� (x(�)))Prob�(x; y; ��(!); !;=)) (5)

for all ��, in particular �� = �̂� or ~��. By (1) and (5), and the fact that

p(�̂�;�
�
�
)(!) = p(~��;�

�
�
)(!) on account of (i) in the de�nition of \�!", we

get Prob�((�̂�; �
�
�)j=; !) � Prob�((~��; �

�
�)j=; !). If t is not in =, it is ob-

vious that Prob�((�̂�; �
�
�)j=; !) = Prob�((~��; �

�
�)j=; !). This proves (a)

of Lemma 1. Now (b) is obvious from (a) and (3). Finally (c) is obvi-
ous from (4), and (b), and the obvious fact that Prob�((�̂�; �

�
�)jn; !

0) =
Prob�((~��; �

�
�)jn; !

0) for all !0 2 
(t) n f!g.

Lemma 2 For any map �̂� : 
! E�, and 1 � n � T :

Probn�(�
�
�; �

�
�) � Probn�(�̂�; �

�
�)

Proof

Introduce a total order � on all the nodes in 
 such that, if ! 2 
(t)
and ~! 2 
(~t) and ~t > t, then ~! � !. Write 
 � f!1; !2; :::; !Lg with
!1 � !2 � :::::: � !L. Go from �� to �

�
� through a sequence of L transitions:

�� � �1� �! �2� �! :::::::::: �! �L+1� � ���

In the lth transition, change �l�1� (!l) to e�� and leave the rest of the
choices according to �l�1� ; denote the resulting map by �l�. Clearly �

l+1
� �!l

�l�.
By (c) of Lemma 1,

Probn�(�
l+1
� ; ���) � Probn�(�

l
�; �

�
�)

for 1 � l � L. Therefore

Probn�(�
�
�; �

�
�) � Probn�(��; �

�
�)

proving Lemma 2.
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17.2 Proof of Theorem 4

17.2.1 Motivation and De�nition of f1, f2

As we said, f�(!) is the largest sample size which still leaves some incentive
for agent � to put in maximal e�ort e�� at the node !, when he knows ! 2 

perfectly.

Let us consider what could destroy this incentive. Suppose � knows at !
that his rival has already produced much more than him in the days sampled
in the past.....in fact so much more, that even if he produces his maximum
q� and his rival � produces his minimum q

�
on all future days remaining in

the sample, he still cannot equal or beat �. In this scenario, it would make
no sense for � to work at !. We call this the bad scenario for � at !, given
sample size n. The good scenario is when his rival is in a bad scenario, i.e.,
� is so far ahead of � that he will win without working even if � turns lucky
and produces q� on all future days while he himself produces only q

�
. In

the good scenario, too, there is no incentive for � to work.
Notice that these scenarios can only arise if two things happen at once: �

knows a lot of the past history (i.e., has re�ned information) and suÆciently
many days of the past are sampled (i.e., the sample size n is not too small).

With this motivation in mind, let us now do a precise calculation. Sup-
pose the history of outputs that leads to ! 2 
(t) is (q�(t); q�(t))

t�1
�=1 and

suppose that the sample size is n. When will a bad scenario be inescapable
for � at !? If n � T � t+1 there is a positive probability that all the n days
in the sample will consist of ! and n� 1 days after !, and that �'s rival �
will produce exactly q

�
on these n days. By putting in e�ort e�� at !, � can

boost18 the probability of producing q� at !, without lowering his chances
of winning the bonus in any other event. So the bad scenario is avoided.
Now suppose n > T � t + 1. Let us consider an optimal way of avoiding
the bad scenario for �. To this end, �rst let ! and all the T � t days of the
future be sampled. This still leaves r � n� (T � t+1) = n�T + t� 1 more
days to be sampled from the past of !. Denote 4(�) � q�(�) � q�(�) for
1 � � < t� 1. For any integer �1 < j � t� 1, de�ne

h(j; !) =

(
maxf

P
�2~=4(�) : ~= � f1; :::; t � 1g; j~=j = jg if j > 0

0 if j � 0

The subset = of days that could be sampled from the past of !, to
best help � avoid the bad scenario, would be a = that achieves �h(r; !) and
maximizes �'s lead over �. Denote integers by Z and de�ne

