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Abstract. This paper presents the inception and subsequent revisions of an immune-
inspired supervised learning algorithm, Artificial Immune Recognition System (AIRS).
It presents the immunological components that inspired the algorithm and describes
the initial algorithm in detail. The discussion then moves to revisions of the basic
algorithm that remove certain unnecessary complications of the original version.
Experimental results for both versions of the algorithm and are discussed and these
results indicate that the revisions to the algorithm do not sacrifice accuracy while
increasing the data reduction capabilities of AIRS.
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1. Introduction

In recent years there has been considerable interest in exploring and
exploiting the potential of Artificial Immune Systems for applications
in computer science and engineering. These systems are inspired by
various aspects of the immune systems of mammals. Some of these as-
pects, such as the distinction between self and non-self and the concept
of negative selection, have a natural and intuitive fit for applications
involving computer security, network intrusion detection [16], [20], [23],
change detection, and the like. Moreover, research into natural immune
systems suggests the existence of learning properties which may be used
to advantage in machine learning systems [2]. With the exception of [7],
until very recently Artificial Immune System (AIS) research into ma-
chine learning has focused on the development of unsupervised learning
and clustering [10], [29] rather than supervised learning and reinforce-
ment learning1. In contrast, this paper presents an AIS classifier which
∗ Also, Department of Computer Science and Engineering, Mississippi State

University, USA.
1 While others have discussed the similarity of Artificial Immune Networks and

other connectionist models such as Artificial Neural Netorks [15], there seems to have
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initially was intended to show that a subset of metaphors from the
AIS literature could produce an effective supervised learning system
[31]. The classifier that resulted performs well on a variety of publicly
available test problems used by the machine learning community [32]
and has been the object of study both to further refine its algorithms
and to better understand the source of its classification power. This
paper describes the original algorithm developed in [31] and proposes
a modification which enhances the efficiency of the resulting classi-
fier while retaining classification accuracy. An empirical review of the
effects of this modification is presented. This paper is an expanded
version of [34].

2. Bio-Inspired Computing and Machine Learning

The means of constructing and developing machine learning systems
have been extremely diverse. These have ranged from the manipulation
of symbolic data in order to develop a concept learning system to the
heavy use of sub-symbolic representations of data in the development
of function approximation algorithms (e.g., back-propagation neural
networks). There are several good general surveys of the field of machine
learning and its techniques (foremost being [26]), and no attempt will be
made to duplicate that effort here. However, instead, the focus will be
on one particular emerging field of computing science that can, perhaps,
lend insight into the development of machine learning systems.

Since there seems to be a desire to build computational systems
that exhibit some (if not all) of human cognitive abilities, one of the
first clear examples of this has been in the proliferation of the field of
artificial neural networks (ANNs). This field, as can be surmised from
its name, has looked to the workings of the human brain as inspiration
for the development of computing systems. Since these workings are not
completely understood and since the goals of building our intelligent
systems are often problem-driven, ANNs have by no means been an
attempt to directly model all of the processes occurring within human
brains. Instead, however, certain observed phenomena have been sim-
plified and encoded in order to replicate some of the mechanisms of
our thought processes that might best be suited to manipulating data
and learning general patterns or trends in this data. Of course, pattern
recognition has not been the only application of ANN techniques. They
have shown to be successful for a wide variety of learning and control
problems [3], [19].

been no direct translation of these ideas to a well-tested immune-inspired supervised
learning system.
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A second, obvious example, of a computing paradigm inspired by ob-
servations of natural phenomena is that of Genetic Algorithms (GAs).
Looking to neo-darwinian evolutionary theory with an emphasis on re-
production, mutation, and genetic crossover, GAs have been successful
in solving certain difficult or computationally expensive optimization
problems. Darwinian evolutionary theories have also inspired other
successful evolutionary programming techniques [25]. While these two
examples have been the most prolifically discussed computational ideas
inspired by natural observations, they are not the only ones. In recent
years, we have seen the exploration of other metaphors from nature as
applied to computing problems. These include swarming insects [22],
ant colonies [5], and mammalian immune systems [9]. It is this latest
source of inspiration, mammalian immune systems, and the use of this
natural system as a guide to developing machine learning systems that
will be the particular focus of this article.

2.1. The Artificial Immune Recognition System

AIRS (Artificial Immune Recognition System) is a novel immune in-
spired supervised learning algorithm [31]. Motivation for this work came
from the author’s identification of the fact that there was a significant
lack of research that explored the use of the immune system metaphor
for supervised learning; indeed, the only work identified was that of
[7]. However, it was noted that within the AIS community there had
been a number of investigations on exploiting immune mechanisms for
unsupervised learning (that is, where the class of data is unknown
apriori) [30], [29] and [11]). Work in [10] examined the role of the
clonal selection process within the immune system [6] and went on to
develop an unsupervised learning known as CLONALG. This work was
extended by employing the metaphor of the immune network theory
[21] and then applied to data clustering. This led to the development
of the aiNet algorithm [11]. Experimentation with the aiNet algorithm
revealed that evolved artificial immune networks, when combined with
traditional statistical analysis tools, were very effective at extracting in-
teresting and useful clusters from data sets. aiNet was further extended
to multimodal optimization tasks [8]. Other work in [30] also utilized
the immune network theory metaphor for unsupervised learning, and
then augmented the work with the development of a resource limited
artificial immune network [29], which reported good benchmark results
for cluster extraction and exploration with artificial immune networks.
Indeed, this work has been further extended by [27] with the introduc-
tion of fuzzy logic and refinement of various calculations. The work in
[29] was of particular relevance to [31] and the further work described in
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this paper, which builds on this previous work, in particular the ideas
of artificial recognition balls and resource limitation from [29] and long-
lived memory cells from [11]. However, while these population control
mechanisms and data representation concepts were borrowed from this
work on immune networks, it should be stressed that AIRS is in no
way an immune network model of compuation. The rest of this section
and describes the immune metaphors that have been employed within
AIRS.

