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Abstract

We consider model based inference in a fractionally cointegrated (or cofractional)
vector autoregressive model based on the conditional Gaussian likelihood. The model
allows the process Xt to be fractional of order d and cofractional of order d − b; that
is, there exist vectors β for which β′Xt is fractional of order d − b. The parameters
d and b satisfy either d ≥ b ≥ 1/2, d = b ≥ 1/2, or d = d0 ≥ b ≥ 1/2. Our main
technical contribution is the proof of consistency of the maximum likelihood estimators
on the set 1/2 ≤ b ≤ d ≤ d1 for any d1 ≥ d0. To this end, we consider the conditional
likelihood as a stochastic process in the parameters, and prove that it converges in
distribution when errors are i.i.d. with suitable moment conditions and initial values
are bounded. We then prove that the estimator of β is asymptotically mixed Gaussian
and estimators of the remaining parameters are asymptotically Gaussian. We also find
the asymptotic distribution of the likelihood ratio test for cointegration rank, which is
a functional of fractional Brownian motion of type II.
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1 Introduction and motivation
We consider the p−dimensional time seriesXt, t = . . . ,−1, 0, 1, . . . , T, and modelX1, . . . , XT

conditional on the (infinitely many) initial values X−n, n = 0, 1, . . . , by the fractional vector
autoregressive model, VARd,b(k), in error correction representation,

Hr : ∆dXt = αβ′∆d−bLbXt +
k∑
i=1

Γi∆
dLibXt + εt, t = 1, . . . , T, (1)

where εt are i.i.d.(0,Ω), Ω is positive definite, d ≥ b ≥ 1/2, and α and β are p×r, 0 ≤ r ≤ p.
The parameters (d, b, α, β,Γ1, . . . ,Γk,Ω) are otherwise unrestricted. Here ∆b is the fractional
difference operator and Lb = 1 − ∆b the fractional lag operator. We also consider the two
submodels given by d = d0 and d = b, respectively.
Model (1) can be expressed as Ψ(Lb)∆

d−bXt = εt, where the polynomial Ψ(y) is given by

Ψ(y) = (1− y)Ip − αβ′y −
k∑
i=1

Γi(1− y)yi =
k∑

i=−1

Ψi(1− y)i+1 (2)

and the coeffi cients satisfy
∑k

i=−1 Ψi = Ip, Ψ−1 = −αβ′, and Ψk = (−1)k+1Γk. That is,
∆d−bXt satisfies a vector autoregression (VAR) in the lag operator Lb rather than the stan-
dard lag operator L = L1. The cointegrated VAR model analyzed by Johansen (1988)
appears as the special case d = b = 1, and the interpretation of the model parameters is
similar, i.e., the columns of β are the cointegrating (cofractional) relations and α are the
adjustment or loading coeffi cients. Note that the expansion of Lb = 1 −∆b has no term in
L0 and thus only lagged disequilibrium errors appear in (1).
For given parameter values, the process Xt is determined by (1) as a function of para-

meters, initial values, and errors εi, i = 1, . . . , t, but the stochastic properties of Xt depend
on the characteristic function associated with (1):

Π(z) = (1− z)d−bΨ(1− (1− z)b) =
k∑

i=−1

Ψi(1− z)d+ib =
∞∑
n=0

Πiz
n, |z| < 1. (3)

Conditions on the roots of the polynomial Ψ(y) are given, see Johansen (2008), for Xt

determined by (1) to be fractional of order d and β′Xt fractional of order d− b.
The model considered here is derived from the usual cointegrated VARmodel by replacing

∆ by ∆b and L = 1−∆ by Lb = 1−∆b and applying the model to ∆d−bXt. The inspiration
for the model comes from Granger (1986), who noted the special role of the fractional lag
operator Lb and suggested the model

A∗(L)∆dXt = (1−∆b)∆d−bαβ′Xt−1 + d(L)εt,

see also Davidson (2002). In Johansen (2008) it was suggested to replace the polynomial
A∗(L) in the usual lag operator by a polynomial in the fractional lag operator in order to
be able to analyze the stochastic properties of the solution. The univariate version of the
resulting model (1) was analyzed by Johansen and Nielsen (2010), henceforth JN (2010),
and we refer to that paper for some technical results.
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We are interested in testing the rank of the coeffi cient to ∆d−bLbXt and in conducting
inference on the parameters of model (1). Because the processes are nonstationary, d ≥ 1/2,
we analyze the conditional likelihood function for (X1, . . . , XT ) given initial values X−n, n =
0, 1, . . . , under the assumption that εt is i.i.d.Np(0,Ω). For the asymptotic analysis we assume
only that εt is i.i.d.(0,Ω) with suitable moment conditions and that X−n is bounded. Thus,
the initial values are not modeled. In particular they are not assumed to be generated by
equation (1). The asymptotic results show that the influence of initial values disappears in
the limit provided they are bounded, an assumption that appears reasonable in practice,
and which is needed to calculate the fractional differences ∆dXt for d > 0.
We consider throughout the case b ≤ d, so that ∆d−bXt can be calculated, and further-

more b ≥ 1/2 which is the “strong cointegration” case in the terminology of Hualde and
Robinson (2010a). This also generates non-standard asymptotic theory for inference, which
is perhaps the most interesting analysis because it involves the fractional Brownian motion.
For fixed orders of fractionality, d and b, model (1) can be estimated by reduced rank

regression as in Johansen (1988), and the asymptotic analysis is not too complicated. If
(d, b) are not known, the problem is more challenging. By reduced rank regression, calcula-
tion of maximum likelihood estimators is reduced to a two-parameter non-linear maximum
likelihood problem, which is solved by numerical optimization. In JN (2010) we derived
asymptotic theory for the univariate version of model (1), including asymptotic likelihood
based inference and a fractional version of the Dickey-Fuller unit root test, although there
we had to exclude certain parts of the parameter space in the consistency proof. In the
present paper we analyze the multivariate model, but of course our results apply to the
univariate model as well and therefore also complete the analysis in JN (2010). Specifically,
the main technical contribution in this paper is the proof of existence and consistency of the
MLE, which allows standard likelihood theory to be applied. This involves an analysis of the
influence of initial values as well as proving tightness and uniform convergence of product
moments of processes that can be close to critical processes of the form ∆−1/2εt. To tackle
the latter we apply a truncation argument.
An attractive feature of the vector error correction model (1) is the straightforward

interpretation of its parameters, and inference on these is thus of particular interest. We
prove that for i.i.d. errors with suffi cient moments finite, the estimated cointegrating vectors
are asymptotically mixed Gaussian (LAMN), so that standard (chi-squared) asymptotic
inference can be conducted on the cointegrating relations. Thus, for Gaussian errors we get
asymptotically optimal inference, but the results hold more generally.
Although such results are well known from the standard (non-fractional) cointegration

model, e.g. Johansen (1988, 1991), Phillips and Hansen (1990), Phillips (1991), and Saikko-
nen (1991) among others, they are novel for fractional models. Only recently, asymptotically
optimal inference procedures have been developed for fractional processes, e.g. Jeganathan
(1999), Robinson and Hualde (2003), Lasak (2008a,b), Avarucci and Velasco (2009), and
Hualde and Robinson (2010a). Specifically, in a vector autoregressive context, but in a
model with d = 1 and a different lag structure from ours, Lasak (2008a) analyzes a test
for no cointegration and in Lasak (2008b) she analyzes maximum likelihood estimation and
inference; in both cases assuming “strong cointegration”. In the same model as Lasak, but
assuming “weak cointegration”(b < 1/2), Avarucci and Velasco (2009) extend the univariate
test of Lobato and Velasco (2007) to analyze a Wald test for cointegration rank, see also
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Marmol and Velasco (2004). However, the present paper seems to be the first to develop
LAMN results for the MLE in a fractional cointegration model in a vector error correction
framework and with two fractional parameter (d and b).
The analysis of the fractionally cointegrated (or cofractional; henceforth we shall use these

terms synonymously) VAR model (1) generalizes the unit root test and related inference on
fractional orders in the univariate fractional autoregressive model in the same way that
the cointegrated VAR in Johansen (1988) generalizes the standard Dickey-Fuller test to the
multivariate case. Hence, this paper at the same time generalizes the fractional unit root or
fractional Dickey-Fuller tests and in particular that of JN (2010) to the multivariate case,
and it generalizes the cointegrated VAR to models for fractional time series. This has far
reaching implications for empirical research, where the cointegrated VAR is probably the
most widely applied model for estimating and analyzing cointegrated time series.
The remainder of the paper is laid out as follows. In the next section we describe the

solution of the cofractional vector autoregressive model and its properties. In Section 3 we
derive the likelihood function and estimators and discuss asymptotic properties of both, and
in Section 4 we find the asymptotic properties of the likelihood ratio test for cointegration
rank. Section 5 concludes and technical material is presented in appendices.
A word on notation. For a symmetric matrix A we write A > 0 to mean that it is positive

definite. The Euclidean norm of a matrix, vector, or scalar A is denoted |A| = (tr{A′A})1/2

and the determinant of a square matrix is denoted det(A). Throughout, c denotes a generic
positive constant which may take different values in different places.

2 Solution of the cofractional vector autoregressive model
We discuss the fractional difference operators ∆d and ∆d

+ and calculation of ∆dXt.We show
how equation (1) can be solved for Xt as a function of initial values, parameters, and errors
εi, i = 1, . . . , t, and give properties of the solution in Theorem 3. We then give assumptions
for the asymptotic analysis and discuss briefly initial values and identification of parameters.

2.1 The fractional difference operator

The fractional coeffi cients, πn(−a), are defined by the expansion

(1− z)a =

∞∑
n=0

πn(−a)zn =

∞∑
n=0

(
a

n

)
zn =

∞∑
n=0

a(a− 1) · · · (a− n+ 1)

n!
zn

and satisfy the evaluation |πn(−a)| ≤ cn−a−1, n ≥ 1, see Lemma A.5. The fractional
difference operator applied to a process Zt, t = . . . ,−1, 0, 1, . . . , T, is defined by

∆dZt =
∞∑
n=0

πn(−d)Zt−n,

provided the right hand side exists. We collect a few simple results in a lemma, where
Dm∆dZt denotes the m’th derivative with respect to d.

Lemma 1 (i) Let Zt be a stochastic process with fixed and bounded initial values Z−n,
n ≥ 0, then Dm∆dZt exists for d ≥ 0.

Let Zt =
∑∞

n=0 ξnεt−n, where ξn ism×p and εt are p−dimensional i.i.d.(0,Ω) and
∑∞

n=0 |ξn| <
∞. We next consider fractional differences of Zt without fixing initial values.



Likelihood inference for cofractional processes 5

(ii) If d ≥ 0 then Dm∆dZt is a stationary process with absolutely summable coeffi cients.
(iii) If d > −1/2, then Dm∆dZt is a stationary process with square summable coeffi cients.

Proof. The proof is a simple consequence of the evaluation |Dmπn(−d)| ≤ c(1+log n)mn−d−1

for n ≥ 1, see Lemma A.5, which implies that Dmπn(−d) is absolutely summable for d ≥ 0
and square summable for d > −1/2.
For d > −1/2, an example of these results is the stationary linear process

∆dεt = (1− L)dεt =

∞∑
n=0

πn(−d)εt−n.

For d ≤ −1/2 the infinite sum does not exist, but we can define a nonstationary process by
the operator ∆d

+,

∆d
+εt =

t−1∑
n=0

(−1)n
(
d

n

)
εt−n =

t−1∑
n=0

πn(−d)εt−n, t = 1, . . . , T.

Thus, for d ≤ −1/2 we do not use ∆d directly but apply instead ∆d
+ which is defined for all

processes, see for instance Marinucci and Robinson (2000), who use the notation ∆dεt1{t≥1}
and call this a “type II”process.
For the asymptotic analysis we apply the result, e.g. Davydov (1970), that when d <

−1/2 and E|εt|q <∞ for some q > −1/(d+ 1/2), then

T d+1/2∆d
+ε[Tu] =⇒ W−d−1(u) = Γ(−d)−1

∫ u

0

(u− s)−d−1dW (s) on D[0, 1], (4)

where W denotes p−dimensional Brownian motion (BM) generated by εt, W−d−1 is the
corresponding fractional Brownian motion (fBM) of type II, and =⇒ is used for convergence
in distribution as a process onDp[0, 1] or Cp[0, 1], see Billingsley (1968) or Kallenberg (2001).
We also have, see Jakubowski, Mémin, and Pages (1989),

T d
T∑
t=1

∆d
+εt−1ε

′
t
d→
∫ 1

0

W−d−1dW
′, (5)

where d→ denotes convergence in distribution on Rp×p.
2.2 Solution of fractional autoregressive equations

We consider equation (1) written as Π(L)Xt = εt. Note that only fractional differences of
positive order enter the expression for Π(L) when d ≥ b, and that means that if we consider
initial values as fixed and bounded constants, then Π(L)Xt is well defined. In order to derive
a general expression for the solution in terms of initial values X−n, n = 0, 1, . . . , and random
shocks ε1, . . . , εt, we define two operators, see Johansen (2008),

Π+(L)Xt = 1{t≥1}

t−1∑
i=0

ΠiXt−i and Π−(L)Xt =
∞∑
i=t

ΠiXt−i.
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Here the operator Π+(L) is defined for any sequence because it is a finite sum. Because
Π(0) = Ip, Π+(L) is invertible on sequences that are zero for t ≤ 0, and the coeffi cients of
the inverse are found by expanding Π(z)−1 around zero. The process Π−(L)Xt is defined if
we assume initial values of Xt fixed and bounded.
The solution of the equation Π(L)Xt = εt is found as follows. From

εt = Π(L)Xt = Π+(L)Xt + Π−(L)Xt,

we find by applying Π+(L)−1 on both sides that

Xt = Π+(L)−1εt − Π+(L)−1Π−(L)Xt = Π+(L)−1εt + µt, t = 1, 2, . . . . (6)

The first term is the stochastic component generated by ε1, . . . , εt, and the second a deter-
ministic component generated by initial values. An example of this is the well known result
that Xt = ρXt−1 + εt has the solution Xt =

∑t−1
i=0 ρ

iεt−i + ρtX0 for any ρ.
The idea of conditioning on initial values is needed in the analysis of autoregressive

models for nonstationary processes, and we modify the definition of a fractional process to
take account of these. We let εt be i.i.d.(0,Ω) in p dimensions and consider m× p matrices
ξn with the property that

∑∞
n=0 |ξn|2 <∞, and define C(z) =

∑∞
n=0 ξnz

n, |z| < 1.

Definition 2 If C(z) can be extended to a continuous function on the boundary |z| = 1
then the process Zt = C(L)εt =

∑∞
n=0 ξnεt−n is fractional of order 0 if C(1) 6= 0. A process

Zt is fractional of order d > 0 if ∆dZt is fractional of order zero, and cofractional with
cofractionality vector β if β′Zt is fractional of order d− b ≥ 0 for some b > 0.
The same definitions hold for the process Z+

t defined by

Z+
t = C+(L)εt + µt = 1{t≥1}

t−1∑
n=0

ξnεt−n + µt, (7)

where µt is a deterministic term.

2.3 Properties of the solution of fractional autoregressive equations

The solution (6) of equation (1) is valid without any assumptions on the parameters. We next
give results, see Johansen (2008, Theorem 8), which guarantee that the process is fractional
of order d and cofractional from d to d − b. The conditions are given in terms of the roots
of the polynomial det(Ψ(y)) and the set Cb, which is the image of the unit disk under the
mapping y = 1− (1− z)b.
The following result is Granger’s Representation Theorem for the cofractional VARmodel

(1). It is related to previous representation theorems of Engle and Granger (1987) and
Johansen (1988) for the cointegrated VAR, and Johansen (2008) for the fractional model.

Theorem 3 Let Π(z) = (1 − z)d−bΨ(1 − (1 − z)b) be given by (3) and let 1/2 ≤ b ≤ d.
Assume that det(Ψ(y)) = 0 implies that either y = 1 or y /∈ Cb and that α and β have rank
r < p. Let Γ = Ip −

∑k
i=1 Γi and assume that det(α′⊥Γβ⊥) 6= 0, so that we can define

C = β⊥(α′⊥Γβ⊥)−1α′⊥. (8)
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Then
(1− z)dΠ(z)−1 = C + (1− z)bH(1− (1− z)b),

where H(1) 6= 0 and H(y) is regular in a neighborhood of Cb. It follows that the coeffi cient
matrices τn defined by F (z) = H(1−(1−z)b) =

∑∞
n=0 τnz

n, |z| < 1, satisfy
∑∞

n=0 |τn| <∞.
Equation (1) is solved by

Xt = C∆−d+ εt + ∆
−(d−b)
+ Y +

t + µt, t = 1, . . . , T, (9)

where µt = −Π+(L)−1Π−(L)Xt and

Yt =

∞∑
n=0

τnεt−n = τεt + ∆1/2

∞∑
n=0

τ̃nεt−n,

∞∑
n=0

|τ̃n| <∞, (10)

where τ =
∑∞

n=0 τn 6= 0 so that Yt is fractional of order zero,
∑∞

h=−∞ |E(YtY
′
t−h)| <∞, and

β′τα = −Ir.
Thus Xt is fractional of order d, and because β

′C = 0, Xt is cofractional since β
′Xt =

∆
−(d−b)
+ β′Y +

t +β′µt is fractional of order d− b. If r = 0, then α = β = 0, α⊥ = β⊥ = Ip, and
C = Γ−1 has full rank, and thus Xt is fractional of order d and not cofractional.