18By Assumption (I)
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f
�
(!) = maxfk 2 Z : 1 � k � T; (T�t+1)(q��q�)+h(k�T+t�1; !) � 0g

It is easy to check that a bad scenario can be avoided if, and only if, n �
f
�
(!). Arguing in the same fashion, a good scenario for � can be avoided

if, and only if, n � f�(!), where

f�(!) = maxfk 2 Z : 1 � k � T; (T�t+1)(q
�
�q�)+h(k�T+t�1; !) � 0g

and h(j; !) is de�ned exactly as h(j; !) replacing \max" by \min". Since
we must avoid both these scenarios, we put

f�(!) = minff
�
(!); f�(!)g:

This completes the de�nition of the functions19 f� for � 2 f1; 2g, and
thereby of g. Recall

g(	) = min
�2f1;2g

min
S2I�

maxff�(!) : ! 2 Sg

17.2.2 Lemmas

Lemma 3 Let a1; :::; aK , a, a be real numbers such that a1 � a, aK � a
and jal+1 � alj � a � a for 1 � l � K � 1. Then a � aj � a for some
1 � j � K.

Proof Obvious.

Lemma 4 Assume n � f�(!) for ! 2 
(t) and � 2 f1; 2g. Then there
exists = 2 Cn and (x; y) 2 Q(�; !) such that: t 2 = and q

�
� Æ(x; y;=) � q�.

Proof Let ! � (e�(�); e�(�); q�(�); q�(�))
t�1
�=1 2 
(t). Denote T � � T n ftg.

We shall say that (x�(�); y�(�))�2T � is consistent with ! if x�(�) = q�(�)
and y�(�) = q�(�) for 1 � � � t � 1; and x�(�) 2 Q� and y�(�) 2 Q� for
� 2 T �. Since f�(!) = minff�(!); f�(!)g, n � f�(!) and n � f

�
(!).

19With two agents f1(!) = f2(!). But the functions f
�
(!), f�(!) can be de�ned,

with obvious modi�cations, for the case of N agents. Then, if we de�ne g as above,
with \min�2f1;2g" replaced by \min�2f1;:::;Ng", Theorem 4 remains intact (with the same
proof).
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Now, n � f�(!) implies
20

9 = 2 Cn and (x�(�); y�(�))�2T � consistent with ! such that:

t 2 = and
X

�2=nftg

(x�(�)� y�(�)) � q� � q
�

(6)

i.e., ! is not a good scenario for � (he cannot clearly win if he produces q
�

and his rival produces q� at !); similarly, n � f
�
(!) implies

9 = 2 Cn and (x�(�); y�(�))�2T � consistent with ! such that:

t 2 = and
X

�2=nftg

(x�(�)� y
�
(�)) � q

�
� q� (7)

i.e., ! is not a bad scenario for � (he cannot clearly lose if he produces q�
and his rival produces q

�
at !). Consider any sequence of samples = �

=1 �! =2 �! ::::: �! =k � = such that, in each transition =l ! =l+1, one
day � l 2 = is removed from =l and is replaced by a day � l 2 = (which is not
necessarily distinct from � l), making sure that =l+1 2 Cn. Notice t 2 =l for
1 � l � k. For each such l, de�ne (xl�(�); y