2.2. IMMUNE PRINCIPLES EMPLOYED

A little time should be taken to draw attention to the most relevant
aspects of immunology that have been utilized as inspiration for this
work. A more detailed overview of the immune system and its rela-
tionship with computer science and engineering can be found in [9].
Throughout a person’s lifetime, the body is exposed to a huge variety
of pathogenic (potentially harmful) material. The immune system con-
tains lymphocyte cells known as B- and T-cells, each of which has a
unique type of molecular receptor (location in a shape space). Receptors
in this shape space allow for the binding of the pathogenic material
(antigens), with higher affinity (complementarity) between the receptor
and antigen indicating a stronger bind. Work in [9] adopted the term
shape-space to describe the shape of the data being used, and defined
a number of affinity measures, such as Euclidean distance, which can
be used to determine the interaction between elements in the AIS.
Within AIRS (and most AIS techniques) the idea of antigen/antibody
binding is employed and is known as antigenic presentation. When
dealing with learning algorithms, this is used to implement the idea
of matching between training data (antigens) and potential solutions
(B-Cells). Work in [29] employed the idea of an artificial recognition
ball (ARB), which was inspired by work in [14] describing antigenic
interaction within an immune network. Simply put, an ARB can be
thought to represent a number of identical B-Cells and is a mechanism
employed to reduce duplication and dictate survival within the pop-
ulation. Once the affinity between a B-Cell and an antigen has been
determined, the B-Cell involved transforms into a plasma cell and ex-
periences clonal expansion. During the process of clonal expansion, the
B-Cell undergoes rapid proliferation (cloning) in proportion to how well
it matches the antigen. This response is antigen specific. These clones
then go through affinity maturation, where some undertake somatic
hypermutation (mutation here is inversely proportional to antigenic
affinity) and eventually will go through a selection process through
which a given cell may become a memory cell. These memory cells
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Table I. Mapping between the Immune System and AIRS

Immune System AIRS

Antibody Feature Vector

Recognition Ball Combination of feature vector and vector class

Shape-Space Type and possible values of the data vector

Clonal Expansion Reproduction of ARBs that are well matched with antigens

Antigens Training data

Affinity Maturation Random mutation of ARB and removal of the least stimulated ARBs

Immune Memory Memory set of mutated ARBs

Metadynamics Continual removal and creation of ARBs and memory cells

are retained to allow for a faster response to the same, or similar,
antigen should the host become re-infected This faster response rate
is known as the secondary immune response. Within AIRS, the idea
of clonal expansion and affinity maturation are employed to encourage
the generation of potential memory cells. These memory cells are later
used for classification. Drawing on work from [29], AIRS utilized the
idea of a stimulation level for an ARB, which, again, was derived from
the equations for an immune network described in [14]. Although AIRS
was inspired by this work on immune networks, the development of the
classifier led to the abandoning of the network principles in favor of a
simple population-based model. In AIRS, ARBs experience a form of
clonal expansion after being presented with training data (analogous to
antigens); details of this process are provided in section 4.3. However,
AIRS did not take into account the principle of affinity proportional
mutation. When new ARBs were created, they were subjected to a
process of random mutation with a certain probability and were then
incorporated into the memory set of cells should their affinity have
met certain criteria. Within the AIRS system, ARBs competed for sur-
vival based on the idea of a resource limited system [29]. A predefined
number of resources existed, for which ARBs competed based on their
stimulation level: the higher the stimulation value of an ARB the more
resources it could claim. ARBs that could not successfully compete
for resources were removed from the system. The term metadynamics
of the immune system refers to the constant changing of the B-Cell
population through cell proliferation and death. This was present in
AIRS with the continual production and removal of ARBs from the
population. Table I summarizes the mapping between the immune
system and AIRS.
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3. Overview of the AIRS algorithm

This section presents an overview of the AIRS algorithm. 3.1 defines
some of the key terms and concepts important to the understanding
of the algorithm. 3.2 provides a somewhat formal tour of the training
routine of the algorithm. 3.3 presents a more conceptual overview of
the algorithm.

3.1. Definitions

This section presents definitions of the key terms and concepts used
throughout the rest of this paper, particularly as they apply to the
AIRS algorithm.

− affinity : a measure of “closeness” or similarity between two an-
tibodies or antigens. In the current implementation, this value is
guaranteed to be between 0 and 1 inclusively and is calculated
simply as the Euclidean distance of the two objects’ feature vectors.
Thus, small affinity values indicate strong affinity.

− affinity threshold (AT): the average affinity value among all of the
antigens in the training set or among a selected subset of these
training antigens.

− affinity threshold scalar (ATS): a value between 0 and 1 that, when
multiplied by the affinity threshold, provides a cut-off value for
memory cell replacement in the AIRS training routine.

− antibody : a feature vector coupled with its associated output or
class; the feature vector-output combination is referred to as an
antibody when it is part of an ARB or memory cell.

− antigen: this is the same in representation as an antibody ; however,
the feature vector-class combination is referred to as an antigen
when it is being presented to the ARBS for stimulation and/or
response.

− Artificial Immune Recognition System (AIRS): a classification al-
gorithm inspired by natural immune systems.

− Artificial Recognition Ball (ARB): also known as a B-Cell. It con-
sists of an antibody, a count of the number of resources held by
the cell, and the current stimulation value of the cell.

− B Cell : in this paper, more commonly referred to as an Artificial
Recognition Ball.
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− candidate Memory Cell : the antibody of an ARB, of the same
class as the training antigen, which was the most stimulated after
exposure to the given antigen.

− class: the category of a given feature vector. This is also referred
to as the output of a cell.

− clonal rate: an integer value used to determine the number of
mutated clones a given ARB is allowed to attempt to produce. In
the current implementation, a selected ARB is allowed to produce
up to (clonal rate * stimulation value) mutated clones after re-
sponding to a given antigen. This product is also used in assigning
resources to an ARB. Therefore, the clonal rate serves a dual-role
as resource allocation factor and clonal mutation factor for the cell
population.

− established Memory Cell : the antibody of an ARB which has sur-
vived competition for resources and was the most stimulated to a
given training antigen and has been added to the evolving set of
memory cells.

− feature vector : one instance of data represented as a sequence of
values. Each position in the sequence represents a different feature
associated with the data, and each feature has its own range of
legitimate values.

− hyper-mutation rate: an integer value used to determine the num-
ber of mutated clones a given memory cell is allowed to inject into
the cell population. In the current implementation, the selected
memory cell injects at least (hyper-mutation rate * clonal rate *
stimulation value) mutated clones into the cell population at the
time of antigen introduction.

− k nearest neighbor (KNN): a classification scheme in which the
response of the classifier to a previously unseen item is determined
by a majority vote among the k closest data points. For the AIRS
algorithm, the k closest data points are in actuality the k most
stimulated memory cells to a given test antigen.

− k value: the parameter which indicates how many memory cells
should be used to determine the classification of a given test item.
(see k nearest neighbor for more details)

− memory cell (mc): the antibody of an ARB which was the most
stimulated by a given training antigen at the end of exposure to
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that antigen. It is used for hyper-mutation in response to incom-
ing training antigens (see hyper-mutation rate). An mc can be
replaced, however. This occurs only when a candidate mc is more
stimulated to a given training antigen than the most stimulated
established mc and the affinity between the established mc and the
candidate mc is less than the product of the Affinity Threshold and
the Affinity Threshold Scalar.

− mutation rate: a parameter between 0 and 1 that indicates the
probability that any given feature (or the output) of an ARB will
be mutated.

− output : the classification category associated with a cell. Same as
the class of the feature vector corresponding to the cell.

− resources: a parameter which limits the number of ARBs allowed
in the system. Each ARB is allocated a number of resources based
on its stimulation value and the clonal rate. The total number of
system wide resources is set to a certain limit. If more resources are
consumed than are allowed to exist in the system, then resources
are removed from the least stimulated ARBs until the number of
resources in the system returns to the number allowed. If all of
a given ARB’s resources are removed, then that ARB is removed
from the cell population.