Proof. The expression for (1 − z)dΠ(z)−1 and the definition of Yt follows from Johansen
(2008, Theorem 8), see also formula (17) on page 665 for the result β′H(1)α = β′τα = −Ir.
Because H(y) is regular in a neighborhood of Cb we can write H(y) = H(1) + (1− y)H∗(y)
where H∗(y) is regular in a neighborhood of Cb. It follows that F (z) and F ∗(z) = H∗(1−(1−
z)b) are regular in a neighborhood of the unit disk, and hence continuous and differentiable
with a square integrable derivative. This implies in particular that the coeffi cients in the
expansion of H∗(1− (1− z)b), say τ ∗, are summable, but then

(1− z)bH∗(1− (1− z)b) = (1− z)1/2

∞∑
n=0

(
n∑

m=0

πm(1/2− b)τ ∗n−m)zn

has summable coeffi cients τ̃n =
∑n

m=0 πm(1/2 − b)τ ∗n−m because |τ ∗n| and |πm(1/2 − b)| are
both summable when b ≥ 1/2. See also JN (2010, Lemma 1) for the univariate case.

2.4 Assumptions for asymptotic analysis

We next formulate some assumptions needed for statistical analysis of the model and for
asymptotic analysis of estimators and the likelihood function. We define the parameter set
N for some d1 > 1/2,

N = {d, b : 1/2 ≤ b ≤ d ≤ d1}. (11)

Assumption 1 The process Xt, t = 1, . . . , T , is generated by model (1) for some k ≥ 1,
as a function of parameters α0, β0, d0, b0,Γ01, . . . ,Γ0k,Ω0, errors εt that are i.i.d.(0,Ω0), and
bounded initial values X−n, n ≥ 0. We assume that the true values satisfy (d0, b0) ∈ N ,
Ω0 > 0, Γ0k 6= 0, α0 and β0 are p× r of rank r, and that det(α′0⊥Γ0β0⊥) 6= 0, so that if r < p,
det(Ψ(y)) = 0 has p− r unit roots, and the remaining roots of det(Ψ(y)) are outside Cb0.
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Importantly, the errors are not assumed Gaussian for the asymptotic analysis, but are
only assumed to be i.i.d. with suffi cient moments to apply a functional central limit theorem
and our tightness arguments below. The assumption about the true values includes the
assumption of cofractionality when r > 0, which ensures that Xt is nonstationary and
fractional of order d0 and β′0Xt is fractional of order d0 − b0. The assumption Γ0k 6= 0
guarantees that the lag length is well defined, that the parameters are identified for a given
lag length, and that the asymptotic distribution of the maximum likelihood estimator is
nonsingular. The assumption about initial values is needed so that ∆dXt can be calculated
for any d ≥ 0, see Lemma 1.

2.5 Initial values

From (9) in Theorem 3 we find that ∆uXt = ∆u
+Xt + ∆u

−Xt has the representation

∆uXt = ∆u−d0
+ (C0εt + ∆b0

+Y
+
t ) + ∆u

+µt + ∆u
−Xt (12)

for t = 1, . . . , T, where u ≥ 0 and µt is a term generated by initial values X−n, n ≥ 0.
The theory in this paper will be developed for observations X1, . . . , XT generated by (1)

assuming that all initial values are observed, that is, conditional on X−n, n = 0, 1, . . ., and
under the assumption that they are bounded, which seems a reasonable condition in prac-
tice. Thus, we follow the standard approach in the literature on inference for nonstationary
autoregressive processes, where the initial values are observed but not modeled and inference
is conditional on them. However, we do not set initial values equal to zero as is often done
in the literature on fractional processes, but instead assume only that they are observed
unmodeled bounded constants, which represents a significant generalization and makes the
results more applicable.
Alternatively, we could think of most phenomena described by fractional processes in

economics as having a starting point in the past, say −N0, before which the phenomenon
was not defined. That is, we can reasonably set X−n = 0, n > N0. The initial values are
then X−n, n = 0, . . . , N0, which are observed unmodeled bounded constants. In any case, in
practice one would have to truncate the calculation of ∆dXt by setting X−n = 0, n > N0.
We shall sometimes use this additional assumption in the asymptotic analysis.
We prove that, under either of these assumptions, initial values do not influence the limits

of product moments and hence the asymptotic analysis of the likelihood function.

2.6 Identification of parameters

For a given set of parameters λ = (d, b, α, β,Γ1, . . . ,Γk,Ω) the characteristic function is given
by Πλ(z) = Π(z), see (3). For two different parameter sets λ and λ∗ with Πλ(z) = Πλ∗(z)
for all z and the same lag length, k = k∗ and (Γk,Γ

∗
k) 6= 0, it holds that the parameters

(d, b, αβ′,Γ1, . . . ,Γk,Ω) are identified. See JN (2010, Section 2.3) for a fuller discussion in
the univariate case and an example of the indeterminacy between d, b, and k.

3 Likelihood function and maximum likelihood estimators
In this section we first present the likelihood and profile likelihood functions and the maxi-
mum likelihood estimator (MLE). We then derive their asymptotic properties.
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3.1 Profile likelihood function, its limit, and calculation of MLE

In (2) we eliminate Ψk = Ip −
∑k−1

i=−1 Ψi and reparametrize the model equations as

εt(λ) = ∆d+kbXt − αβ′(∆d−bXt −∆d+kbXt) +
k−1∑
i=0

Ψi(∆
d+ibXt −∆d+kbXt), (13)

where λ = (d, b, α, β,Ψ0, . . . ,Ψk−1,Ω) = (d, b, α, β,Ψ∗,Ω) are freely varying parameters. The
Gaussian likelihood function conditional on initial values X−n, n ≥ 0, is

−2T−1 logLT (λ) = log det(Ω) + tr{Ω−1T−1

T∑
t=1

εt(λ)εt(λ)′}. (14)

For given values of ψ = (d, b) we can calculate the processes ∆d+kbXt and {∆d+ibXt −
∆d+kbXt}k−1

i=−1 for d ≥ b ≥ 1/2, when initial values are bounded, see Lemma 1. MLEs
(α̂, β̂, Ψ̂∗, Ω̂) for given ψ, and the partially maximized likelihood or likelihood profile,

`T,r(ψ) = −2T−1 logLT (d, b, α̂, β̂, Ψ̂∗, Ω̂), (15)

can then be calculated explicitly by reduced rank regression, Anderson (1951), of ∆d+kbXt

on ∆d−bXt −∆d+kbXt corrected for {∆d+ibXt −∆d+kbXt}k−1
i=0 , see Johansen (1988). Finally

the MLE and maximized likelihood can be calculated by optimizing `T,r(ψ) by a numerical
procedure. Note that for r = p the likelihood profile `T,p(ψ) is found by regression of∆d+kbXt

on {∆d+ibXt −∆d+kbXt}k−1
i=0 , i.e.

`T,p(ψ) = log det(SSRT (ψ)) = log det(T−1

T∑
t=1

RtR
′
t), (16)

where Rt = (∆d+kbXt|{∆d+ibXt −∆d+kbXt}k−1
i=0 ) denotes the regression residual.

We next want to define the limit of the profile likelihood function, `T,p(ψ). We note that
Theorem 3 gives the properties of ∆d0

+Xt at the true parameter point, but the likelihood
function depends on product moments of ∆d+ibXt, and their stationarity properties depend
on d and b. We therefore introduce the processes

Zit = (∆d+ib −∆d+kb)β′0⊥Xt, Zkt = ∆d+kbβ′0⊥Xt,
Wjt = (∆d+jb −∆d+kb)β′0Xt, Wkt = ∆d+kbβ′0Xt,

(17)

for i, j = −1, . . . , k. It is seen from (9) that C0εt + ∆b0Yt determines the stochastic behavior
of Zit and Wjt, so that Zit is asymptotically stationary if d + ib − d0 > −1/2 and Wjt is
asymptotically stationary if d+jb−d0 +b0 > −1/2. We denote the corresponding stationary
processes Szit and Swjt,

Szit = (∆d+ib−d0 −∆d+kb−d0)β′0⊥(C0εt + ∆b0Yt), Szkt = ∆d+kb−d0β′0⊥(C0εt + ∆b0Yt),
Swjt = (∆d+jb−d0 −∆d+kb−d0)β′0(C0εt + ∆b0Yt), Swkt = ∆d+kb−d0β′0(C0εt + ∆b0Yt),

which we combine into

Sit = β̄0Swit + β̄0⊥Szit = ∆d+ib−d0(C0εt + ∆b0Yt) (18)
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if they are both stationary. Here β̄0 = β0(β′0β0)−1 and β̄0⊥ = β0⊥(β′0⊥β0⊥)−1.
We cover the parameter set N by sets Nmn ⊂ N defined for −1 ≤ m < n ≤ k + 1 by

Nmn = {(Zmt,Wnt) asymptotically stationary and (Zm−1,t,Wn−1,t) nonstationary}.

Note that if Zmt is asymptotically stationary then Zit, i ≥ m, is also asymptotically stationary
and if Zm−1,t is nonstationary then so is Zit, i ≤ m− 1. Similarly for Wnt.
For ψ ∈ Nmn we define the sigma field generated by the stationary processes underlying

Zit and Wjt :
Fstat(ψ) = σ({Szit}k−1

i=m and {Swjt}k−1
j=n) for ψ ∈ Nmn,

and finally the uniform probability limit of `T,p(ψ), see Theorem 6,

`p(ψ) =

{
log det(V ar(Skt|Fstat(ψ))),
∞,

Skt stationary,
otherwise.

(19)

Lemma 4 The function `p(ψ), ψ ∈ N , has a strict minimum at ψ = ψ0, that is

`p(ψ) ≥ `p(ψ0) = log det(Ω0),

and equality holds if and only if ψ = ψ0.

Proof. We can assume that Skt = ∆d+kb−d0(C0εt + ∆b0Yt) is stationary since otherwise
`p(ψ) =∞. The transfer function for C0εt+∆b0Yt is f0(z)−1, where f0(z) = (1−z)−d0Π0(z) =∑k

i=−1 Ψ0i(1 − z)ib0 , see (3). For ψ ∈ Nmn, where {Szit}ki=m, {Swjt}kj=n are stationary, we
define

St = Skt −
k−1∑
i=m

γziSzit −
k−1∑
j=n

γwjSwjt = fmn(L)(C0εt + ∆b0Yt),

where γzi = Ψiβ̄0⊥ and γwj = Ψjβ̄0, and

fmn(L) = ∆d−d0 [∆kbIp −
k−1∑
i=m

γzi(∆
ib −∆kb)β′0⊥ −

k−1∑
j=n

γwj(∆
jb −∆kb)β′0].

The transfer function of the stationary linear process St is fmn(z)f0(z)−1, which has
fmn(0)f0(0)−1 = Ip, so that St is of the form St = εt+τ 1εt−1 + . . . . It follows that V ar(St) ≥
Ω0 and equality holds only for St = εt or fmn(z) = f0(z), which implies that (d, b) = (d0, b0).
Note that for ψ ∈ Nmn, V ar(St) is quadratic in the parameters {γzi}k−1

i=m, {γwj}k−1
j=n, and that

minimizing over these, the residual variance satisfies the same inequality

V ar(Skt|Fstat(ψ)) = V ar(St|Fstat(ψ)) ≥ Ω0,

where equality holds only for ψ = ψ0. This completes the proof of Lemma 4.
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3.2 Convergence of the profile likelihood function and consistency of the MLE

We now show that the likelihood profile function `T,p(ψ) converges uniformly in probability
to the deterministic limit `p(ψ) for T → ∞. This implies that the maximum likelihood
estimator in model Hp exists with probability converging to one and is consistent, and that
the same result holds for the submodel Hr, see (1), and the models with d = b or d = d0.
We first present the result on uniform convergence of the profile likelihood function.

Theorem 5 (i) Let Assumption 1 hold with d0 > b0. If in addition either

d0 − b0 < 1/2 and E|εt|8 <∞ (20)

or
E|εt|q <∞ for all q > 0, (21)

then the likelihood function for Hp satisfies

`T,p(ψ) =⇒ `p(ψ) ≥ `p(ψ0) = log det(Ω0) on N ∩ {d− b ≥ δ0} (22)

for any δ0 ∈ (0, d0 − b0], and equality holds only for ψ = ψ0.

(ii) Let Assumption 1 hold with X−n = 0, n > N0. Then the uniform convergence (22)
holds on N under either of the assumptions (20) or (21).

(iii) The results (i) and (ii) also hold for the model with d = d0.

(iv) Let Assumption 1 hold with d0 = b0. For the model with d = b we get uniform conver-
gence on N ∩ {d = b} if E|εt|8 <∞.

The proof is given in Appendix B. Note that d0 − b0 < 1/2 as in (20) appears to be
perhaps the most empirically relevant range of values for d0 − b0, because in this case β

′
0Xt

is (asymptotically) stationary, see e.g. Henry and Zaffaroni (2003) and the references in the
introduction. In this important case we have d + nb − d0 + b0 ≥ −d0 + b0 > −1/2 so that
∆d+nbβ′0Xt is asymptotically stationary for all n. This simplifies the proof and allows the
weaker moment condition (20). This condition is clearly also satisfied for the model with
d = b since then d0 = b0. Another case that is covered by assumption (20) is the univariate
model with a unit root, see JN (2010), which has β0 = 0 so that the behavior of ∆d+nbβ′0Xt

is irrelevant.
The reason for the restriction to {d − b ≥ δ0} is the fact that, close to the boundary

{d = b}, the contribution from initial values does not vanish uniformly. This uniformity can
be obtained by setting X−n = 0, n > N0, and if d = b the problem does not arise.
We now derive the important consequence of Theorem 5.

Theorem 6 (i) Let Assumption 1 hold with d0 > b0, let 0 < δ0 ≤ d0 − b0, and suppose
either (20) or (21) holds. Then with probability converging to one, the maximum
likelihood estimator in model Hr, r = 0, . . . , p, exists on N ∩ {d − b ≥ δ0} and is
consistent.

(ii) Let Assumption 1 hold with X−n = 0, n > N0. Then the results hold on N under either
of the assumptions (20) or (21).

(iii) In the model with d = d0 the results (i) and (ii) also hold.
(iv) Let Assumption 1 hold with d0 = b0. For the model with d = b, existence and consis-

tency in model Hr, r = 0, . . . , p, hold on N ∩ {d = b}.
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Proof. Assume that (22) holds. We start with model Hp, see (1), where α and β are p× p,
and the convergence in distribution of the continuous process `T,p(ψ) = log det(SSRT (ψ)),
see Theorem 5, shows that the probability limit `p(ψ) is continuous.
Let O(ε) = {ψ : |ψ − ψ0| < ε} be a small neighborhood around ψ0 and denote N0 =

N ∩ {d − b ≥ δ0}. Because `p(ψ) is continuous and > `p(ψ0) if ψ 6= ψ0, see Lemma 4, and
N0\O(ε) is compact and does not contain ψ0, then minψ∈N0\O(ε)(`p(ψ) − `p(ψ0)) ≥ c0 > 0.
By the uniform convergence of `T,p(ψ) to `p(ψ), we can take for any η > 0 a T0(η, ε) such
that for all T ≥ T0(η, ε) we have

P ( min
ψ∈N0\O(ε)

|`T,p(ψ)− `p(ψ)| ≤ c0/3) ≥ 1− η/2,

and therefore on this set we have

min
ψ∈N0\O(ε)

(`T,p(ψ)− `p(ψ0)) = min
ψ∈N0\O(ε)

[(`T,p(ψ)− `p(ψ)) + (`p(ψ)− `p(ψ0))]

≥ −c0/3 + c0 = 2c0/3.

For any r ≤ p we now get, because `p(ψ0) = log det(Ω0), that on this set,

min
ψ∈N0\O(ε)

(`T,r(ψ)− log det(Ω0)) ≥ min
ψ∈N0\O(ε)

(`T,p(ψ)− log det(Ω0)) ≥ 2c0/3.

On the other hand, at the point ψ = ψ0 we have that for all T ≥ T1(ε, η),

P (|`T,r(ψ0)− log det(Ω0)| ≤ c0/3) ≥ 1− η/2,

which implies that the minimum of `T,r(ψ) is attained at a point in O(ε). Thus the maximum
likelihood estimator of ψ in model Hr exists with probability 1 − η and is contained in the
set O(ε), which proves consistency, see also van der Vaart (1998, Theorem 5.7).
The model with d = d0 is a submodel of Hr so the same uniform convergence holds. If

X−n = 0, n > N0, or if d = b then the same proof can be used with N and N ∩ {d = b},
respectively, instead of N0 = N ∩ {d− b ≥ δ0}.
The result in Theorem 6 on existence and consistency of the MLE involves analyzing the

likelihood function on the set of admissible values 1/2 ≤ b ≤ d ≤ d1 for any d1 ≥ d0. The
likelihood depends on product moments of ∆d+ibXt for all such (d, b), even if the true values
are fixed at some b0 and d0. Since the main term in Xt is ∆−d0+ εt, see (9), analysis of the
likelihood function leads to analysis of ∆d+ib−d0

+ εt, which may be asymptotically stationary,
nonstationary, or it may be critical in the sense that it may be close to the process ∆

−1/2
+ εt.

