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1 Introduction

Monetary theorists have long stressed the importance of analyzing monetary policy in the context
of environments that have an explicit, micro founded role for money (e.g., see Wallace, 1998, 2001
and Williamson and Wright, 2010 for recent expositions). Following the work by Kocherlakota
(1998), it is agreed that these environments should feature a lack of double coincidence of wants,
imperfect record keeping and limited commitment. Beyond this set of minimal frictions, there does
not appear to be any guide as to which other details or frictions we should attribute to artificial
economies when studying government policy. For example, do we assume competitive markets or
bilateral meetings? Do we allow for financial intermediaries?

Due to the interaction between fiscal and monetary policies,1 it seems reasonable to expect
that the specific details of a monetary economy may alter our analysis and conclusions regarding
the (endogenous) determination of government actions. However, it is not immediately apparent
what results are altered by which details and whether these effects, if present, are quantitatively
significant.

In this paper, I analyze how the specific details of a micro founded monetary economy affect the
determination of government policy, both in the long-run and in response to aggregate shocks. To
this end, I study the monetary economy proposed by Lagos and Wright (2005), with the addition
of a benevolent government that cannot commit to future policy choices and uses money, nominal
bonds and distortionary taxes to finance the provision of a valued public good. As shown in Martin
(2009, 2010a,b), lack of commitment on the part of the government provides a mechanism that
explains the level of debt2 (and by extension, other policy variables) and allows the response of
government policy to aggregate shocks to display realistic features.

I consider three variants of the underlying monetary economy: “competitive markets”, assumes
all markets are perfectly competitive; “financial intermediation”, assumes the existence of a tech-
nology that records financial (but not goods) transactions, which allows for the intermediation of
fiat money, as in Berentsen, Camera and Waller (2007); and “trading frictions”, assumes decentral-
ized exchange in some markets and introduces an inefficiency due to bargaining over the terms of
trade. The set of model variants considered here, although not exhaustive, is fairly representative
of the type of micro founded monetary economies we would adopt as a benchmark to study the
determination of government policy. The three environments only differ in the number of frictions
that are present. The case with financial intermediation has only those frictions necessary to make
a medium of exchange essential, as enumerated above; the case with competitive markets adds a
financial friction which precludes the intermediation of fiat money in some markets; finally, the case
with trading frictions features the most number of frictions, both financial and trading.

There are three main results on the determination of long-run policy. First, at the steady

1This link is both theoretically and empirically relevant. Ohanian (1998) provides a thorough historical account
for the U.S. economy. Sargent and Wallace (1981) first showed how the effects of monetary policy are affected by a
given fiscal policy. Lucas (1986) famously postulated a set of principles for optimal fiscal and monetary policy. See
Martin (2009) and Martin (2010b) for further discussion.

2Some alternative mechanisms that explain the level of debt have been proposed. Battaglini and Coate (2008)
show that inefficiencies due to pork-barrel spending provide an explanation for the distribution of (real) debt in the
long-run. Diamond (1965), Aiyagari and McGrattan (1998) and Shin (2006) provide a role for debt by using it to
reduce some dynamic inefficiency.
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state endowing the government with the ability to commit has no effect on government policy.
This applies to all three cases and is a generalization of the result in Martin (2010b). Second,
the response of long-run policy variables to permanent changes in fundamentals is largely simi-
lar across environments, both qualitatively and quantitatively. Third, resolving trading frictions
(i.e., movings towards competitive markets) implies higher long-run debt and inflation, whereas
resolving financial frictions (i.e., allowing for financial intermediation) has the opposite effect; both
effects are quantitatively significant. The overall conclusion from these results is that although
intitutions/frictions matter for the determination of policy, the calibrated artificial economies are
observationally equivalent in steady state.

To evaluate the response of government policy to aggregate shocks, I consider two sources of
aggregate fluctuations at annual frequencies: shocks to the marginal value of the public good (“ex-
penditure” shocks) and shocks to the productivity of labor. The simulated economies match basic
time-series properties of the post-war U.S. economy. The policy response to aggregate shocks is
qualitatively similar in the three variants considered. However, there are some significant quanti-
tative differences in the response of government policy to productivity shocks. In particular, the
most significant difference between variants is in the behavior of debt and inflation in response to
productivity shocks.

To further compare the three environments and assess their relative empirical plausibility, I
evaluate each variant’s implications along three dimensions: the persistence of policy variables; the
relationship between the nominal interest rate and velocity of circulation (i.e., the money demand
function); and the relationship between inflation and GDP (i.e., the Phillips curve). For all three
tests, the case with competitive markets provides the best fit to the data, while the variant with
trading frictions features the worse fit. The difference in performance across monetary economies
stems mainly from the idiosyncratic behavior of money demand in response to productivity shocks.

The paper is organized as follows. Section 2 presents the basic environment and its three vari-
ants. Section 3 compares the properties of long-run policy across environments. Section 4 compares
the properties of government policy in the presence of aggregate shocks. Section 5 concludes.

2 Monetary Economies without Aggregate Uncertainty

In this section, I present three variants of the Lagos-Wright monetary economy. I start by de-
scribing the basic environment, which is common for all cases. Next, I consider the three variants
in sequence: first, the benchmark case where all markets are competitive; second, I add financial
intermediaries; and third, I allow for decentralized trade and trading frictions due to bargaining
between buyers and sellers. For each case, I derive the government budget constraint in a monetary
equilibrium, which constitutes the constraint in the government’s problem. The case with compet-
itive markets is used as a benchmark for two practical reasons. First, it is the environment with
the least detail, i.e., it is mathematically the most straightforward. Second, it is an economy that
has been studied extensively in Martin (2010b,a) and for which we have theoretical results that will
guide the analysis here.3

3Alternatively, we could use the number of frictions to select the benchmark economy. In this sense, the case with
financial intermediation has the least frictions while the case with trading frictions has the most.
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2.1 Basic environment

There is a continuum of infinitely lived agents. Each period, two markets open in sequence: a day
and a night market. In each stage a perishable good is produced and consumed. At the beginning
of each period, agents receive an idiosyncratic shock that determines their role in the day market.
With probability η ∈ (0, 1) an agent wants to consume but cannot produce the day-good, x, while
with probability 1−η an agent can produce but does not want consume. A consumer derives utility
u(x), where u is twice continuously differentiable, with ux > 0 and uxx < 0. A producer incurs in
utility cost φx, where φ > 0.4

Assume agents lack commitment and are anonymous, in the sense that private trading histories
are unobservable. Thus, credit transactions between agents are not possible. Since the day market
features lack of double coincidence of wants, some medium of exchange is essential for trade to
occur.5

At night, all agents can produce and consume the night-good, c. The production technology is
assumed to be linear in hours worked, n. Utility from consumption is given by U(c), where U is
twice continuously differentiable, with Uc > 0, Ucc < 0. Disutility from labor is given by αn, where
n is hours worked and α > 0.

There is a benevolent government that supplies a valued public good g at night. To finance
its expenditure, the government may use proportional labor taxes τ , print fiat money at rate µ
and issue one-period nominal bonds, which are redeemable in fiat money. The public good is
transformed one-to-one from the night-good. Agents derive utility from the public good according
to v(g), where v is twice continuously differentiable, with vg > 0, vgg < 0.

The government can commit to policies within the period, but lacks the ability to commit to
future policy choices. It announces period policy {B′, µ, τ, g} at the beginning of the day, before
agents’ preference shocks are realized. The government only actively participates in the night-
market, i.e., taxes are levied on hours worked at night and open market operations are conducted
in the night market. As in Aruoba and Chugh (2008), Berentsen and Waller (2008) and Martin
(2010b), public bonds are book-entries in the government’s record. Since bonds are not physical
objects and the government does not participate in the day market (i.e., cannot intermediate or
provide third-party verification), bonds are not used as a medium of exchange in the day market
and thus, money is essential.6

All nominal variables—except for bond prices—are normalized by the aggregate money stock.
Thus, today’s aggregate money supply is equal to 1 and tomorrow’s is 1 + µ. The government
budget constraint is

1 +B + pg = pτn+ (1 + µ)(1 + qB′), (1)

where B is the current aggregate bond-money ratio, p is the—normalized—market price of the
night-good c, and q is the price of a bond that earns one unit of fiat money in the following night
market. “Primes” denote variables evaluated in the following period. Thus, B′ is tomorrow’s

4A linear production cost is typically adopted in calibrated applications of the Lagos-Wright framework and is
made here to simplify exposition. Most results can be obtained with a general convex production function.

5See Kocherlakota (1998), Wallace (2001) and Shi (2006).
6Illiquid bonds are ex-ante socially optimal since they allow the government to trade-off distortions across periods.

See Martin (2010b).
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aggregate bond-money ratio.