− seed cell : an antibody, drawn from the training set, used to initialize
Memory Cell and ARB populations at the beginning of training.

− stimulation function: a function used to measure the response of an
ARB to an antigen or to another ARB. In the current formulation
of the AIRS classifier, this function should return a value between
0 and 1 inclusively. For the implementation of AIRS presented in
this study, the stimulation function is inversely proportional to the
Euclidean distance between the feature vectors of the ARB and the
antigen.

− stimulation value: the value returned by the stimulation function.

− stimulation threshold : a parameter between 0 and 1 used as a
stopping criterion for the training on a specific antigen. For the
current implementation, only when the average stimulation value
of the ARBs of each class is above the stimulation threshold does
training in reaction to the particular antigen stop.

− test set : the collection of antigens used to evaluate the classification
performance of the trained AIRS classifier.
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− training set : the collection of antigens used to train the AIRS
classifier.

3.2. Tour of the Algorithm

This subsection presents a tour of the AIRS algorithm. In particular,
this section presents an overview of the primary routines, methods,
and equations used in the training and building of an immune-system
based classifier. This somewhat formal view of the algorithm is offered
as a companion to the more conceptual discussion and explanation
of these mechanisms presented in 3.3. There are four primary stages
involved in the AIRS algorithm. The first stage is data normalization
and initialization. The second stage is memory cell identification and
ARB generation. The third stage is competition for resources in the
development of a candidate memory cell. The final stage of the training
algorithm is the potential introduction of the candidate memory cell
into the set of established memory cells.

For this discussion, let us establish the following notational conven-
tions:

− Let MC represent the set of memory cells and mc represent an
individual member of this set.

− Let ag.c represent the class of a given antigen, ag, where ag.c ∈
C = {1, 2, . . . nc} and nc is the number of classes in the data set.

− Let mc.c represent the class of a given memory cell, mc, where
mc.c ∈ C = {1, 2, . . . nc}.

− Define MCc ⊆ MC = {MC1 ∪ MC2 ∪ . . . MCnc} and mc ∈
MCc iff mc.c ≡ c.

− Let ag.f and mc.f represent the feature vector of a given antigen
and memory cell, ag and mc, respectively. Let ag.fi represent the
value of the ith feature in ag.f and mc.fi the value of the ith value
of mc.f .

− Let AB represent the set of ARBs, or the population of exist-
ing cells, and MU represent a set of mutated clones of ARBs.
Furthermore, let ab represent a single ARB where ab ∈ AB.

− Let ab.c represent the class of a given ARB, ab, where ab.c ∈ C =
{1, 2, . . . nc}.

− Define ABc ⊆ AB = {AB1∪AB2∪. . . ABnc}, and ab ∈ ABc iff ab.c ≡
c.
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− Let ab.stim represent the stimulation level of the ARB ab.

− Let ab.resources represent the number of resources held by the
ARB ab.

− Let TotalNumResources represent the total number of system
wide resources allowed.

3.2.1. Initialization
The first stage of the algorithm, initialization, can primarily be thought
of as a data pre-processing stage combined with a parameter discovery
stage. During initialization, first all items in the data set are normalized
such that the Euclidean distance2 between the feature vectors of any
two items is in the range of [0,1]. This can be performed through a
variety of methods and could also be performed as a true pre-processing
stage before the algorithm begins. It is important to note that, while
for the current investigation Euclidean distance is the primary metric
of both affinity and stimulation, other functions could be employed as
well. What is important about this normalization is only that the range
of possible reactions from cell-to-cell interaction remains within the
range of [0,1]. After normalization, the affinity threshold is calculated.
The affinity threshold is the average affinity value over all training data
items’ feature vectors. The affinity threshold is calculated as described
in equation (1) below:

affinity threshold =
∑n

i=1

∑n
j=i+1 affinity(agi, agj)

n(n−1)
2

(1)

where n is the number of training data items (antigens) in question,
agi and agj are the ith and jth training antigen in the antigen training
vector, and affinity(x,y) returns the Euclidean distance between the
two antigens’ feature vectors.

The final step in initialization is the seeding of the memory cells
and initial ARB population. This is done by randomly choosing 0 or
more antigens from the set of training vector to be added to the set of
memory cells and to the set of ARBs.

3.2.2. Memory Cell Identification and ARB Generation
Once initialization is complete, training proceeds as a one-shot in-
cremental algorithm. That is, each element of the training data is

2 Euclidean distance was chosen as an intial starting place for this prototype as
it has been used in many standard machine learning algorithms. One exploration of
AIRS that is yet to be undertaken is an examination of different distance metrics
for these various calculations.
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presented to the AIRS learning algorithm exactly once. The first step
of this stage of the algorithm is memory cell identification and ARB
generation. Given a specific training antigen, ag, find the memory cell,
mcmatch, that has the following property:

mcmatch = argmaxmc∈MCag.cstimulation(ag, mc) (2)

where stimulation(x, y) is defined as in equation (3) below:

stimulation(x, y) = 1− affinity(x, y) (3)

If MCag.c ≡ ®, then mcmatch ← ag and MCag.c ← MCag.c ∪ ag. That
is, if the set of memory cells of the same classification as the antigen
is empty, then add the antigen to the set of memory cells and denote
this newly added memory cell as the match memory cell, mcmatch. It
should be noted here that while the stimulation function for the current
work relies solely on Euclidean distance, this need not necessarily be
the case.

Once mcmatch has been identified, this memory cell is used to gen-
erate new ARBs to be placed into the population of (possibly) pre-
existing ARBs (i.e., those ARBs left in the system from exposure to
previous antigens). This is done through the method shown in Figure
1, where the function makeARB(x) returns an ARB with x as the
antibody of this ARB and where mutate(x, b) is defined in Figure
2. In Figure 2, the function drandom() returns a random value in

MU ← ®
MU ← MU ∪makeARB(mcmatch)
stim ← stimulation(ag,mcmatch)
NumClones ← hyper clonal rate ∗ clonal rate ∗ stim
while (| MU |< NumClones)
do

mut ← false
mcclone ← mcmatch

mcclone ← mutate(mcclone,mut)
if(mut ≡ true)

MU ← MU ∪makeARB(mcclone)
done
AB ← AB ∪MU

Figure 1. Hyper-Mutation for ARB Generation
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mutate(x, b)
{

foreach(x.fi in x.f)
do

change ← drandom()
change to ← drandom()
if(change < mutation rate)

x.fi ← change to ∗ normalization value
b ← true

done
if(b ≡ true)

change ← drandom()
change to ← (lrandom() mod nc)
if(change < mutation rate)

x.c ← change to
return x

}

Figure 2. Mutation Routine

the range [0,1] and (lrandom() mod nc) returns a random value in the
range {0,nc}.

