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SUMMARY

Existing specification tests for conditional heteroscedasticity are derived under the
assumption that the density of the innovation, or standardized error, is Gaussian, de-
spite the fact that many recent empirical studies provide evidence that this density is
not Gaussian. We obtain specification tests for conditional heteroscedasticity under the
assumption that the innovation density is a member of a general family of densities. Our
test statistics maximize asymptotic local power and weighted average power criteria for
the general family of densities. We establish both first order and second order theory
for our procedures. Monte carlo simulations indicate that asymptotic power gains are
achievable in finite samples. We apply the tests to stock futures data sampled at high
frequency and find evidence of conditional heteroscedasticity in the residuals from a

GARCH(1,1) model, indicating that the standard (1,1) specification is not adequate.
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1. INTRODUCTION

Volatility clustering is an important characteristic of financial time series and has
major implications for estimation and testing in models of asset prices. To account for
volatility clustering many researchers use some variant of the autoregressive conditional
heteroskedasticity (ARCH) model developed by Engle (1982), see Bollerslev, Engle, and
Nelson (1995) for a review. Successful application of these models requires correct spec-
ification of both the conditional mean and the conditional variance. Our interest here is
in testing the specification of the conditional variance. The Gaussian likelihood based
test statistics for such specifications, such as the LM, Wald, and LR, are asymptotically
Chi-squared, see Engle (1984), and this remains true even when the error distribution is
not Gaussian' as was pointed out in Bollerslev and Wooldridge (1992). However, they
are suboptimal in terms of power except when the error is Gaussian. Recent empirical
work questions the assumption that the innovation density is Gaussian?.

We develop semiparametric specification tests of the conditional variance model.
Our approach specifies the first two conditional moments parametrically but the inno-
vation density is assumed only to be a member of a nonparametric family. Our work
extends that of Linton (1993) and Steigerwald (1994) who study semiparametric esti-
mators for a CH model. We show that the semiparametric test statistics are adaptive in
the sense that they are asymptotically equivalent to the test statistics constructed from
the true innovation density, i.e. the likelihood based test statistics, and hence maximize
asymptotic local power?.

Some of the specification tests we consider result in one-sided alternative hypothe-

! However, Newey and Steigerwald (1994) show that non-Gaussian likelihood based test statistics

are not generally robust to misspecification of the innovation density.
2 Evidence that standardized errors from a CH model of asset prices do not have a Gaussian density

is provided by a number of authors. For example, Baillie and Bollerslev (1989) use both an exponential
power and a t density to model exchange rates, Hsieh (1989) uses several mixture densities to model

exchange rates, and Nelson (1991) uses an exponential-power density to model stock prices.
3 Previous work by Bera and Ng (1991) constructed test statistics based on nonparametric estimates

of the score function, although their procedure is not, in general, optimal.
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ses. We follow a proposal in Lee and King (1993) and construct test statistics that take
advantage of this and are more powerful than two-sided test statistics. We show that
for a test of one additional parameter in the conditional variance function, the positive
square-root of a semiparametric Lagrange multiplier (LM) test statistic is consistent
and maximizes asymptotic power against local alternatives. For a test of more than
one additional parameter in the conditional variance function, we show that a semi-
parametric sum of scores test statistic is consistent and maximizes asymptotic power
against appropriately defined local alternatives.

Our semiparametric test statistics are constructed from a nonparametric estimator
of the innovation density. This may result in the small sample properties differing
markedly from the predicted first-order asymptotic theory. We derive second-order
asymptotic theory, as in Linton (1992,1994), to determine more accurately the small
sample properties of our semiparametric test statistic. Specifically, we use second-order
theory to determine the choice of smoothing parameter for the nonparametric density
estimator. We also study a nonparametric density estimator (the multiplicative bias
reduction estimator of Jones, Linton, and Nielsen (1993)) that offers reduced bias,
and essentially zero bias for estimating the score function of the normal density, a
canonical case here. This translates into improved performance for the semiparametric
test statistic.

In Section 2 we define the hypotheses of interest and give the parametric and semi-
parametric test statistics. In Section 3 we derive the first order asymptotic properties
of these statistics and introduce our optimality criteria. Section 4 deals with the second
order properties of the semiparametric test statistics. Section 5 contains monte carlo
simulation results. Section 6 contains an application to exchange rate data.

A word on notation. Let > denote convergence 1n distribution and %, denote
convergence in probability. For any function ¢, we use ¢(!) to denote the i’th derivative

}1/2

of g with respect to u, while for any vector |z| = [Z x? is the Euclidean norm.

Finally, let 1(A) be the indicator function of the set A.



2. TEST STATISTICS
Let z; = (ys,z})', t = 1,...,T, be the observed data, where the dependent variable
y: 1s a scalar, while z; is a k£ by 1 vector of regressors. A common parameterization of

a CH model is
(1) Yy = pe(0) + he(v0)et,

where p:(7y) and h,(7y) are functions of current period information F; = {z, 211, 212, . ..}
and a vector 7 of parameters of interest, u; is the period-¢ 1id innovation independent of
F:. Subscript 0 indicates true values of parameters. Now let o and ¢ be parameters for
the location and scale of the density of ¢;. Usually, o and o are the mean and standard
deviation of €, respectively, and g 1s assumed to be zero. For example, u;(v) = B'zy,
and
P
(2) he(v) = [1+ Zl $ilyr—i — Bzei))E,
for an ARCH(p) model, while
P g
(1) = (1 22 ilyims = Baics) + 3 pyhecs (1)
i= =
for a generalized ARCH model with order p and ¢ (GARCH(p,q)). As these models
illustrate, traditional CH parameterizations are in terms of relative scale. The parame-
ters in ¢ are the relative scale parameters of the conditional variance, that is ¢ consists
of ratios of each of the conditional variance slope parameters to the constant parameter
in the conditional variance. If the conditional variance is & + S°F_; 6i(yi—i — B'z4-:)?,
then ¢; = 6;/6. Linton (1993) shows that a semiparametric estimator of* v = (4, ¢')’
is adaptive (i.e. is asymptotically equivalent to the maximum likelihood estimator) if
the innovation density is symmetric.

Although our analysis can be applied to general CH models we restrict our atten-

tion to the important special case in which the conditional mean is correctly specified

g
2.

4 Linton sets 0 = ¢



to be u;(y) = Bz, and the conditional variance is ARCH(p). We derive asymptotically
optimal tests for this model. In the more general GARCH(p, ¢) model the alternative
space has a very complicated structure, see Nelson and Cao (1991), rendering it diffi-
cult to obtain asymptotically optimal tests. To obtain tests for a model in which the
conditional variance is GARCH(p, q), we use the asymptotically optimal test statistics
for an ARCH(p) alternative on the residuals from the estimated GARCH(p, ¢) model.”