l
�(�))�2T � , consistent with !, by

(xl�(�); y
l
�(�)) =

(
(x�(�); y�(�)) if � 2 T � n f�1; :::; � l�1g
(x�(�); y�(�)) otherwise

Consider4(l) �
P
�2=lnftg

xl�(�)�y
l
�(�). Notice4(1) =

P
�2=nftg x�(�)�

y�(�) � q� � q
�
and 4(k) =

P
�2=nftg x�(�) � y

�
(�) � q

�
� q�. Moreover,

j4(l + 1) � 4(l)j = j(x�(� l) � y
�
(� l)) � (x�(� l) � y�(� l))j � (q� � q

�
) �

(q
�
� q�) = (q� � q

�
) � (q

�
� q�). Apply Lemma 3(with fa1; ::::; aKg �

f4(1); ::::;4(k)g, a � q� � q
�
, a � q

�
� q�). We conclude that there ex-

ists = 2 Cn and (x�(�); y�(�))�2T � , consistent with !, such that t 2 = and
q
�
� q� �

P
�2=nftg(x�(�)� y�(�)) � q� � q

�
. Rewrite this inequality as

q� � q
�
+

X
�2=nftg

(x�(�)� y�(�)) � A

q
�
� q� +

X
�2=nftg

(x�(�)� y�(�)) � A

20(For � 2 �=, � > t we may in particular take �x�(�) = q
�
, �y�(�) = �q� ; and for � 2 =,

� > t take x�(�) = �q�, y
�
(�) = q

�
)
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Again apply Lemma 3 (with a � A; a � A; fa1; ::::; aKg � fq� � q1�; q
2
�; ::::; q

m(�)
� �

q�g) to conclude that there exists ql� 2 Q� such that A � ql� � A. Put

y�(t) = ql�. This de�nes y 2 QT� (since only the tth-component of y was
unspeci�ed) and clearly (x; y) 2 Q(�; !). Then x; y;= accomplish the re-
quirement of Lemma 4.

17.2.3 Completion of the Proof of Theorem 4

We claim that

B(	; n) <1, Probn�(�
�
�; �

�
�) > Probn�(��; �

�
�) (8)

for � 2 f1; 2g and �� 2 ��nf�
�
�g. First we show). Suppose Probn�(��; �

�
�) �

Probn�(�
�
�; �

�
�) for some �� 6= ���. For any ! 2 
(T + 1), denote ! �

(e!�(�); e
!
� (�); q

!
�(�); q

!
� (�))

T
�=1. Now p(�

�
�;�

�
�
)(!) > 0 for ! 2 
(T+1) implies

e!�(�) = e�� for � = 1; :::; T . Hence
P
!2
(T+1) p

(���;�
�
�
)(!)d�((e

!
�(�))

T
�=1) =

d�(e
�
�; :::; e

�
�). On the other hand (by �� 6= ���, by Assumption (I) and by the

fact that the pe� and p
e
� have full support) there exists ! 2 
(T+1) such that

p(��;�
�
�
)(!) > 0 and e!�(�) 6= e�� for some � . By Assumption (IV), we deduceP

!2
(T+1) p
(���;�

�
�
)(!)d�((e

!
�(�))

T
�=1) >

P
!2
(T+1) p

(��;���)(!)d�((e
!
�(�))

T
�=1).

Then � could switch from ��� to ��, saving disutility and still not losing on
the reward, contradicting that (���; �

�
�) is an SE of �(	; B; n), for any arbi-

trary B. But then B(	; n) =1, a contradiction, proving). Next we show
(. Suppose Probn�(�

�
�; �

�
�) > Probn�(��; �

�
�) for all �� 2 �� n f�

�
�g. Let

Æ = min
�2f1;2g

min
��2��nf���g

(Probn�(�
�
�; �

�
�)� Probn�(��; �

�
�)):

Since �� is �nite, Æ > 0. By Assumption (III), there exists a �nite B
such that Æu�(B) � d�((e

�
�; :::; e

�
�)) � d�(e) for � 2 f1; 2g and e 2 ET� n

f(e��; :::; e
�
�)g. But then (���; �

�
�) must be an SE of �(	; B; n), showing that

B(	; n) � B <1. This proves ( and thereby (8).
Thus, to prove theorem 4, it suÆces to show

n � g(	), Probn�(�
�
�; �

�
�) > Probn�(��; �

�
�) (9)

for � 2 f1; 2g and �� 2 �� n f�
�
�g.