3.2.3. Competition for Resources and Development of a Candidate
Memory Cell

At this point a set of ARBs (AB) exists which includes mcmatch, mu-
tations from mcmatch, and (possibly) remnant ARBs from responses
to previously encountered antigens. Recall that the AIRS algorithm
is a one-shot algorithm, so while the discussion has been divided into
separate stages, only one antigen goes through this entire process at
time (with the obvious exception being the initialization stage which
takes place over the entire data set before training begins). The goal
of the next portion of the algorithm is to develop a candidate memory
cell which is most successful in correctly classifying a given antigen, ag.
This is done primarily through three mechanisms. The first mechanism
is through the competition for system wide resources. Following the
methods first outlined by [30] and more fully realized by [29], resources
are allocated to a given ARB based on its normalized stimulation value,
which is used as an indication of its fitness as a recognizer of ag. The
second mechanism is through the use of mutation for diversification
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and shape-space exploration. The third mechanism is the use of an
average stimulation threshold as a criterion for determining when to
stop training on ag.

Similar to principles involved in genetic algorithms, the AIRS algo-
rithm employs a concept of fitness for survival of individuals within the
ARB population. Survival of a given ARB is determined in a two-fold,
interrelated manner. First, each ARB in the population AB is presented
with the antigen ag to determine the ARB’s stimulation level. This
stimulation is then normalized across the ARB population based on
both the raw stimulation level and the class of the given ARB (ab.c).
Based on this normalized stimulation value, each ab ∈ AB is allocated a
finite number of resources. If this allocation of resources would result in
more resources being allocated across the population than allowed, then
resources are removed from the weakest (least stimulated) ARBs until
the total number of resources in the system returns to the number of
resources allowed. Those ARBs which have zero resources are removed
from the ARB population. This process is formalized in Figure 3.

While 3.3 will discuss this in more detail, two key aspects of this
resource allocation routine for the initial formulation of the AIRS algo-
rithm are noted here. First, the stimulation value of an ARB is not only
determined by the stimulation function in equation 3 but is also based
on the class of the ARB. The stimulation calculation method outlined
in Figure 3 provides reinforcement both for those ARBs of the same
class as ag that are highly stimulated by ag and for those ARBs that
are of a different class from ag that do not exhibit a strong positive
reaction to ag. Second, the distribution of resources is also based on
the class of the ARB. This is done to provide additional reinforcement
for those ARBs of the same class as ag without losing the potentially
positive qualities of the remaining ARBs for reaction to future antigens.

At this point in the algorithm, the ARB population AB consists of
only those ARBs that were most stimulated by the given antigen, ag,
or more specifically, AB now consists of those ARBs that were able
to successfully compete for resources. The algorithm continues first by
determining if the ARBs in AB were stimulated enough by ag to stop
training on this item. This is done by defining a vector ~s that is nc in
length to contain the average stimulation value for each class subset of
AB. That is:

si ←
∑|ABi|

j=1 abj .stim

| ABi | , abj ∈ ABi

The stopping criterion is reached iff si ≥ stimulation threshold for all
elements in ~s = {s1, s2, . . . snc}.
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minStim ← MAX
maxStim ← MIN
foreach(ab ∈ AB)
do

stim ← stimulation(ag, ab)
if (stim < minStim)

minStim ← stim
if (stim > maxStim)

maxStim ← stim
ab.stim ← stim

done
foreach(ab ∈ AB)
do

if(ab.c ≡ ag.c)
ab.stim ← ab.stim−minStim

maxStim−minStim
else

ab.stim ← 1− ab.stim−minStim
maxStim−minStim

ab.resources ← ab.stim ∗ clonal rate
done
i ← 1
while(i ≤ nc)
do

resAlloc ← ∑|ABi|
j=1 abj .resources, abj ∈ ABi

if(i ≡ ag.c)
NumResAllowed ← TotalNumResources

2
else

NumResAllowed ← TotalNumResources
2∗(nc−1)

while(resAlloc > NumResAllowed)
do

NumResRemove ← resAlloc−NumResAllowed
abremove ← argminab∈ABi(ab.stim)
if(abremove.resources ≤ NumResRemove)

ABi ← ABi − abremove

resAlloc ← resAlloc− abremove.resources
else

abremove.resources ← abremove.resources−NumResRemove
resAlloc ← resAlloc−NumResRemove

done
i ← i + 1

done

Figure 3. Stimulation, Resource Allocation, and ARB Removal

airs.tex; 11/06/2003; 12:44; p.14



Artificial Immune Recongition System 15

Regardless of whether the stopping criterion is met or not, the al-
gorithm proceeds by allowing each ARB in AB the opportunity to
produce mutated offspring. While this adding of mutated offspring is
similar to the method outlined in Figure 1, there are a few differences.
This modified mutation generation routine is presented in Figure 4.

MU ← ®
foreach(ab ∈ AB)
do

rd ← drandom()
if(ab.stim > rd)

NumClones ← ab.stim ∗ clonal rate
i ← 1
while(i ≤ NumClones)
do

mut ← false
abclone ← ab
abclone ← mutate(abclone, mut)
if(mut ≡ true)

MU ← MU ∪ abclone

i ← i + 1
done

done
AB ← AB ∪MU

Figure 4. Mutation of Surviving ARB

After allowing each surviving ARB the opportunity to produce mu-
tated offspring, the stopping criterion is examined. If the stopping
criterion is met, then training on this one antigen stops. If the stopping
criterion has not been met, then this entire process, beginning with the
method outlined in Figure 3, is repeated until the stopping criterion is
met. The only exception to this repetition is that on every pass through
this portion of the algorithm, except the first pass already discussed, if
the stopping criterion is met after the stimulation and resource alloca-
tion phase, then the production of mutated offspring is not performed.
Once the stopping criterion has been met, then the candidate memory
cell is chosen. The candidate memory cell, mccandidate, is the feature
vector and class of the ARB that existed in the system before the most
recent round of mutations that was the most stimulated ARB of the
same class as the training antigen ag.
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3.2.4. Memory Cell Introduction
The final stage in the training routine is the potential introduction
of the just-developed candidate memory cell, mccandidate, into the set
of existing memory cells MC. It is during this stage that the affinity
threshold calculated during initialization becomes critical as it dictates
whether the mccandidate replaces mcmatch that was previously identified.
The candidate memory cell is added to the set of memory cells only
if it is more stimulated by the training antigen, ag, than mcmatch,
where stimulation is defined as in equation (3). If this test is passed,
then if the affinity between mccandidate and mcmatch is less than the
product of the affinity threshold and the affinity threshold scalar, then
mccandidate replaces mcmatch in the set of memory cells. This memory
cell introduction method is presented in figure 5.

CandStim ← stimulation(ag, mccandidate)
MatchStim ← stimulation(ag,mcmatch)
CellAff ← affinity(mccandidate,mcmatch)
if(CandStim > MatchStim)

if(CellAff < AT ∗ATS)
MC ← MC −mcmatch

MC ← MC ∪mccandidate

Figure 5. Memory Cell Introduction

Once the candidate memory cell has been evaluated for addition
into the set of established memory cells, training on this one antigen is
complete. The next antigen in the training set is then selected, and the
training process proceeds with memory cell identification and ARB gen-
eration. This process continues until all antigens have been presented
to the system.