The possibility that ∆d+ibXt can be critical or close to critical, even if Xt is not, implies that
we have to split up the parameter space around values where ∆d+ibXt is close to critical and
give separate proofs of uniform convergence of the likelihood function in each subset of the
parameter space.
This is true in general for any fractional model, where the main term in Xt is typically

of the form ∆−d0+ εt, and analysis of the likelihood function requires analysis of ∆dXt and
therefore of a term like ∆d−d0

+ εt which may be close to critical. To the best of our knowledge,
all previous consistency results in the literature for parametric fractional models have either
been of a local nature or have covered only the set where ∆dXt is asymptotically stationary,
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due to the diffi culties in proving uniform convergence of the likelihood function when ∆dXt

is close to critical and hence on the whole parameter set, see the discussion in Hualde and
Robinson (2010b, pp. 2-3).1

Unlike previous consistency results, our Theorem 6 applies to an admissible parameter
set so large that it includes values of (d, b) where ∆d+ibXt is asymptotically stationary,
nonstationary, and critical. The inclusion of the near critical processes in the proof is made
possible by a truncation argument, allowing us to show that when v ∈ [−1/2− κ,−1/2 + κ]
for κ suffi ciently small, then the inverse of appropriately normalized product moments of
critical processes ∆v

+εt is tight in v, and further that it is convergent uniformly to zero for
(T, κ)→ (∞, 0), see (83) in Lemma A.11 below.

3.3 A reparametrization and the profile likelihood function for d, b, α,Ψ∗,Ω

We introduce the identified parameter θ = T d0−d+b−1/2β̄
′
0⊥(β − β0), so that

αβ′ = αβ′0 + T d−b−d0+1/2αθ′β′0⊥,

where β′β̄0 is absorbed in α. Let Vt = (W ′
−1t, {(∆d+ib −∆d+kb)X ′t}k−1

i=0 ,∆
d+kbX ′t)

′ and define,
for φ = (d, b, α,Ψ∗),

εt(φ, θ) = −αT d−b−d0+1/2θ′Z−1t + (−α,Ψ∗, Ip)Vt, (23)

see (13). The product moments needed to calculate the conditional likelihood function
−2T−1 logLT (φ, θ), see (14), are(

AT CT
C ′T BT

)
= T−1

T∑
t=1

(
T d−b−d0+1/2Z−1t

Vt

)(
T d−b−d0+1/2Z−1t

Vt

)′
. (24)

Note thatAT ,BT , and CT depend on ψ.We indicate the values for ψ = ψ0 byAT (ψ0),BT (ψ0),
and CT (ψ0). Finally we define

CεT (ψ0) = T−1/2

T∑
t=1

T−b0+1/2(∆d0−b0 −∆d0+kb0)β′0⊥Xtε
′
t. (25)

The conditional likelihood −2T−1 logLT (λ) can now be expressed as

log det(Ω) + tr{Ω−1(αθ′AT θα′ + (−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′ + 2αθ′CT (−α,Ψ∗, Ip)′)}. (26)

For fixed (d, b, α,Ψ∗,Ω) we estimate θ by regression and find

θ̂(ψ, α,Ψ∗,Ω) = −A−1
T CT (−α,Ψ∗, Ip)′Ω−1α(α′Ω−1α)−1, (27)

and the profile likelihood function −2T−1 logLprofile,T (ψ, α,Ψ∗,Ω) is then

log det(Ω) + tr{Ω−1(−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′}
−tr{(−α,Ψ∗, Ip)C ′TA−1

T CT (−α,Ψ∗, Ip)′Ω−1α(α′Ω−1α)−1α′Ω−1}.
1In independent and concurrent work, Hualde and Robinson (2010b) prove consistency for a large set of

admissible values in a univariate fractional model. Their consistency proof applies only to the univariate
case (see their discussion on p. 19 and p. 21), and even then it requires all moments finite, where our proof
requires only 8 moments in the univariate case.
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For (d, b) in a κ0-neighborhood of ψ0 and i = 0, 1, . . . , k, the processes Sit and Sw,−1,t, see
(18), and their derivatives with respect to (d, b) are stationary because d+ ib−d0 ≥ d−d0 ≥
−κ0 > −1/2. The process ∆d−b−d0

+ C0εt, however, is nonstationary, and when normalized by
T d−b−d0+1/2 will converge to fBM provided E|εt|q <∞ for some q > −1/(d− b− d0 + 1/2),
see (4).
The next theorem summarizes the asymptotic results for the product moments and their

derivatives with respect to ψ, denoted Dm, when ψ belongs to a small κ0-neighborhood of
ψ0. We show that the contribution from initial values can be neglected asymptotically and
that the stationary processes Szit, Swjt can replace Zit and Wjt. This means that the limit of
BT can be calculated as

B = V ar(S ′w,−1,t, S
′
0t, . . . , S

′
kt)
′.

Theorem 7 Let Assumption 1 be satisfied with (d0, b0) ∈ int(N ) and assume that E|εt|q <
∞ for some q > (b0−1/2)−1. Then, for κ0 suffi ciently small and m ≥ 0, it holds that DmAT ,
DmBT , and DmCT are tight and

(AT ,DmBT ,DmCT ) =⇒ (β′0⊥C0

∫ 1

0

Wd0−d+b−1W
′
d0−d+b−1duC

′
0β0⊥,D

mB, 0) (28)

as continuous processes on |ψ − ψ0| ≤ κ0. At the true value ψ0 = (d0, b0) we find

CεT (ψ0)
d→ β′0⊥C0

∫ 1

0

Wb0−1(dW )′. (29)

The same results hold for the models with d = b and d = d0.

Proof. From Theorem 3, see also (12), we find that ∆d+ibXt has the representation

∆d+ibXt = ∆d+ib
+ Xt + ∆d+ib

− Xt = ∆d+ib−d0
+ (C0εt + ∆b0

+Y
+
t ) +Dit(ψ), t = 1, . . . , T, (30)

where Dit(ψ) = ∆d+ib
+ µt + ∆d+ib

− Xt is the deterministic part generated by initial values. It
follows from Lemma A.8 that DmDit(ψ), suitably normalized, is uniformly small so that it
is enough to consider the stochastic parts of DmAT ,DmBT ,and DmCt.
By Theorem 3, C0εt + ∆b0Yt ∈ Z, where the class Z is given in Definition A.10. Lemma

A.11 therefore applies directly to product moments of ∆d+ib−d0
+ (C0εt + ∆b0

+Y
+
t ), because

q > (b0− 1/2)−1 and (d0, b0) ∈ int(N ) implies that we can choose κ0 such that q > (d0−d+
b− 1/2)−1 for |ψ − ψ0| ≤ κ0. Tightness of DmAT , DmBT , and DmCT and the convergence in
(28) then follow from Lemma A.11.
To prove (29) we insert (9) into (25) and find

CεT (ψ0) = T−b0
T∑
t=1

β′0⊥C0(∆−b0+ εt−1)ε′t +R1T +R2T ,

R1T = T−b0
T∑
t=1

β′0⊥((1−∆
(k+1)b0
+ )Y +

t − C0(∆kb0
+ − 1)εt)ε

′
t,

R2T = T−b0
T∑
t=1

β′0⊥C0(∆1−b0
+ εt − εt)ε′t,
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in addition to an initial value term which is negligible by Lemma A.8.
From (5) the main term converges to the limit in (29). The summands in R1T and R2T

are asymptotically stationary martingale difference sequences. In R1T the sum of conditional
variances of the summands is proportional to T , and because b0 > 1/2 we find R1T

P→ 0. In
R2T the sum of conditional variances of T−b0(∆1−b0

+ εt − εt)ε′t is

V ar(T−b0
T∑
t=1

vec((∆1−b0
+ εt − εt)ε′t)) = Ω0 ⊗ Ω0T

−2b0

T∑
t=1

t−1∑
j=1

π2
j(b0 − 1),

where

T−2b0

T∑
t=1

t−1∑
j=1

π2
j(b0 − 1) ≤ cT−2b0

T∑
t=1

t−1∑
j=1

j2(b0−2) ≤ cT 2 max(b0−3/2,0)+1−2b0 → 0

because b0 > 1/2. This completes the proof of (29).
We next define, for φ = (d, b, α,Ψ∗) and θ0 = 0, the residuals εt(φ) = εt(φ, 0) =

(−α,Ψ∗, Ip)Vt, c.f. (23). For (d, b) close to (d0, b0) we define the corresponding station-
ary process

et(φ) = Skt − αSw,−1,t +
k−1∑
i=0

ΨiSit = (−α,Ψ∗, Ip)(S ′w,−1,t, S
′
∗t, S

′
kt)
′, (31)

where Sit is given in (18). In the following we use Dφ and D2
φφ to denote first- and second-

order derivatives with respect to φ.

Lemma 8 We find for φ = φ0 that et(φ0) = εt(φ0) = εt, and furthermore we have

T−1

T∑
t=1

εt(φ)εt(φ)′
P→ Eet(φ)et(φ)′ = (−α,Ψ∗, Ip)B(−α,Ψ∗, Ip)′, (32)

DφEet(φ0)′Ω−1
0 et(φ0) = E[Dφet(φ0)′Ω−1

0 εt] + E[ε′tΩ
−1
0 Dφet(φ0)] = 0, (33)

D2
φφEet(φ0)′Ω−1

0 et(φ0) = E[Dφet(φ0)′Ω−1
0 Dφet(φ0)] = Σ0, (34)

where Σ0 is positive definite if Ψ0k 6= 0 or equivalently Γ0k 6= 0.

Proof. The transfer function for the stationary process C0εt + ∆b0Yt is f0(z)−1 = (1 −
z)d0Π0(z)−1 = (1 − y)Ψ0(y)−1 for y = 1 − (1 − z)b0 , see (3), where subscripts indicate that
we consider the characteristic and transfer functions for the process defined by the true
parameter values. We then find the transfer function for et(φ) to be

fφ(z) = (1− z)d−b−d0+b0Ψ(1− (1− z)b)|β=β0Ψ0(y)−1. (35)

For φ = φ0 we find fφ0(z) = 1 so that et(φ0) = εt. The result (32) follows from (28) of
Theorem 7. Differentiating the left hand side of (32), we find (33) and (34) using the results
that et(φ0) = εt and Dφet(φ0) and D2

φφet(φ0) are measurable with respect to ε1, . . . , εt−1.
Finally we prove that if Ψ0k 6= 0, then Σ0 is positive definite. If Σ0 were singular, there

would exist a linear combination of the processes Dφet(φ0) which had variance zero. We want
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to show that this is not possible when Ψ0k 6= 0. The statement that Σ0 is singular translates
into a statement that there is a linear combination of the derivatives of the transfer function
fφ(z) which, for φ = φ0, is zero. That is, for some set of values h = (d1, b1, A,G∗) of the
same dimensions as φ = (d, b, α,Ψ∗), the derivative Dsfφ0+sh(z)|s=0 = 0. We find from (2)
and (35) the derivatives, where we use y = 1− (1− z)b0 ,

Ddfφ0(z) = log(1− z)Ip = b−1
0 log(1− y)Ip,

Dbfφ0(z) = −b−1
0 log(1− y)(Ip + DyΨ0(y)(1− y)Ψ0(y)−1),

DΨifφ0(z) = (1− y)i, i = 0, . . . , k − 1,

Dαfφ0(z) = −β′0y.

This gives the directional derivative Dsfφ0+sh(z)|s=0 in the direction h = (d1, b1, A,G∗) which,
multiplied by Ψ0(y), is

b−1
0 log(1− y){(d1 − b1)Ψ0(y)− b1DyΨ0(y)(1− y)} − {Aβ′0yΨ0(y) +

k−1∑
i=0

Gi(1− y)iΨ0(y)}.

This should be zero for all y for Σ0 to be singular. Because log(1 − y) is not a polynomial
we have Aβ′0yΨ0(y) +

∑k−1
i=0 Gi(1− y)iΨ0(y) = 0 for all y, and hence A = 0 and Gi = 0, i =

0, . . . , k − 1. We then find that the coeffi cient to b−1
0 log(1− y) should be zero, so that

(d1 − b1)Ψ0(y)− b1DyΨ0(y)(1− y) = 0 for all y.

For y = 1 we find from (2) that Ψ0(1) = −α0β
′
0 and therefore (d1 − b1)α0β

′
0 = 0, and

hence b1 = d1, so that (d1 − b1)Ψ0(y) = 0. The coeffi cient of the highest order term in the
polynomial b1DyΨ0(y) is (−1)k+1b1(k+ 1)Ψ0k and for this to be zero when Ψ0k 6= 0 we must
have b1 = d1 = 0. Hence Σ0 is positive definite. From (2) Ψ0k 6= 0 is the same as Γ0k 6= 0.

3.4 Asymptotic distribution of the MLE

We first find asymptotic distributions of the score functions and the limit of the information
at the true value. We then expand the likelihood function in a neighborhood of the true
value and find asymptotic distributions of MLEs. By Lemmas A.2 and A.3 we only need
the information at the true value because the estimators are consistent (by Theorem 6) and
first and second derivatives are tight (by Theorem 7).

Lemma 9 Under Assumption 1 with (d0, b0) ∈ int(N ) and E|εt|q < ∞ for some q >
(b0 − 1/2)−1, the limit distribution of the Gaussian score function for model (1) at the true
value is given by (

T−1/2Dφ logLT (λ0)
T−1/2Dθ logLT (λ0)

)
d→
(

Nnφ (0,Σ0)

(vec
∫ 1

0
F0(dG0)′)′

)
, (36)

where Σ0 is given in (34), nφ = 1+1+pr+kp2 is the number of parameters in φ = (d, b, α,Ψ∗),

θ = T−d+b+d0+1/2β̄
′
0⊥(β − β0), F0 = β′0⊥C0Wb0−1, and G0 = α′0Ω−1

0 W .
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Proof. The score function for φ evaluated at the true value is

T−1/2Dφ logLT (λ0) = −T−1/2

T∑
t=1

ε′tΩ
−1
0 Dφεt(φ0, 0),

where T−1/2ε′tΩ
−1
0 Dφεt(φ0, 0) is a martingale difference with sum of conditional variances

T−1

T∑
t=1

Dφεt(φ0, 0)′Ω−1
0 Dφεt(φ0, 0)

P→ Σ0,

see Lemma 8. The result for the first block of (36) now follows from the central limit theorem
for martingales, see Hall and Heyde (1980, chp. 3).
The score function for θ evaluated at the true value is

T−1/2Dθ logLT (λ0) = −T 1/2

T∑
t=1

ε′tΩ
−1
0 Dθεt(φ0, 0) = T−b0

T∑
t=1

ε′tΩ
−1
0 (α0 ⊗ Z ′−1t)

= T−b0
T∑
t=1

(vec(Z−1tε
′
tΩ
−1
0 α0)′

d→ (vec

∫ 1

0

F0(dG0)′)′,

see (29) of Theorem 7, which proves the second block of (36).

Lemma 10 Under Assumption 1 with (d0, b0) ∈ int(N ) and E|εt|q < ∞ for some q >
(b0 − 1/2)−1, the Gaussian information per observation in model (1) for (φ, θ) = (φ0, 0)
converges in distribution to (

Σ0 0

0 α′0Ω−1
0 α0 ⊗

∫ 1

0
F0F

′
0du

)
, (37)

where Σ0 is given in (34) and F0 = β′0⊥C0Wb0−1.

Proof. The information matrices for the different parameters can be found from (26). From
(28) of Theorem 7 it holds that DmCT (ψ0)

P→ 0. Using this and (34) we find for θ0 = 0 that

−T−1D2
φφ logLT (λ0)

P→ Σ0,

−T−1D2
θθ logLT (λ0) = α′0Ω−1

0 α0 ⊗AT (ψ0)
d→ α′0Ω−1

0 α0 ⊗
∫ 1

0

F0F
′
0du,

−T−1D2
θφ logLT (λ0) = D2

θφtr{Ω−12αθ′CT (−α,Ψ∗, Ip)′}|λ=λ0
P→ 0.