2.2 Competitive Markets

Assume that the day and night markets are perfectly competitive. An agent arrives to the night
market with individual money balances m and government bonds b. Since bonds are redeemed in
fiat money at par, the composition of an agent’s nominal portfolio at the beginning of the night is
irrelevant. Let z ≡ m+ b, i.e., total—normalized—nominal holdings. The budget constraint of an
agent at night is

pc+ (1 + µ)(m′ + qb′) = p(1− τ)n+ z. (2)

Let V (m, b) be the value of entering the day market with money balances m and bond balances
b, and let W (z) be the value of entering the night market with total nominal balances z. After
solving n from (2), the problem of an agent in the night market is

W (z) = max
c,m′,b′

U(c)− αc

(1− τ)
+
α(z − (1 + µ)(m′ + qb′))

p(1− τ)
+ v(g) + βV (m′, b′).

The first-order conditions are

Uc −
α

(1− τ)
= 0 (3)

−α(1 + µ)

p(1− τ)
+ βV ′m = 0 (4)

−αq(1 + µ)

p(1− τ)
+ βV ′b = 0. (5)

Focusing on a symmetric equilibrium, we can follow Lagos and Wright (2005) to show that
(4) and (5) imply all agents exit the night market with the same money and bond balances.7

Furthermore, the value function W is linear, Wz = α
p(1−τ) and thus, W (z) = W (0) + αz

p(1−τ) . We
also get

q =
V ′b
V ′m

. (6)

The ex-ante value for an agent that enters the day market is V (m, b) = ηV c(m, b) + (1 −
η)V p(m, b), where V c and V p are the values of being a consumer and a producer in the day market,
respectively.

A consumer faces a day-budget constraint, p̃x ≤ m, where p̃ is the—normalized—market price
of good x. Using ξ as the Lagrange multiplier associated with this constraint, the problem of a
consumer can be written as

V c(m, b) = max
x

u(x) +W (0) +
α(m+ b− p̃x)

p(1− τ)
+ ξ(m− p̃x).

7Since V is linear in b, a non-degenerate distribution of bonds is possible in equilibrium. Here, we focus on
symmetric equilibria. See Aruoba and Chugh (2008) and Martin (2010b) for related discussions.
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The first-order condition implies

ξ =
ux
p̃
− α

p(1− τ)
. (7)

From the envelope condition we get V c
m = ux

p̃ and V c
b = α

p(1−τ) .

Let κ be an individual producer’s output of the day-good. The problem of a producer is

V p(m, b) = max
κ
−φκ+W (0) +

α(m+ b+ p̃κ)

p(1− τ)
.

The first-order condition is

−φ+
αp̃

p(1− τ)
= 0. (8)

The envelope condition implies V p
m = V p

b = α
p(1−τ) . We can now derive:

Vm =
ηux
p̃

+
(1− η)α

p(1− τ)
(9)

Vb =
α

p(1− τ)
. (10)

The day aggregate resource constraint is ηx = (1−η)κ. A standard result in monetary economies
is that consumers spend all their money in the day market. The day market clearing condition is
then η = (1− η)p̃κ, which implies p̃ = 1

x . Substitute this expression into (8) and get

φx =
α

p(1− τ)
. (11)

At night, all agents choose the same money and bond holdings; thus, m′ = 1 and b′ = B′. The
night aggregate resource constraint is c + g = n, where n is aggregate labor. Note that private
consumption c and public consumption g are the same for all agents, whereas individual labor
depends on whether an agent was a consumer or a producer during the day.

Using p̃ = 1
x and (11), equations (9) and (10) imply Vm = x(ηux + (1 − η)φ) and Vb = φx.

Furthermore, (7) can be written as ξ = x(ux − φ); in a monetary equilibrium ξ ≥ 0, which implies
ux − φ ≥ 0, i.e., Vm ≥ Vb.

We can now collect the remaining equations that summarize agents’ behavior in any given
period. After some rearrangement we can write equations (3), (4), (6) and (11) as

µ =
βx′(ηu′x + (1− η)φ)

φx
− 1 (12)

τ = 1− α

Uc
(13)

p =
Uc
φx

(14)

q =
φ

ηu′x + (1− η)φ
. (15)

We can now use the night-resource constraint and equilibrium conditions (12)—(15) to write the
government budget constraint (1) in a monetary equilibrium as

(Uc − α)c− αg + βηx′(u′x − φ) + βφx′(1 +B′)− φx(1 +B) = 0. (16)
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2.3 Financial intermediation

One important inefficiency in the benchmark economy described above is due to the inability of pro-
ducers in the day to lend their idle cash balances. In this section, we consider a monetary economy
that resolves this financial friction by assuming the existence of a technology that record financial
transactions, as suggested by Berentsen, Camera and Waller (2007). Financial intermediation is
conducted by perfectly competitive banks, which accept nominal deposits and make nominal loans.
Banks are endowed with a technology that allows them to record financial histories at zero cost.
However, trading histories cannot be recorded. Banks cannot issue their own notes, nor can they
provide third-party verification for government bonds in transactions between agents. Thus, money
is still used as the only medium of exchange in the day market. The added feature is that now,
at the beginning of each period, sellers can deposit their money holdings at banks, and buyers can
borrow money from banks. Deposits and loans mature at night. Perfect competition in the banking
sector implies that the deposit and loan interest rates are equal. Let i ≥ 0 be the bank nominal
interest rate. Assume perfect enforcement and no borrowing constraints in financial markets.

An agent enters the night market with nominal balances z, which may include fiat money, gov-
ernment bonds and bank claims. These bank claims may be positive (deposits) or negative (loans)
and include the accrued interest. Thus, the problem of the agent at night remains functionally the
same as before.

A consumer in the day market enters the period with m units of fiat money and b units of
government bonds. Being generally cash-constrained, he borrows ` units of fiat money from the
bank with the obligation to repay (1+i)` units of money at night. The consumer then uses m+` to
buy x goods at price p̃. Thus, his starting nominal balances at night—net of loan obligations—are
equal to m+ b− p̃x− i`. Using ξ as the Lagrange multiplier associated with the budget constraint,
the problem of a consumer is

V c(m, b) = max
x,`

u(x) +W (0) +
α(m+ b− p̃x− i`)

p(1− τ)
+ ξ(m+ `− p̃x).

The first-order conditions imply

ξ =
ux
p̃
− α

p(1− τ)

i =
uxp(1− τ)

αp̃
− 1.

Note that i = 0 if and only if ξ = 0.

A producer has no use for cash and thus, deposits his money holdings at the bank. If he starts
the period with m units of money and b units of government bonds, deposits d units of money and
sells κ units of the day-good at price p̃, his starting nominal balances at night—including deposit
claims—are m+ b+ p̃κ+ id. The problem of a producer can be written as

V p(m, b) = max
κ,d
−φκ+W (0) +

α(m+ b+ p̃κ+ id)

p(1− τ)
+ ξd(m− d),

where ξd is the Lagrange multiplier associated with the constraint that states that an agent cannot
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deposit more than his fiat money holdings. The first-order conditions imply

φ =
αp̃

p(1− τ)

ξd =
αi

p(1− τ)
.

The second equation shows that producers deposit all their money holdings if i > 0. Without loss
of generality, assume that they also deposit all their money holdings when i = 0.

The market clearing conditions are η` = (1− η)d and (1− η)p̃κ = η(1 + `). The first equation
states that the total amount of money borrowed from banks has to equal the total amount of money
that was deposited at banks. The second equation states that the nominal value of total output
sold by producers has to equal total money holdings—including loans—of buyers. Note that since
producers deposit all their money holdings, d = 1 and thus, ` = 1−η

η , which implies (1− η)p̃κ = 1.

Using the day-resource constraint, ηx = (1− η)κ, we get p̃ = 1
ηx . Thus, the equilibrium in the day

market is characterized by

i =
ux
φ
− 1

ηφx =
α

p(1− τ)
.

We also get Vm = ηuxx and Vb = ηφx. In a monetary equilibrium, ξ ≥ 0, which implies ux− φ ≥ 0
(i.e., Vm ≥ Vb), as in the case with no financial intermediation. We can now collect the equations
characterizing agents’ behavior in equilibrium:

µ =
βu′xx

′

φx
− 1 (17)

τ = 1− α

Uc
(18)

p =
Uc
ηφx

(19)

q =
φ

u′x
. (20)

Note that q = 1
1+i . The government budget constraint in a monetary equilibrium is

(Uc − α)c− αg + βηx′(u′x − φ) + βηφx′(1 +B′)− ηφx(1 +B) = 0. (21)

2.4 Trading frictions

Consider the benchmark economy without financial intermediation, but assume now that the day-
good is traded in a decentralized market. I abstract from search frictions, i.e., the possibility that
an agent does not meet someone with whom to trade in the day-market.8 Thus, let η = 1

2 and
assume all agents in the day are matched in consumer-producer pairs. In these bilateral meetings,

8Note that this is a standard assumption when these type of models are calibrated.
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consumers and producers bargain over the terms of trade: a quantity x and a monetary transfer
(normalized by the aggregate money stock) δ. Here, we need to make the additional assumption
u(0) = 0 to ensure the trading surplus is positive. In terms of the bargaining problem, I follow
the analysis in Aruoba, Rocheteau and Waller (2007) and adopt the proportional solution due to
Kalai (1977). In Appendix A, I consider the Nash (1950) bargaining solution and show why it is
not suitable for policy analysis in this context.