If the Lebesgue density g of u; = o~'¢; were known, optimal inference about the
parameters 6 = (o,~')’ would be based on the sample log-likelihood

T T T
Lr(8,9) = ;lt(ﬂ,g) =—-Tlho — ;ln hi(7y) + ;lng(ut),

where u; is now the residual o= 1A; ! (7)[y: — ()], and (8, ¢) is the period-¢ conditional
log-likelihood of y; given F,. (The period-0 observation is considered fixed.) Define the
standardized score sq(f, g), the outer product of the scores Zj;(f, g), and the observed
information Z(0, g):

L ol L a1, 0, T 9%,
9 _ m=1/2 o s _ -1 on On 0 _ -1 .
89( 79) T ; o0 ) 1'09(079) T ; 96 H9' ) 1—99(079) T ; PYEYL

The expected information matrix for 6, denoted Zy4(f, g), is defined as the probabil-
ity limit of Z3,(0,9), Z5(6,9), or indeed the standardized conditional outer product

® Newey and Steigerwald (1994) show that if the location of the innovation density is not zero, then
quasi-maximum likelihood estimators of v (that assume o = 0 in (1)) are not generally consistent.

Newey and Steigerwald recommend that we adopt the following parameterization

3) Yo = pe(7) + ha() (e + owy)

in which u; is now a standardized random variable with zero location and unit scale. Because « is
included in the conditional mean of y; in (3), estimators of v are consistent even if the location of the
innovation density is not zero. In addition, Steigerwald (1994) shows that semiparametric estimators
of v in (3) satisfy a sufficient condition for adaptive estimation for general CH specifications even if the
innovation density is asymmetric. The parameter « enters the conditional mean but does not enter the
conditional variance. In an ARCH-M model, the coefficient on h;(v0) appears in both the conditional
mean and the conditional variance, so « is separately identified from the coefficient on hy(7y) in an

ARCH-M model.



I5(0,9) = TV L, E[%: 25| F,_y]. It is instructive to examine the structure of these

quantities. Define the Fisher scores for location and scale of the innovation density:

P1(u) = —g(u)~20g(u)/0u and ¥Po(u) = —[1 + utpy(u)], and let

Sote1 $iTe—i(ye—i — B'Tii)
1+ 350 di(ye—i — B'xyi)?

W1 ('7) = -

and vy () = (v1,e-1(7), - Vpa-1 (7)), with

(y1—i — B'ziy)?

vit-1(y) = 1557, i — Bzes)? v=1,...,p.
Then
a1.(6,9)/08 ORI
01,(0,9)/90 | = 0 o1 ( J( f) ) = Tt (uy).
a1,(0, ¢)/ 96 0 ver(7)/2 e

Thus I'y depends only on F;, while at the true parameter vq, ¥(u;) is mean zero and

independent of F,. Note also that

Lig) Talg)

} = Cr(0)vec[I(g)],
Ia(g) Ix(9)

T
(4) vedZ5,(0,9)] = Z ;T VCC[

where Iy = E[i(w)], I = E[3(w)] and Iy = Efthy (w;)1ha(uy)].



Consider the null hypothesis defined by the linear restrictions Hy : R¢ = r, where
R is a ¢ x p matrix of full rank, r is a ¢ X 1 vector, and ¢ is the number of restric-
tions. Standard likelihood based test statistics, such as Lagrange multiplier, Wald, and
likelihood ratio, can be used to test Hy against the general alternative R¢ # r. Under
the null hypothesis all three test statistics are asymptotically x2(g), see Engle (1984).
Furthermore, they maximize asymptotic power against local alternatives. However, be-
cause the conditional variance can’t be negative, specification tests about this quantity
more naturally have a one-sided alternative Hy : R¢ > r. Lee and King (1993) note
that the LM, LR and Wald tests ignore the one-sided nature of the alternative (and
cannot be modified simply to take account of this, when ¢ > 1) and consequently suffer
a loss of asymptotic power®.

We examine two types of specification test. First, we study a test for one addi-
tional parameter in the conditional variance of an ARCH model, i.e. that the model
is ARCH(p — 1) against the alternative hypothesis that the model is ARCH(p). This
hypothesis, denoted T1, is

T1: Hy: ¢, =0 vs. Hy:¢,>0.

Our second test is for more than one additional parameter in the conditional variance
of an ARCH model: i.e. that the model is ARCH(p — ¢), with ¢ > 1, against the
alternative hypothesis that the model is ARCH(p). This hypothesis, denoted T2, is

T2: Ho:¢pgyos0p =0 vs. Hy:¢pg,..dp1>0,¢,>0.

6 In fact, if § is constructed imposing the inequality restrictions, the LR test is not asymptotically

x*(q), see Gourieroux et al (1982).



2.1 Parametric Test Statistics
Let § be the maximum likelihood estimator (MLE) of # imposing the null restric-
tions, or a one-step Newton-Raphson approximation to it. Then define for any p by 1

vector ¢,

(5) ro= {10, 9)c} " ¢sol09),

where Ty(f,g) is any consistent estimate of Zgg(6,¢) and 7% is the corresponding
element of the inverse of Zys. By taking ¢ = (0,..,0,1), we obtain a test 7; of T1, while
when ¢ = (1,..,1)', we get a sum of ¢-scores test” of T2, denoted 7,,. The Gaussian
versions of these tests are particularly simple and have been extensively studied, see
especially Lee and King (1993), Bera and Higgins (1993), Engle (1984), and Bollerslev
and Wooldridge (1992). In this case, the information matrix is block diagonal between
B and (o, ¢), while ¥;(u) = —u and ¥(u) = —[u? — 1].

In the next section we show that 7. is asymptotically standard Gaussian.

7 As pointed out in Lee and King (1993), the LM statistic for testing a null of homoscedasticity
against ARCH(p) or against GARCH(p, ¢) is the same because the score for the subset of the conditional

variance parameters p equals zero under the null hypothesis of homoscedasticity.
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2.2 Semiparametric Test Statistics
We now introduce semiparametric versions of our tests. We first rewrite 7; and
Tm using the efficient scores for ¢ relative to o and 3 inside the parametric model, see
Bickel et al. (1994) for discussion of the notion of efficient score and its application.

This is the residual from a projection of the score for ¢ onto the scores for x = (o, #')"

alr . al, _18l,
36 94 TxLiy ox

= At’(/)l (Ui) + Btlp?(uf)’

where A, and B, depend only on the past®. The efficient scores for the relative-scale coef-
ficients ¢ are orthogonal to the tangent space of scores for g in the semiparametric model,
thus the situation is in principle adaptive (for estimation and hence for testing) for these
parameters, see Linton (1993) and Steigerwald (1994). Let s3(6,9) = T~/2 3L, %% and
T54(0,9) = 5)51;} T-'y° 1, %%g%. We first rewrite the parametric test statistics, using

the efficient scores, as®

(6) ro={¢T3,0,90c) " ¢s3(0,9).

We use (6) to construct a semiparametric test statistic. We replace population moments

by their sample equivalents and ¢ by a nonparametric kernel density estimator

7) jlu) =T 3 K(“),
s€Ty

8 In the special case that g is symmetric about zero, Zgs = 0, and the efficient score for ¢ has the
especially simple form % = %[vt_l — E(ve—1)]¥2(uy).