We now apply the previous two lemmas in the usual expansion of the likelihood score
function to obtain the asymptotic distribution of the MLE.
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Theorem 11 Under the assumptions of Theorems 5 and 6, (d0, b0) ∈ int(N ), and E|εt|q <
∞ for some q > (b0−1/2)−1, the asymptotic distribution of the Gaussian maximum likelihood
estimators φ̂ = (d̂, b̂, α̂, Ψ̂∗) and β̂ for model (1) is given by(

T 1/2 vec(φ̂− φ0)

T b0 β̄
′
0⊥(β̂ − β0)

)
d→
(

Nnφ

(
0,Σ−1

0

)
(
∫ 1

0
F0F

′
0du)−1

∫ 1

0
F0(dV0)′

)
, (38)

where F0 = β′0⊥C0Wb0−1 and V0 = (α′0Ω−1
0 α0)−1α′0Ω−1

0 W are independent. It follows that the
asymptotic distribution of T b0 vec(β̄

′
0⊥(β̂ − β0)) is mixed Gaussian with conditional variance

given by

(α′0Ω−1
0 α0)−1 ⊗ (

∫ 1

0

F0F
′
0du)−1. (39)

In the models with d = d0 or d = b the same results hold with the relevant restriction imposed.

Proof. To find limit distributions of T 1/2(φ̂−φ0) and T b0 β̄′0⊥(β̂−β0) = T 1/2θ̂, we apply the
usual expansion of the score function around φ = φ0, β = β0 (or θ = 0), and Ω = Ω̂. Using
Taylor’s formula with remainder term we find for lT = logLT that

0 =

(
T 1/2DφlT (φ0, 0, Ω̂)

T 1/2DθlT (φ0, 0, Ω̂)

)
+

(
DφφlT (λ∗) DφθlT (λ∗)
DθφlT (λ∗∗) DθθlT (λ∗∗)

)(
T 1/2 vec(φ̂− φ0)

T 1/2 vec θ̂

)
.

Here the asterisks indicate intermediate points between (φ̂, θ̂, Ω̂) and (φ0, 0, Ω̂), which there-
fore converge to (φ0, 0,Ω0) in probability by Theorem 6.
Because the first and second derivatives are tight, see Theorem 7 and Lemma A.2, and

(λ∗, λ∗∗)
P→ (λ0, λ0), see Theorem 6, we apply Lemma A.3 to replace intermediate points

by (φ0, 0,Ω0). The score functions normalized by T 1/2 and their weak limits for λ = λ0 are
given in Lemma 9 and the limit of the information per observation in Lemma 10, see (37).
Pre-multiplying by its inverse we find (38). The process

F0 = β′0⊥C0Wb0−1 =
∫ u

0
(u− s)b0−1β′0⊥C0dW (s)

is a function of α′0⊥W, see (8), whereas V0 = (α′0Ω−1
0 α0)−1α′0Ω−1

0 W depends only on α′0Ω−1
0 W,

so that F0 and V0 are independent and the limit distribution of T b0 β̄
′
⊥0(β̂ − β0) is mixed

Gaussian.
If d = d0 or d = b, the same expansions can be made and similar results derived.
The result in Theorem 11 shows under i.i.d. errors with suitable moments conditions,

that φ̂ is asymptotically Gaussian, while the estimated cointegration vectors β̂ are locally
asymptotically mixed normal (LAMN). Results like these are well known from the standard
(non-fractional) cointegration model, but are much less developed for fractional models, see
the references in Section 1. These are important results, which allow asymptotically standard
(chi-squared) inference on all parameters of the model —including the cointegrating relations
and orders of fractionality —using Gaussian likelihood ratio tests.
Furthermore, this result has optimality implications for the estimation of β in the cofrac-

tional VAR. In our LAMN case with stochastic information matrix, β̂ is asymptotically
optimal under the additional assumption of Gaussian errors in the sense that it has asymp-
totic maximum concentration probability, see, e.g., Phillips (1991) and Saikkonen (1991) for
the precise definitions in the context of the standard cointegration model.
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4 Likelihood ratio test for cofractional rank
We consider the model

∆dXt = Π∆d−bLbXt +
k∑
i=0

Γi∆
dLibXt + εt (40)

and want to test the hypothesis Hr : rank(Π) = r against the alternative Hp : rank(Π) = p.
Let `T,r(ψ) be the profile likelihood function, where α, β,Γ∗,Ω have been concentrated out
by regression and reduced rank regression, see Section 3.1, and let ψ̂r be the MLE of ψ in
model Hr, r = 0, 1, . . . , p. The likelihood ratio (LR) statistic is

−2 logLR(Hr|Hp) = `T,p(ψ̂p)− `T,r(ψ̂r). (41)

Theorem 12 Under the assumptions of Theorem 11 the likelihood ratio statistic (41) in
model (40) has asymptotic distribution

−2 logLR(Hr|Hp)
d→ tr{

∫ 1

0

(dB)B′b0−1(

∫ 1

0

Bb0−1B
′
b0−1du)−1

∫ 1

0

Bb0−1(dB)′}, (42)

where B is (p− r)-dimensional standard BM and Bb0−1 the corresponding fBM.
If we take an alternative Π = αβ′ + α1β

′
1 = (α, α1)(β, β1)′, where α1, β1 are p × r1 of

rank r1 and (α, α1) and (β, β1) are of rank r + r1 > r, and hence rank(Π) > r, and assume
that Assumption 1 is satisfied under the alternative, then

−2 logLR(Hr|Hp)
P→∞. (43)

In the models with d = d0 or d = b the same results hold.

Proof. Proof of (42): We first derive the limit result (42) assuming that rank(Π) = r, so
that Π = αβ′ where α and β are p × r of rank r. It is convenient to introduce the extra
hypothesis that Π = αβ′ and β = β0, or Π = αβ′0, see Lawley (1956), and Johansen (2002)
for an application to the cointegrated VAR model.
Then LR(Hr|Hp) is

maxΠ=αβ′ L

maxL
=

maxΠ=αβ′0
L

maxL
/

maxΠ=αβ′0
L

maxΠ=αβ′ L
=
LR(Hr, β = β0|Hp)

LR(β = β0|Hr)
.

The statistic LR(Hr, β = β0|Hp) is the test that Π = αβ′0 (with rank r) against Π un-
restricted, and LR(β = β0|Hr) is the test that β = β0 in the model with Π = αβ′ and
rank(Π) = r. We next find a first order approximation to each statistic and subtracting
them we find the asymptotic distribution.
In both cases we apply the result that when, in a statistical problem with vector valued

parameters ξ and η, the limiting observed information per observation is block diagonal and
tight as a continuous process in a neighborhood of the true value, then a Taylor expansion
of the log likelihood ratio statistic and the score function shows that

−2 logLR(ξ = ξ0) = Dξ logLT (ξ0, η0)[D2
ξξ logLT (ξ0, η0)]−1Dξ logLT (ξ0, η0)′ + oP (1), (44)
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see JN (2010, Theorem 14) for a detailed discussion of the univariate case.
A first order approximation to −2 logLR(β = β0|Hr) : It follows from Lemma 10 that,

for ξ = θ, η = (d, b, α,Ψ∗,Ω), the asymptotic information per observation is block diagonal
at the true value, and Theorem 7 and Lemma A.2 show that the information is tight as a
process in the parameters. Thus we have that −2 logLR(β = β0|Hr) is

(vec CεT (ψ0)Ω−1
0 α0)′(α′0Ω−1

0 α0 ⊗AT (ψ0))−1 vec CεT (ψ0)Ω−1
0 α0 + oP (1) (45)

= tr{(α′0Ω−1
0 α0)−1α′0Ω−1

0 CεT (ψ0)′AT (ψ0)−1CεT (ψ0)Ω−1
0 α0}+ oP (1),

using the relation tr{ABCD} = (vecB′)′(A′ ⊗ C) vecD.
A first order approximation to −2 logLR(Hr, β = β0|Hp) : In model (40) we introduce

a convenient reparametrization by α = Πβ̄0 and ξ
′ = T−δ−1−1/2Πβ̄0⊥, so that Π = αβ′0 +

T δ−1+1/2ξ′β′0⊥ and the equations are

∆d+kbXt = αW−1t + T δ−1+1/2ξ′Z−1t +
k∑
i=1

Ψi(∆
d+ib −∆d+kb)Xt + εt.

The likelihood function −2T−1 logLT (ξ, η) conditional on initial values becomes

log det(Ω) + tr{Ω−1(ξ′AT ξ + (−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′ + 2ξ′CT (−α,Ψ∗, Ip)′)},

where η = (d, b, α,Ψ∗,Ω). This expression is the same as the conditional likelihood (26)
except that αθ′ is replaced by ξ′. The properties of the likelihood function and its derivatives
can be derived from those of AT ,BT , and CT , and it is seen that the second derivative as a
function of the parameters is tight and that the limit is block diagonal. It follows as above
that

−2 logLR(Hr, β = β0|Hp) = tr{Ω−1
0 CεT (ψ0)′AT (ψ0)−1CεT (ψ0)}+ oP (1). (46)

A first order approximation to −2 logLR(Hr|Hp) : Subtracting (45) from (46) and ap-
plying the identity

Ω−1
0 − Ω−1

0 α0(α′0Ω−1
0 α0)−1α′0Ω−1

0 = α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥

we find that −2 logLR(Hr|Hp) has the same limit as

tr{α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥CεT (ψ0)′AT (ψ0)−1CεT (ψ0)} (47)

d→ tr{α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥

∫ 1

0

(dW )F ′0(

∫ 1

0

F0F
′
0du)−1

∫ 1

0

F0(dW )′},

which is the desired result for B = (α′0⊥Ω0α0⊥)−1/2α′0⊥W.
Proof of (43): We want to analyze the alternative that Π = αβ′+α1β

′
1 = (α, α1)(β, β1)′,

where rank(Π) > r, and apply the same methods as in the proof of (42). Under the
alternative there are more parameters and therefore the information matrix is larger, but
still asymptotically block diagonal. The information for the parameters (d, b, α, β,Ψ∗,Ω) is
therefore also asymptotically block diagonal so that (44) also holds under the alternative.
Without loss of generality we can set β1 = β0⊥ζ0 for a conforming matrix ζ0, so that

ζ ′0β
′
0⊥Xt is F(d0 − b0) under the alternative. Moreover, Assumption 1 holds under the

alternative, and in particular det((α0, α1)⊥Γ0(β0, β1)⊥) 6= 0, so that ζ ′0⊥β
′
0⊥Xt is still F(d0).



Likelihood inference for cofractional processes 21

Under the alternative we do not have εt(φ0) = εt but instead

εaltt (φ0) = εt + α1ζ
′
0Z

0
−1t, (48)

where ζ ′0Z
0
−1t = (∆d0−b0

+ − ∆d0+kb0
+ )ζ ′0β

′
0⊥Xt is an asymptotically stationary F(0) process.

To analyze the approximation (47) we define CaltεT = T−b0
∑T

t=1 Z
0
−1tε

alt
t (φ0)′ and consider the

matrix
Calt′εT AT (ψ0)−1CaltεT ≥ (ζ ′0CaltεT )′(ζ ′0AT (ψ0)ζ0)−1(ζ ′0CaltεT ) (49)

and want to show that the right hand side tends to infinity in probability. We find from (78)
of Lemma A.11 and (48) that

T b0−1ζ ′0CaltεT = T−1

T∑
t=1

ζ ′0Z
0
−1tε

′
t + T−1

T∑
t=1

ζ ′0Z
0
−1tZ

0′
−1tζ0α

′
1,

which converges in probability toE(ζ ′0S
0
z,−1,tS

0′
z,−1,tζ0α

′
1) = V ar(ζ ′0S

0
z,−1,t)α

′
1, where ζ

′
0S

0
z,−1,t =

(1−∆(k+1)b0)(β0⊥ζ0)′Yt is a stationary F(0) process. We also find that

T 2b0−1ζ ′0AT (ψ0)ζ0 = T−1

T∑
t=1

ζ ′0Z
0
−1tZ

0′
−1tζ0

P→ E(ζ ′0S
0
z,−1,tS

0′
z,−1,tζ0),

because under the alternative ζ ′0Z
0
−1t is an asymptotically stationary F(0) process. Inserting

both these expressions into (49) we see that the right hand side multiplied by T−1 converges
in probability to the deterministic limit α1V ar(ζ

′
0S

0
z,−1,t)α

′
1 > 0, which proves (43).

The distribution (42) of the LR test for cointegration rank is a fractional version of the
distribution of the trace test in the cointegrated I(1) VAR model, see Johansen (1988). Note
that it is the parameter b0, describing the “strength” of the cofractional relations, which
determines the order of the fBMs in the distribution. The parameter d0 does not appear in
the distribution. For a given b0, either hypothesized or estimated (b̂r), the distribution (42)
can easily be simulated to obtain critical values. Table 1 provides quantiles of (42) for a
range of values of b0.
To find the cofractional rank a sequence of tests, for a given size δ, can be conducted in

the usual way: test Hr for r = 0, 1, . . . until rejection, and the estimated rank is then the
last value of r which is not rejected by the sequence of tests. If the true rank is r0, then the
consistency of the LR rank test in Theorem 12 shows that any test of r < r0 will reject with
probability one as T →∞. Thus, Pr0(r̂ < r0)→ 0. Since the asymptotic size of the test for
rank is δ we also have that Pr0(r̂ = r0) → 1 − δ and it follows that Pr0(r̂ > r0) → δ. This
shows that r̂ is almost consistent, in the sense that it attains the true value with probability
1− δ as T →∞.

5 Conclusion
We have generalized the well known likelihood based inference results for the cointegrated
VAR model,

∆Xt = αβ′Xt−1 +

k∑
i=1

Γi∆Xt−i + εt,
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Table 1: Simulated quantiles of the distribution (42)
b0 level p− r = 1 p− r = 2 p− r = 3 p− r = 4 p− r = 5 p− r = 6 p− r = 7 p− r = 8
0.6 0.90 2.57 8.01 15.63 25.58 38.21 53.11 70.39 90.34

0.95 3.71 9.58 17.81 28.35 41.59 57.36 75.23 95.35
0.99 6.34 13.50 22.79 34.30 48.36 65.35 84.38 105.68

0.8 0.90 2.77 9.17 18.35 30.89 46.74 65.37 87.02 112.04
0.95 4.01 10.91 20.79 33.92 49.90 69.75 92.20 117.76
0.99 6.63 14.74 26.17 39.69 57.27 78.64 102.03 128.76

1.0 0.90 2.98 10.54 21.56 36.83 56.03 79.17 105.80 136.87
0.95 4.20 12.40 24.09 39.84 59.54 83.59 111.11 142.57
0.99 6.98 16.17 29.70 45.74 66.95 92.47 121.14 154.65

1.2 0.90 3.21 11.42 24.08 41.46 63.26 90.08 120.81 156.11
0.95 4.41 13.42 26.75 44.52 67.08 94.52 125.63 162.28
0.99 7.27 17.47 32.06 50.40 74.80 103.25 135.81 173.12

1.4 0.90 3.39 12.04 25.64 43.93 67.30 95.97 128.75 166.90
0.95 4.57 13.98 28.18 47.03 71.09 100.71 133.96 172.74
0.99 7.58 18.25 33.65 54.01 79.21 109.34 143.92 184.27

Note: Simulations are based on 10,000 replications and sample size 1000.

to the cointegrated fractional VAR model,

∆dXt = αβ′∆d−bLbXt +
k∑
i=1

Γi∆
dLibXt + εt, 1/2 ≤ b ≤ d.

We have analyzed the conditional Gaussian likelihood given initial values, which we assumed
bounded. We have shown existence and consistency and derived the asymptotic distribution
of the maximum likelihood estimator. In the asymptotic analysis we assumed i.i.d. errors
with suitable moment conditions. We have derived the asymptotic distribution of the test
for the rank of αβ′ and shown that it is expressed in terms of fractional Brownian motion
Bb−1, that inference on β is asymptotically mixed Gaussian, and finally that the estimators
of the remaining parameters are asymptotically Gaussian. The same type of results are valid
for the two submodels with 1/2 ≤ d = b and 1/2 ≤ b ≤ d = d0, respectively.
The main technical contribution in this paper is the proof of existence and consistency of

the maximum likelihood estimator, which allows standard likelihood theory to be applied.
This involves an analysis of the influence of initial values as well as proving tightness and
uniform convergence of product moments of processes that can be critical and nearly critical,
and this was made possible by a truncation argument.

Appendix A Product moments
In this appendix we evaluate product moments of stochastic and deterministic terms and
find their limits based on results for convergence in distribution of probability measures on
Cp[0, 1]m and Dp[0, 1]m.

A.1 Results on convergence in distribution

For a multivariate random variable Z with E|Z|q <∞ the Lq norm is ||Z||q = E(|Z|q)1/q.

Lemma A.1 If Xn(s) is a sequence of p-dimensional continuous processes on [0, 1]2 for
which

||Xn(s)||4 ≤ c, and ||Xn(s)−Xn(t)||4 ≤ c|s− t| (50)
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for some constant c > 0, which does not depend on n, s, or t, then Xn(s) is tight on [0, 1]2.

Proof. This is a consequence of Kallenberg (2001, Corollary 16.9).

Lemma A.2 If the continuous process Xn(s) is tight on [0, 1]m and F : Rk × Rp 7−→ Rq is
continuously differentiable, then Zn(u, s) = F (u,Xn(s)) is tight on [0, 1]k+m.

Proof. JN (2010, Lemma A.2).