Suppose the terms of trade agreed in a bilateral meeting are {x, δ}. A consumer that starts the

period with nominal holdings {m, b} gets u(x)+W (m−δ+b) = u(x)+W (0)+ α(m+b−δ)
p(1−τ) ; similarly, a

producer starting with the same nominal holdings gets−φx+W (m+δ+b) = −φx+W (0)+α(m+b+δ)
p(1−τ) .

If no agreement is reached, both agents get W (m+ b) = W (0) + α(m+b)
p(1−τ) .

Given consumer’s bargaining weight θ ∈ (0, 1] and consumer’s money holdings m, the propor-
tional solution is given by

{x, δ} = argmax
x,δ≤m

u(x)− αδ

p(1− τ)

subject to (1− θ)
(
u(x)− αδ

p(1−τ)

)
= θ
(
− φx+ αδ

p(1−τ)

)
. Following standard arguments, we can show

that in a monetary equilibrium δ = m = 1 and

−h(x) +
α

p(1− τ)
= 0, (22)

where h(x) ≡ (1− θ)u(x) + θφx.

The terms of trade are not affected by the money holdings of a producer. Thus, V p
m = Wz =

α
p(1−τ) , i.e., V p

m = h(x) by (22). On the other hand, V c
m = ux

∂x
∂m + α

p(1−τ)(1 − ∂δ
∂m). If a consumer

brings one more unit of money to the match, then x increases by α
p(1−τ)hx

and δ goes up by 1. Thus,

using (22), we get V c
m = h(x)ux

hx
, and so Vm = h(x)(ux+hx)

2hx
. The value of starting the period with one

more unit of bonds is still Wz, regardless of whether the agent is a consumer or a producer. Thus,
Vb = h(x). No arbitrage implies Vm ≥ Vb, i.e., ux − hx ≥ 0, which simplifies to ux − φ ≥ 0, as in
the case without trading frictions.

In a monetary equilibrium we get

µ =
βh(x′)(u′x + h′x)

2h(x)h′x
− 1 (23)

τ = 1− α

Uc
(24)

p =
Uc
h(x)

(25)

q =
2h′x

u′x + h′x
. (26)

The government budget constraint in a monetary equilibrium is

(Uc − α)c− αg +
βh(x′)(u′x − h′x)

2h′x
+ βh(x′)(1 +B′)− h(x)(1 +B) = 0. (27)
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3 Government Policy without Aggregate Uncertainty

3.1 Problem of the government

To characterize government policy with lack of commitment, I adopt the notion of Markov-perfect
equilibrium, i.e., where policy is a function of fundamentals only.9 For each of the environments
characterized above, the government budget constraint in a monetary equilibrium is a function of
B, B′, x, x′, c and g—see (16), (21) and (27). Note that x′ is implemented by the government
tomorrow, depending on the inherited level of debt. Thus, let x′ = X (B′), where X is the policy
that the current government expects its future-self to follow. Thus, regardless of the environment,
we can write the government budget constraint compactly as

ε(B,B′, x,X (B′), c, g) = 0. (28)

Another constraint in the government’s problem is the non-negativity constraint, ux−φ ≥ 0, which
is derived from the no-arbitrage condition Vm ≥ Vb.

Notice that from equations (12), (17) and (23), for a given x′ = X (B′), a higher µ implies a
lower x in all three environments. In other words, given current debt policy and future monetary
policy, the allocation of the day-good is a function of current monetary policy. In the discussion
that follows, I will refer interchangeably to variations in the day-good allocation and variations in
current monetary policy.

Martin (2010b) analyzes government policy at any level of debt for the case with competitive
markets and shows several relevant properties of the equilibrium. Among other results, Proposition
2 in that paper establishes that for all B ≥ −1: (i) B′ > −1; (ii) X ′B < 0; and (iii) the non-
negativity constraint, ux − φ ≥ 0, does not bind. Applying similar arguments, we can obtain
these results for the environments with financial intermediation and trading frictions.10 A formal
proof is a straightforward application of the proof in Martin (2010b), so it is omitted here to save
space. Result (i) allows us to restrict attention to B ≥ −1, i.e., positive net nominal government
obligations, which is convenient given that the focus here is on the empirical predictions of the
model. Since we focus on B ≥ −1, (ii) rules out the possibility of XB = 0 in equilibrium (i.e.,
monetary policy not reacting to inherited debt), while (iii) allows us to ignore the non-negativity
constraint when formulating the government’s problem.

Given B ∈ Γ ≡ [−1, B̄], where B̄ ∈ (0,∞), and the perception that future governments imple-
ment X (B), the problem of the current government is

V(B) = max
B′∈Γ,x,c,g

η(u(x)− φx) + U(c)− α(c+ g) + v(g) + βV(B′)

subject to (28). Note that we use the day and night resource constraints to simplify the expression
above. Also, it is understood that η = 1

2 for the case with trading frictions.

9See Maskin and Tirole (2001) for a definition and justification of this solution concept. For recent applications
to dynamic policy games see Ortigueira (2006), Klein, Krusell and Ŕıos-Rull (2008), Dı́az-Giménez, Giovannetti,
Marimón and Teles (2008), Martin (2009, 2010b) and Azzimonti, Sarte and Soares (2009), among others.

10Results (ii) and (iii) do not hold in general if we assume the Nash solution to the bargaining problem. See
Appendix A for further discussion.
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Definition 1 A Markov-Perfect Monetary Equilibrium (MPME) is a set of functions {B,X , C,G,V} :
Γ→ R5, such that for all B ∈ Γ:

(i) {B(B),X (B), C(B),G(B)} = argmax
B′∈Γ,x,c,g

η(u(x)− φx) + U(c)− α(c+ g) + v(g) + βV(B′)

subject to ε(B,B′, x,X (B′), c, g) = 0; and

(ii) V(B) = η
(
u(X (B))− φX (B)

)
+ U(C(B))− α(C(B) + G(B)) + v(G(B)) + βV(B(B)).

Assume the policy function X (B) followed by future governments is differentiable.11 Further-
more, let B̄ be large enough so that B(B) < B̄ for all B ∈ Γ. Using λ as the Lagrange multiplier
associated with (28), the first-order conditions are

λ(εB′ + εx′X ′B) + βλ′ε′B = 0 (29)

η(ux − φ) + λεx = 0 (30)

Uc − α+ λεc = 0 (31)

−α+ vg + λεg = 0, (32)

where the partial derivatives of (28) are derived in Appendix B for each environment.

Given X ′B < 0, it follows that λ > 0. To see this, suppose λ = 0. Then, from (30)—(32) we get
ux = φ, Uc = vg = α. For all three environments, we get B′ > B from (28) and λ′ = 0 from (29),
since ε′B > 0. Then, x = x′ and thus, X ′B = 0, a contradiction.

Thus, for B ≥ −1 the first-best is not implemented in a MPME. It is easy to see now that the
non-negativity constraint ux − φ ≥ 0 does not bind for B ≥ −1. For λ > 0, given that εx < 0 for
B > −1 in all environments, (30) implies ux − φ > 0. If B = −1, then εx = 0 and ux − φ = 0; the
non-negativity constraint is satisfied with equality, but is still slack.

The interaction between debt and monetary policy is captured by equations (29) and (30). Note
that εB′ = −βε′B in all three environments (see Appendix B) and thus, (29) can be written as

εB′(λ− λ′) + λεx′X ′B = 0. (33)

The term εB′(λ−λ′) in (33) states the standard trade-off between distortions today and tomorrow,
and displays the government’s incentive to smooth these distortions over time. The term λεx′X ′B
appears due to the lack of commitment friction and reflects how a change in current debt affects
the government budget constraint, through its effect on future (monetary) policy. Debt increases
or decreases depending on the direction of this effect, i.e., the sign of εx′X ′B. Debt increases, i.e.,
distortions are pushed to the future (λ < λ′) when the costs of this policy can be offset by a relax-
ation of the government budget constraint (εx′X ′B > 0). Similarly, debt decreases (λ > λ′) when
εx′X ′B < 0. Thus, how a government that lacks commitment trades-off distortions intertemporally
depends crucially on how future (monetary) policy reacts to inherited debt. Debt policy is then
purely determined by the time-consistency problem between successive governments.

11This is a refinement that rules out equilibria where the discontinuities in policy are not rooted in the environment
fundamentals, but are rather an artifact of the infinite horizon. For an analysis and discussion of non-differentiable
Markov-perfect equilibria see Krusell and Smith (2003) and Martin (2009). See also Martin (2010b) for further
discussion in a similar context.
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Given that X ′B < 0, current debt increases or decreases depending on the sign of εx′ . This term
measures how changes in future monetary policy (due to changes in debt today as captured by
X ′B) affect the current government budget constraint. The effects of future monetary policy come
through two channels: changes in the current demand for money and changes in the financial cost
of issuing debt.