9 Use of the efficient score to construct the test statistic is equivalent to assuming that ¢ = 0 in
the Linton parameterization. We do not estimate location and scale because these parameters are not

jointly identified with the innovation density g.



where 7, are standardized residuals from a preliminary T'/? consistent procedure, while
K (o) is a density function symmetric about zero and A(T') is a bandwidth parameter.
The index set 7; is taken here to be {s # ¢}, although in section 4 below we employ a
more severe sample splitting!®. We estimate %; and ¥, by ¥ (u) = —§=105/du(u) and
Pa(u) = —[ugh (u) + 1), the efficient score by

T

53(0,9) = T~z Z[At(a)i/;l(at) + By (0)a(iir)],

t=1
and the efficient information Z;,(0, ) by 755(0,9) = I35(0,§) in which I(g) = T =L o (@,)9 (4
Now let @ be the semiparametric estimator of § defined in Linton (1993), i.e. 8 =
0 —7;;1(0,5)s4(,5), where 8 is the Gaussian QMLE. Finally, we introduce the follow-

ing semiparametric test statistics

~ Fe (3 A"V o
(8) 7= {CIM(H,g)c} csy(0,9).

Note that having obtained §, we could reestimate g using the semiparametric residuals
uy. However, this iteration does not affect either the first order or second order properties

of the procedure.

10 In section 4 below we discuss refinements of the kernel estimator that can be important in practice.
Of course, we may prefer, for finite sample reasons, to divide by (T'—1) rather than 7', but this makes no
difference to the asymptotic arguments. Finally, it is common practice to include trimming functions
in at various places in the definition of the semiparametric quantities. We don’t need to do this for
theoretical reasons because we assume a bounded support for g. We also eschew trimming for practical

reasons, see below for more discussion.
10



3. FIRST ORDER ASYMPTOTIC PROPERTIES

3.1 Parametric Model

To derive asymptotic properties of test statistics, we first establish that a parametric

ARCH model is regular in the sense that its likelihood ratio has the local asymptotically

normal (LAN) approximation. Let 67 = 6y + §T~Y/2 for any § € RE+PH and let

Prg, and Prg, be the probability measures of the data associated with the respective

parameters. Convergences below are under Pr g unless otherwise stated. We make the

following assumptions:

Al.

A2.

A3.
A4.
A5.

A6.

AT.

The random variables uy,..,ur are i.i.d. with absolutely continuous Lebesque
density g, and there exists a contiguous set H C R on which g(u) > 0 and
frg(w)du =1.
The density g has positive finite Fisher information for both location and scale
parameters
0 < [2(u)g(u)du, [ Y3(w)g(u)du < oo.

The density g is twice boundedly continuously differentiable.

The moments [u*g(u)du and [¢#(u)g(u)du, j = 1,2, are finite.

The parameter space © is an open subset of RETF+Y that satisfies various
restrictions such that

(a) The process {h?}32, is bounded below by a constant h > 0.

(b) The process {h2}2, is strictly stationary and ergodic.

(¢) The information matriz Tse(0, g) is nonsingular at .

The initial condition density go(Yo;8), where Yo = (Yo, Y-1,..,Y-p), s continu-
ous in probability: i.e. go(Yo;07) LA g0(Yo; 0), for any 67— 6.

The regressors {z,}_, are weakly ezogenous for 6. Furthermore, T~ T 2 LA

M > 0.

11



THEOREM 1 (Local Asymptotic Normality). Let Ap = L(6r,g) — L(60,g) be
the log-likelihood ratio and suppose that assumptions A1-A7 are satisfied. Then

1
Az — &'so(00,9) + 56Taol00, 9)8 5> 0,

and s4(00,9) > N(0,Zs6(00,9)), where convergence is under the probability measure
induced by by. Furthermore, the probability measures Prg, and Prg, are mutually con-
tiguous in the sense of Roussas (1972, Definition 2.1, p7): i.e. Prg,(A) — 0 if and
only if Prg.(A) — 0, for any event A.

A detailed proof of this result is given in Linton (1993) which uses some results of

Swensen (1985). However, in that paper symmetry was assumed; this is not necessary.m

REMARK: A sufficient condition for A5(c) is that A, have bounded second moment,
see Weiss (1986). However, Lumsdaine (1991) weakened this condition somewhat, and
allows for processes with total roots exceeding one. The conditions on the regressors can
be relaxed in various directions: for example, Swensen (1985) allows for deterministic
trends in the regressors, while Jeganathan (1987) allows for integrated regressors and

derives the more general result of Local Asymptotic Mixed Normality in this case.

Theorem 1 provides the key local regularity result needed to establish the asymp-
totic distribution of the parametric test statistics. Our tests are constructed from
residuals. The significance of the contiguity property is that it enables us to proceed,
in many respects, as if the true unobservable errors were used instead. This is of con-
siderable help when working with the nonparametric estimates. For estimation we need

some additional smoothness properties. We use a simple but overly strong assumption:

A8. Both [[¥}(u)]?g(u)du and [[¢4(u)]?g(u)du are finite.

12



THEOREM 2. Suppose that A1-8 hold. Then,

(9) 3 N(0,1), under .

PRrooF. Follows from Linton (1993, Theorem 3). .

An immediate consequence of Theorem 1 is "LeCam’s Third Lemma” (see Bickel
et al., (1994, p. 503)). This delivers to us the asymptotic distribution of scalar test

statistics 70 under a sequence of local alternatives: if

(rr, A7) LA (1, A), under 6,

. . . . . . —a2 N
where (7, A) is a bivariate Gaussian random variable with mean (u, =2-) and covariance

2

. /A
matrix , then

w 02

(77, A1) B (rtw A+ a?), under 67.
This result can be used to derive the local power function for 7.: combining Theorem 1

and 2 (the convergence there is also joint with Ar), we have

COROLLARY:

(10) 7o B N({cT* (00, 9)c}/?8'Tyg (00, 9)c,1),  under Or.

13



3.2 Semiparametric Statistics
We now extend Theorem 2 to the semiparametric test statistics. We make the

additional assumption

A9. The set H is compact, i.e. g has bounded support,
and find

THEOREM 3. Suppose that A1-A9 hold. Suppose also that the kernel K has bounded
support and is twice continuously differentiable, and that the bandwidth sequence satisfies

h— 0 and Th* — co. Then,

~

Te — T = 0p(1), under O7.

PROOF: It is sufficient to establish that s} (07, §)—s3(0r, g) = 0,(1) and f;¢(9T, g)—
f$¢(9T,g) = 0,(1) which is established in Linton (1993). "

We next define our optimality criteria and show that 7y, 71, 7,, and 7,, are asymp-

totically optimal.

14



3.3. Optimality of Tests

Define for any test statistic 7, its critical function

1 if7>k,
Pa(T) =
0 if 7 < kg,
where «,, with a € (0,1), is a critical value, in our case determined by (9). Let
Ers denote expectation taken with respect to the measure Pr g, of the sequence of
local alternatives. Let Hy and H,4 be the § consistent with the null and alternative

hypotheses respectively.

DEFINITION. A test statistic 7 is asymptotically unbiased if
limsup Erspe.(7) < a, for all § € Hy,
T—oo
while

lijminf Ersoo(r7) > a, forall § € Hy.

DEFINITION. A test statistic 7 is mazimin if it is asymptotically unbiased and if

for any other asymptotically unbiased statistic 7*, we have

im inf Ersp.(7),

. . ) <
limsup ]}s?zfe Erspa(T) < ql_,oo I5]=¢

T—)O()

for any ¢ > 0.