Lemma A.3 Assume that Sn
P→ s0 ∈ [0, 1]m and that the p × p matrix-valued continuous

process Xn(s) is tight on [0, 1]m. Then Xn(Sn)−Xn(s0)
P→ 0.

Proof. See JN (2010, Lemma A.3) for the univariate (p = 1) result.

A.2 Bounds on product moments

Our proof of tightness applies the result of Kallenberg (2001) in Lemma A.1 and involves
evaluation of the 4th moment of product moments of linear processes. We give a number of
evaluations of such moments in terms of the quantity

ξT (ζ1, ζ2) = max
1≤n,m≤T

T∑
t=max(n,m)

|ζ1,t−nζ2,t−m|, (51)

where ζ1n, ζ2n, n = 0, 1 . . . , are real coeffi cients.

Lemma A.4 For i = 1, 2, let εit be i.i.d.(0, σ2
i ) with E|εit|8 <∞. Assume that ξin are real

coeffi cients satisfying
∑∞

n=0 |ξin| < ∞, and define Z+
it =

∑t−1
n=0 ξinεit−n. Let ζ1n, ζ2n be real

coeffi cients, then

||T−1

T∑
t=1

(
t−1∑
n=0

ζ1nZ
+
1t−n)(

t−1∑
m=0

ζ2mZ
+
2t−m)||4 ≤ cξT (ζ1, ζ2). (52)

Proof. We find

E[T−1

T∑
t=1

t∑
n=1

t∑
m=1

ζ1,t−nZ
+
1nζ2,t−mZ

+
2m]4 = T−4

∑
(1)

[

4∏
k=1

ζ1,tk−nkζ2,tk−mk ]E[

4∏
k=1

Z+
1nk
Z+

2mk
],

where the summation
∑

(1) is over 1 ≤ nk,mk ≤ tk ≤ T, k = 1, 2, 3, 4. This on the other
hand is bounded by

(
4∏

k=1

max
nk,mk

T∑
tk=max(nk,mk)

|ζ1,tk−nkζ2,tk−mk |)T
−4
∑
(2)

|E
4∏

k=1

Z+
1nk
Z+

2mk
|

≤ ξ4
T (ζ1, ζ2)T−4

∑
(2)

|E
4∏

k=1

Z+
1nk
Z+

2mk
|,

where the summation
∑

(2) is over 1 ≤ nk,mk ≤ T, k = 1, 2, 3, 4.
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We want to show that the second factor is bounded, and find, using Z+
it =

∑t−1
n=0 ξinεit−n,

∑
(2)

E[
4∏

k=1

Z+
1nk
Z+

2mk
] =

∑
(3)

[
4∏

k=1

ξ1ik
ξ2jk

]E[
4∏

k=1

ε1nk−ikε2mk−jk ].

The sum
∑

(3) extends over 0 ≤ ik < nk ≤ T, 0 ≤ jk < mk ≤ T, k = 1, 2, 3, 4. The number
of terms is proportional to T 16, but most are zero because E(εit) = 0. We get a contribution
if the eight subscripts nk − ik,mk − jk are equal in pairs, triples, or more. If the indices are
equal in four pairs (2, 2, 2, 2) there are four constraints, the combinations (3, 3, 2) and (4, 2, 2)
give five constraints, whereas (4, 4) gives six constraints, and finally all equal, (8), gives seven
constraints. Thus we get the fewest constraints with (2, 2, 2, 2) and hence the largest number
of terms. The four constraints leave twelve summations. Next note that

∑∞
i=0 |ξ1i| < ∞,

and
∑∞

i=0 |ξ2i| < ∞, so the eight summations over the indices ij, jk, k = 1, 2, 3, 4 are finite,
which leaves four summations. However, with four summations we can get at most T 4 terms,
which shows that T−4

∑
(2) |E

∏4
k=1 Z

+
1nk
Z+

2mk
| is bounded by a coeffi cient that only depends

on ξ1i and ξ2i, and not on T, ζ1n, or ζ2m, which proves (52).

Lemma A.5 For |u| ≤ u0 and all j ≥ 1 it holds that

|Dmπj(−u)| ≤ c(u0)(1 + log j)mj−u−1, (53)

|DmT uπj(−u)| ≤ c(u0)T u(1 + | log
j

T
|)mj−u−1, (54)

uniformly in u.

Proof. See JN (2010, Lemma B.3).
The next Lemma is the key result on the evaluation of ξT (ζ1, ζ2) and hence the empirical

moments for a class of processes defined by coeffi cients (ζ1n(a1), ζ2n(a2)) satisfying conditions
of the type

|ζ1,0(a)| ≤ 1, |ζ1n(a)| ≤ c(1 + log n)m1n−a−1, n ≥ 1, (55)

|ζ∗1,0(a)| ≤ 1, |ζ∗1n(a)| ≤ cT a+1/2(1 + log
n

T
)m1n−a−1, n ≥ 1, (56)

where c does not depend on a or n. These inequalities are satisfied by the fractional coeffi -
cients and their derivatives, see Lemma A.5
We repeatedly use the elementary inequalities, for κ ≥ 0,

T∑
n=1

n−u−1 ≤ cκ−1, u ≥ κ, (57)

cκ−1(1− T−κ) ≤
T∑
n=1

n−u−1, u ≤ κ. (58)

Lemma A.6 Let ζ1n(a1), ζ2n(a2), ζ∗1n(a1), and ζ∗2n(a2) satisfy (55)—(56), and let −1 ≤ ai ≤
a0, i = 1, 2, and 0 < κ < 1/2. Then, for any a,
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(i) Uniformly for min(a1 + 1, a2 + 1, a1 + a2 + 1) ≥ a we have

ξT (ζ1(a1), ζ2(a2)) ≤ c

{
(1 + log T )m1+m2+1T−a,
a−1,

a ≤ 0,
a > 0.

(59)

(ii) Uniformly for max(a1, a2, a1 + a2 + 1) ≤ −κ we have

ξT (ζ∗1(a1), ζ∗2(a2)) ≤ cκ−1. (60)

(iii) Uniformly for a1 ≥ −1/2 + a and a2 ≤ −1/2− κ we have

ξT (ζ1(a1), ζ∗2(a2)) ≤ c(1 + log T )m1+m2+1T−min(a,κ) (61)

Proof. In evaluating (51) we focus on terms with t > max(m,n), because the analysis with
t = m or t = n is straightforward.
Proof of (59): For t > max(m,n) we first apply (55) and therefore bound the summation∑T
t=max(n,m)+1 |ζ1,t−n(a1)ζ2,t−m(a2)| by

T∑
t=max(n,m)+1

c(1 + log(t− n))m1(t− n)−a1−1c(1 + log(t−m))m2(t−m)−a2−1.

For a ≤ 0, we bound the log factors by (1 + log T ) and (t − n)−a1−1(t − m)−a2−1 ≤ (t −
max(n,m))−(a1+a2+1)−1. Then the bound for ξT (ζ1(a1), ζ2(a2)) follows because

T∑
t=max(n,m)+1

(t−max(n,m))−a−1 ≤ c(log T )T−a for a ≤ 0.

For a > 0 we bound (1 + log(t− n))m1(t− n)−a/3 and (1 + log(t−m))m2(t−m)−a/3 by
a constant. Then ξT (ζ1(a1), ζ2(a2)) is by (57) bounded by

max
1≤n,m≤T

T∑
t=max(n,m)+1

(t−max(n,m))−a+2a/3−1 ≤ ca−1.

Proof of (60): We find that ξT (ζ∗1(a1), ζ∗2(a2)) is bounded by a constant times

T−1 max
1≤n,m≤T

T∑
t=max(n,m)+1

(1 + log(
t− n
T

))m1(
t− n
T

)−(a1+1)(1 + log(
t−m
T

))m2(
t−m
T

)−(a2+1)

→ max
0≤x,y≤1

∫ 1

max(x,y)

(1 + log(s− x))m1(s− x)−(a1+1)(1 + log(s− y))m2(s− y)−(a2+1)ds

for T →∞. This is uniformly bounded by cκ−1 if max(a1, a2, a1 + a2 + 1) ≤ −κ.
Proof of (61): We evaluate the log factors by (1 + log T ) and T a2+1/2(t−m)−(a2+1/2+κ) ≤

T a2+1/2T−(a2+1/2+κ) = T−κ. Because a1 + 1 ≥ 0 and 1/2− κ > 0 we find that the remaining
terms in the summation are bounded as

(t− n)−a1−1(t−m)−1/2+κ ≤ (t−max(n,m))−a1−1−1/2+κ ≤ (t−max(n,m))−a−1+κ,

where the last inequality follows from −a1 ≤ 1/2 − a. Summing over t gives the bound
T−κTmax(−a+κ,0) = T−min(a,κ).
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Lemma A.7 Let εt be i.i.d.(0,Ω) with E|εt|8 < ∞ and define for t > N the independent
processes U+

it =
∑N−1

n=0 ζ inεt−n and V
+
it =

∑t−1
m=N ζ imεt−m. Then

||T−1

T∑
t=N+1

U+
1tV

+
2t
′||44 ≤ cNT−1ξN(ζ1, ζ1)ξT (ζ1, ζ1)ξT (ζ2, ζ2)2, (62)

||T−1

T∑
t=N+1

U+
1tU

+
2t
′||44 ≤ cN3T−3 max(ξN(ζ1, ζ1), ξN(ζ2, ζ2), ξN(ζ1, ζ2))4, (63)

|V ar(T−1

T∑
t=N+1

U+
1tU

+′
2t )| ≤ NT−1ξN(ζ1, ζ1)ξN(ζ2, ζ2). (64)

Proof. The coordinate processes in each row of U+
it and V

+
it have the same structure, but

with different ε, so we prove the result for univariate i.i.d.(ε1t, ε2t) with general variance
matrix {σij}i,j=1,2.
Proof of (62): We find

E[T−1

T∑
t=N+1

N−1∑
n=0

t−1∑
m=N

ζ1nε1t−nζ2mε2t−m]4 = T−4
∑
(1)

[
4∏

k=1

ζ1nk
ζ2mk

]E[
4∏

k=1

ε1tk−nkε2tk−mk ],

where the summation
∑

(1) is over 0 ≤ nk < N ≤ mk < tk ≤ T, k = 1, 2, 3, 4. However,

E[
∏4

k=1 εtk−nkεtk−mk ] is non-zero only if the subscripts are equal in pairs. Moreover, because
nk < N ≤ mk we have tk − nk > tk −mk. This means that not all pairs can be of the form
ti−ni = tj−mj because

∑4
i=1 ti−ni >

∑4
j=1 tj−mj. Thus there is always at least one pair of

the form ti−ni = tj−nj and one of the form tk−mk = tl−ml.We then find nj = tj−ti+ni and
the summation over (ni, nj) gives σ11|

∑N−1
ni=1 ζ1,ni+h

ζ1ni
| ≤ σ11ξN(ζ1, ζ1) and the restriction

|ti − tj| = |ni − nj| ≤ N . Similarly the pair tk −mk = tl −ml gives rise to the contribution
σ22|

∑T
mk=N ζ2,mk+hζ2mk

| ≤ σ22ξT (ζ2, ζ2) and the restriction |tk − tl| = |mk −ml| ≤ T − N
from the summation over (mk,ml).
If the two remaining pairs are matched similarly we get the factor ξN(ζ1, ζ1)2ξT (ζ2, ζ2)2.

What remains is the summation over (t1, . . . , t4) with two restrictions of the form |ti−tj| ≤ N
and two of the form |tk − tl| ≤ T −N. The number of such terms is bounded by N2T 2, and
we find the total contribution from

∑
(1) is

cN2T 2ξN(ζ1, ζ1)2ξT (ζ2, ζ2)2 ≤ cT 3NξN(ζ1, ζ1)ξT (ζ1, ζ1)ξT (ζ2, ζ2)2.

If the last two pairs have the form ti − ni = tj −mj we find ni = ti − tj + mj and the
summation over (ni,mj) becomes

|σ12||
T∑

mj=N

ζ1,mj+h
ζ2mj
| ≤ |σ12|ξT (ζ1, ζ2),

and the restriction on (t1, . . . , t4) becomes |ti− tj| ≤ T −N. The contribution in this case is
therefore at most

cξN(ζ1, ζ1)ξT (ζ2, ζ2)ξT (ζ1, ζ2)2 ≤ cξN(ζ1, ζ1)ξT (ζ1, ζ1)ξT (ζ2, ζ2)2,
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and the number of terms in the summation over (t1, . . . , t4) with only one restriction |ti−tj| ≤
N is NT 3, which proves the result.
Proof of (63): The same calculation gives

E[T−1

T∑
t=N+1

N−1∑
n=0

N−1∑
m=0

ζ1nε1t−nζ2mε2t−m]4 = T−4
∑
(2)

[

4∏
k=1

ζ1nk
ζ2mk

]E[
4∏

k=1

ε1tk−nkε2tk−mk ],

where the summation
∑

(2) is over 0 ≤ nk,mk < N < tk ≤ T, k = 1, 2, 3, 4.
Again we have to match the subscripts tk − nk, tk − mk in pairs and we find that any

match will give a contribution of the form ξN(ζ1, ζ1), ξN(ζ1, ζ2), or ξN(ζ2, ζ2) but always
with a restriction on (t1, . . . , t4) of the form |ti − tj| ≤ N .
Thus we find the contribution is bounded by max(ξN(ζ1, ζ1), ξN(ζ1, ζ2), ξN(ζ2, ζ2))4 and

the number of terms in the summation over (t1, . . . , t4) with four restrictions of the form
|ti − tj| ≤ N is N3T. This proves the result.
Proof of (64): We find as above

E[T−1

T∑
t=N+1

N−1∑
n=0

N−1∑
m=0

ζ1nε1t−nζ2mε2t−m]2 = T−2
∑
(3)

[
2∏

k=1

ζ1nk
ζ2mk

]E[
2∏

k=1

ε1tk−nkε2tk−mk ],

where the summation
∑

(3) is over 0 ≤ nk,mk < N < tk ≤ T, k = 1, 2. We get a contribution
if the indices tk − nk, tk − mk are equal in pairs and we find for t1 − n1 = t1 − m1 and
t2 − n2 = t2 −m2 the contribution

σ2
12

(
T −N
T

)2 2∏
k=1

N−1∑
nk=0

ζ1nk
ζ2nk

= [E(T−1

T∑
t=N+1

U+
1tU

+
2t)]

2,

which is the expectation squared which subtracted gives the variance.
The other terms we find if

t1 − n1 = t2 − n2 and t1 −m1 = t2 −m2,

t1 − n1 = t2 −m2 and t1 −m1 = t2 − n2.

The first gives for n1 = t1 − t2 + n2 and m1 = t1 − t2 +m2

c

N−1∑
n2=0

ζ1n2ζ1,n2+t1−t2

N−1∑
m2=0

ζ2m2
ζ2,m2+t1−t2 ≤ cξN(ζ1, ζ1)ξN(ζ2, ζ2),

and summing over (t1, t2) with the restriction |t1 − t2| ≤ N we find that the contribution
from

∑
(3) is

cNTξN(ζ1, ζ1)ξN(ζ2, ζ2).

In the other case we get

cNTξN(ζ1, ζ2)ξN(ζ1, ζ2) ≤ cNTξN(ζ1, ζ1)ξN(ζ2, ζ2),

which was to be proved.
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A.3 Limit theory for product moments of deterministic terms

The next lemma gives the results for the impact of the initial values Dit(ψ) = ∆d+ib
+ µt +

∆d+ib
− Xt, see (30), in the models considered, using the bounds in JN (2010, Lemma C.1).

We let Dm be the derivative with respect to d+ ib.

Lemma A.8 For κ0 > 0 and κ1 > 0 we have

(i) For δi = d+ ib− d0, ηi = d+ ib− d0 + b0, Dit(ψ) = ∆d+ib
+ µt + ∆d+ib

− Xt, and d− b ≥ κ0,

max
−1/2−κ1≤δi≤u1

|Dmβ′0⊥Dit(ψ)| → 0 as t→∞, (65)

max
−u0≤δi≤−1/2−κ1

max
1≤t≤T

|DmT δi+1/2β′0⊥Dit(ψ)| → 0 as T →∞, (66)

max
−1/2−κ1≤ηi≤u1

|Dmβ′0Dit(ψ)| → 0 as t→∞, (67)

max
−u0≤ηi≤−1/2−κ1

max
1≤t≤T

|DmT ηi+1/2β′0Dit(ψ)| → 0 as T →∞. (68)

(ii) In the model with d = d0, the results (65)—(68) hold.
(iii) If the initial values satisfy X−n = 0, n > N0, then (65)—(68) hold for d− b ≥ 0.
(iv) In the model with d = b, (65)—(68) hold.