Intuitively, an increase in future inflation (due to higher inherited debt) increases the cost of
issuing debt (i.e., lowers q) and lower marginal value of money for future producers; both effects
tighten the government budget constraint today. On the other hand, higher inflation tomorrow
increases the marginal value of money for future consumers and thus, has a positive impact on the
current demand for money, which lowers the size of distortions associated with government policy.
If this latter effect dominates, then the current government budget constraint is relaxed and there
is an incentive to increase the level of debt. The benefit of this policy is offset with increased
distortions tomorrow, due to the higher financial burden of debt.

One critical difference across monetary economies is the determination of the demand for fiat
money, which as argued above, affects how the current government internalizes the effects of its
debt policy on future monetary policy. This feature will account for most of the difference in how
the three model variants perform in the presence of aggregate shocks—see Section 4 below.

Consider now the intratemporal trade-off implied by monetary policy, as displayed in equation
(30). For B > −1, εx < 0, i.e., the government has an incentive to lower the day-good allocation to
relax its budget constraint. Intuitively, the government wants to reduce the financial burden of debt
using monetary policy to increase the price level. However, this implies distorting the allocation of
the day-good, i.e., ux − φ > 0. Note that in all environments, dεx/dB < 0, which implies that the
incentives to use inflation increase with the level of debt.

Given that εg = −α in all three environments, (32) implies λ =
vg
α − 1 in all cases. Also note

that εc = Uc − α+ Uccc in all three cases. Thus, a MPME is characterized by (28) and

εB′(vg − v′g) + (vg − α)εx′X ′B = 0 (34)

αη(ux − φ) + (vg − α)εx = 0 (35)

vg(Uc − α) + (vg − α)Uccc = 0, (36)

where the expressions for εB′ , εx and εx′ depend on the environment being considered.

The following result states under what conditions the environments with financial intermediation
and trading friction coincide with the benchmark case with competitive markets.

Proposition 1 Equivalence between environments: (i) the MPME with financial intermedi-
ation approaches the MPME without financial intermediation as η → 1; and (ii) the MPME with
trading frictions is equivalent to the MPME without trading frictions if η = 1

2 and θ = 1.

Proof. Part (i). As η → 1 equations (28), (34) and (35) converge for the cases with and without
financial intermediation. Equation (36) coincides for both cases for all η.

Part (ii). Suppose θ = 1 and η = 1
2 which implies h(x) = φx and hx = φ. Thus, (27) is identical

to (16). Given that the objectives are the same as well, the problems of the government with and
without trading frictions are identical.
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3.2 Long-run debt

In steady state, (34) simplifies to εx′ = 0, since X ′B < 0 for all B ≥ −1 as mentioned above. The
steady state {B∗, x∗, c∗, g∗} is characterized by

ε∗x′ = 0 (37)

αη(u∗x − φ) + (v∗g − α)ε∗x = 0 (38)

v∗g(U
∗
c − α) + (v∗g − α)U∗ccc

∗ = 0 (39)

ε(B∗, B∗, x∗, x∗, c∗, g∗) = 0. (40)

Focus on (37). Although X ∗B < 0, i.e., small changes in debt choice at B∗ have an effect on
future policy, the positive and negative effects of these changes on the current government budget
constraint are balanced out. In other words, the time-consistency problem, which is driving the
change in debt, cancels out at the steady state. It follows that if the governments starts at B∗, it
will stay there, regardless of its ability to commit. The following proposition generalizes the result
in Martin (2010b).

Proposition 2 Irrelevance of commitment at B∗. Suppose initial debt is equal to B∗; then,
a government with commitment and a government without commitment will both implement the
allocation {x∗, c∗, g∗} and choose debt level B∗ in every period.

Proof. See Appendix C.

Thus, the steady state in all three environments is constrained-efficient, since endowing the
government with commitment at B∗ would not affect the allocation. This is an important property
of this class of monetary economies: lack of commitment by the government provides a mechanism
that explains the level of debt and thus, policy in general, but is not a primary concern in terms of
welfare.

The following series of propositions derive relevant properties of long-run debt in each of the
monetary economies being considered.

Proposition 3 Long-run debt with competitive markets: (i) B∗ > 0 only if −x
∗u∗xx
u∗x

> 1; and

(ii) as η → 1, B∗ > 0 if and only if −x
∗u∗xx
u∗x

> 1.

Proof. Part (i). From (37),

B∗ = −η(u∗x + u∗xxx
∗)

φ
− 1 + η. (41)

Thus, B∗ > 0 implies −1 − u∗xxx
∗

u∗x
> (1−η

η )( φ
u∗x

). The right-hand side of this inequality is positive;

thus, −u∗xxx
∗

u∗x
> 1 is a necessary condition for B∗ > 0.

Part (ii). As η → 1, B∗ → −u∗x+u∗xxx
∗

φ . Given φ > 0, B∗ > 0 iff u∗x + u∗xxx
∗ < 0.

As we can see, critical for long-run debt are the curvature of the utility function for the day-
good, u(x), and the measure of buyers in the day market, η. Both these elements determine how
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future monetary policy is internalized by the current government and thus, affect the incentives to
increase or decrease debt. Given part (i) of Proposition 3, if u(x) is CES, then its curvature needs
to be higher than log for debt to be positive in the long-run; from part (ii), this condition is also
sufficient as the measure of buyers approaches one.

Proposition 4 Long-run debt with financial intermediation: (i) for all η ∈ (0, 1), the steady
state allocation {x∗, c∗, g∗} and taxes τ∗ are the same in the environments with and without financial
intermediation, whereas debt B∗ and inflation µ∗ are higher for the case with financial intermedi-
ation; and (ii) B∗ > 0 if and only if −x∗u∗xx

u∗x
> 1.

Proof. Part (i). From (37) we get

B∗ = −u
∗
x + u∗xxx

∗

φ
. (42)

We have εx = −φx(1 + B) for the case with competitive markets and εx = −ηφx(1 + B) for the
case with financial intermediation. Using (41) and (42), respectively, we get that ε∗x yields the same
expression in both cases, i.e., (38) is the same in both environments; similarly with (40). Also note
that (39) is the same in both cases and does not depend on B∗. Thus, {x∗, c∗, g∗} is the same in
both environments. Taxes are equal to 1 − α

Uc
in both cases, so they are also the same in steady

state. Next, comparing equations (37) and (42), we get B∗ = 1+BNF

η − 1 > BNF , since BNF > −1,

where BNF is the steady state for the case with no financial intermediation. For steady state

inflation, we get µ∗ = µNF−β
η + 1 > µNF , since µNF > β.

Part (ii). From (42), since φ > 0, B∗ > 0 if and only if u∗x + u∗xxx
∗ < 0.

The result above states that resolving the financial friction in the benchmark environment does
not alter the long-run allocation. However, both debt and inflation increase. The difference in
debt between the two environments is equal to (1− η)(1 +B∗), where B∗ is the steady state with

financial intermediation. Similarly, the difference in long-run inflation is β(1−η)(u∗x−φ)
φ . For both

debt and inflation, the measure of day-good buyers η has a first-order negative effect on the size of
the differences between the two cases. The reason is that, with financial intermediation the costs
associated with future monetary policy are lower since producers can lend their cash balances to
buyers (note the term (1− η)φ in εx′ for the case with competitive markets, which is absent for the
case with financial intermediation—see Appendix B); thus, the incentives to issue debt are higher.
Given the larger debt, long-run inflation ends up being higher, due to the higher financial burden
(i.e., a movement up, along the money growth function).

With financial intermediation, if u(x) is CES, then higher than log curvature is a necessary and
sufficient condition for long-run debt to be positive. This is a stronger result than for the case with
no financial intermediation, where the same condition was necessary, but not sufficient.

The steady state for the economy with trading frictions is less tractable than in the other two
environments. The following result suggests that the bargaining power, θ needs to be high enough
to obtain a realistic level of debt in the long-run, which is a point I revisit in the numerical section
below.
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Proposition 5 Long-run debt with trading frictions: as θ → 0, monetary policy approxi-
mates the Friedman rule for all B and B∗ → −1.

Proof. From (37) we get

B∗ = − 1

2h∗x

{
u∗x + h∗x +

θφh(x∗)u∗xx
h∗x

2

}
. (43)

As θ → 0, h(x) → u(x) and thus, ux → hx, uxx → hxx. From (26), q → 1 for all B, i.e., the
Friedman rule. From (43), B∗ → −1.

3.3 Calibration

Let us calibrate the steady state of each environment. Consider the following functional forms:

u(x) =

{
x1−σ

1−σ if x̄ = 0
(x+x̄)1−σ−x̄1−σ

1−σ if x̄ > 0

U(c) =
c1−ρ

1− ρ
v(g) = ψ ln g.

When there are no trading frictions we set x̄ = 0, so that u(x) is standard CES; for the case with
trading frictions we need x̄ > 0 to satisfy the assumption u(0) = 0. For now, normalize ψ to 1 and
set η = 1

2 . The parameters left to calibrate are α, β, ρ, σ, φ, θ and x̄.