Suppose n > g(	). Then there exists an agent � and an information set
~S 2 I� where n > f(~!) for all ~! 2 ~S. By the de�nition of f , any node in ~S
is either a good scenario for � (i.e., n > f�(~!)) or a bad scenario for � (i.e.,
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n > f
�
(!)). Let ~S correspond to (~e�(�))

t�1
�=1 and K 2 J�(t) in accordance

with (ii) of Assumption (V). Consider S that corresponds to (~e��(�))
t�1
�=1 and

K. Then (using Assumption (I)) some node in S is reached with positive
probability under (���; �

�
�). Since the de�nition of f�(!) depends only on

the history of outputs that lead to !, each node in S is also either a good
scenario or a bad scenario. (Indeed output histories over S and ~S both yield
K.) Therefore at all terminal nodes that follow from an arbitrary ! 2 S, �
wins (loses) the bonus if ! is a good (bad) scenario, no matter what moves
the agents make after !. Let � change from ��� to �� where ��(!) 6= e��
for all ! 2 S, and �� is the same as ��� at all other information sets. Then
Probn�(��; �

�
�) = Probn�(�

�
�; �

�
�). This proves \(" of (9).

Now suppose n � g(	). Consider any �� 2 �� n f�
�
�g. Let

t = maxf� : 1 � � � T; ��(!) 6= e�� for some ~! 2 
(�)g:

Then there exists S 2 I� such that ; 6= S � 
(t), ��(~!) 6= e�� for all
~! 2 S and ��(~!) = e�� for all ~! 2 [T�=t+1
(�). First notice that there is
some node ! 2 S which is relevant for �� (otherwise �� is equivalent to
���). By perfect recall (see (i) of Assumption (V)) all nodes in S are relevant
for ��. By the de�nition of g, there is a node !̂ 2 S with n � f�(!̂). By
Assumption (I) and that fact that p� and p� have full support, there is a
node !0 2 S which is reached with positive probability and which has the
same history of outputs as !̂. Hence n � f�(!

0) also, since f� depends only
on the history of outputs.

By Lemma 4, there exist (x0; y0) 2 Q(�; !0) and =0 2 Cn such that:
t0 2 =0 and q

�
� Æ(x0; y0;=0) � q�. Consider any two maps �̂� and ~�� from


 to E� (not necessarily strategies in ��) such that �̂� �!0 ~��. By (2), (3)
and (5) we have

Prob�((�̂�; �
�
�)j=

0; !0) > Prob�((~��; �
�
�)j=

0; !0) (10)

Then, by (a) of Lemma 1 and (10), and summing over = 2 Cn as in (3), we
obtain

Prob�((�̂�; �
�
�)jn; !

0) > Prob�((~��; �
�
�)jn; !

0) (11)

Go from �� to ��� through the sequence of transitions �� � �1� �!
:::: �! �L+1� � ��� as in the proof of Lemma 2. By (c) of Lemma 1,

Probn�(�
l+1
� ; ���) � Probn�(�

l
�; �

�
�)

for all l. But, by (11) and (4), we have strict inequality at least once (at the
transition involving !0), proving

Probn�(�
�
�; �

�
�) > Probn�(��; �

�
�)
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Since �� was arbitrary element of �� n f�
�
�g, this completes the proof.

17.3 Proof of Theorem 1

Consider any ! 2 
(T + 1). Recall ! � (e!�(�); e
!
� (�); q

!
�(�); q

!
� (�))

T
�=1.