3.2.5. Classification
After training has completed, the evolved memory cells are available
for use for classification. The classification is performed in a k-nearest
neighbor approach. Each memory cell is iteratively presented with each
data item for stimulation. The system’s classification of a data item is
determined by using a majority vote of the outputs of the k most
stimulated memory cells.
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3.3. Discussion of the AIRS Algorithm

While 3.2 presents a fairly formal overview of the AIRS algorithm, this
section provides a conceptual discussion of some of the key elements of
this classification system. The goal of the algorithm is the development
of a set of memory cells that can be used to classify data. These artificial
memory cells embody several characteristics seen in natural immune
systems. Primarily, the memory cells are based on memory B Cells
that have undergone a maturation process in the body. In mammalian
immune systems, these memory B Cells are easily stimulated by in-
vading antigens and undergo a process of hyper-somatic mutation as
a response to recognized invading pathogens. The embodiment of this
concept is seen in the function of memory cells in the AIRS algorithm.
The artificial memory cells can also be said to take on the role of T
Cells and Antigen Presenting Cells to some degree. In natural immune
systems T Cells tend to be associated with a specific population of
B Cells. When a T Cell recognizes an antigen, it then presents this
antigen to the B Cells associated with it for further recognition. In the
AIRS algorithm, this can be seen in the initial stages of identifying the
matching memory cell which in turn develops a population of ARBs
closely related to the matching memory cell.

The heart of the AIRS algorithm is the process of evolving memory
cells from a population of ARBs. This evolutionary process has several
key concepts which warrant mention here. The primary mechanism for
providing evolutionary pressure to the population of ARBs in the devel-
opment of memory cells is the competition for system wide resources.
This concept, inspired by [29], is the means by which cell survival is
determined and reinforcement for quality classification is provided. Like
genetic algorithms, the goal of resource competition is the development
of the fittest individuals. In the AIRS algorithm, fitness is initially de-
termined by stimulation response of an individual ARB to an antigen.
In the initial formulation of AIRS work, it is necessary not only to
examine the stimulation response of a cell to an antigen but also to
take into account the cell’s class when compared to the antigen’s class.
For this reason, in the AIRS algorithm, cells with high stimulation
responses that are of the same class as the antigen and cells with low
stimulation responses that are not of the same class as the antigen are
rewarded most heavily. The reward comes in the form of being allocated
more system wide resources. On the other hand, those cells with low
stimulation values but the same class or high stimulation values but a
different class as the antigen are seen as not just poor classifier cells,
but potentially detrimental classifier cells and they are thus rewarded
less. Since those ARBs with the least ability to acquire resources are
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purged from the system, there is great pressure to evolve toward a
place in the search space that will provide the most reward. However,
as we wish to maintain the generalizing capabilities of the system, the
exact “amount” of error is not provided as feedback to an individual
cell, rather those cells with higher quality representations are proided
reinforcement.

ARBs which survive the competition for resources are further re-
warded by being given the opportunity to produce mutated offspring.
Again, as is the case with genetic algorithms, this competition for
survival can also be seen in a truly evolutionary sense. That is, while
the fittest individuals in a given round of antigen exposure might not
survive to actually become a memory cell, their offspring might. Thus
it is survival of a “species” of cell that this algorithm promotes. This
is accomplished through the use of feature mutation in the training
routine. The introduction of mutated offspring into the ARB population
provides for a more thorough exploration of the search space. This
exploration is further enhanced by the use of a stimulation threshold
that must be met before the ARB population can be said to have
“learned” to recognize a given antigen. This increases the evolutionary
pressure to develop cells across the population which exhibit qualities
desirable for memory cell inclusion.

After an ARB has successfully competed for resources among the
general ARB population, if it was the most stimulated in response to
the training antigen and was of the same class as the antigen, then it
has the opportunity to be added to the pool of memory cells. When an
antigen is first introduced to the system, the memory cell which is most
stimulated by and of the same class as the antigen is allowed to inject
mutated offspring into the ARB general population. However, at the
end of the evolutionary process of this ARB population, this original
memory cell can potentially be replaced by the evolved memory cell.
This occurs only when the evolved memory cell is closer in the search
space to the training antigen than the originally located memory cell
and when these two memory cells are “close enough”(as determined by
a user-parameter) to each other as well. From a machine learning point
of view, this process is what provides for the data reduction capabilities
of the AIRS algorithm. By allowing better classifying memory cells
that occupy near-by locations in the shape space to replace existing
memory cells, the AIRS algorithm reduces the number of cells needed
to represent the problem domain. The algorithm also generalizes since
the evolved memory cells in the system are not necessarily identical to
any training instances.
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3.4. RESULTS AND DISCUSSION

AIRS was tested on a number of benchmark data sets in order to assess
the classification performance. This section will briefly highlight those
results and discuss potential improvements for the algorithm; however,
more details can be found in [32]. Once a set of memory cells has been
developed, the resultant cells can be used for classification. This is done
through a k-nearest neighbor approach. Experiments were undertaken
using a simple linearly separable data set, where classification accuracy
of 98% was achieved using a k-value of 3. This seemed to bode well,
and further experiments were undertaken using the Fisher Iris data
set, Pima diabetes data, Ionosphere data and the Sonar data set, all
obtained from the repository at the University of California at Irvine
[4]. Table II shows the performance of AIRS on these data sets when
compared with other popular classifiers [12] and [13], and a discussion
of these comparative results can be found in (Watkins and Boggess
2002a)3.

These results were obtained from averaging multiple runs of AIRS,
typically consisting of three or more runs and five-way, or greater, cross
validation. More specifically, for the Iris data set a five-fold cross valida-
tion scheme was employed with each result representing an average of
three runs across these five divisions. To remain comparable to other
experiments reported in the literature, the division between training
and test sets of the Ionosphere data set as detailed in [4] was main-
tained. However, the results reported here still represent an average of
three runs. For the Diabetes data set a ten-fold cross validation scheme
was used, again with each of the 10 testing sets being disjoint from the
others, and results were averaged over three runs across these data sets.
Finally, the Sonar data set utilized the thirteen-way cross validation
suggested in the literature [4] and was averaged over ten runs to allow
for more direct comparisons with other experiments reported in the
literature. During the experimentation, it was noted by the authors
that varying system parameters such as number of seed cells varied
performance on certain data sets, however, varying system resources
(i.e., the numbers of resources an ARB could compete for) seemed to
have little affect. A comparison was made between the performance of
AIRS and other benchmark techniques, where AIRS seemed not to out-
perform specialist techniques, but did outperform more general purpose
algorithms, such as C4.5. To save duplication, the reader is referred to
[31] for a detailed account of classification accuracy comparisons. Even
though initial results from AIRS are promising, it can be said there are

3 For the Diabetes data set, 11 others reported with lower scores, including Bayes,
Kohonen, kNN, ID3...
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Table II. Comparison of AIRS and Other Classifiers Classification Results on Benchmark Data