Define nominal GDP as the sum of nominal output in the day and night markets. Let Y be
nominal GDP normalized by the aggregate money stock, i.e., Y ≡ ηp̃x + p(c + g). Note that by
the equation of exchange, Y is also equal to velocity of circulation. For the case with competitive
markets, p̃x = 1 and thus, Y = η + p(c + g). With financial intermediation, p̃x = 1

η and thus,

Y = 1 + p(c+ g). With trading frictions, note that the implicit price in all bilateral meetings is 1
x ;

thus, Y is the same as with competitive markets. In the benchmark calibration (see details below),
the night market is 91% of total GDP for the cases without financial intermediation; with banks,
the relative size of the night market drops to 82%.

Calibration targets are taken from 1962-2006 averages for the U.S. economy. Period length is set
to a year. Government in the model corresponds to the federal government. The calibration targets
are: debt over GDP, annual inflation, interest payment over GDP, outlays (excluding interest) over
GDP and revenues over GDP. Inflation is measured from the CPI, while the rest of the variables
are taken from the Congressional Budget Office. Government debt is defined as debt held by the
public, excluding holdings by the Federal Reserve system.

Next, we need to specify the model steady state statistics that correspond to the selected
calibration targets. For debt over GDP use B(1+µ)

Y , since debt is measured at the end of the period
in the data. Let π be annual inflation in the model, which in steady state is equal to µ. Interest
payments over GDP are defined as B(1+µ)(1−q)

Y . Given that debt over GDP is already targeted, this
implies a target for the nominal interest rate i, where i = 1

q −1. Interest payments are 2.1% of GDP
in the data, which implies a target nominal interest rate of 7.3% annual. Outlays and revenues are
defined as pg

Y and pτn
Y , respectively, where n = c+g from the night-resource constraint. For the case
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with trading frictions, the typical approach is to include an additional target, the price-to-marginal
cost ratio or markup.12 Since the markup in the night-market is zero, the markup is equal to the
share of the day-market output in GDP times the day-market markup. Let ω be the markup, where
ω ≡ η(1−θ)

Y

(u(x)
φx − 1

)
. I use the usual target adopted by the literature, 10%. Table 1 summarizes

the target statistics.

Table 1: Target statistics

B∗(1+µ∗)
Y ∗ π∗ i∗ p∗τ∗n∗

Y ∗
p∗g∗

Y ∗ ω∗

0.308 0.044 0.073 0.182 0.182 0.100

Note: ω is a calibration target only for the case with trading frictions.

Table 2 shows the parameters that match the calibration targets for each of the environments
considered. As mentioned above, for the cases with no trading frictions, x̄ = 0. For the case with
trading frictions, x̄ = 0.5 and θ is set equal to 0.8739 to match the markup, ω. The value of x̄
is much higher than the typically found in the literature (which is close to zero, say x̄ = 0.0001).
The reasons is that lower values of x̄ imply higher values of θ to match the markup target (see
the expression for ω above); e.g., if x̄ = 0.25 then θ = 0.9284, and if x̄ = 0.005 then θ = 0.9989.
The benchmark value for x̄ is a compromise between making the environment with trading frictions
sufficiently different from the competitive markets case and not deviating too much from a standard
CES utility specification. It is important to point out that the quantitative results reported in the
sections below are not affected by the choice of x̄. In particular, setting x̄ = 0.5 (and recalibrating)
for the cases without trading frictions or setting x̄ = 0.005 (and recalibrating) for the case with
trading friction have only minor quantitative effects that are not sufficiently significant to overturn
any of the conclusions.

Table 2: Benchmark calibration

Parameters Competitive Financial Trading
Markets Intermediation Frictions

α 4.9801 4.1722 5.1648
β 0.9728 0.9728 0.9728
ρ 7.3670 8.1879 6.4633
σ 4.6965 2.5084 5.8405
φ 1.3332 4.8290 1.3701
ψ 1.0000 1.0000 1.0000
η 0.5000 0.5000 —
θ — — 0.8739
x̄ 0.0000 0.0000 0.5000

The steady state allocation {B∗, x∗, c∗, g∗} is found by solving numerically the system of equa-
tions (37)—(40). Table 3 shows the solutions for all the cases considered.

12See Lagos and Wright (2005) and Aruoba, Waller and Wright (2008) for further discussion.
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Table 3: Steady state variables for benchmark calibration

Competitive Financial Trading
Markets Intermediation Frictions

B∗ 1.619 1.619 1.619
x∗ 0.914 0.519 0.422
c∗ 0.780 0.814 0.749
g∗ 0.195 0.233 0.188

3.4 Comparative statics

To further understand the differences in long-run policy across cases, we can analyze the response
of steady state statistics to changes in parameter values. Each parameter is perturbed by ±10%.
Next, the percentage change in a steady state statistic is divided by the percentage change in
the parameter value, to measure the elasticity of the statistic to changes in parameters. Table 4
presents the results, highlighting elasticities between 0.25 and 1, and elasticities above 1, plus the
sign of the change in statistics.13 See Appendix D for a table with the actual figures.

Table 4: Parameter-elasticity of steady state statistics

Competitive Markets Financial Intermediation Trading Frictions
∆α ∆φ ∆η ∆ρ ∆σ ∆ψ ∆α ∆φ ∆η ∆ρ ∆σ ∆ψ ∆α ∆φ ∆ρ ∆σ ∆ψ

B∗(1+µ∗)
Y ∗ − + ++ − ++ − + + ++ − − − ++

π∗ − ++ −− ++ ++ − −− ++ ++ − − −− ++ ++
τ∗ − + − + − +
p∗τ∗n∗

Y ∗ − + − + − +
p∗g∗

Y ∗ − + − + − +

Note. Each parameter is increased and then decreased by 10%. Elasticity is measured as the percentage change in
a statistic divided by 1.1/0.9 − 1, where the change in statistic corresponds to ±10% change in parameter value. A
positive (negative) sign implies the statistic increases (decreases) with an increase in parameter value. A single sign
implies the elasticity is higher than 0.25 but lower than 1; a double sign implies the elasticity is equal to or higher
than 1. For the case with trading frictions, ∆η is omitted since it is always assumed that η = 0.5.

Let us first focus on the case with competitive markets. As we can see, only debt and inflation
feature parameter-elasticities greater than 1: both variables are increasing in η and σ; in addition,
inflation also increases significantly with reductions in ρ and increases in ψ. The remaining effects
feature lower parameter-elasticities. In this sense, increases in α reduce debt, inflation, taxes,
expenditure and revenue; increases in φ increase debt; and increases in ψ increase taxes, expenditure
and revenue.

The other two monetary economies feature some notable similarities with the benchmark case.
Most notably, the effect of changes in α and ψ go in the same direction for all three variants;
quantitatively, the effect is also very similar across model variants—see Appendix D. In all three

13The cut-off point of 0.25 is somewhat arbitrary. The idea is to focus on changes in long-run statistics which are
sufficiently significant, given that the change in parameter values is 1.1

0.9
− 1 ≈ 0.222.
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cases, an increase in σ implies a large increase in both debt and inflation. Quantitatively, the effect
is significantly larger for the case with trading frictions.

There are two differences in comparative statics worth highlighting. For the case with financial
intermediation, changes in η affect debt, but not inflation. For the case with trading frictions, an
increase in φ decreases both debt and inflation, in sharp contrast with the other two cases, which
feature an increase in debt and no change in inflation.

3.5 Frictions and long-run policy

The three monetary economies studied in this paper all share the fundamental frictions that make
a medium of exchange essential: lack of commitment, anonymity and lack of double coincidence
of wants. The differences lie in the additional trading and financial frictions that may afflict the
environment. The case with competitive markets resolves trading frictions, whereas the case with
a banking sector further resolves financial frictions. Here, we quantify the effects of these frictions
on long-run government policy.

First, suppose we resolve trading frictions. Thus, take the parameterization for the case with
trading frictions and solve the case with competitive markets.14 In steady state, debt over GDP
decreases to 4.1%, annual inflation drops to 1.7%, while tax revenue and expenditure both increase
slightly to about 19% of GDP. If we consider a higher bargaining power for consumers and recal-
ibrate, the difference in statistics becomes even larger. The reason is that as we increase θ (lower
x̄), we need to reduce σ to match the target statistics for the case with trading frictions. From
the analysis above, we know that B∗ is increasing in σ; thus, when we switch to the case with
competitive markets, long-run debt (and thus, inflation) decreases even more.

Second, suppose we shut down the banking sector. Thus, take the parameterization for the
case with financial intermediation and solve the case with competitive markets. From Proposition
4 we know that in the long-run, only debt and inflation change; without banks, steady state debt
over GDP decreases to 11.4%, while annual inflation drops to 0.8%. Note that the magnitude of
these policy changes are inversely related to the assumed value for η. For example, set η = 0.8 and
recalibrate the economy with financial intermediation; thus, φ = 2.2101 while all other parameters
remain at benchmark. If we now solve the steady state with competitive markets, we get debt
over GDP of 25.7% and annual inflation of 3.0%; i.e., the changes are significant, but not quite as
dramatic as when η = 0.5.