Suppose (���; �
�
�) is an SE of �(	; B(	; n); n). Then we have

Probn�(�
�
�; �

�
�)u�(B(	; n))�

X
!2
(T+1)

p(�
�
�;�

�
�
)(!)d�((e

!
�(�))

T
�=1) �

Probn�(��; �
�
�)u�(B(	; n))�

X
!2
(T+1)

p(��;�
�
�
)(!)d�((e

!
�(�))

T
�=1) (12)

for any � 2 � n f���g.
Now, as argued in 17.2.3,X

!2
(T+1)

p(�
�
�;�

�
�
)(!)d�((e

!
�(�))

T
�=1) >

X
!2
(T+1)

p(��;�
�
�
)(!)d�((e

!
�(�))

T
�=1)

Then by (12), Probn�(�
�
�; �

�
�) > Probn�(��; �

�
�). By assumption (II), B >

B(	; n) implies u�(B) > u�(B(	; n)) and so all the inequalities in (12)
become strict when we replace B(	; n) by B. This shows that (���; �

�
�) is a

strict SE of �(	; B; n), proving the \if" part of (i).
Next suppose that (���; �

�
�) is a strict SE of �(	; B; n). Then all the

inequalities of (12) must be strict. By assumption (II), they will remain
strict if we reduce B slightly to B � �, showing that (���; �

�
�) is an SE of

�(	; B � �; n). We conclude that B > B(	; n).
The proof of (ii) is identical to the proof of (i), replacing ��� by an

arbitrary �� everywhere.

17.4 Proof of Theorem 2

First we prove two lemmas.

Lemma 5 Let n � (�= ~�)+1 and (x(1); ::::; x(n�1)) 2 Qn�1� . There exists
(y(1); ::::; y(n)) 2 Qn� such that

Pn�1
�=1 x(�)+ q� �

Pn
�=1 y(�) �

Pn�1
�=1 x(�)+

�q�.
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Proof

Consider the set Y � f
Pn
�=1 y(�) : y(�) 2 Q�g, and write Y = fz1; ::::::; znm(�)g

with z1 < ::::: < znm(�). Note z1 = nq
�
and znm(�) = n�q�. Now, from

n � (�= ~�) + 1, we have

n�1X
�=1

x(�) + q
�
� (n� 1)�q� + q

�
� n�q�

and
n�1X
�=1

x(�) + �q� � (n� 1)q
�
+ �q� � nq

�

Then, by Lemma 3 (with �a =
Pn�1
�=1 x(�) + �q�, a =

Pn�1
�=1 x(�) + q

�
and

fa1; ::::; aKg = fz
1; :::::znm(�)g), there exists (y(1); ::::; y(n)) 2 Qn� such thatPn�1

�=1 x(�) + q
�
�
Pn
�=1 y(�) �

Pn�1
�=1 x(�) + �q�.

Lemma 6 Suppose neither agent can observe his rival in 	 and n �
(�= ~�) + 1. Fix ! 2 
(t), � 2 f1; 2g and �� 2 ��. Let �̂� and ~�� be two
maps from 
 to E� such that �̂� �! ~��. Also assume that p

(�̂�;��)(!) > 0.
Then

Probn�(�̂�; ��) > Probn�(~��; ��)

Proof Let ~! be any node in 
(t). Since � cannot observe �, the probability
distribution on output vectors that � can produce after ~! depends only on
�� and ~!. Denote it by Pr��;~! and note that its support is (Q�)

T�t+1.
Therefore, if t 2 ~= 2 Cn and �� = �̂� or ~��, we have

Prob�((��; ��)j~=; ~!) = p(��;��)(~!)� [
X

(x;y)2Q(�;~!)