For a specification test of T1 we have

THEOREM 4. The test statistics 7 and 7, are asymptotically mazimin.

PRroO¥F. Follows from Strasser (1985), Theorem 82.21. .

15



This result is the equivalent of the Locally Asymptotic Minimax result for estimation,
see Hajek (1972). Theorem 3 implies that local power is maximized by 7y, at least when

superefficient test are not allowed in the comparison.

Theorem 4 does not apply to the test of T2, because the alternative region is a
proper directed subset of the full Euclidean space. In this case we consider an alternative
optimality criterion. Let w(#) be a measure that gives probability one to the set of
possible values for # under the alternative hypothesis, and let 7 be a level o test with

power function 7,(8). Define the weighted average power criterion

m:/mwmm.

We say that 7 is W-optimal if it maximizes ¥ (possibly in an asymptotic sense). Fol-
lowing Sengupta and Vermeire (1986) we use a weight function that is uniform over

arbitrarily small (local) neighborhoods!®.

DEFINITION. A level « test 7 is locally most mean powerful unbiased (LMMPU) if
it is asymptotically unbiased and if for any other asymptotically unbiased level « test

7*, there exists &y > 0 such that

m@w>/ m(0)d9, V6 < 6.

10 Andrews (1994) uses a multivariate truncated normal distribution function for w that is indexed
by ¢, where ¢ scales the covariance matrix of the weight function, w. Smaller values of ¢ give higher
weights to alternatives that are close to the null value and lower weights to alternatives that are
distant from the null value. As ¢ increases, the weight is transferred from alternatives that are close
to the null to distant alternatives. Andrews shows that a test statistic that maximizes his criterion is
a transformation of the classical solution that reflects the distance of the alternative space from the

parameter estimates.

16



This corresponds to a locally best (i.e. maximin) in the direction ¢; = .. = ¢,. Lee
and King (1993) show that the LMMPU test for (Gaussian) T2 is based on the sum of

scores, which justifies our choice (3.2). We have
THEOREM 5. The test statistics 1,, and 7,, are asyhptotically LMMPU.

PRrOOF: This follows directly from the definition of an LMMPU test given by King
and Wu (1991), and Theorems 2 and 3. n

4. SECOND-ORDER ASYMPTOTIC PROPERTIES

4.1 Size Distortion

We now develop more refined asymptotic approximations that help us determine
more accurately the small sample properties of the semiparametric test statistic. Specif-
ically, we derive an asymptotic expansion for 7,, including terms to second order. By
second-order, we mean terms that are asymptotically negligible with respect to 7, — 7,
and thus do not show up in the limiting distribution. In this semiparametric context,
the correction terms are of larger order than T-!/2 in probability (which is the usual
magnitude for the correction factors in parametric problems). See Linton (1994) for
further discussion of second order theory for semiparametric models. We calculate the
first two moments of the truncated expansion and use these to better approximate the
properties of the test statistic.

Many additional conditions are required for the proofs of second order properties:
these are mostly unverifiable smoothness and moment conditions. We do not give a full
set of primitive conditions, but indicate in the proofs what is needed. We shall restrict
our attention to the case where g is known to be symmetric about zero. In this case,

T2 S S a(T@)vr
(7= S 3T Sy L, 022
17
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where v} = u? -1°T %2 For convenience, we use a leave-p-out kernel density
estimator, i.e. the index set in (7) is 7; = {s # t,..,t — p} . This simplifies and improves
the second order approximations.

Write 7,,,( §), and make the Taylor expansion

/\

0600’

~ 0T,

) = 7 0) + 2

—2(0)(0 - 0) + (9 0y 7 (4G - 0),

where 0~ lies between § and §. The second and third terms are O,(T~Y/2) and O,(T?)
respectively, by similar calculations to those carried out below. For our purposes, 7,
can be approximated by the first term which has residuals substituted by unobservable

error terms,

T—l/z 'LP:l ZtT:l ’(L\Q(ut)v;*z

— T 7 - *2 = ?—1/25}7
[T-13,, ¢%(ut)]l/2[T DY Zt 1 Vit 1]1/2

(12) 7 =7.(0) =

where v* = u? — T! Zt L u?. The approximation error (in replacing 7,, by 7 ) is of
order T—/? and does not contribute to the second order mean squared error properties
of the semiparametric test statistic. See Linton (1992) for a similar result. Let X =
pl(g)(my —m2) and Y = T2 50 ST apo(uy)v?l_,, with v0 = u? — my, where m; =

E[ul], j = 2,4. A first-order Taylor-series expansion of 7% about X~1/2) yields

1

(13) 7R XY L XYY - V) - SATY(X - ),

where the symbol & indicates that the remainder term can be ignored. The asymptotic
distribution of the leading term, X~/2), was studied in section 3.1. The remaining
two terms affect the variance of the test statistic to a second-order of magnitude. Let

na(K) = [ 2K (s)ds, let va(K) = [ K*(s)ds, and let b, = 8u,[£2 (u) — €282 (1)),
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THEOREM 6. Suppose that sufficient smoothness and moment conditions hold, in

addition to the conditions of the previous theorem. Let h = O(T~Y/7). Then

Bluig™ (w)]
I

avar[7,) = 1 + h* + T 'h™2uy(K') + O(T‘4/7);

EZ?] _ {E[%}(;M}z

as T — oo. Furthermore, both the asymptotic mean and skewness of 7,, are of order

T2,

PROOF: See appendix. .

REMARK. The variance correction factors contain a term due to the bias b; of the
nonparametric score function estimate, and one due to its variance. The magnitudes of
these terms depend on the underlying density and can be quite large. The magnitude
of p does not affect the second order term, which is somewhat surprising. However, it

does affect the O(T ') term in the variance, which we have not presented.

This result can be used to select the bandwidth. There are many possible optimal-
ity criteria. The approach we take is to choose h to minimize the expression for the
variance of 7,, given above. This is equivalent to minimizing the second-order size dis-
tortion. This approach apparently neglects power, although see the simulation results
below. The optimal bandwidth depends on the terms of the variance correction factors,
which are unknown. One possibility is to substitute nonparametric estimates of these
quantities into the bandwidth formula, see Hardle and Linton (1995) for a discussion
of this ”plug-in” method. We advocate using a "rule of thumb” (based on a normal
"pilot” ) version of this bandwidth selection method for applications. If the innovation
density is a standard Gaussian density, then ¢ (u) = —ug(u), ¢ (u) = (v* — 1)g(u),

and g(3)(u) = —(u® — 3u)g(u). Thus, ¢o(u) = (u* — 1), I = 2, and b(u) = u?py, so
19



Eb(u;)?] = 3u2 and Efva(us)b(us)] = 2p,, and Eg’—ﬂ - {EL‘/’—%‘—’M}‘ = 1u2. Note that
Efu?g=(u;)] = o0, if g is Gaussian. We replace Elu?g™!(u;)] by a consistent estimate!!

(udox — u3:)/3. Finally, our rule-of-thumb bandwidth is

, 1/7
(14) ’E _ {V2(A (]))(uﬁnax - u?nin)} a_T—1/7’

B 4p3(K)
where ¢ is an estimator of the standard deviation of the raw data and uyg., and umi,

are calculated from the data standardized by . This estimate asymptotically minimizes

the second-order size distortion as defined above.