The analysis shows that resolving trading frictions reduces long-run debt and inflation, whereas
resolving financial frictions has the opposite effect. The quantitative magnitude of these effects may
be quite seizable. Given that with certain technological advances (e.g., electronic record keeping),
both goods markets and financial markets have become more efficient, the results indicate that these
improvement may have had a significant impact on government policy. Recovering the contribution
of these changes from the data may prove difficult as they have canceling effects. In addition, these
institutional changes to not occur in isolation; e.g., technological advances that alleviate trading
and financial frictions are likely to also improve labor productivity.

14Note that by Proposition 1 this exercise is equivalent to increasing θ to 1.
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4 Government Policy and Aggregate Uncertainty

In this section, I study the differences between monetary economies in the presence of aggregate
uncertainty. I consider shocks to government expenditure and aggregate productivity and compare
the model variants along four dimensions: the response of government policy to aggregate shocks;
the persistence of policy variables; the money demand; and the Phillips curve.

The analysis in this section is an extension of the work in Martin (2010a) where I evaluate
the empirical plausibility of the variant with competitive markets along several non-calibrated
dimensions. Here, the focus is on understanding how policy response to aggregate shocks depends
on the details of the monetary economy.

4.1 Government policy in monetary economies with aggregate uncertainty

Assume there are two aggregate shocks: one to the marginal value of the public good (an “expen-
diture” shock) and one to the productivity of labor. We keep the assumption that v(g) = ψ ln g,
but now assume that ψ is a random variable. Let A be labor productivity, which affects both day
and night output, and follows a random process. Thus, day-good producers incur a utility cost φκ

A
and night-output is equal to An.15

Let s ≡ {ψ,A} follow a Markov process and let E[s′|s] be the expected value of s′ given s. The
set of all possible realizations for the stochastic state is S. To simplify exposition, define φA ≡ φ

A
and αA ≡ α

A .

For the respective cases of competitive markets, financial intermediation and trading frictions,
the government budget constraint in a monetary equilibrium is

(Uc − αA)c− αAg − φAx(1 +B) + βE
[
ηx′(u′x − φ′A) + φ′Ax

′(1 +B′)
∣∣s] = 0

(Uc − αA)c− αAg − ηφAx(1 +B) + βηE
[
x′(u′x − φ′A) + φ′Ax

′(1 +B′)
∣∣s] = 0

(Uc − αA)c− αAg − hA(x)(1 +B) + βE

[
hA(x′)(u′x − h′A,x)

2h′A,x
+ hA(x′)(1 +B′)

∣∣∣s] = 0,

where hA(x) ≡ (1− θ)u(x) + φAx and hA,x ≡ (1− θ)ux − φA. Note that we can write the budget
constraint compactly as

ζ(B, x, c, g, s) + βE[ϑ(B′,X (B′, s′), s′)|s] = 0. (44)

Given debt level B ∈ Γ, current stochastic state s ∈ S and the perception that future govern-
ments will implement X (B, s), the problem of the current government is

V(B, s) = max
B′,x,c,g

η(u(x)− φAx) + U(c)− αA(c+ g) + ψ ln g + βE[V(B′, s′)|s]

subject to (44).

15To derive the day-utility cost, assume a production function κ = Ae and linear disutility in effort, −φe.
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After some work, the first-order conditions imply

E

[
φ′Ax

′
(ψ
g
− αAψ

′

α′Ag
′

)
+
(ψ
g
− αA

)
ϑ′xX ′B

∣∣∣s] = 0 (45)

αAη(ux − φA) +
(ψ
g
− αA

)
ζx = 0 (46)

ψ

g
(Uc − αA) +

(ψ
g
− αA

)
Uccc = 0, (47)

where the expressions for ζx and ϑ′x depend on the variant being considered. A MPME in a stochas-
tic economy is a set of functions {B(B, s),X (B, s), C(B, s),G(B, s)} : Γ× S → R5 characterized by
equations (44)—(47), for all B ∈ Γ and s ∈ S.

4.2 Numerical evaluation

As a reference, Table 5 shows a summary of the time-series properties at annual frequencies of
selected policy variables for the U.S. between 1962 and 2006. The table includes the variable
dGDP, which is linearly-detrended (log) real GDP.

Table 5: Time-series properties of U.S. economy — 1962-2006

Variable Mean Std.Dev. Autocorr.

Debt/GDP 0.308 0.078 0.967
Inflation 0.044 0.030 0.747
Revenue/GDP 0.182 0.010 0.653
Outlays/GDP 0.182 0.012 0.798
Deficit/GDP 0.001 0.018 0.743
dGDP 0.000 0.027 0.715

I keep the benchmark calibration from the previous section and assume the following:

ψ′ = 1− %g + %gψ + ε′g

lnA′ = %A lnA+ ε′A,

where %g, %A ∈ (0, 1), εg ∼ N(0, σ2
g) and εA ∼ N(0, σ2

A). Note that both ψ and A average 1, as in
the economies without aggregate uncertainty.

The model is solved globally using a projection method. See Appendix E for a description of
the algorithm and other details of the numerical approximation.

There are many alternative ways to calibrate or estimate the stochastic processes for ψ and
A. Here, I adopt an approach that allows for a single parameterization to offer empirically plau-
sible dynamics in all three variants. Specifically, the stochastic process for ψ is set to match the
autocorrelation and variance of government expenditure over GDP, assuming labor productivity is
constant and equal to its long-run value; the process for A is set to match the autocorrelation and
variance of detrended (log) real GDP (i.e., dGDP), assuming the marginal value for public good
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consumption is fixed at its long-run value. In both cases, I target the statistics for the case with
competitive markets, but the assumed processes also match the statistics for the other two cases,
with only very minor deviations in the autocorrelation of expenditure and dGDP. The calibrated
parameters are: %g = 0.804, %A = 0.726, σg = 0.045; σA = 0.061.

4.3 Policy response to aggregate shocks

The artificial economies are simulated for 1, 000, 000 periods, starting from the non-stochastic steady
state. Table 6 shows average, standard deviation and autocorrelation of selected policy variables.
There are three different simulations for each of the three monetary economies: expenditure shocks
only, productivity shocks only, and both shocks. The variable dy in the model corresponds to
dGDP, i.e., linearly detrended (log) real GDP. See Appendix E for a description of how it was
computed.

Table 6: Statistics for simulated economies

Competitive Markets Financial Intermediation Trading Frictions

Mean Std.Dev. Autocorr. Mean Std.Dev. Autocorr. Mean Std.Dev. Autocorr.

Expenditure shocks
B(1+µ)

Y 0.305 0.040 0.989 0.305 0.037 0.989 0.305 0.039 0.989
π 0.044 0.009 0.882 0.044 0.008 0.871 0.044 0.009 0.875
pτn
Y 0.182 0.007 0.935 0.182 0.008 0.928 0.182 0.007 0.933
pg
Y 0.182 0.012 0.798 0.182 0.012 0.800 0.182 0.012 0.798
p(g−τn)

Y 0.000 0.007 0.703 0.000 0.006 0.698 0.000 0.006 0.700
dy 0.000 0.013 0.779 0.000 0.013 0.776 0.000 0.013 0.773

Productivity shocks
B(1+µ)

Y 0.310 0.009 0.921 0.311 0.018 0.933 0.310 0.042 0.942
π 0.046 0.031 0.312 0.046 0.038 0.082 0.047 0.057 −0.070
pτn
Y 0.182 0.001 0.906 0.182 0.002 0.945 0.182 0.004 0.975
pg
Y 0.182 0.012 0.717 0.182 0.011 0.720 0.182 0.011 0.720
p(g−τn)

Y 0.001 0.011 0.702 0.001 0.010 0.683 0.000 0.009 0.639
dy 0.000 0.027 0.715 0.000 0.030 0.714 0.000 0.029 0.707

Both shocks
B(1+µ)

Y 0.307 0.041 0.986 0.307 0.041 0.978 0.307 0.057 0.964
π 0.046 0.032 0.358 0.045 0.039 0.117 0.046 0.058 −0.046
pτn
Y 0.182 0.007 0.934 0.182 0.008 0.929 0.182 0.008 0.941
pg
Y 0.182 0.017 0.759 0.182 0.016 0.763 0.182 0.016 0.762
p(g−τn)

Y 0.001 0.013 0.703 0.000 0.012 0.687 0.000 0.011 0.661
dy 0.000 0.030 0.728 0.000 0.033 0.724 0.000 0.032 0.717

Artificial economies are simulated for 1, 000, 000 periods.