Iris Ionosphere Diabetes Sonar

1 Grobian 100% 3-NN + 98.7% Logdisc 77.7% TAP MFT 92.3%

(rough) simplex Bayesian

2 SSV 98.0% 3-NN 96.7% IncNet 77.6% Nave MFT 90.4%

Bayesian

3 C-MLP2LN 98.0% IB3 96.7% DIPOL92 77.6% SVM 90.4%

4 PVM 98.0% MLP + 96.0% Linear Disc. 77.5- Best 2-layer 90.4%

2 rules BP Anala. 77.2% MLP + BP,

12 hidden

5 PVM 1 rule 97.3% AIRS 94.9% SMART 76.8% MLP+BP, 84.7%

12 hidden

6 AIRS 96.7% C4.5 94.9% GTO DT 76.8% MLP+BP, 84.5%

(5xCV) 24 hidden

7 FuNe-I 96.7% RIAC 94.6% ASI 76.6% 1-NN, 84.2%

Manhattan

8 NEFCLASS 96.7% SVM 93.2% Fischer 76.5% AIRS 84.0%

discr. anal.

9 CART 96.0% Non-linear 92.0% MLP+BP 76.4% MLP+BP, 83.5%

perceptron 6 hidden

10 FUNN 95.7% FSM + 92.8% LVQ 75.8% FSM - 83.6%

rotation method?

11 1-NN 92.1% LFC 75.8% 1-NN 82.2%

Euclidean

12 DB-CART 91.3% RBF 75.7% DB-CART, 81.8%

10xCV

13 Linear 90.7% NB 75.5- CART, 67.9%

perceptron 73.8% 10xCV

14 OC1 DT 89.5% kNN, k=22, 75.5%

Manh

15 CART 88.9% MML 75.5%

... ...

22 AIRS 74.1%

23 C4.5 73.0%
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a number of potential areas for simplification and improvement. There
is clearly a need to understand exactly why and how AIRS behaves the
way it does. This can be achieved through a rigorous analysis of the
algorithm, and through emperical examination of the behavior of the
ARB pool and memory set over time.

To date, the focus has been primarily on the classification perfor-
mance of AIRS. [17] performs some of this empirical exploration by
applying AIRS to a variety of classification problems in which the
number of class ranged from 3 to 12 and the number of features ranged
from 4 to 279. In the course of this work, AIRS was found to have
the best performance of any single classifier on the publicly available
credit.crx problem, of any known to the authors. Further emperical
exploration of the AIRS algorithm is detialed in the description of two
other suites of experiments: [18] discusses the effects of replacing the
algorithm for evolving a candidate memory cell from the ARB pool
and concludes that most of the effectiveness of the classifer lies in the
replacement strategies for the memory cell pool itself. [24] performs lim-
ited exploration of modifications to the resource allocation mechanism
as well as a more thorough examination of the tie-breaking mechanism
in the k-nn algorithm. In the course of this latter experimentation, it
was found that AIRS outperforms the best reported accuracy for the
E.coli data set found in the UCI repository [4].

The majority of AIS techniques use the metaphor of somatic hy-
permutation or affinity proportional mutation. To date, AIRS does not
employ this metaphor but instead uses a naive random generation of
mutations. The remaining sections of this paper detail investigations
into the behavior of the algorithm and present a modified version of
AIRS, which is more efficient in terms of ARB production and employs
affinity proportional mutation, and assess what, if any, difference these
changes have made to the overall algorithm.

4. A More Efficient AIRS

This section details observations that have been made through a thor-
ough investigation into AIRS and how issues raised through these
observations have been overcome.

4.1. OBSERVATIONS
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4.1.1. The ARB Pool
A crude visualization4 was used to gain a better understanding of the
development of the ARB pool. In AIRS there are two independent
pools of cells, the memory cell pool and the ARB pool. The original
formulation of AIRS uses the ARB pool to evolve a candidate memory
cell of the same class as the training antigen, which can potentially
enter the memory cell pool. During this evolution, ARBs of a different
class than the training antigen were also maintained in the ARB pool.
The stimulation of an ARB was based both on affinity to the antigen
and on class, where highly stimulated ARBs were those of the same
class as the antigen which were “close” to the antigen, or were of a
different class and “far” from the antigen. However, the visualization,
which consisted of an animated GIF file which was the concatenation
of a series of plots of the ARB pool at each iteration in the pool’s
evolution on simple 2-dimensional simulated data, revealed that, during
the process of evolving a candidate memory cell, evolving ARBs that
are of a different class than the training antigen was wasted effort. The
point of the interaction of the ARB pool with the antigenic material is
really only in evolving a good potential memory cell, and this potential
memory cell must be of the same class as the training antigen. The
visualization demonstrates that there is a process of convergence by
ARBs of the same class to the training antigen. Naturally, based on
the reward scheme, ARBs of a different class are moving further away
from the training antigen. However, this process essentially must start
over for the introduction of each new antigen, and, therefore, previously
existing ARBs are fairly irrelevant. Since there are two separate cell
pools, with the true memory of the system only being maintained in
the Memory Cell pool, maintaining any type of memory in the ARB
pool made no effective contribution. Eliminating the maintenance of
multiple classes in the ARB pool while generating a candidate mem-
ory cell simplifies the algorithm, reduces the memory required during
execution, and improves the overall runtime.

4.1.2. Mutation of Cells
Motivated by observing the success of other AIS work, as well as by
some of the tendencies discussed in [31] and [33], attention was paid to
the way in which mutation occured within AIRS. In these two works,
the authors notice that some of the evolved memory cells do not seem
as high in quality as others. Additionally, it was observed that there
seemed to be some redundancy in the memory cells that were produced.
In [10] and other AIS work, mutation within an antibody or B-Cell is

4 http://www.cs.kent.ac.uk/people/rpg/abw5/ARB hundred.html
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based on its affinity, so that high affinity cells undergo mutation with a
more restricted range than lower affinity cells. These other AIS works
have used this method of somatic hypermutation to a good degree
of success. It was thought that embedding some of this approach in
AIRS might result in higher quality, less redundant, memory cells. This
approach was therefore adopted within AIRS.

4.2. AIRS: WHAT IS NEW?

For the remainder of this section changes that have been made to
the AIRS algorithm are described. There then follow empirical results
from the new formulation and a discussion of the implications of these
results.

4.2.1. Memory Cell Evolution
In the original version of AIRS both ARBs “near” the antigen and of
the same class as the antigen were rewarded and ARBS “far” from the
antigen and of a different class than the antigen were rewarded. Also,
ARBs were allowed to mutate their class values (mutate in this case
means switching classes). In the newly revised version of AIRS, only
ARBs of the same class are maintained in the ARB pool and mutation
of the class value is no longer permitted. Figure 6 presents the chanes
to the algorithm presented in Figure 3.