11 This quantity grows at rate (In7")®, when g has unbounded support. We recognize that in this
case, theorem 6 is meaningless since the right hand side is infinite. Nevertheless, we believe that our

formula makes practical sense.
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4.2 Bias Reduction

The bias term b; is nonzero for the normal density, and hence our procedure will
have a bias-related variance correction term even in this canonical case, see Theorem
5. We study here a refined kernel density estimator proposed by Jones, Linton, and
Nielsen (1993), hereafter JLN. The JLN estimator reduces the bias'? of the density
estimate to O(h*), from O(h?), for all g. More importantly for our purposes, it results
in an essentially unbiased estimator of the score function when in fact the true density
1s normal. This allows a much wider bandwidth to be used and translates into gains in
the second order performance of our test statistics.

Let g be a kernel density estimator, then the JLN density estimator based on

observed data {u;};_, is

~ . I L U—U
(15) §(u) = g(u) (Th)' 32 g7 (w) K (——).
t=1
Again, gV (u) = £5(u) and ¥y = g /g. Under the same assumptions necessary for the

improved mean squared error (MSE) performance of fourth order kernels (i.e. kernels
L such that [ s'L(s)ds =0,1=1,2,3 and [ L(s)ds and [ s*L(s)ds are nonzero), Jones,
Linton and Nielsen (1993) obtain the following asymptotic expansion for g(u), when

h = O(n=1/?):

g(u) = g(u)  B*b(u) + (Th) V2V (u) + 0,(T~°),

where b(u) = Lu3(K )g(u) {€2 ()}, while V/(u) =(Th)-1/2 5L, {L(252) — E[L(252)]},
with!® I = K * K — 2K, is a zero mean sum of iids and is O,(1). Therefore, g(u)
has bias an order of magnitude smaller than the usual kernel estimator. The same

is true of gM(u) and hence of gV (u)/g(u), i.e. their biases are also O(h*) com-

12 It also guarantees a positive estimate of g everywhere unlike other bias reduction methods such as
higher-order kernel density estimators.

13 [ is the fourth order kernel obtained from twicing, see Jones and Foster (1995).
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pared with O(h?) for g")(u) and g (u)/g(u). The reduced bias permits faster con-
vergence rate of n=%° when h = O(n~'/°), as compared with rate n=*/° for the stan-
dard kernel density estimator with A = O(n~'/%). The bias constant for g')(u) is
bW(u) = 1p2gM(u) {g%(u)}m. Therefore, for g (u)/g(u) it is %]l(u) - l;l—)g(u) If
g 1s the Gaussian density, b(u) = 1p2é(u) and bW (u) = —Lp2ud(u), so, remarkably,
there is a cancellation and the bias of §(1)(u)/g(u) is the even better o(h*). This means
that in the formula of Theorem 6, the first term on the left hand side is zero for this
procedure!®. Furthermore, we might expect some improvement in local power too. This

result may be of considerable practical significance, since most empirical densities do

not seem very far from the normal.

14 As before, replacing unobserved errors u; by root-T consistently estimated residuals u; makes no
difference to the first order properties of g(u) and hence the second order properties of the semipara-

metric test statistic.
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5. FINITE SAMPLE PERFORMANCE

The results in Section 3 indicate that with a large number of observations, a semi-
parametric test statistic outperforms a quasi-maximum likelihood test statistic. The
question is, how well does a semiparametric test statistic perform with a small number
of observations? To shed light on the issue, we run monte carlo simulations for samples
of 100 observations. Because most financial data sets have substantially larger numbers
of observations, our results provide conservative estimates of the gains achievable in
practice. We find that with a sample of only 100 observations, the semiparametric test
statistic 7; can outperform the QML test statistic 7.

A semiparametric test statistic is asymptotically more powerful than a QML test
statistic if the innovations density is non-Gaussian. Therefore, in the simulations we
conduct the true innovation density is either asymmetric, leptokurtic, or platykurtic.
Asymmetric innovation densities that have more mass concentrated in the tails result in
marginal densities for y, that capture the large number of outliers and the asymmetric
pattern in certain exchange rate series. The specific asymmetric densities that we
consider are log-Gaussian densities that are constructed from a Gaussian density with
variance that takes values (0.01, 0.10, 1.00). Leptokurtic innovation densities result
in marginal densities for y; that capture both the large number of outliers and the
shape of many daily exchange rate series. The specific leptokurtic densities that we
consider are t densities with 30, 8, and 5 degrees of freedom, respectively. Platykurtic
innovation densities result in marginal densities for y; that capture the large number of
outliers and the effect of the random arrival of information that characterize many asset
return series. The specific platykurtic densities that we consider are bimodal symmetric
mixtures of Gaussian random variables with means that take values (£1,£2,410). In
the tables summarizing the results each of the densities is denoted by a capital letter
for Asymmetric, Leptokurtic, or Platykurtic together with a number 1, 2, or 3, where
a larger number corresponds to a larger departure from a Gaussian density. Thus L2

denotes the t density with 8 degrees of freedom. Summary statistics for the densities

23



are in Table 1.
***TABLE 1 HERE ***

We simulate the model (3) for an ARCH(p) specification with fi(vy) = fo + Bi71:.
For the conditional mean we set 8o = 1, f; = —1, and take z;; to be i.i.d. Gaussian
(0,1) and independent of ohy(y)u;. Note that for the asymmetric densities, a Gaussian
QMLE is consistent only if « is included. We perform 1000 monte carlo simulations.

The test statistics are constructed from the semiparametric and QML estimators,
which are constructed using the method of scoring. Specifically, the QMLE is con-

structed as
(16) ’%"QM = '%:221M + )‘IT_l(’AYﬁglMagn)S:(%—QlMagn),

where ¢” is a Gaussian density and ) is a parameter!® that controls the size of the updat-
ing step. The algorithm (16) is iterated until s;(fy;QlM.,g")’IT'l(fy}blM,g")sfy(f?}leM,g")
is less than .01.

The semiparametric estimator is constructed as in (16) with g used in place of a
Gaussian density, where § is constructed using the residuals calculated from 75! and
39 = 3%on- The nonparametric estimator of g is constructed with the quartic kernel
K(u) = B[1 —?"1(Jul < 1).

We study two important issues for practical implementation of semiparametric test
statistics. First, we compare a standard nonparametric estimator of g, given by (7),
with a JLN reduced-bias estimator of g, given by (15). Second, we compare the value
of the smoothing parameter that minimizes second-order size distortion, given by h in
(14), with other values of the smoothing parameter. In particular, because the JLN
density estimator has reduced bias, we can use a smoothing parameter that is larger

than & in forming the JLN density estimator'®. To determine the value of the smoothing

15 At the beginning of each iteration, A equals 1. If the value of '}/%QM does not increase the log-
likelihood, then A is set to % If the resulting value of ‘y}QM does not increase the log-likelihood the
process is repeated, shrinking A by a factor of 2 each time until a step 1s found that increases the
log-likelihood.

16 Because the standard density estimator does not offer reduced bias, we restrict attention to h for
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parameter that maximizes the size-adjusted power of a semiparametric test statistic we
examine the values h = ¢ - iz., where ¢ takes values (0.5,1.0,1.5,2.0).