Consider first the environment with competitive markets. Almost all of the volatility in debt
and tax revenue is due to expenditure shocks, while most of the volatility in inflation is due to
productivity shocks. The volatility of expenditure is similar for the two types of shocks and get
compounded when including both. The autocorrelation of these four policy variables is higher
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under expenditure shocks than productivity shocks, which is not surprising considering that ex-
penditure shocks are more persistent than productivity shocks. The autocorrelation of inflation
varies significantly with the type of shock (this feature is analyzed further below). The primary
deficit is slightly more volatile with productivity shocks, but the autocorrelation is nearly identical
under the two types of shocks. When we consider both shocks, the volatility and autocorrelation
of policy variables are reasonably close to the data, except for the autocorrelations of inflation and
tax revenues—see Table 5.

Let us now compare the behavior of policy across the different environments. The response of
variables to government expenditure shocks is very similar in all cases. The response to productivity
shocks features some important differences. Compared to the benchmark with competitive mar-
kets, introducing financial intermediation results in slightly higher volatility in debt and inflation;
the autocorrelation of inflation drops quite significantly and the autocorrelation of tax revenues
increases. Incorporating trading frictions results in larger increases in the volatility of debt and
inflation; the autocorrelation of inflation changes sign (becomes negative) and the autocorrelation
of tax revenue increases even more. There is also a significant drop in the autocorrelation of the
deficit. When we consider both types of shocks, the most significant difference across cases is the
volatility and autocorrelation of inflation. For the case with trading friction, we also have a higher
volatility in debt and a lower autocorrelation in the deficit.

To further understand the differences in policy response across environments, Figure 1 displays
the impulse-response functions of selected variables to expenditure and aggregate shocks. The
responses are computed from a VAR estimated from the simulated data; the VAR consists of the
following variables (in order): ψ, A, p(g−τn)

Y , dy, µ and B(1+µ)
Y . This VAR specification allows for

an easy and precise numerical approximation to the true impulse-response functions, which cannot
be accurately computed directly given that the exogenous state space is discrete. As we can see,
the qualitative responses of the primary deficit, money growth rate and debt are similar in all
environments. The main difference across monetary economies is the quantitative response of debt
and monetary policies to productivity shocks. This is the source of the differences in time-series
statistics across cases, as reported in Table 6.

In all cases, the response of inflation to a productivity shock has an important difference with
the response of the money growth rate. To see this, note that prices for the case with competitive
markets are p̃ = 1

x and p = AUc
φx in the day and night markets, respectively; taxes are τ = 1− α

AUc
.

As reported in Table 6, the volatility of taxes in response to productivity shocks is close to zero;
thus, the volatility of AUc is close to zero. When a positive innovation to A hits the economy, x
increases, AUc remains approximately the same and so, both p̃ and p decrease. This behavior is
displayed despite the fact that µ actually increases in response to a positive innovation in A, as
shown in Figure 1. In the subsequent periods after the shock, prices increase at a decreasing rate;
i.e., after the initial period, inflation follows the behavior of the money growth rate. Thus, most of
the difference in the autocorrelation of inflation between monetary economies is due to how large
the initial drop in prices is.

The case with trading frictions presents an interesting oddity. The response of monetary policy
to a productivity shocks is the smoothest of all cases, while the volatility of inflation is the highest.
Relatively speaking, most of the volatility in inflation reported for this case does not stem from
changes in the money supply, but from changes in the money demand, which in turn react to both
the aggregate shocks and the endogenous policy response.
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4.4 Policy persistence

To better measure the persistence of policy variables, Marcet and Scott (2009) suggest using the

k-variance ratio, which is defined as P kx =
V ar(xt−xt−k)
kV ar(xt−xt−1) . A variable is more persistent the longer it

takes the k-variance ratio to converge to zero. Figure 2 compares the persistence of debt, inflation
and the deficit, in the data and artificial economies.

In the data, the k-variance ratio for debt over GDP is increasing and only starts leveling off
after 9 years at about 3.7. Inflation and the deficit are much less persistent and both series display
a more or less decreasing P k ratio. Furthermore, the persistence in inflation and the deficit are
relatively similar. As we can see in Figure 2, all model variants match these qualitative features
broadly. The P k ratios for inflation and the deficit are quite close to the data in all cases, especially
after a few periods. The big difference between variants is in the persistence of debt. The case
with competitive markets provides the best fit to the data, whereas the other two cases match the
qualitative shape of debt persistence, but underestimate it quantitatively.

4.5 Money demand

Let us evaluate the model’s implication for the money demand, i.e., the relationship between the
nominal interest rate and the inverse of velocity of circulation. Note that neither of these variables
were calibration targets. For the U.S. data, define velocity of money as nominal GDP divided by
average M1, which is the measure typically adopted by the literature. For the interest rate, I use the
1-year treasury constant maturity rate published by the Federal Reserve, which is closely related
to the nominal interest rate in the model. One issue with the data is that velocity of circulation
has a secular trend whereas the interest rate does not. To remove this effect, I linearly detrend
the series for the inverse of velocity. In the model, velocity of circulation is defined as (normalized)
nominal aggregate output, Y , and the interest rate is i = 1/q − 1.

Consider the money demand regression kt = γ it+εt, where k and i are the (detrended) inverse
of velocity and the nominal interest rate, respectively. Table 7 reports the results of the money
demand regressions in the data and the model. For the artificial economies, the γ coefficient is
estimated using the simulated sample of 1,000,000 periods. This method provides an estimate of
the “true” relationship between k and i in the model. Fit can be evaluated by checking whether the
model estimate for γ falls within the one-standard error band in the data. Figure 3 complements
the analysis with a graphical representation of the money demand curve in the data and the initial
10, 000 simulation periods in each monetary economy. Note that both the inverse of velocity and the
nominal interest rate are presented as deviations from the mean, to facilitate the visual comparison
across cases.

As we can see in Table 7, all cases feature a money demand curve with a negative slope. The
model fit is very good for the cases with competitive markets and financial intermediation. The
case with trading frictions features a poor fit, which as can be observed in Figure 3, is due to the
relatively high volatility of the money demand (see Section 4.3 for a related discussion).
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Table 7: Money demand regression: kt = γ it + εt

U.S. Data Competitive Financial Trading
1962-2006 Markets Intermediation Frictions

γ −0.442 −0.432 −0.395 −0.107
(0.057) (0.000) (0.000) (0.001)

R2 0.583 0.707 0.642 0.025

Note: standard errors are shown in parenthesis.

4.6 Phillips curve

Lastly, we compare the model variants by studying the implied relationship between inflation and
output, i.e., a variant of the standard Phillips curve. For the U.S. annual data between 1962 and
2006, the regression πt = γ dyt + εt implies γ = 0.521, with a standard error of 0.150. Table 8
displays the Phillips curve regression for the U.S. data and simulated economies. Figure 4 provides
a graphical representation.

Table 8: Phillips curve regression: πt = γ dyt + εt

U.S. Data Competitive Financial Trading
1962-2006 Markets Intermediation Frictions

γ 0.521 0.400 0.151 −0.276
(0.150) (0.001) (0.001) (0.002)

R2 0.219 0.142 0.016 0.023

Note: standard errors are shown in parenthesis.

The case with competitive markets implies an estimated coefficient on dyt of 0.402, which falls
within the one standard error band of the data estimate. The positive correlation between inflation
and GDP in the model obtains despite a negative policy trade-off between the two variables (since
inflation is distortionary), and results from the interaction between policy and aggregate shocks
over time. Figure 4 displays very clearly how locally negative policy trade-offs shift around with
aggregate shocks, so that the long-run relationship becomes positive.

For the case with financial intermediation, the coefficient in the Phillips curve regression is also
positive, but significantly lower than with competitive markets. For the case with trading frictions,
the coefficient is actually negative. In both these variants, the R2 is close to zero, i.e., real GDP
has virtually no explanatory power for inflation. This result is also apparent from Figure 4.

The differences between economies follow from the behavior of inflation in the presence of
productivity shocks—see Table 6. To smooth out any artifacts generated by the contemporaneous
response of inflation, I run the regressions using 5-year moving averages.16 As we can see in Table

16I also conducted a similar exercise for the money demand regressions, but found no significant differences with
the results presented in Table 7.
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9 all variants now feature a positively-sloped Phillips curve, although the case with competitive
markets still offers the closest fit to the data. Also note that the R2 for all cases is significantly
higher than in Table 8.

Table 9: Phillips curve regression II: πt = γ yt + εt, using 5-year moving averages

U.S. Data Competitive Financial Trading
1962-2006 Markets Intermediation Frictions

γ 0.703 0.707 0.527 0.310
(0.236) (0.002) (0.002) (0.003)

R2 0.186 0.660 0.441 0.106

Note: standard errors are shown in parenthesis.