(Pr�� ;~!((y(�))T�=~t))

(
TY

�=t+1

pe
�
�
� (x(�)))Prob�(x; y; ��(~!); ~!; ~=)] (13)

Now Probn�(��; ��) =
P

~!2
(t)

P
~=2Cn

P (n)Prob�((��; ��)j~=; ~!). By Lemma
5 and (3), Prob�(x; y; �̂�(!); !;=) > Prob�(x; y; ~��(!); !;=); and by (2) we
have\�" for ~! 2 
(t) n f!g. Moreover it is clear that p(��;��)(~!) is indepen-
dent of �� = �̂� or ~�� for ~! 2 
(t) given the condition (i) in the de�nition
of �!. Thus, using (13) and (4),

Probn�(�̂�; ��) > Probn�(~��; ��)
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17.4.1 Completion of the Proof of Theorem 2

Consider any �� 2 �� n f�
�
�g. Let

t = maxf� : 1 � � � T; ��(!) 6= e�� for some ~! 2 
(�)g:

Then there exists S 2 I� such that S \ 
(t) 6= ;, ��(~!) 6= e�� for all
~! 2 S. There is some node ! 2 S which is relevant for �� (otherwise �� is
equivalent to ���). Since � cannot observe his rival's e�ort or output, and
the probabilities of production have full support for every e�ort level, there
exist ! 2 S which is reached with positive probability under (��; �

�
�)

Go from �� to ��� through a sequence of transitions �� � �1� �! :::: �!
�L+1� � ��� as in Section 17.2.3. By Lemma 6 we have Probn�(�

l+1
� ; ��) >

Probn�(�
l
�; ��) in the transition at !; and by (13) and (2), we have \�"

everywhere else. This proves Probn�(�
�
�; ��) > Probn�(��; ��).

Then the Theorem follows from (8).

17.5 Proof of Theorem 3

We shall prove Theorem 3 in the context of a wider class of games than
�(	; B; n), which may be of some interest in their own right.

Consider a game � with players 1 and 2, who have �nite pure-strategy
sets denoted, w.l.o.g., by S1 � f1; 2; :::;Mg and S2 � f1; 2; :::; Ng; and
payo�s h� : S1 � S2 ! R for � = 1; 2.

Payo� hypothesis:

There exists a constant K and (for � = 1; 2) functions g+� : S1�S2 ! R
and g�� : S� ! R such that

(i) h1(m;n) = g+1 (m;n)� g�1 (m)
(ii) h2(m;n) = g+2 (m;n)� g�2 (n)
(iii) g+1 (m;n) + g+2 (m;n) = K

for all (m;n) 2 S1 � S2.

Let �1 and �2 denote the mixed-strategy sets of 1 and 2, i.e.,

�1 = f(�1; :::; �M ) : 0 � �i � 1 and
MX
i=1

�i = 1g
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�2 = f(�1; :::; �N ) : 0 � �i � 1 and
NX
i=1

�i = 1g:

Then the mixed extension ~� of the pure strategy game � is de�ned via
payo�s

h�(�; �) =
MX
i=1

NX
j=1

�i�jh�(i; j):

for all (�; �) 2 �1 ��2.

Lemma 7

Suppose � satis�es the Payo� Hypothesis. Then

(m;n) is a strict SE of �) (m;n) is the unique SE of ~�:

Proof

Suppose, to the contrary, that (�; �) 2 �1 ��2 is an SE of ~� di�erent
from (m;n). Since (m;n) is a strict SE of �, it follows that h1(m;n) >
h1(�; n) i.e.,

g+1 (m;n)� g�1 (m) >
MX
i=1

�ig
+
1 (i; n) �

MX
i=1

�ig
�
1 (i) (14)

Similarly, from h2(m;n) > h2(m; �) we get

g+2 (m;n)� g
�
2 (n) >

NX
j=1

�jg
+
2 (m; j) �

NX
j=1

�jg
�
2 (j);

which (using Payo� Hypothesis (iii), and the fact that
PN
j=1 �j = 1) may be

rewritten

K � g+1 (m;n)� g
�
2 (n) > K �

NX
j=1

�jg
+
1 (m; j) �

NX
j=1

�jg
�
2 (j): (15)

Now, because (�; �) is an SE of ~� we have h1(�; �) � h1(m; �), i.e.,

MX
i=1

NX
j=1

�i�jg
+
1 (i; j) �

MX
i=1

NX
j=1

�i�jg
�
1 (i) �

NX
j=1

�jg
+
1 (m; j) �

NX
j=1

�jg
�
1 (m)
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i.e.,
MX
i=1

NX
j=1

�i�jg
+
1 (i; j) �

MX
i=1

�ig
�
1 (i) �

NX
j=1

�jg
+
1 (m; j) � g�1 (m): (16)