The first testing problem that we consider is the univariate testing problem. Specif-
ically, we study the test of the null hypothesis that the model is ARCH(1) against
the alternative hypothesis that the model is ARCH (2). The ARCH(1) specification
is he(70)? = 1 + 1(yi=1 — 1 + z14-1)* and the ARCH(2) specification is hi(70)? =
14+ 3(yier — 1+ 210-1)% + .5(ys—2 — 1 + 214-2)%. Thus we test a null model with only
weak ARCH effects against an alternative model with substantially more ARCH effects.

In Table 2 we compare the positive square-root of the Lagrange multiplier test
statistic constructed from a Gaussian QMLE, denoted QML, with three semiparametric
test statistics, for a sample of 100 observations. The first semiparametric test statistic,
denoted SP1, is constructed using the standard nonparametric estimator of g from (7)
with the value of the smoothing parameter given by A in (14). The second semipara-
metric test statistic, denoted SP2, is constructed using the JLN estimator of g from (15)
with the value of the smoothing parameter given by & in (14). The third semiparametric
test statistic, denoted SP3, is constructed using the JLN estimator of g from (15) with
the value of the smoothing parameter'” given by 1.5:h.

The upper panel contains the empirical size of the test statistics for a test with a
nominal size of five percent. The lower panel contains the size-adjusted power for each
of the test statistics. To construct the size-adjusted power for each test statistic, we
use critical values that correspond to an empirical size of five percent if the empirical
size exceeds five percent and use nominal five percent critical values otherwise. Within
a panel, each row of the table corresponds to a different innovation density and each

column corresponds to a different semiparametric test statistic. (Tables 3 and 4 are

this estimator.
17 Results for other values of ¢, namely 0.5 and 2.0, are not separately reported. Reducing the

smoothing parameter, ¢ = 0.5, reduced the size-adjusted power of a semiparametric test statistic for
every density. Increasing the smoothing parameter further, ¢ = 2.0, increased the size-adjusted power
for the leptokurtic densities but reduced, and in some cases greatly reduced, the size-adjusted power
for the remaining densities.
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constructed similarly.) The third through fifth columns, headed by SP1, SP2, and 5P3,
respectively, contain the empirical sizes for the positive square root of the Lagrange
multiplier test statistic constructed from each of the nonparametric density estimators
described above. For each density all four test statistics have empirical size that is
below nominal size.
*** TABLE 2 HERE ***

To compare size-adjusted power, we begin with the semiparametric test statistics.
In comparing SP1 with SP2, we see that for seven of the ten densities the standard
density estimator delivers a higher size-adjusted power than the JLN density estimator
if both use the same value of the smoothing parameter. Only for three of the densities
with the greatest departures from normality does the SP2 test statistic outperform
the SP1 test statistic, and in two of these cases the power gain is slight. The real
advantage in using the JLN density estimator comes from the ability to increase the
value of the smoothing parameter. For nine of the ten densities the JLN estimator with
the increased smoothing parameter outperforms the standard density estimator and
for seven of the ten densities SP3 outperforms SP2. Again, the three densities where
SP2 has highest power represent extreme departures from normality. In comparing the
size-adjusted power of the QML test statistic with the preferred semiparametric test
statistic SP3, we see that for eight of the ten densities the QML test statistic has higher
power. For the asymmetric and platykurtic densities, the relative performance of the
semiparametric test statistic improves as the departure from normality grows. If the
innovation density is Gaussian, a QML test statistic correctly rejects the null hypothesis
more than three-quarters of the time and the SP3 test statistic suffers a power loss of
8 percent. For the nearly Gaussian densities (A1,L1,P1), the results are similar. For
the remaining leptokurtic densities, a semiparametric test statistic has a power loss of
10 percent while for the remaining platykurtic densities a semiparametric test statistic
has only a slight power loss. For the remaining asymmetric densities, a semiparametric
test statistic has a power gain of between 2 and 27 percent. With a sample of only

100 observations a semiparametric test statistic outperforms a QML test statistic for
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several densities.

Because a sample of 100 observations is fairly small, we compare a QML test statis-
tic with the preferred semiparametric test statistic for a larger sample. Table 3 contains
the empirical size and size-adjusted power for the QML and SP3 test statistics for a
sample of 500 observations. Because the sample size is increased, the alternative hy-
pothesis must be changed to keep the power below 1. As explained in previous sections,
the magnitude of the alternative hypothesis shrinks at rate 7'/2, so the ARCH(2) spec-
ification is hy(y0)? = 1 + .1(yim1 — 1 + 210-1)% + .22(ys—2 — 1 + z1;-3)%. The second and
third columns contain the empirical size for the test statistics. The fourth and fifth
columns contain the size-adjusted power for the QML and SP3 test statistics, respec-
tively. For each density, both test statistics have empirical size that is below nominal
size and for seven of the ten densities the size distortion (the difference between the
empirical size and the nominal size) of SP3 is reduced as the sample size increases.
In comparing size-adjusted power, we see that for eight of the ten densities the two
test statistics are virtually identical and for the remaining two densities SP3 has higher
power. Because the two densities for which SP3 has higher power are asymmetric, our
simulations indicate that for univariate testing problems, the most substantial gains
from a semiparametric estimator occur with asymmetric densities.

**% TABLE 3 HERE ***

The second testing problem that we consider is the multivariate testing problem.
Specifically, we study the test of the null hypothesis that the model is white noise against
the alternative hypothesis that the model is ARCH(2). The ARCH(2) specification is
the same specification used in the univariate testing problem.

In Table 4 we compare a multivariate QML test statistic, constructed from a Gauss-
ian QMLE, with three multivariate semiparametric test statistics, constructed from each
of the nonparametric density estimators described above, for a sample of 100 observa-
tions. Each of the test statistics is formed as a sum of scores, given by (6) and (8),
respectively, with ¢ a vector of ones.

The upper panel contains the empirical size of the test statistics for a test with a
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nominal size of five percent. The lower panel contains the size-adjusted power for each
of the test statistics. For each density all test statistics have empirical size that is below
nominal size. To compare size-adjusted power, which again is simply raw power, we
begin with the semiparametric test statistics. In comparing SP1 with SP2, we see a
sharp contrast with the univariate results. For each of the ten densities, the JLN density
estimator delivers a higher size-adjusted power than the standard density estimator if
both use the same value of the smoothing parameter. Once again, increasing the value of
the smoothing parameter can increase the size-adjusted power of a semiparametric test
statistic that uses the JLN estimator. For nine of the ten densities the JLN estimator
with the increased smoothing parameter outperforms a standard density estimator and
for seven of the ten densities SP3 outperforms SP2. In comparing the size-adjusted
power of the QML test statistic with the preferred semiparametric test statistic, SP3,
we see that for nine of the ten densities the semiparametric test statistic has higher
power. If the innovation density is Gaussian, the QML test statistic correctly rejects
the null hypothesis slightly less than half of the time and a semiparametric test statistic
correctly rejects slightly more than half of the time. For the nearly Gaussian densities,
a QML test statistic has power gains of between 7 and 9 percent. For the remaining
asymmetric and leptokurtic densities the power gains are similar. For the most extreme
platykurtic density, the larger smoothing parameter results in a power loss of 13 percent.
With a sample of only 100 observations a semiparametric test statistic outperforms a
QML test statistic for nine of the ten densities.