Recall that the stimulation threshold was originally used as a stop-
ping criterion for training the ARB pool on an antigen. In order to stop
training on an antigen the average normalized stimulation level had to
exceed the stimulation threshold for each class group of ARBs. That is,
in a 2-class problem, for example, the average normalized stimulation
level of all class 0 ARBs had to be above the stimulation threshold,
and the average normalized stimulation level of all class 1 ARBs had
to be above the stimulation threshold. It was possible, and frequently
the case in fact, that the average normalized stimulation level for the
ARBs of the same class as the training antigen reached the stimulation
threshold before the average normalized stimulation level of ARBs in
different classes from the antigen. What this did, in effect, was allow
for the evolution of even higher stimulated ARBs of the same class
while they were waiting for the other classes to reach the stimulation
threshold. By taking out these extra cycles of evolution which were
du to ARBs of different classes, it is possible that the ARBs will not
have converged “as much” as in the previous formulation. This can
be overcome by raising the stimulation threshold and thus requiring a
greater level of convergence.
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minStim ← MAX
maxStim ← MIN
foreach(ab ∈ AB)
do

stim ← stimulation(ag, ab)
if (stim < minStim)

minStim ← stim
if (stim > maxStim)

maxStim ← stim
ab.stim ← stim

done
foreach(ab ∈ AB)
do

ab.stim ← ab.stim−minStim
maxStim−minStim

ab.resources ← ab.stim ∗ clonal rate
done
resAlloc ← ∑|ABag.c|

j=1 abj .resources, abj ∈ ABag.c

NumResAllowed ← TotalNumResources
while(resAlloc > NumResAllowed)
do

NumResRemove ← resAlloc−NumResAllowed
abremove ← argminab∈ABag.c(ab.stim)
if(abremove.resources ≤ NumResRemove)

ABag.c ← ABag.c − abremove

resAlloc ← resAlloc− abremove.resources
else

abremove.resources ← abremove.resources−NumResRemove
resAlloc ← resAlloc−NumResRemove

done

Figure 6. Stimulation, Resource Allocation, and ARB Removal: Revised

4.2.2. Somatic Hypermutation
To explore the role of mutation on the quality of the memory cells
evolved, the mutation routine was modified so that the amount of
mutation allowed to a given gene in a given cell is dictated by the cell’s
stimulation value. Specifically, the higher the normalized stimulation
value, the smaller the range of mutation allowed. Essentially, the range
of mutation for a given gene = 1.0 - the normalized stimulation value of
the cell. Mutation is then controlled over this range with the original
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gene value being placed at the center of the range. This, in a sense,
allows for tight exploration of the space around high quality cells,
but allows lower quality cells more freedom to explore widely. In this
way, both local refinement and diversification through exploration are
achieved. This change is illustrated in figure 7, which is presented in a
similar manner to figure 2.

mutate(x, b)
{

range ← 1− x.stim
foreach(x.fi in x.f)
do

change ← drandom()
change to ← drandom()
bottom ← x.fi

normalization value − range
2

if (bottom < 0)
bottom ← 0

change to ← (change to ∗ range) + bottom
if(change to > 1)

change to ← 1
if(change < mutation rate)

x.fi ← change to ∗ normalization value
b ← true

done
return x

}

Figure 7. Mutation Routine: Revised

4.3. THE AIRS2 ALGORITHM

The changes made to the AIRS algorithm are small, but end up having
an interesting impact on both the simplicity of implementation and on
the quality of results. Section 5 will offer more discussion by way of
comparison. For now, the changes to the original AIRS presented in
section 3 will be discussed. These can be identified as follows:

− Only the Memory Cell pool is seeded during initialization rather
than both the MC pool (M) and the ARB pool (P). Since we are
no longer concerned about maintaining memory or class diversity
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within P it is no longer necessary to initialize P from the training
data or from examples of multiple classes.

− During the clonal expansion from the matching memory cell used
to populate P, the newly created ARBs are no longer allowed
to mutate class. Again, maintaining class diversity in P is not
necessary.

− Resources are only allocated to ARBs of the same class as the
antigen and are allocated in proportion to the ARB’s stimulation
level in reaction to the antigen.

− During affinity maturation (mutation), a cell’s stimulation level
is taken into account. Each individual gene is only allowed to
change over a finite range. This range is centered at the gene’s
pre-mutation value and has a width the size of the difference of
1.0 and the cell’s stimulation value. In this way the mutated off-
spring of highly stimulated cells (those whose stimulation value is
closer to 1.0) are only allowed to explore a very tight neighborhood
around the original cell, while less stimulated cells are allowed a
wider range of exploration. (It should be noted that during ini-
tialization all gene values are normalized so that the Euclidean
distance between any two cells is always within one. During this
normalization, the values to transform a given gene to within the
range of 0 and 1 are discovered, as well. This allows for this new
mutation routine to take place in a normalized space where each
gene is in the range of 0 and 1.)

− The training stopping criterion no longer takes into account the
stimulation value of ARBs in all classes, but now only accounts for
the stimulation value of the ARBs of the same class as the antigen.

4.4. RESULTS AND DISCUSSION

To allow for comparison between the two versions of the algorithm,
the same experiments that were performed on the original AIRS were
performed on the new formulation of AIRS (AIRS2). Section 5 will
provide a more thorough comparative discussion, but for now, results
of AIRS2 on the four previously discussed benchmark sets are presented
in table III.

These results were obtained by following the same methodology as
the original results reported in section 3.4, which is elaborated upon
in [31] and [32]. Again, we note that these results are competitive with
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Table III. AIRS2 Classification Results on
Benchmark Data

Iris Ionosphere Diabetes Sonar

96.0% 95.6% 74.2% 84.9%

other classification techniques discussed in the literature, such as C4.5,
CART, and Multi-Layer Perceptrons (as presented in table II).

5. Comparative Analysis

This section briefly touches on some comparisons between the original
version of AIRS presented in discussed in section 3 (AIRS1) and the
revisions to this algorithm presented in section 4. The focus of this
discussion will be on two of the more important features of the AIRS
algorithms: classification accuracy and data reduction. When undertak-
ing revisions and refinements of an algorithm, it is necessary to check
also that such changes have not unduly affected how the user defined
parameters are effected. To this end, this section also presents analysis
of altering various user defined parameters, specifically number of seed
cells and mutation rate and how they effect the classification accuracy.
This seems to be rarely done in the literature, but a detailed analysis
of parameter adjustment for an immune network model can be found
in [28].

5.1. CLASSIFICATION ACCURACY

The success of AIRS1 as a classifier (cf, [32]) makes it important to
assess any potential changes to the algorithm in light of test set classifi-
cation accuracy. To aid in this task, Table IV presents the best average
test set accuracies, along with the standard deviations, achieved by
both versions of AIRS on the four benchmark data sets. All experi-
ments were repeated in the same way, using the same parameters as
the original work.