Proof. From (6) and Theorem 3 we find

µt = −Π+(L)−1Π−(L)Xt = −(C0∆−d0+ + ∆−d0+b0
+ F+(L))

k∑
j=−1

Ψ0i∆
d0+jb0
− Xt

= −
k∑
j=0

C0Ψ0i∆
−d0
+ ∆d0+jb0

− Xt −
k∑

j=−1

F+(L)Ψ0i∆
−d0+b0
+ ∆d0+jb0

− Xt (69)

because C0Ψ0,−1 = −C0α0β
′
0 = 0. Therefore, Dit(ψ) = ∆d+ib

+ µt + ∆d+ib
− Xt is a linear com-

bination of terms G+(L)∆u
+∆v
−Xt where u and v are defined by either u = d + ib − γ0,

v = d0+jb0 ≥ γ0 (γ0 = d0 or γ0 = d0−b0) for∆
d+ib−γ0
+ ∆d0+jb0

− Xt or by u = 0, v = d+ib ≥ κ0

for ∆d+ib
− Xt.

From JN (2010, Lemma C.1) with G(z) =
∑∞

n=0 gnz
n and

∑∞
n=0 |gn| <∞ we have

max
κ1≤min(u+v,u+1,v)≤u1

|G+(L)Dm∆u
+∆v
−Xt| → 0 as t→∞, (70)

max
κ1≤min(v−1/2,−u−1/2)≤u1

max
1≤t≤T

|G+(L)DmT u+1/2∆u
−∆v
−Xt| → 0 as T →∞, (71)

max
κ0≤v≤v0

|Dm∆v
−Xt| → 0 as t→∞, (72)

max
κ0≤v≤a−κ

max
1≤t≤T

|DmT−a+v∆v
−Xt| → 0 as T →∞. (73)

Proof of (65) and (66): The term ∆d+ib
+ β′0⊥µt contains terms of the form G(L)∆u

+∆v
−Xt

where u = d + ib − γ0 and v = d0 + jb0 ≥ γ0 with γ0 = d0 or γ0 = d0 − b0, see (69). If
d + ib − γ0 ≥ −1/2 − κ1 in (65), then for both choices of γ0 we find min(u + v, u + 1, v) ≥
min(κ0, 1/2− κ1, d0 − b0) > 0, and the result (65) follows from (70).
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If d+ib−γ0 ≤ −1/2−κ1 in (66), then v ≥ −u so thatmin(v−1/2,−u−1/2) = −u−1/2 ≥
κ1 > 0, and the result follows from (71) because the normalization T d+ib−d0+1/2 of∆d+ib

+ β′0⊥µt
is enough for both choices of γ0 to ensure max1≤t≤T |T d+ib−d0+1/2∆d+ib

+ β′0⊥µt| → 0. Note that
the condition d− b ≥ κ0 is not used in this case.
The term ∆d+ib

− β′0⊥Xt has d + ib ≥ d − b ≥ κ0, so that (65) follows from (72) and (66)
follows from (73).
Proof of (67) and (68): The term ∆d+ib

+ β′0µt contains terms of the form G(L)∆u
+∆v
−Xt

but only from the second sum in (69) because β′0C0 = 0. Thus, u = d + ib − d0 + b0 and
v = d0 + jb0. If u ≥ −1/2 − κ1, then u + v ≥ d − b ≥ κ0 so that min(u + v, u + 1, v) ≥
min(κ0, 1/2− κ1, d0 − b0) > 0, and (67) follows from (70).
If instead u ≤ −1/2−κ1 then from v+u ≥ 0 we findmin(v−1/2,−u−1/2) = −u−1/2 ≥

κ1 > 0, and (68) follows from (71). Note again that d− b ≥ κ0 was not used in this case.
The term ∆d+ib

− β′0Xt. For d + ib ≥ d − b ≥ κ0 the result follows from (72) and for
T d+ib−d0+b0+1/2∆d+ib

− β′0Xt we have d + ib ≤ d0 − b0 − 1/2 − κ1 and the result follows from
(73).
Proof of (ii): This follows because the model with d = d0 is a submodel of Hr.
Proof of (iii): It is seen from the proof of (i) that the condition d− b ≥ κ0 is only used

for terms with i = −1. We thus have to prove that if only finitely many initial values are
nonzero, (65)—(68) hold for i = −1. For simplicity we set m = 0. From JN (2010, Lemma
C.1) we get the evaluations for v ≥ 0

|∆v
−Xt| = |

N0∑
n=0

πn+t(−v)X−n| ≤ cN0t
−1, (74)

|T v∆v
−Xt| = |T v

N0∑
n=0

πn+t(−v)X−n| ≤ cT v, (75)

|∆u
+∆v
−Xt| = |

N0∑
n=0

(
t−1∑
j=0

πj(−u)πn+t−j(−v))X−n| ≤ cN0

t−1∑
j=0

j−u−1(t− j)−v−1, (76)

We start with the term ∆d−b
− Xt. It follows from (74) that (65) and (67) hold. Similarly

from (75) that (66) and (68) hold for the term ∆d−b
− Xt.

Next we analyze ∆d−b
+ µt, which is composed of terms of the form ∆u

+∆v
−Xt for u =

d − b − γ0 and v = d0 + jb0 ≥ γ0. For such a term we apply (76) and find from JN (2010,
Lemma B.4, equation (62)) that it is bounded by t−min(u+v+1,u+1,v+1) which tends to zero
because min(u+ v+ 1, u+ 1, v+ 1) ≥ min(1, 1/2−κ1, 1 + γ0) > 0. This proves (65) and (67)
for the term ∆d−b

+ µt. For (66) and (68) we need not prove anything because the condition
d− b ≥ κ0 was not used in the proof of these in case (i).
Proof of (iv): In case d = b we only have to analyze the terms with i = −1. We find

∆d−b
− Xt = ∆0

−Xt = 0 which leaves only the term ∆d−b
+ µt = µt. Because the condition

d − b ≥ κ0 was not used in the proofs of (66) and (68) for the terms T δ−1+1/2β′0⊥µt and
T η−1+1/2β′0µt we only have to consider (65) and (67).
In (65) we assume δ−1 = d − b − d0 = −d0 ≥ −1/2 − κ1, which is not possible for κ1

suffi ciently small, so there is nothing to prove.
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For (67), when d0 = b0, we find from (69) that

β′0µt = −
k∑

j=−1

β′0F+(L)Ψ0i∆
(1+j)d0
− Xt,

where the term with j = −1 is zero because ∆0
−Xt = 0. The remaining terms ∆

(1+j)d0
− Xt

tend to zero by (72), which proves (67).

A.4 Limit theory for product moments of stochastic terms

In this section we analyze product moments of processes that are either asymptotically
stationary, near critical, or nonstationary and we first define the corresponding fractional
indices.

Definition A.9 We take three fractional indices w, v, and u in the intervals

[−w0,−1/2− κw], [−1/2− κv,−1/2 + κ̄v], and [−1/2 + κu, u0], (77)

respectively, where we assume 0 ≤ κ̄v and κv < min(κw, κu) < 1/2.

In the following we assume these bounds on (u, v, w). In the applications we always
choose fixed values of κu and κw, but we shall sometimes choose small values (→ 0) of κv or
κ̄v.

Definition A.10 We define the class Z as the set of multivariate stochastic processes Zt
for which

Zt = ξεt + ∆1/2

∞∑
n=0

ξ∗nεt−n,

where εt is i.i.d.(0,Ω) and the coeffi cient matrices satisfy
∑∞

n=0 |ξ
∗
n| <∞ and V ar(ξεt) > 0.

This is a fractional version of the usual Beveridge-Nelson decomposition, where
∑∞

n=0 ξnεt−n =
(
∑∞

n=0 ξn)εt + ∆
∑∞

n=0 ξ
∗
nεt−n. It follows from Theorem 3 and (10) that β′0(C0εt + ∆b0Yt) =

∆b0β′0Yt ∈ Z and that Yt ∈ Z. Thus for Zt ∈ Z and indices (w, v, u) as in Definition A.9,
∆w

+Z
+
t is nonstationary, ∆u

+Z
+
t is asymptotically stationary, and ∆v

+Z
+
t is close to a criti-

cal process of the form ∆
−1/2
+ εt. We derive in Lemma A.11 and Corollary A.12 results for

product moments of fractional differences of processes in Z.
For m = m1 +m2 we define the product moments

DmMT (a1, a2) = T−1

T∑
t=1

(Dm1∆a1
+ Z

+
1t)(D

m2∆a2
+ Z

+
2t)
′,

MT ((a1, a2), (a1, a2)) = T−1

T∑
t=1

(
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

)(
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

)′
,

etc. Let NT be a normalizing sequence and define MT (a1, a2) = OP (NT ) on a compact
set K to mean that N−1

T MT (a1, a2) is tight on K and MT (a1, a2) = oP (NT ) to mean that
N−1
T MT (a1, a2) =⇒ 0 on K.
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Lemma A.11 Let Zit = ξiεt + ∆1/2
∑∞

n=0 ξ
∗
inεt−n ∈ Z, i = 1, 2, and define MT (a1, a2) as

above and assume that E|εt|q < ∞ for q > κ−1
w . Then uniformly for (w, v, u) in the sets

defined in (77) with 0 ≤ κv ≤ 1/7 we find

DmMT (u1, u2) =⇒ DmE(∆u1Z1t)(∆
u2Z2t)

′, (78)

DmMT (w1, w2)Tw1+w2+1 is tight and

MT (w1, w2)Tw1+w2+1 =⇒
∫ 1

0

W−w1−1(s)W−w2−1(s)′ds, (79)

DmMT (w, u)Tw+1/2 = OP ((1 + log T )2+mT−min(κu,κw)), (80)

MT (v, u) = OP (1) when κv ≤ κu/2, (81)

MT (w, v)Tw+1/2 = OP ((1 + log T )2T κv). (82)

Finally if N = Tα, α < 1/9, and (ξ′1, ξ
′
2) has full rank, then

MT ((v1, v2), (v1, v2))−1 = OP (
2κ̄v

1−N−2κ̄v
). (83)

Proof. A matrix valued process DmMT (a1, a2) is tight if the coordinate processes are tight,
and the (i, j)’th coordinate is a finite sum of univariate processes constructed the same way,
so it is enough to prove the result for univariate processes. We prove tightness by checking
condition (50) of Lemma A.1 for DmMT (a1, a2). The moments are evaluated by ξT (ζ1, ζ2),
see (52), for suitable coeffi cients satisfying (55) and (56).
We introduce the notation M∗∗

T (w1, w2) = Tw1+w2+1MT (w1, w2) to indicate that the non-
stationary processes have been normalized by Twi+1/2. We give the proofs for m1 = m2 = 0,
as the extra factors of (1 + log T )mi do not change the evaluations.
Proof of (78): We define the coeffi cients ζ i,t−n = πt−n(−ui), which satisfy condition (55).

The assumption that ui ≥ −1/2 + κu implies min(u1 + u2 + 1, u1 + 1, u2 + 1) ≥ 2κu, so we
can apply (52) and (59) which shows that ||MT (u1, u2)||4 ≤ c.
Next we consider ||MT (u1, u2)−MT (ũ1, ũ2)||4 which we bound by

||T−1

T∑
t=1

(∆u1
+ Z

+
1t −∆ũ1

+ Z
+
1t)(∆

u2
+ Z

+
2t)
′||4 + ||T−1

T∑
t=1

(∆ũ1
+ Z

+
1t)(∆

u2
+ Z

+
2t −∆ũ2

+ Z
+
2t)
′||4. (84)

We apply (52) to the first term with ζ1,t−n = (πt−n(−u1)−πt−n(−ũ1)) and ζ2,t−n = πt−n(−u2)
bounded by (55), see also JN (2010, Lemma B.3), and it follows from (59) with a = 2κu that
the first term of (84) is bounded by c(u1 − ũ1). A similar proof works for the other term of
(84), and tightness then follows from (50).
Notice that the second condition of (50) follows in the same way as the first using the

inequalities in Lemma A.6. The only difference is an extra log factor and the factor (u1− ũ1).
We next apply the law of large numbers to identify the limit as an expectation. From

∆uiZit = ∆ui
+Zit + ∆ui

−Zit =
∑∞

j=0 ς ij(−ui)εt−j we find

MT (u1, u2) = T−1

T∑
t=1

∆u1Z1t∆
u2Z ′2t + T−1

T∑
t=1

∆u1
− Z1t∆

u2
− Z

′
2t

− T−1

T∑
t=1

∆u1Z1t∆
u2
− Z

′
2t − T−1

T∑
t=1

∆u1
− Z1t∆

u2Z ′2t.



Likelihood inference for cofractional processes 32

The first term converges in probability toE(∆u1Z1t)(∆
u2Z2t)

′ by a LLN for stationary ergodic
processes. By the Cauchy-Schwarz inequality the remaining terms tend to zero because

E(T−1

T∑
t=1

∆ui
−Zit∆

ui
−Z

′
it) = T−1

T∑
t=1

∞∑
k=t

ς ik(−ui)Ως ik(−ui)′ → 0.

We proved above thatMT (u1, u2) is tight and thereforeMT (u1, u2) =⇒ E(∆u1Z1t)(∆
u2Z2t)

′.
Proof of (79): We define ζ∗i,t−n(w1) = Twi+1/2πt−n(−wi) for wi ≤ −1/2 − κw so that

max(w1, w2, w1 +w2 + 1) ≤ −2κw < 0. We then apply (52) and (60) with κ = 2κw, and find
that (50) holds so that M∗∗

T (w1, w2) is tight. Because −1/(w + 1/2) ≤ κ−1
w < q we obtain

the limit
Twi+1/2∆wi

+ Z
+
i[Ts] =⇒ W−wi−1(s), i = 1, 2, on D[0, 1],

see (4). The continuous mapping theorem gives the result (79).
Proof of (80): We apply (52) and (61) for ζ1,t−n(u) = πt−n(−u) and ζ∗2,t−n(w) =

Tw+1/2πt−n(−w) and find for w ≤ −1/2− κw and u ≥ −1/2 + κu that with a = κu, κ = κw,

||M∗
T (w, u)||4 ≤ c(1 + log T )T−min(κu,κw),

||M∗
T (w, u)−M∗

T (w̃, ũ)||4 ≤ c|(w, u)− (w̃, ũ)|(1 + log T )2T−min(κu,κw),

and (50) implies that M∗
T (w, u) = OP ((1 + log T )2T−min(κu,κw)).

Proof of (81): We define ζ1,t−n = πt−n(−u) and ζ2,t−n = πt−n(−v) where v ≥ −1/2− κv
and u ≥ −1/2 +κu, so that min(u+ 1, v+ 1, u+ v+ 1) ≥ κu−κv ≥ κu/2 > 0. It then follows
from (52) and (59) that (50) is satisfied and hence that MT (u, v) is tight.
Proof of (82): We first apply (52) with ζ1,t−n = πt−n(−v) and ζ∗2,t−n = Tw+1/2πt−n(−w)

and find from (61) with a = −κv and κ = κw that for v ≥ −1/2 − κv and w ≤ −1/2 − κw
we get

||M∗
T (w, v)||4 ≤ c(1 + log T )T κv , (85)

||M∗
T (w, v)−M∗

T (w̃, ṽ)||4 ≤ c|(w, v)− (w̃, ṽ)|(1 + log T )2T κv ,

and (50) shows that M∗
T (w, v) = OP ((1 + log T )2T κv).

Proof of (83): Define Z̃+
it by Z

+
it = ξiεt + ∆

1/2
+ Z̃+

it , i = 1, 2, and because we need to
decompose the processes we use the notation

MT (U, V ) = T−1

T∑
t=1

U+
t V

+′
t

for product moments. We define ξ = blockdiag(ξ1, ξ2), ∆v
+Zt = (∆v1

+Z
′
1t,∆

v2
+Z

′
2t)
′, ∆v

+Z̃t =

(∆v1
+ Z̃

′
1t,∆

v2
+ Z̃

′
2t)
′, and ∆v

+εt = (∆v1
+ ε
′
t,∆

v2
+ ε
′
t)
′ and find the evaluation

MT (∆v
+Z,∆

v
+Z) ≥ ξMT (∆v

+ε,∆
v
+ε)ξ

′ +MT (∆
1/2+v
+ Z̃,∆v

+ε)ξ
′ + ξMT (∆v

+ε,∆
1/2+v
+ Z̃),

where the inequality means that the difference is positive semi-definite.
We define the index ui = vi + 1/2 ≥ −1/2 + (1/2 − κv) for ∆

1/2+vi
+ Z̃+

it so that κu =
1/2 − κv ≥ 5/14 for κv ≤ 1/7. It follows that we can use (81) for the components of
MT (∆

1/2+v
+ Z̃,∆v

+ε) and its transposed which are therefore OP (1).



Likelihood inference for cofractional processes 33

We next consider MT (∆v
+ε,∆

v
+ε) and decompose ∆vi

+εt for t > N = Tα :

∆vi
+εt =

N−1∑
n=0

πn(−vi)εt−n +

t−1∑
n=N

πn(−vi)εt−n = U+
it + V +

it . (86)

We define U+
t = (U+′

1t , U
+′
2t )′ and V +

t = (V +′
1t , V

+′
2t )′ and evaluate the product moment as

MT (∆v
+ε,∆

v
+ε) ≥MT (U,U) +MT (U, V ) +MT (V, U).