**% TABLE 4 HERE ***
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6. ANALYSIS OF STOCK FUTURES DATA

We analyze high frequency intraday returns from stock futures with both a semi-
parametric and a QML test statistic. Empirical studies of intraday data underlies much
of the recent modeling of market microstructures. Generally, a GARCH(1,1) specifica-
tion is used to model conditional heteroscedasticity, often without formal testing of the
adequacy of the specification. We estimate a GARCH(1,1) model for high frequency
data and examine the residuals for evidence of additional heteroscedasticity. We find
that both a QML and a semiparametric test statistic indicate the presence of higher
order conditional heteroscedasticity.

Our data consist of five minute returns for the Standard and Poor’s (S&P) 500
composite stock index futures contract for the period from January 2, 1986 through
December 31, 1989. Each observation is constructed from ” Quote Capture” information
provided by the Chicago Mercantile Exchange, which specifies the time (to the nearest
10 seconds) and the price of the S&P 500 futures transaction if the price differs from the
previously recorded price. Five minute returns are constructed from the last recorded
price within each consecutive five minute interval. The first five minute interval of each
day is dropped because this interval captures information revealed over a period that
exceeds five minutes, namely the time during which the market was closed. Observations
from October 15, 1987 through November 13, 1987 are also dropped because of frequent
trading suspensions over these four weeks. We are left with 991 trading days; on each
trading day we have 80 five minute intervals resulting in 79,280 observations.

As Andersen and Bollerslev (1994) document, intraday returns on the S&P 500
futures index have a strong cyclical component. Because cyclical components, if unac-
counted for, affect parameter estimators for conditional heteroscedasticity models, we

work with five minute returns that have a cyclical component removed.’® We estimate

18 Removal of the cyclical component is accomplished with a Fourier series approximation; details
of which are provided in Andersen and Bollerslev (1994, page 20) and whom we thank for providing

returns with the cycle removed.
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the following MA(1)-GARCH(1,1) model typically used to estimate high frequency data
rit = B+ € + 01,

where ¢ = 1,991 denotes day, t = 1, 80 denotes five minute interval, and the conditional
variance process is GARCH(1,1). Semiparametric and QML parameter estimates are
presented in Table 5. Standard errors, reported in parentheses below each estimate, are
constructed from the outer product of the gradient form of estimating the information
matrix.

*** TABLE 5 HERE ***

For each set of parameter estimates in Table 5, we construct estimates of the white
noise innovations. With each estimated white noise innovation sequence, we tested a
null hypothesis of no conditional heteroscedasticity against an alternative hypothesis of
ARCH(2). The resulting test statistics are 2.82 for a QML-based test (with a p-value of
0.0024) and 1.87 for the semiparametric test (with a p-value of 0.0317). There is thus,

quite weak evidence of ARCH effects, given the sample size.

7. CONCLUSION
The semiparametric test statistics are asymptotically optimal, dominating the widely
used Gaussian test statistics according to standard criteria. They are also simple to
implement and appear to behave quite well in small samples. For data that are quite
far from normal, such as high frequency financial data, our procedure could be very

useful.
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APPENDIX

A. Proof of Theorem 5. The leading term in (13), X~1/2)), is asymptotically
standard normal. To study the behavior of the remaining terms in (13), we approximate
Y—Yand X — X.

We use subscript ¢t to denote evaluation at u;, e.g. ¢ = g(us), ¥1; = ¥1(u), and
g: = g(w), and E; to denote expectation conditional on u;. Let also §, = E[g] and

~

_,51) = E[gt(l)], and write g; —¢: = B;+V; and gt(l) ——ggl) = Bt(l) —i—Vt(l), where B; = g, — g:
and Bfl) = gﬁ” — gt(l), while V; = g; — g, and Vt(l) = §t(1) — y‘%l). From Silverman
(1986), the conditional bias of the kernel density estimator B; ~ h2gt(2)p2(K)/2 and the
conditional bias of the kernel first derivative estimator Bt(l) ~ h2g§3)y2(1()/2, while the
”stochastic” terms are such that V") = O,(T-1/2h~3/2) dominates V, = O,(T~1/2h~1/2).

The following additional results are useful in the sequel:

max|g; — g,| = Op(T-1/2h—l)a max l@gl) - ggl)[ = Op(T_l/2h_2)>
max|g;, — g;| = Op(h2)a maxlggl) - 951)‘ = Op(h2)7

min g, = O,(1).

See Andrews (1993, Theorem 1) and Robinson (1987, Lemma 13). Our argument now
parallels those presented in Linton (1992, 1994). We need two lemmas which are proved

below.

LEMMA 1. By asymptotic expansion

Y=Y+L+Q+0,(T,

'U)I'LET'E L: = hZT—1/2 ‘tP::l Z;I:l btv?—-i = Op(hz) a‘nd Q = T~1/2 ?:l ZtT:] utgt—lvt(l)v?—i =

O,(T~/2h=3/%). Furthermore, Q is mean zero and
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var[Q] & T A pra(KW)(my — m3) Elufg™ (us)).

LEMMA 2. By asymplotic expansion
X =X+B+0,(TY?,

where B = 2ph? E[t2(uy)by](mg — m3) = O(h?).

We are now able make our stochastic expansion. With some rearrangement of terms

we arrive at the following approximation:

Tm = X‘1/2y+X—l/2Q +X—l/2[£ _ %X—lyB] 4+ OP(T_3/7).

We now calculate the moments of this truncated expansion. Note that var())= &". The
linear terms are straightforward. Firstly, var[L] = h*pE[b?](m4 ~ m2) and E[VL] =
h*(m4 — m2)pE[t2(u;)b;]. Therefore,

cov[Y, £~ %X_lyB] =0 varlf ~ %X"lyB] = hipX :
2

2

B {Em(ut)bt]}z} |

The quadratic term has variance as stated in Lemma 1.
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A.l. Proot of Lemmas.
PrOOF OF LEMMA 1.
1. Taylor expansion. A geometric series expansion of §t(l)/§t, see Hardle and Stoker

(1989, pp992), gives

7 p T
Y_y-y {T‘l/ZZZ%(ut)utv;‘ii} LRy

i=1 1=1t=1

where

ei(u) = (=17 3g77 G — g:)7 G — ¢) + ¥regi G — 90)7], G =1,.0m,

oo
Ry = (=1)*(r + 1)IT-1/2 1ET [gt—g(gt;gt__f_lp M)_} wvl,.

We first deal with the leading term

T

P
T-1/2 Z Z 01 (u)uv)”;.

=1 t=1
We substitute for g; — g; and §t(l) — gt(l), collect bias terms into L, and note that
71250 ST g7 2gM Vs = 0,(T-1/2h-1/2), by the same arguments given below

in part 2 of the proof. Therefore, the leading term is as required.