It can be noted that the revisions to AIRS presented in section 3
do not require a sacrifice in classification performance of the system.
In fact, for 3 of the 4 data sets we see a slight improvement in the
accuracy; however, these differences are not statistically significant.
What is important to note is that the changes introduce no fundamental
differences in classification accuracy of the system.
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Table IV. Comparative Average Test Set Accuracies

AIRS1: Accuracy AIRS2: Accuracy

Iris 96.7 (3.1) 96.0 (1.9)

Ionosphere 94.9 (0.8) 95.6 (1.7)

Diabetes 74.1 (4.4) 74.2 (4.4)

Sonar 84.0 (9.6) 84.9 (9.1)

5.1.1. Effect of Parameters on Classification Accuracy
The previous section illustrates that the classification accuracy of AIRS
has not diminished It is also important to establish that the behavior of
AIRS has not been altered with respect to the user defined parameters.
In order to establish this, investigations were undertaken to determine
what affect altering the number of seed cells might have on classifi-
cation accuracy (figures 8 and 9) and how altering the mutation rate
also might affect the classification accuracy when compared over both
systems (figures 10 and 11).

Figure 8 shows how altering the number of initial seed cells in AIRS
affects the overall classification performance for AIRS1. Here it can
be observed that, on average across the four data sets, increasing the
number of seed cells there aphas little impact on accuracy. For AIRS1
an exception to this overall trend is the Sonar data set, which benefits
from increasing the number of seed cells.
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Figure 8. The affect of altering the number of seed cells on classification accuracy -
AIRS Version 1
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Figure 9. The effect of altering the number of seed cells on classification accuracy -
AIRS Version 2

As shown in figure 9, AIRS2 performs comprably to AIRS 1 with
respect to increasing the number of seed cells, with the exception that
the Sonar problem no longe shows improvement from increasing the
number of seed cells.

Another key user defined parameter is the mutation rate. This affects
how many mutations are performed when a new ARB is created—
clearly the higher the mutation rate, the wider the search space covered.
Figures 10 and 11 show the effects on classification accuracy of altering
the mutation rate with respect to classification accuracy. In figure 10,
results for the sonar data and some of the diabetes are not presented due
to the fact that as the mutation rate increases, more potential candidate
cells are produced increasing the memory usage and computational
complexity. The reader is directed to [1] and [9] for more discussion
of the effect. [18] present alternatives to candidate cell production in
AIRS2 which are not subject to this effect and yet produce comparably
good classification results.

5.2. DATA REDUCTION

From the previous subsection it can be seen that the changes intro-
duced to AIRS offer no real difference in classification accuracy, so
the question arises: why bother? Why introduce these changes to a
perfectly reasonably performing classification algorithm? The answer
lies in the data reduction capabilities of AIRS. In [31] and [33], the
authors discuss that aside from competitive accuracies another intrigu-
ing feature of the AIRS classification system is its ability to reduce
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Figure 10. The affect of altering the mutation rate on classification performance -
AIRS Version 1
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Figure 11. The affect of altering the mutation rate on classification performance -
AIRS Version 2

the number of data points needed to characterize a given class of data
from the original training data to the evolved set of memory cells.
Given the volumes of data associated with many real-world data sets
of interest, any technique that can reduce this volume while retaining
the salient features of the data set is useful. Additionally, it is this
collection of memory cells that are the primary classifying agents in
the evolved system. Since classification is currently performed in a k-
nearest neighbor approach, for which classification time is dependent
upon the number of data points, any reduction in the overall number
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Table V. Comparison of the Average Size of the Evolved Memory Cell
Pool

Training Set Size AIRS1: Memory Cells AIRS2: Memory Cells

Iris 120 42.1/65% (3.0) 30.9/74% (4.1)

Ionosphere 200 140.7/30% (8.1) 96.3/52% (5.5)

Diabetes 691 470.4/32% (9.1) 273.4/60% (20.0)

Sonar 192 144.6/25% (3.7) 177.7/7% (4.5)

of evolved memory cells is useful. Table 5 presents the average size
of the evolved set of memory cells and the amount of data reduction
this represents in terms of population size and percentage reduction,
along with standard deviations, for each version of the algorithm on
the four benchmark data sets. The original training set size is also
presented for comparison. There are two points of interest: 1) Both
versions of the algorithm exhibit data reduction, and 2) AIRS2 tends
to exhibit greater data reduction than AIRS1. This second point is the
more important for our current discussion. As mentioned in section
4.3, one of the goals of the revision of the AIRS algorithm was to see if
employing somatic hypermutation through a method more in keeping
with other research in the AIS field would increase the efficiency of
the algorithm. The current measure of efficiency under concern is the
amount of data needed to represent the original training set to achieve
accurate classifications. We can see from Table V that, for the majority
of the data sets, AIRS2 was able to achieve accuracy comparable with
AIRS, with greater efficiency. In fact for half of the data sets, Ionosphere
and Diabetes, the degree of data reduction is greatly increased (from
30% to 52% for Ionosphere data and from 32% to 60% for the diabetes
data set). In general, it appears that the revisions to AIRS provide
greater data reduction, and hence greater efficiency, without sacrificing
accuracy.

5.3. A WORD ABOUT SIMPLICITY

While the focus has not been on algorithmic complexity analysis of
the two versions of AIRS for this current paper, it would be remiss
not to make a brief mention concerning the simplifying effects of the
revision to AIRS. As mentioned in section 4, the reformulation of AIRS
was chiefly motivated by some basic observations about the workings
of the system. One observation was that the original version of AIRS
maintained representation of too many cells for its required task. This
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led to the elimination of maintaining multiple classes of cells in the ARB
pool or of retaining cells in the ARB pool at all. This has the simplifying
effect of reducing the memory necessary to run the system successfully.
A second observation concerning the quality of the evolved memory
cells led to the investigation of the mutation mechanisms employed in
the original algorithm. By adopting an approach to mutation proven to
be successful in other AIS, it has been possible to increase the quality
of the evolved memory cells that is evidenced by the increased data
reduction without a decrease in classification accuracy. Both of these
overarching changes (ARB pool representation and the mutation mech-
anisms used) have exhibited a simplifying effect on the classification
system as a whole.

6. Conclusions and Future Work

This paper has focused on a supervised learning system based on im-
munological principles. The Artificial Immune Recognition System (AIRS)
introduced in [31] exhibited initial success as a classification algorithm.
However, as with any initial system, there were some revisions and
refinements that could be made to AIRS that would decrease the com-
plexity of the system. This paper has presented investigations for two
of these revisions and it has been noted that these changes have not
affected the overall classification accuracy of the system and have im-
proved efficiency.

Future work lies in the application of AIRS to an immunological
problem: predicting the binding or non-binding of T-cell receptors. This
is a very large and complex problem domain, dealing with dimensions in
excess of 2500. Initial experiments have shown that AIRS is more than
comparable to traditional techniques such as neural networks which
have been applied to this data, achieving similar classification accuracy,
but with faster production of the classification model. This work will
also be extended to a seven class T-cell binding prediction, as with all
things in immunology, the two class binding problem is only the first
stage in a very complex classification process.
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