We next show that MT (U, V ) + MT (V, U) = oP (1). We apply Lemma A.7 for U+
it and

V +
jt with coeffi cients ζ in = πn(−vi) and ζjn = πn(−vj) and find from (62) that

||T−1

T∑
t=N

U+
it V

+′
jt ||44 ≤ T−1NξN(ζ i, ζ i)ξT (ζ i, ζ i)ξT (ζj, ζj)

2.

From (59) in Lemma A.6 with a = −2κv, we find that ξT (ζj, ζj) ≤ c(1+log T )T 2κv uniformly
for −1/2−κv ≤ vj ≤ −1/2+ κ̄v. Similarly ξN(ζ i, ζ i) ≤ c(1+ logN)N2κv , so that for N = Tα

we find that ||T−1
∑T

t=N U
+
it V

+′
jt ||44 is bounded by

c(1 + logN)(1 + log T )3N1+2κvT−1+6κv = c(1 + log T )4T−1+6κv+α(1+2κv) = o(1),

for α < 1/9 and κv ≤ 1/7. The second condition of (50) is checked the same way, and the
log T factors do not matter, so that

MT (U, V ) +MT (V, U) = oP (1) for α < 1/9 and κv ≤ 1/7. (87)

What remains is the term MT (U,U). We define for integer N and −1/2 − κv ≤ vi ≤
−1/2 + κ̄v the coeffi cient

FNij =
N−1∑
n=0

πn(−vi)πn(−vj) ≥ 1 + c
N−(v1+v2+1) − 1

−(v1 + v2 + 1)
≥ 1 + c

1−N−2κ̄v

2κ̄v
,

see (58). Note that FNij →∞ as (κ̄v, N)→ (0,∞). We find that the mean of MT (U,U) is

E(T−1

T∑
t=N+1

U+
t U

+′
t ) = T−1(T −N)

(
FN11 FN12

FN12 FN22

)
⊗ Ω0,

and from (64) and (59) with a = −2κvwe have that the variance of MT (U,U) is bounded by
T−1NξN(ζ1, ζ1)ξN(ζ2, ζ2) ≤ T−1+α(1+4κv) which tends to zero because α < 1/9 and κv ≤ 1/7.
Thus,

MT (U,U) = T−1(T −N)

(
FN11 FN12

FN12 FN2

)
⊗ Ω0 + oP (1),

so that MT ((v1, v2), (v1, v2)) is bounded below by

ξMT (U,U)ξ′ + oP (1) ≥ c
1−N−2κ̄v

2κ̄v
(ξ′1, ξ

′
2)′Ω0(ξ′1, ξ

′
2) + oP (1),
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which proves (83).
For the proof of existence and consistency of the MLE we need the product moments

that enter the likelihood function `p,T (ψ) and therefore define

MT ((a1, a2), a3) = T−1

T∑
t=1

(
Dm1∆a1

+ Z
+
1t

Dm2∆a2
+ Z

+
2t

)
(Dm3∆a3

+ Z
+
3t)
′,

MT (a1, a2|a3) = MT (a1, a2)−MT (a1, a3)M−1
T (a3, a3)MT (a3, a2).

Corollary A.12 If κ̄v > 0, 0 < κv ≤ min(1/7, κu/2, κw/2), and the assumptions of Lemma
A.11 hold, then

Tw1+w2+1MT (w1, w2|u) = Tw1+w2+1MT (w1, w2) + oP (1), (88)

MT (u1, u2|w, u3) =⇒ V ar(∆u1Z1t,∆
u2Z2t|∆u3Z3t), (89)

MT (v, u1|w, u2) = OP (1), (90)

and for N = Tα, α < (κw − κv)/(1/2 + κv), we have

MT ((v1, v2), (v1, v2)|w, u)−1 = OP (
2κ̄v

1−N−2κ̄v
). (91)

Proof. Proof of (88): We introduce the notation M∗∗
T (w1, w2) and decompose

M∗∗
T (w1, w2|u)−M∗∗

T (w1, w2) = −M∗
T (w1, u)MT (u, u)−1M∗

T (u,w2),

and find from (80) that M∗
T (wi, u) =⇒ 0, which together with (78) shows the result.

Proof of (89): We decompose

MT (u1, u2|w, u3)−MT (u1, u2|u3) = −M∗
T (u1, w|u3)M∗∗

T (w,w|u3)−1M∗
T (w, u2|u3),

and find from (88) and Lemma A.11 that the right hand side is oP (1) as T → ∞, because
M∗

T (ui, w|u3) = OP ((1 + log T )2T−min(κu,κw)), see (80). The result then follows from (78).
Proof of (90): We decompose MT (v, u1|w, u2) as

MT (v, u1)−
(
M∗

T (w, v)
MT (u2, v)

)′(
M∗∗

T (w,w) M∗
T (w, u2)

M∗
T (u2, w) MT (u2, u2)

)−1(
M∗

T (w, u1)
MT (u2, u1)

)
.

Because M∗
T (w, u2) =⇒ 0 by (80), we first note that the second term is

M∗
T (v, w)M∗∗

T (w,w)−1M∗
T (w, u1) +MT (v, u2)MT (u2, u2)−1MT (u2, u1) + oP (1).

Now M∗
T (w, v) = OP ((1 + log T )2T κv) and M∗

T (w, u1) = OP ((1 + log T )2T−min(κu,κw)), so
that by (79) and because κv ≤ 1

2
min(κu, κw), M∗

T (v, w)M∗∗
T (w,w)−1M∗

T (w, u1) =⇒ 0. Using
(78) and (81) the result follows.
Proof of (91): The proof is similar to that of (83) except for conditioning on a stationary

and a nonstationary variable. We start by eliminating the stationary variable. We find

MT ((v1, v2), (v1, v2)|w, u)−MT ((v1, v2), (v1, v2)|w)

= −MT ((v1, v2), u|w)MT (u, u|w)−1MT (u, (v1, v2)|w),
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where MT (u, u|w)−1 = OP (1), see (89), and MT ((v1, v2), u|w) = OP (1), see (90). Thus for
∆vi

+Z
+
it = ∆vi

+εt + ∆
vi+1/2
+ Z̃+

it , i = 1, 2, Z+
t = (Z+′

1t , Z
+′
2t )′, and ∆w

+Z
+
3t = ∆w

+εt + ∆
w+1/2
+ Z̃+

3t it is
enough to consider MT ((v1, v2), (v1, v2)|w) = MT (∆vZ,∆vZ|∆wZ3) which is bounded below
by

MT (∆vε,∆vε|∆wZ3) +MT (∆vε,∆1/2+vZ̃|∆wZ3) +MT (∆1/2+vZ̃,∆vε|∆wZ3).

It follows from (90) for ui = vi + 1/2 ≥ −κv, and w ≤ −1/2 − κw, that the last two terms
are OP (1).
We next decompose the first term as ∆vi

+εt = U+
it + V +

it , see (86), and evaluate

MT (∆vε,∆vε|∆wZ3) ≥MT (U,U |∆wZ3) +MT (U, V |∆wZ3) +MT (V, U |∆wZ3).

The last two terms are evaluated as

MT (U, V |∆wZ3) = MT (U, V )−M∗
T (U,∆wZ3)M∗∗

T (∆wZ3,∆
wZ3)−1M∗

T (∆wZ3, V ).

It follows from (87) that MT (U, V ) = T−1
∑T

t=N+1 U
+
t V

+′
t = oP (1), from (79) that because

q > κ−1
w we have M∗∗

T (∆wZ3,∆
wZ3)−1 = OP (1) for w ≤ −1/2 − κw, and (82) shows that

M∗
T (∆wZ3, V ) = OP ((1 + log T )2T κv). For the term

M∗
T (U,∆wZ3) = T−1

T∑
t=N+1

U+
t ∆w

+Z
+′
3t T

w+1/2 =
N−1∑
n=0

πn(−v1)[T−1

T∑
t=N+1

εt−n∆w
+Z

+′
3t T

w+1/2],

we apply (80) with u = 0 = −1/2 + 1/2 (κu = 1/2) so that T−1
∑T

t=N+1 εt−n∆w
+Z

+′
3t T

w+1/2 =
OP ((1 + log T )2T−κw) for κw < 1/2. It follows that

||M∗
T (U,∆wZ3)||2 ≤ c(1 + log T )2T−κw

N−1∑
n=1

n−v1−1 ≤ c(1 + log T )2T−κw+(1/2+κv)α. (92)

Combining these results we find MT (U, V |∆wZ3) = OP ((1 + log T )4T−κw+κv+(1/2+κv)α) =
oP (1) for α < (κw − κv)/(1/2 + κv).
Finally we need to analyze

MT (U,U |∆wZ3) = MT (U,U)−M∗
T (U,∆wZ3)M∗∗

T (∆wZ3,∆
wZ3)−1M∗

T (∆wZ3, U)

The first term is OP (2κ̄v/(1−N−2κ̄v)), see (83), and (92) shows thatM∗
T (U,∆wZ3) = oP (1),

which together with (79) proves the result.

Appendix B Proof of Theorem 5
We give the proof for case (i). The changes needed for cases (ii)−(iv) are outlined immediate
following the statement of Theorem 5 in the main text.
By Lemma A.8 the deterministic terms generated by initial values are uniformly small.

Note that (65) and (67) are formulated for index ≥ −1/2 − κ1, which covers not only the
asymptotically stationary Zit,Wjt but also those which are nearly critical, whereas (66) and
(68) deals with the nonstationary Zit,Wjt. Hence initial values do not influence the limit
behavior of product moments, and in the remainder of the proof of Theorem 5, both under
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(20) and (21), we therefore assume that the deterministic terms generated by initial values
are zero.
In the following we want to use the result that if we regress a stationary variable on

stationary and nonstationary variables, the limit of the normalized residual sum of squares
is the same as if we leave out the nonstationary variables in the regression. Similarly if we
regress a nonstationary variable on stationary and nonstationary variables, the limit of the
normalized residual sums of squares is the same as if we leave out the stationary variables in
the regression. These results are made precise in Lemma A.11 and Corollary A.12, which we
apply repeatedly below to prove uniform convergence. Special problems arise if the regression
contains processes that are nearly critical, but again the necessary results have been proved
in Lemma A.11 and Corollary A.12.
The behavior of the processes depends on d and b.Note that β′0⊥∆d+mbXt ∈ F(d0−d−mb)

and β′0∆d+nbXt ∈ F(d0 − b0 − d − nb), and it is convenient to define the fractional indices
δm = d − d0 + mb and ηn = d − d0 + b0 + nb. Thus the fractional order is the negative
fractional index. For notational reasons in Definition B.1 below we define η−2 = δ−2 = −∞
and ηk+1 = δk+1 =∞.
B.1 Proof of Theorem 5 under Assumption 1 with d0 − b0 < 1/2 and E|εt|8 <∞
If d0− b0 < 1/2 then d+ nb− d0 + b0 ≥ b0− d0 > −1/2, so that {Wit}ki=−1 is asymptotically
stationary. The process ∆d+mbβ′0⊥Xt is critical if δm = d + mb − d0 = −1/2, see Figure 1.
The parameter space has to be divided into a set of “interiors”and “boundaries”as given
in the next definition.

Definition B.1 We define the disjoint covering of N = ∪k+1
m=−1Nm by the sets

Nm = {ψ ∈ N : δm−1 ≤ −1/2 < δm}. (93)

We take 0 < κ < κ1 ≤ 1/7 and define the (κ1, κ)−interior, N int(κ1, κ) = ∪−1≤m≤k+1N int
m (κ1, κ),

where
N int
m (κ1, κ) = {ψ ∈ N : δm−1 ≤ −1/2− κ1 and − 1/2 + κ ≤ δm}, (94)

and the (κ1, κ)−boundary N bd(κ1, κ) = ∪−1≤m≤kN bd
m (κ1, κ), where

N bd
m (κ1, κ) = {ψ ∈ N : −1/2− κ1 ≤ δm ≤ −1/2 + κ}. (95)

We have defined in (94) the (κ1, κ)−interior N int
m (κ1, κ) as the set of ψ for which all

processes are either clearly stationary or clearly nonstationary in the sense that their frac-
tional index is either ≥ −1/2 + κ or ≤ −1/2 − κ1. The (κ1, κ)−boundary N bd

m (κ1, κ) is the
set where the process ∆d+mbβ′0⊥Xt has an index which is close to the critical value of −1/2,
see Figure 1 for an illustration.
The proof of Theorem 5 under (20) requires that we prove:

(i) for fixed κ1 ≤ 1/7 : sup
ψ∈N bdm (κ1,κ)

|`T,p(ψ)− `p(ψ)| P→ 0 as (κ, T )→ (0,∞), (96)

(ii) for fixed κ < κ1 = 1/7 : sup
ψ∈N intm (κ1,κ)

|`T,p(ψ)− `p(ψ)| P→ 0 as T →∞. (97)
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B.1.1 Proof of (96): convergence on N bd
m (κ1, κ)

The profile likelihood `T,p(ψ) = log det(SSRT (ψ)), see (16), is derived by regressing ∆d+kbXt

on the other variables, which can be either asymptotically stationary or not. For ψ ∈
N bd
m (κ1, κ), we collect all asymptotically stationary regressors {Zit}k−1

i=m+1 and {Wjt}k−1
j=−1 in a

vector where the lowest fractional index for Zit is δm+1 = δm+b ≥ b−1/2−κ1 ≥ −1/2+5/14,
and the lowest for Wjt is η−1 = d− b− d0 + b0 ≥ −d0 + b0 ≥ −1/2 + (b0 − d0 + 1/2), so we
choose κu = min(5/14, b0 − d0 + 1/2). The nonstationary processes {Zit}m−1

i=−1 are collected
in a vector with largest fractional index w = δm−1 ≤ −1/2 − (1/2 − κ) ≤ −1/2 − 5/14 for
κ ≤ 1/7, so we set κw = 5/14. This implies that −(w+ 1/2)−1 ≤ 14/5, so that q > 14/5 are
enough moments to get weak convergence of Tw+1/2∆w

+εt to fBM.
The near critical index of ∆d+mbβ′0⊥Xt is v = d + mb− d0 ∈ [−1/2− κ1,−1/2 + κ]. We

define κv = κ1 and κ̄v = κ, see Figure 1.
We consider two cases.
a: If Zkt and Wkt are asymptotically stationary (indices u1 = d + kb − d0 and u2 =

d + kb − d0 + b0) then ψ ∈ N bd
m (κ1, κ) for some m = −1, . . . , k − 1, and for ∆d+kbXt =

β̄0Wkt+ β̄0⊥Zkt = B0(W ′
kt, Z

′
kt)
′ we find SSRT (ψ) = B0MT ((u1, u2), (u1, u2)|v, w, u)B′0 where

MT ((u1, u2), (u1, u2)|v, w, u) = MT ((u1, u2), (u1, u2)|w, u)

−MT ((u1, u2), v|w, u)MT (v, v|w, u)−1MT (v, (u1, u2)|w, u).

We find from (89) that for w ≤ −1/2− κw it holds that B0MT ((u1, u2), (u1, u2)|w, u)B′0 =⇒
V ar(Skt|Fstat(ψ)) = `p(ψ). From (90) and (91) we find similarly that

MT (ui, v|w, u) = OP (1) and MT (v, v|w, u)−1 = OP (
2κ

1−N−2κ
),

where the latter tends to zero for (κ, T ) → (0,∞) when N = Tα for some α < (κw −
κv)/(1/2 +κv) = (5/14−κ1)/(1/2 +κ1). This proves (96) on N bd

m (κ1, κ), m = −1, . . . , k− 1.
b: If ψ ∈ N bd

k (κ1, κ), then Zkt is near critical with index v1 = d + kb − d0 ∈ [−1/2 −
κ1,−1/2 + κ], and the remaining processes Zit, i < k, are nonstationary with index w ≤
−1/2 − (1/2 − κ1) ≤ −1/2 − 5/14. The stationary processes Wjt have index u ≥ −1/2 +
(b0 − d0 + 1/2) = −1/2 + κu, so that κw = 5/14 and κu = b0 − d0 + 1/2. We decompose
det(SSRT (ψ)) as

det(B0MT ((v1, u2), (v1, u2)|u,w)B′0) = det(MT (u2, u2|u,w)) det(MT (v1, v1|u, u2, w)) det(B0)2,

where the first factor converges in distribution by (89), and the second factor increases to
infinity for κ1 fixed and (κ, T ) → (0,∞), see (91), so that `T,p(ψ) =⇒ ∞ = `p(ψ) on
N bd
k (κ1, κ).