The intermediate terms of the form T-1/2 37, T | o (u,)uw*;, for j = 2,.., 7, are

U-statistics of order 7, and are of progressively smaller order. For example,

7250 ST 67%(G - 9@ — g, =

T-1/2 IZt—lgt U~ thB + T2 IZt 19¢ Utvt zEt[VtVt ]
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T2 f:l Zthl gt_zutU::iBt(l)Vt + T-1/2 f=1 Zthl 9: U'fvt thVt( )+
T TE, T g tuwr (VY - BV}

The first line consists of single sums of order 1 U-statistics with orders in probability
Op(h*) and O,(T~'h~2) respectively. The second line is a U-statistic of order 2 and is
O,p(h*T~=1/2p=1/2) The third line is a U-statistic of order 3 and is O,(T-1h~2).

To deal with the remainder term we use crude bounds as in Robinson (1987). Thus

Frl < (74 DHming ™ {ming) ™ TV fmax . = i) {T Sy £y o 2y
x T £} {maxlg. — gil} + {max[g® - (”I}]

= OP(T_3/7)7

provided r > 2.

2. Moment calculation. We now turn to the variance of Q. We work with the case
p = 1 for convenience. Let z; = u,g7"(u;) and 745 = 045 — Ei(6;,), with 8, = K( )(l‘“—“-),
then Q@ = T=3/2h=2 5" S 2,0°_, 7, where summation is over { = 2,..,7T and s #t,t—1.

There are three types of non-zero terms in var(Q):

(1) E(z% 'U?Elntzs)’ t:27"7T7S#t7t_1
(2) E(zvf 1mistip190m41,0-1), t=2,., T, s # ¢, 6 — 1
(3) E(It”?_lnts$s+lvgns+l,t-l)7 t =2, -'9T7 $ ?é t,t— 1

We first deal with (1). By straightforward calculation,
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E(0) = J K(l)(&',:—“)g(v)dv =h/f K(u)g(l)(ut — hu)du ~ hg(W(u;)

Ey(83) = [ KM (272)2g(v)dv = b [ K (u)?g(u; — hu)du ~ hg(uy) [ K1)(u)?du

using integration by parts and a change of variables. Therefore, using conditioning,

Blao, %) = (mamm?) E{ulg™(un) B8~ F(8i)]} ~ hua(K) Elug™ (w)] (mard),
and there are O(T?) terms of this form.

We now turn to (2). Unless s =t + 1, this expectation factors into

E($t+1?}?-177t+1,t—1)E(xtmsvf) = 0.

Therefore, (2) contributes only O(7') terms each of O(h).

As for (3), this factors into
E(xtﬂtsU2>E($s+l7]s+l,t—lv?-l) = EZ(xtmsvg) = O(hz)a

since E(z,n,;v?) = O(h). There are O(T?) terms, but they are of smaller order than the
(1) terms.
The result follows by multiplying * by 7-1h~*. When p > 1, the same calculations

are involved, and the answer gets multiplied by p. .

PROOF OF LEMMA 2. We use the further linearization J% — Y~ 21&2(1;2 — 1)q),

and the same arguments as given above. .
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Name Construction Mean Variance Skewness Kurtosis

Asymmetric 1 exp(z) where z is N(0,0.01)  1.01 0.01 0.30 3.16
Asymmetric 2 exp(z) where z is N(0,0.10)  1.05 0.12 1.01 4.86
Asymmetric 3 exp(z) where z is N(0,1.00)  1.65 4.67 6.18 113.94
Leptokurtic 1 t(30) 0.00 1.07 0.00 3.20
Leptokurtic 2 t(8) 0.00 1.33 0.00 4.50
Leptokurtic 3 t(5) 0.00  1.67 0.00 9.00
Platykurtic 1 .5[N(-1,1)+N(1,1)] 0.00 2.0 0.00 2.50
Platykurtic 2 .5[N(-2,1)+N(2,1)] 0.00 5.00 0.00 1.72
Platykurtic 3 .5[N(-10,1)+N(10,1)] 0.00  101.00 0.00 1.04

TABLE 1. Summary Statistics of the Densities All densities are subsequently

rescaled to have mean 0 and variance 1
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Density QML SP1 SP2 SP3

Size

Gaussian  0.027 0.030 0.038 0.030
Al 0.025 0.040 0.025 0.020
A2 0.023 0.049 0.029 0.028
A3 0.025 0.035 0.045 0.019
L1 0.016 0.043 0.027 0.020
L2 0.024 0.035 0.037 0.034
L3 0.021 0.035 0.033 0.032
P1 0.021 0.030 0.026 0.023
P2 0.032 0.024 0.033 0.033
P3 0.028 0.000 0.008 0.000
Power

Gaussian  0.782 0.678 0.644 0.704
Al 0.784 0.659 0.616 0.704
A2 0.649 0.621 0.603 0.669
A3 0.325 0.579 0.647 0.599
L1 0.753 0.637 0.593 0.683
L2 0.700 0.560 0.509 0.598
L3 0.593 0.459 0.396 0.507
P1 0.858 0.782 0.757 0.821
P2 0.962 0.933 0.949 0.937
P3 0.957 0.974 0.999 0.932

TABLE 2. Size and Size-Adjusted Power: ARCH(1) vs. ARCH(2) T=100.
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Density QML SP3 QML SP3
Gaussian  0.030 0.032 0.945 0.937
Al 0.026 0.028 0.920 0.934
A2 0.024 0.033 0.804 0.879
A3 0.021 0.021 0.390 0.689
L1 0.026 0.026 0.915 0.909
L2 0.024 0.028 0.844 0.838
L3 0.027 0.038 0.736 0.752
P1 0.030 0.028 0.964 0.972
p2 0.034 0.027 0.996 0.997
P3 0.046 0.000 0.995 0.975

TABLE 3. ARCH(1) vs. ARCH(2) T=500.
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Density QML SP1 SP2 SP3

Size

Gaussian 0.012 0.014 0.014 0.012
Al 0.014 0.013 0.014 0.014
A2 0.016 0.013 0.016 0.016
A3 0.010  0.009 0.020 0.010
L1 0.019  0.019 0.018 0.019
L2 0.016 0.010 0.010 0.016
L3 0.010  0.011 0.011 0.010
P1 0.017  0.013 0.017 0.017
P2 0.015 0.011 0.020 0.015
P3 0.000  0.000 0.000 0.000

Size-Adjusted Power

Gaussian 0.525 0.435 0.467 0.525
Al 0.532  0.440 0.468 0.532
A2 0.496  0.414 0.469 0.496
A3 0.374 0.314 0.410 0.374
L1 0.535  0.447 0.470 0.535
L2 0.493 0.403 0.421 0.493
L3 0.395  0.319 0.321 0.395
P1 0.593  0.517 0.544 0.593
P2 0.737  0.709 0.768 0.737
P3 0.312  0.440 0.824 0.312

TABLE 4. Size and Size-Adjusted Power: White Noise vs. ARCH(2).
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B 0 ¢ p
QML 1.196x10-5 -.1982  .0846  .7962
(1.324x10-6) (.0445) (.0094) (.0143)
Semiparametric 1.195x10-5 -.1874  .0793  .7810
(2.655x10-7) (.0399) (.0065) (.0102)

TABLE 5. Estimates for S&P 500 Futures Data. Parameters ¢ and p are defined

following (2). Standard Errors in Parentheses
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