Similarly fromh2(�; �) � h2(�; n) we get

MX
i=1

NX
j=1

�i�jg
+
2 (i; j) �

NX
j=1

�jg
�
2 (j) �

MX
i=1

�ig
+
2 (i; n)� g�2 (n):

which (again using Payo� Hypothesis (iii)) may be rewritten

K �
MX
i=1

NX
j=1

�i�jg
+
1 (i; j) �

NX
j=1

�jg
�
2 (j) � K �

MX
i=1

�ig
+
1 (i; n)� g�2 (n): (17)

Rearranging equations (14) and (16), we have the following two inequal-
ities

g+1 (m;n)�
MX
i=1

�ig
+
1 (i; n) > g�1 (m)�

MX
i=1

�ig
�
1 (i)

g�1 (m)�
MX
i=1

�ig
�
1 (i) �

NX
j=1

�jg
+
1 (m; j) �

MX
i=1

NX
j=1

�i�jg
+
1 (i; j):

Using the above two inequalities, we have

g+1 (m;n)�
MX
i=1

�ig
+
1 (i; n) >

NX
j=1

�jg
+
1 (m; j) �

MX
i=1

NX
j=1

�i�jg
+
1 (i; j): (18)

Rearranging equations (15) and (17), we have again the following two
inequalities

NX
j=1

�jg
+
1 (m; j) � g+1 (m;n) > g�2 (n)�

NX
j=1

�jg
�
2 (j)

g�2 (n)�
NX
j=1

�jg
�
2 (j) �

MX
i=1

NX
j=1

�i�jg
+
1 (i; j) �

MX
i=1

�ig
+
1 (i; n);

and these two inequalities imply

NX
j=1

�jg
+
1 (m; j) � g+1 (m;n) >

MX
i=1

NX
j=1

�i�jg
+
1 (i; j) �

MX
i=1

�ig
+
1 (i; n): (19)
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Rearranging (19), we have

NX
j=1

�jg
+
1 (m; j) �

MX
i=1

NX
j=1

�i�jg
+
1 (i; j) > g+1 (m;n)�

MX
i=1

�ig
+
1 (i; n)

which contradicts (18), proving Lemma 5.

Remark 4 The proof of lemma 2 also shows that, if the payo� hypothesis
holds, SE have the \interchange property": when (�1; �2) and ( ~�1; ~�2) are
SE, so are (�1; ~�2) and ( ~�1; �2). However these SE are not necessarily payo�-
equivalent.

17.5.1 Completion of the Proof of Theorem 3

When � is ignorant of his rival � in 	, it is easy to check that �'s expected
disutility

P
!2
(T+1) p

(��;��)(!)d�((e
!
�(�))

T
�=1) is independent of ��. (Here

! � (e!�(�); e
!
� (�); q

!
�(�); q

!
� (�))

T
�=1).)

Also notice that any aÆne transformation of von-Neumann Morgenstern
utilities leaves invariant the set of mixed-strategy SE of ~�. W.l.o.g., we can
therefore assume that u1(B) = u2(B) = K, a constant. Then the game
�(	; B; n) satis�es the Payo� Hypothesis (since whenever 1 gets the bonus
B with probability p, 2 gets it with probability 1 � p). Theorem 3 now
follows from Lemma 7.

17.6 Proof of Theorem 5

Denote �� �
P
q2Q�

p
e��
� (q)q and �� �

P
q2Q�

p
e��
� (q)[q � ��]

2. Suppose
that there is a sequence, indexed by k, such that n(Tk) > cTk for some
c > 0. By Chebyshev's inequality, it follows that agent 2 wins the bonus
with probability at most (noting �1 > �2 by Assumption VIII):

P [j
n(Tk)X
�=1

(q1(�)�q2(�))�n(Tk)(�1��2)j � n(Tk)(�1��2)] �
n(Tk)(�1 + �2)

(n(Tk))2(�1 � �2)2

=M=n(Tk) where M = (�1 + �2)=(�1 � �2)
2.