B.1.2 Proof of (97): convergence on N int
m (κ1, κ)

For ψ ∈ N int
m (κ1, κ), we collect all asymptotically stationary regressors {Zit}k−1

i=m and {Wjt}k−1
j=−1

in a vector where the lowest fractional index for Zit is δm ≥ −1/2+κ and the lowest forWjt is
η−1 = d−b−d0+b0 ≥ −d0+b0 ≥ −1/2+(b0−d0+1/2), so we choose κu = min(κ, b0−d0+1/2).
The nonstationary processes {Zit}m−1

i=−1 are collected in a vector with largest fractional index
w = δm−1 ≤ −1/2 − κ1, so κw = κ1, and −(w + 1/2)−1 ≤ κ−1

1 = 7. This means that q > 7
moments are enough for weak convergence of Tw+1/2∆w

+εt to fBM.
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We want to prove (97) and consider two cases:
a: Consider first Zkt and Wkt asymptotically stationary, that is ψ ∈ N int

m (κ1, κ) for some
m = −1, . . . , k. Then ∆d+kbβ′0⊥Xt and ∆d+kbβ′0Xt are asymptotically stationary with indices
u1 = d+ kb− d0 ≥ −1/2 + κ and u2 = d+ kb− d0 + b0 ≥ −1/2 + κ.With the notation from
Lemma A.11 and Corollary A.12 we have that SSRT (ψ) = B0MT ((u1, u2), (u1, u2)|w, u)B′0
and it follows from (89), see also (19), that for fixed (κ1, κ) and T →∞,

`T,p(ψ) = log det(SSRT (ψ)) =⇒ log det(V ar(Skt|Fstat(ψ))) = `p(ψ), ψ ∈ N int
m (κ1, κ).

b: Suppose∆d+kbβ′0⊥Xt is nonstationary (indexw1 ≤ −1/2−κ1), that is ψ ∈ N int
k+1(κ1, κ).

Then det(SSRT (ψ)) is decomposed as

det(B0MT ((w1, u2), (w1, u2)|u,w)B′0) = det(MT (w1, w1|w, u)) det(MT (u2, u2|w1, u, w)) det(B0)2,

where the first factor is OP (T 2κ1), see (79) and (88), and the second factor converges in
distribution by (89). It follows that `T,p(ψ) =⇒∞ for ψ ∈ N int

k+1(κ1, κ).
This completes the proof of Theorem 5 under Assumption 1 and (20).

B.2 Proof of Theorem 5 under Assumption 1 with E|εt|q <∞ for all q

If b0 is not greater than d0−1/2, thenWjt is not necessarily asymptotically stationary and the
parameter set has to be cut up as in Figure 2, using two sets of lines δm = d+mb−d0 = −1/2
and ηn = d+ nb− d0 + b0 = −1/2. These lines may intersect and close to these intersection
points there are two almost critical processes. This requires a new proof, and we need to
assume moments of all orders.

Definition B.2 We define the disjoint covering N = ∪−1≤n≤m≤k+1Nmn, where

Nmn = {ψ ∈ N : max(δm−1, ηn−1) ≤ −1/2 < min(δm, ηn)}, (98)

as well as the interiors

N int
mn(κ) = {ψ ∈ N : max(δm−1, ηn−1) ≤ −1/2− κ,−1/2 + κ ≤ min(δm, ηn)}

and the cross points and boundaries

N cr
mn(κ2) = {ψ : |ηn + 1/2| ≤ κ2, |δm + 1/2| ≤ κ2},−1 ≤ n < m ≤ k, (99)

N bd
mn(κ2, κ) = {ψ : |δm + 1/2| ≤ κ,−1/2 + κ2 ≤ ηn, ηn−1 ≤ −1/2− κ2},−1 ≤ n ≤ m ≤ k,

N bd
mn(κ2, κ) = {ψ : |ηm + 1/2| ≤ κ,−1/2 + κ2 ≤ δn, δn−1 ≤ −1/2− κ2},−1 ≤ m < n ≤ k + 1,

The interpretation of Nmn is that for ψ ∈ Nmn, β′0⊥∆d+mb
+ Xt and β

′
0∆d+nb

+ Xt are asymp-
totically stationary, whereas β′0⊥∆

d+(m−1)b
+ Xt and β

′
0∆

d+(n−1)b
+ Xt are nonstationary. The true

value ψ0 is contained in N0,−1.
Note that ηm = δm + b0, so that ηm > δm. Hence β

′
0⊥∆d+mbXt asymptotically stationary

implies that β′0∆d+mbXt is asymptotically stationary, and β
′
0∆d+mbXt nonstationary implies

that β′0⊥∆d+mbXt is nonstationary.
The setN cr

mn(κ2) contains the crossing point between the lines δm = −1/2 and ηn = −1/2,
where Zmt and Wnt are nearly critical. To the left they are nonstationary and to the right
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stationary. In the remaining two wedges there is one of each. The set N bd
mn(κ2, κ) covers

the line segment between N cr
m,n−1(κ2) and N cr

mn(κ2) and N bd
nm(κ2, κ) covers the line segment

between N cr
mn(κ2) and N cr

m+1,n(κ2). In these sets either Zmt or Wnt is nearly critical, but not
both. See Figures 2 and 3 for illustrations.
The proof of Theorem 5 under (21) requires that we prove:

(i) : sup
ψ∈N crmn(κ2)

|`T,p(ψ)− `p(ψ)| P→ 0 as (κ2, T )→ (0,∞), (100)

(ii) for fixed κ2 : sup
ψ∈N bdmn(κ2,κ)

|`T,p(ψ)− `p(ψ)| P→ 0 as (κ, T )→ (0,∞), (101)

(iii) for fixed κ : sup
ψ∈N intmn(κ)

|`T,p(ψ)− `p(ψ)| P→ 0 as T →∞. (102)

Note the difference to the setup with d0 − b0 < 1/2. We have to let κ2 tend to zero to
evaluate the neighborhood N cr

mn(κ2) of the intersection points. This means that when we fix
κ2 in the analysis of N bd

mn(κ2, κ), the nonstationary processes have an index ≤ −1/2 − κ2

which means that we need moments of order at least κ−1
2 , which can be very large. This is

the reason that we need to assume moments of all orders. Note also that the strips defined
in N bd

mn(κ2, κ) have width 2κ, whereas the strips defined when d0− b0 < 1/2 are asymmetric
and go from −1/2 − κ1 on the nonstationary side to −1/2 + κ on the stationary side. The
large and fixed value of κ1 is there to guarantee that not too many moments are needed in
that situation.

B.2.1 Proof of (100): convergence on N cr
mn(κ2)

We want to show (100) where (κ2, T )→ (0,∞) and consider two cases.
a: We first consider the case where Zkt andWkt are asymptotically stationary (indices u1

for Zkt and u2 for Wkt), and ψ ∈ N cr
mn(κ2), −1 ≤ n < m ≤ k − 1. In Figure 3 an example is

the set N cr
1,0(κ2). We now have two near critical processes with indices v1 = δm and v2 = ηn

in [−1/2 − κ2,−1/2 + κ2]. The stationary processes have an index u ≥ min(δm+1, ηn+1) =
min(δm, ηn) + b ≥ −1/2 + (1/2 − κ2) ≥ −1/2 + 5/14 for κ2 ≤ 1/7 and the nonstationary
processes have an index w ≤ max(δm−1, ηn−1) = max(δm, ηn) − b ≤ −1/2 − (1/2 − κ2) ≤
−1/2 − 5/14, so that when we apply the evaluations of product moments in Lemma A.11
and Corollary A.12, we can take κw = κu = 5/14 and κv = κ̄v = κ2. This means that
−(w + 1/2)−1 ≤ 14/5 and q > 14/5 are suffi cient moments to apply weak convergence of
Tw+1/2∆w

+εt to fBM.
We decompose the main factor of SSRT (ψ) = B0MT ((u1, u2), (u1, u2)|v1, v2, w, u)B′0 as

MT ((u1, u2), (u1, u2)|w, u) (103)

−MT ((u1, u2), (v1, v2)|w, u)M−1
T ((v1, v2), (v1, v2)|w, u)MT ((v1, v2), (u1, u2)|w, u)

and apply Corollary A.12. We find from (89) that because min(u1, u2, u) ≥ −1/2+5/14 and
w ≤ −1/2− 5/14 we have for T →∞,

log det(B0MT ((u1, u2), (u1, u2)|w, u)B′0) =⇒ log det(V ar(Skt|Fstat(ψ))) = `p(ψ). (104)

We next show that log det(SSRT (ψ)) =⇒ `p(ψ) by showing that the second term of (103)
is oP (1).
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The critical processes are Zmt = ∆d+mb
+ β′0⊥Xt and Wnt = ∆d+nb

+ β′0Xt with stochastic
parts

Zmt : ∆v1
+ (β′0⊥C0εt + ∆b0

+β
′
0⊥Y

+
t ),

Wnt : ∆v2
+ β
′
0Y

+
t = ∆v2

+ (β′0τεt + ∆1/2β′0

∞∑
n=0

τ̃nεt−n),

see (10), which are fractional differences of processes in Z. The leading coeffi cients are
ξ1 = β′0⊥C0 and ξ2 = β′0τ = β′0H(1), respectively, for which (ξ′1, ξ

′
2) has full column rank,

because

(α0⊥, α0)′(ξ′1, ξ
′
2) =

(
α′0⊥C

′
0β0⊥ α′0⊥H(1)′β0

0 α′0H(1)′β0

)
=

(
α′0⊥C

′
0β0⊥ α′0⊥H(1)′β0

0 −Ir

)
has full rank, see Theorem 3. It follows from (91) that MT ((v1, v2), (v1, v2)|w, u)−1 =⇒ 0 as
(κ2, T )→ (0,∞), and from (90) that MT ((u1, u2), (v1, v2)|w, u) = OP (1).
b: Next consider the situation where Zkt is nearly critical (index v1) andWkt is stationary

(index u2), that is ψ ∈ N cr
kn(κ2) for some n = −1, . . . , k − 1. In Figure 2 this corresponds

to the sets N cr
1,0(κ2) and N cr

1,−1(κ2). In this case we define v1 = δk ∈ [−1/2− κ2,−1/2 + κ2],
v = ηn ∈ [−1/2 − κ2,−1/2 + κ2], u2 = ηk ≥ −1/2 + (1/2 − κ2) ≥ −1/2 + 5/14, w ≤
max(δk−1, ηn−1) ≤ −1/2− (1/2−κ2) ≤ −1/2−5/14 for κ2 ≤ 1/7, and if n < k−1 then also
u ≥ ηn+1 ≥ −1/2+5/14, so we can choose κu = κw = 5/14. The determinant det(SSRT (ψ))
has, apart from the factor det(B0)2, the form

det (MT ((v1, u2), (v1, u2)|v, w, u)) = det(MT (u2, u2|v, w, u)) det(MT (v1, v1|u2, v, w, u)).

The first factor converges in distribution to det(E(SwktS
′
wkt|Fstat(ψ))) as (κ2, T ) → (0,∞),

see (89), (90), and (91). Thus we investigateMT (v1, v1|u2, v, w, u) which tends to infinity by
an argument similar to the proof of (83). Thus

log det(SSRT (ψ)) =⇒∞ = `p(ψ) on N cr
kn(κ2), n = −1, . . . , k − 1, as (κ2, T )→ (0,∞).

B.2.2 Proof of (101): convergence on N bd
mn(κ2, κ)

We have defined the sets N bd
mn(κ2, κ) in (99) in such a way that interchanging η with δ and

n with m we transform N bd
mn(κ2, κ) into N bd

nm(κ2, κ), so the analysis is to a large extent the
same. In the proof of (101) we fix κ2 and let (κ, T )→ (0,∞).
For ψ ∈ N bd

mn(κ2, κ), n ≤ m, the near critical index is v = δm ∈ [−1/2 − κ,−1/2 + κ],
the asymptotically stationary processes have an index u ≥ min(ηn, δm+1) ≥ min(−1/2 +
κ2,−1/2 − κ + b) ≥ −1/2 + κ2, and the nonstationary processes have an index w ≤
max(ηn−1, δm−1) ≤ max(−1/2 − κ2,−1/2 + κ − b) ≤ −1/2 − κ2, see Figures 2 and 3. For
ψ ∈ N bd

mn(κ2, κ), m < n, the near critical index is v = ηm ∈ [−1/2 − κ,−1/2 + κ] and also
u ≥ −1/2 + κ2, w ≤ −1/2 − κ2. Thus, in both cases we can take κu = κw = κ2 fixed and
κv = κ̄v = κ tending to zero. Note that no matter how small κ2 has been chosen it is fixed,
and we can use that M∗∗

T (w,w)−1 = OP (1) because −(w + 1/2)−1 ≤ κ−1
2 <∞ and we have

assumed moments of all orders.
We want to prove (101) and consider four cases.
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a: If Zkt and Wkt are asymptotically stationary and ψ ∈ N bd
mn(κ2, κ),−1 ≤ m ≤ k −

1,−1 ≤ n ≤ k, then the proof of (101) is the same as given in Section B.1.1a.
b: If Zkt is near critical and ψ ∈ N bd

kn(κ2, κ), n = −1, . . . , k, then the proof is the same
as given in Section B.1.1b.
c: If ψ ∈ N bd

m,k+1(κ2, κ),−1 ≤ m < k, thenWmt is critical (index v ∈ [−1/2−κ,−1/2+κ]),
Zkt nonstationary (index w1 ≤ −1/2− κ2), and Wkt asymptotically stationary (index u2 ≥
−1/2 + (1/2− κ2)). In this case SSRT (ψ) = B0MT ((w1, u2), (w1, u2)|v, w, u)B′0 and

MT ((w1, u2), (w1, u2)|v, w, u) = A22 − A21A
−1
11 A12 = A22.1,

where we use the notation

A11 = MT (v, v|w, u), A12 = MT (v, (w1, u2)|w, u), A22 = MT ((w1, u2), (w1, u2)|w, u)

and the representation, see Magnus and Neudecker (1999, p. 11, equation (7)),

A−1
22.1 = A−1

22 [A22 + A21A
−1
11.2A12]A−1

22 .

We find from Lemma A.11 and Corollary A.12 that

A∗∗22 = M∗∗
T ((w1, u2), (w1, u2)|w, u) = OP (1),

A∗∗−1
22 = OP (1),

A∗12 = M∗
T (v, (w1, u2)|w, u) = OP ((1 + log T )2T κ),

A−1
11.2 = OP (

2κ

1−N−2κ
).

Therefore we have for 2w + 1 ≤ −2κ2, that

A−1
22.1 = T 2w+1A∗∗−1

22.1 = OP (T−2κ2(1 +
2κ

1−N−2κ
(1 + log T )4T 2κ)) = oP (1).

This implies that det(SSRT (ψ)−1) =⇒ 0, and hence that `T,p(ψ) = log det(SSRT (ψ)) =⇒∞
for ψ ∈ N bd

m,k+1(κ2, κ), m = −1, . . . , k − 1, for κ2 fixed and (κ, T )→ (0,∞).

d: The last case is when ψ ∈ N bd
k,k+1(κ2, κ). In this case Wkt is nearly critical with

index v2 ∈ [−1/2− κ,−1/2 + κ] and Zkt is nonstationary with index w1 ≤ −1/2− κ2. The
remaining processes are all nonstationary with index w ≤ −1/2− κ2 and det(SSRT (ψ)) is

det(B0MT (w1, v2|w)B′0) = det(MT (v2, v2|w1, w)) det(MT (w1, w1|w)) det(B0)2.

Here both factors tend to infinity for κ2 fixed and (κ, T )→ (0,∞), and therefore `T,p(ψ) =⇒
∞ = `p(ψ) for ψ ∈ N bd

k,k+1(κ2, κ).

B.2.3 Proof of (102): convergence on N int
mn(κ)

We want to prove (102) for κ fixed and T →∞, and consider three cases.
a: Consider first Zkt and Wkt asymptotically stationary, that is ψ ∈ N int

mn(κ), −1 ≤ n ≤
m ≤ k. The proof can be taken from Section B.1.2a.
b: Suppose Zkt is nonstationary (index w1) and Wkt is stationary (index u2), then

ψ ∈ N int
k+1,n(κ), n = −1, . . . , k. The proof can be taken from Section B.1.2b.

c: Finally if both Zkt and Wkt are nonstationary, that is ψ ∈ N int
k+1,k+1(κ), then

SSRT (ψ) = B0MT ((w1, w2), (w1, w2)|w)B′0,

which converges to infinity, see (79), so that `T,p(ψ) =⇒∞ for T →∞ and ψ ∈ N int
k+1,k+1(κ).
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Figure 1: The case d0 − b0 < 1/2. The pa-
rameter space N is the set bounded by the
lines b = 1/2, b = d, and d = d1. The
sets N bd

m = N bd
m (κ1, κ), where a process is

close to being critical, and the sets N int
m =

N int
m (κ1, κ) are illustrated assuming k = 1.

If k ≥ 2 there would be more lines.
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Figure 2: The general case. The parameter
spaceN is bounded by the lines b = 1/2, b =
d, and d = d1. The sets N cr

mn = N cr
mn(κ2),

where two processes are close to being criti-
cal, and the sets Nmn are illustrated assum-
ing k = 1. If k ≥ 2 there would be more
lines.
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Figure 3: The set N cr
1,0 = N cr

1,0(κ2). For k ≥
1 the setN cr

1,0 covers the intersection between
the lines δ1 = −1/2 and η0 = −1/2, where
Z1t and W0t are nearly critical. The sets
N int
mn = N int

mn(κ) and N bd
mn = N bd

mn(κ2, κ) are
also indicated.