For ��2 to be the best reply to �
�
1, B must satisfy: uTk2 (B)Prob2(�

�
1 ; �

�
2) >

dTk2 (e�2(Tk)) > Tk=
 (by (i) of Assumption VII), i.e., u
Tk
2 (B) > (Tk=
)(Prob2(�

�
1 ; �

�
2))

�1

> (Tk=
)(n(Tk)=M), i.e.,

uTk2 (B) >
c

M

T 2
k (20)
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Let p�(e�; e�) denote the probability that � wins the bonus if he puts in
e�ort e� and � puts in e� (when both work for 1 day). Denote

Æ � min
�2f1;2g;e�2��nfe��g

p�(e
�
�; e

�
�)� p�(e�; e

�
�)

By assumption (II), Æ > 0. We shall show that if

uT�(B) >



Æ
T (21)

then ��� is the best reply to ��� for � 2 f1; 2g, when the sample size is 1.

Consider the sequence �� � �1� ! �2� ! ::: ! �l+1� � ��� as in the proof of
Lemma 2, with �l+1� �!l �

l
�. Let p(��; ��; !) be the probability that node

! is reached under (��; ��) and note p(�l�; �
�
�; !l) = p(�l+1� ; ���; !l). When

� switches from �l� to �l+1� , his disutility goes up by at most p(�l�; �
�
� ; !l)


by (ii) of Assumption VII. On the other hand !l is sampled with probability
p(�l�; �

�
�; !l)=T (since each day is sampled with probability 1=T when the

sample size is 1). Thus the gain in utility to �, when he switches from �l� to
�l+1� is at least (p(�l�; �

�
� ; !l)=T )Æu

T
� (B). Hence (21) implies that � pro�ts by

the switch whenever p(�l�; �
�
� ; !l) > 0 (and is una�ected if p(�l�; �

�
�; !l) = 0).

Then ��� is the unique best reply to ��� (since some !l are reached with
positive probability). For large enough T , there exist B(T ) for which (21)
holds while (20) is violated. (We use Assumption III, applied to uT� , here.)
This proves that sample size 1 is better for the principal than sample size
n(T ) for all large enough T , contradicting that n(T ) is an optimal size.

17.7 Proof of Remark 3

By (9), n � g(	) implies Probn�(�
�
�; �

�
�) > Probn�(��; �

�
�) for �� 2 ��nf�

�
�g.

We claim that there is no (�1; �2) 6= (��1 ; �
�
2), such that (a) Probn1 (�1; �2) �

Probn1 (�
�
1 ; �2) and (b) Probn2 (�1; �2) � Probn2 (�1; �

�
2). Otherwise, since

(�1; �2) 6= (��1 ; �
�
2), assume w.l.o.g. �1 6= ��1. We have Probn1 (�

�
1 ; �

�
2) >

Probn1 (�1; �
�
2) � Probn1 (�1; �2) � Probn1 (�

�
1 ; �2) � Probn1 (�

�
1 ; �

�
2). (The

strict inequality is from (9) and the fact that �1 6= ��1 , the second in-
equality is from (b), the third inequality is from (a) and the last inequal-
ity is from Lemma (2).) This is a contradiction. Thus for every pair
(�1; �2) 6= (��1 ; �

�
2), there exists B(�1; �2) such that, if B > B(�1; �2), at

least one agent � would like to unilaterally deviate from �� to ���. Let B̂ =
max(�1;�2)2�1��2nf(��1 ;�

�
2)g
fB(�1; �2)g. Then for any B > maxfB̂; B(	; n)g,

(��1 ; �
�
2) is the unique SE.
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