4.7 Robustness

A legitimate concern is that the preceding analysis may be sensitive to the calibration adopted
in Section 3. In particular, the values of η and x̄ (and thus, θ) where arbitrarily chosen. In this
section, I will verify the robustness of the results obtained above, by focusing on three key elements:
(i) the time-series statistics in Table 6 with both shocks; (ii) the k-variance ratio for debt; and (iii)
the money demand and Phillips curve regressions.17

First, let us analyze how the cases with competitive markets and financial intermediation are
affected by changes in the measure of buyers, η. Lowering η for the case with competitive markets
improves the model fit. For example, set η = 0.3 and recalibrate to match the target statistics.
Then, we get the following improvements: standard deviation of debt increases to 0.043; standard
deviation of inflation decreases to 0.030; autocorrelation of inflation increases to 0.487; k-variance
ratio increases for all periods (after 10 periods it is equal to 3.84); and γ coefficient in the Phillips
curve regression equal to 0.491. The other statistics do not change significantly, except for a
lower coefficient in the money demand regression, −0.412. On the other hand, varying η (and
recalibrating) for the case with financial intermediation has no significant effect on any the variables
considered here; all statistics for the simulated economy look virtually identical for different values
of η.

Second, consider the effects of the parameter x̄ in the utility function for the day-good, u(x).
The calibration specifies x̄ = 0 for the case with competitive markets and x̄ = 0.500 for the case
with trading frictions. Assume x̄ = 0.500 for the case with competitive markets and recalibrate
parameters to match target statistics. Then, the results are virtually identical to those of the
benchmark calibration. Suppose instead that we set x̄ = 0.005 for the case with trading frictions
and recalibrate. Here, there are a few noticeable changes, but not significant enough to overturn
any of the reported conclusions.

Third, since the reason why the economy with trading frictions does not fit the data as well as
the other cases is the behavior of the money demand, consider lowering the size of the bargaining

17To keep this section brief, I only report the results of the exercise. All supporting computations are available
upon request.
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frictions by reducing the targeted markup by half. In this case the fit improves significantly. We
get: lower volatility and higher persistence of inflation (the standard deviation falls to 0.048 and
the autocorrelation increases to 0.010), although the volatility of debt falls (standard deviation
decreases to 0.051); increased persistence of debt, as measured by the k-variance ratio (about 15%
higher than benchmark after 6 periods); closer estimates for the money demand and Phillips curve
regressions (−0.242 and −0.052, respectively). Overall, lowering trading frictions improves model
fit, but the economies with competitive markets and financial intermediation still outperform.

5 Concluding remarks

The results in this paper contribute to two strands of the macroeconomic literature. First, the
analysis here complements studies in monetary theory by providing a theoretical treatment of how
environment frictions affect the (endogenous) determination of government policy. It also presents
tools for testing alternative variants of monetary economies by evaluating their performance relative
to the data along several relevant dimensions. Second, the paper advances our understanding
of government policy (both normative and positive) by identifying the details of micro founded
monetary economies that affect specific results and also the results which appear unaltered across
variants.

Appendix

A Nash bargaining

Given consumer’s bargaining weight θ ∈ (0, 1] and consumer’s money holdings m, the Nash (1950)
solution to the bargaining problem is

{x, δ} = argmax
x,δ≤m

(
u(x)− αδ

p(1− τ)

)θ (
−φx+

αδ

p(1− τ)

)1−θ
.

A monetary equilibrium under the Nash solution looks identical to the proportional solution as
derived in the paper, except for the expression for h(x). With Nash, we get h(x) ≡ (1−Θ(x))u(x)+
Θ(x)φx, where Θ(x) = θux

θux+(1−θ)φ .

One feature of the Nash solution that sets it apart from all the other cases considered in this
paper, is that we cannot guarantee that the non-negativity constraint, ux−hx ≥ 0, will not bind at
B∗. In other words, it may be possible that the equilibrium under the Nash solution features a zero
nominal interest rate in the long-run. In fact, it is straightforward to construct examples. Consider
the following: u(x) =

√
x, φ = 1, U(c) = log c, v(g) = log g, α = 2, β = 0.9 and θ = 0.4. The steady

state for this parametrization is {B∗ = −0.889, x∗ = 0.111, c∗ = 0.299, g∗ = 0.200} and features
u∗x = h∗x. Increasing the bargaining power θ, while keeping all other parameters fixed, alleviates this
issue; e.g., with θ = 0.5 the solution is interior.18 Similarly, when applying the calibration with the
proportional solution (see Table 2) to the Nash bargaining case, we obtain u∗x = h∗x. Increasing θ

18A similar issue is reported by Aruoba and Chugh (2008) for the case with commitment.
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to 0.999 resolves this issue but the steady state statistics are off target. Overall, it does not appear
possible to calibrate the economy with the Nash bargaining solution to the U.S. economy.

See Aruoba, Rocheteau and Waller (2007) for further analysis of the differences between the
Nash and Kalai bargaining solutions in the Lagos-Wright framework, for the case with exogenous
government policy.

B Partial derivatives of the government budget constraint

For the case with competitive markets, we get: εB = −φx; εB′ = βφx′; εx = −φ(1 + B); εx′ =
β
{
η(u′x + u′xxx

′) + (1− η +B′)φ
}

; εc = Uc − α+ Uccc; and εg = −α.

For the case with financial intermediation, we get: εB = −ηφx; εB′ = βηφx′; εx = −ηφ(1 +B);
εx′ = βη

{
u′x + u′xxx

′ + φB′
}

; εc = Uc − α+ Uccc; and εg = −α.

For the case with trading frictions, we get: εB = −h(x); εB′ = βh(x′); εx = −(1 + B)hx;

εx′ = β
{ θ(u′x−φ)

2 − θφu′xxh(x′)
2(h′x)2

+ h′x(1 +B′)
}

; εc = Uc − α+ Uccc; and εg = −α.

Two useful observations: (i) εB′ = −βε′B; and (ii) both εc and εg have the same expression in
all three environments.

C Proof of Proposition 2

Let us consider the government problem with commitment, also known as the Ramsey problem.
A standard result is that the sequence of government budget constraints collapses to a single

“implementability” constraint. Start with (1). For every period, multiply this equation by
βtUc,t
pt

and sum over all periods. We get:

∞∑
t=0

βtUc,t

{
τtct − (1− τt)gt +

(1 + µt)(1 + qtBt+1)− (1 +Bt)

pt

}
= 0.

Next, use the transversality condition, limT→∞ β
T (1+µT )(1+qTBT+1)

pT
= 0. In addition, use the

monetary equilibrium condition, τt = 1 − α
Uc,t

, which is the same for all three environments. The
present value government budget constraint simplifies to

∞∑
t=0

βt{(Uc,t−α)ct−αgt}−
Uc,0(1 +B0)

p0
+
∞∑
t=1

βt−1
{Uc,t−1(1 + µt−1)(1 + qt−1Bt)

pt−1
−βUc,t(1 +Bt)

pt

}
= 0.

The remaining step is to show that the whole third term can be simplified to an expression that
only depends on {xt}∞t=0. We can rewrite this term as

∞∑
t=1

βt−1
{Uc,t−1(1 + µt−1)

pt−1
− βUc,t

pt
+
(Uc,t−1(1 + µt−1)qt−1

pt−1
− βUc,t

pt

)
Bt

}
Using the monetary equilibrium conditions for each environment, we can show

Uc,t−1(1+µt−1)qt−1

pt−1
−

βUc,t
pt

= 0 in all cases. The term
Uc,t−1(1+µt−1)

pt−1
− βUc,t

pt
depends on the case; we get βηxt(ux,t − φ)
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with competitive markets and financial intermediation, and
βh(xt)(ux,t−hx,t)

2hx,t
with trading frictions.

Note that in all cases the term is only a function of xt; call it βΩ(xt). Thus, the implementability
constraint is

∞∑
t=0

βt{(Uc,t − α)ct − αgt + Ω(xt)} − Ω(x0)− (1 +B0)Φ(x0) = 0, (48)

where Φ(x0) ≡ Uc,0
p0

, which is equal to φx0 with competitive markets, ηφx0 with financial interme-
diaries and h(x0) with trading frictions. Another useful expression is the period budget constraint,
(28), which can now be written as

(Uc,t − α)ct − αgt + βΩ(xt+1) + βΦ(xt+1)(1 +Bt+1)− Φ(xt)(1 +Bt) = 0. (49)

Given B0 ≥ −1, the problem of the government is

max
{xt,ct,gt}∞t=0

∞∑
t=0

βt {η(u(xt)− φxt) + U(ct)− α(ct + gt) + v(gt)}

subject to (48). It is easy to verify that the non-negativity constraint, ux,t − φ ≥ 0, does not bind
in any period. The first-order conditions are

η(ux,0 − φ)− Λ(1 +B0)Φx,0 = 0, for t = 0

η(ux,t − φ) + ΛΩx,t = 0, for all t ≥ 1

Uc,t − α+ Λ(Uc,t − α+ Ucc,tct) = 0, for all t ≥ 0

vg,t − α− Λα = 0, for all t ≥ 0,

where Λ is the Lagrange multiplier associated with (48). Note that ct and gt are constant for all t ≥
0, while xt is constant for all t ≥ 1 and may be different in the initial period. Call the corresponding
allocation {x0, x1, c, g}. Thus, we can write (48) as (Uc−α)c−αg+βΩ(x1) = (1−β)Φ(x0)(1+B0).

Plug this expression into (49) and we get Bt = Φ(x0)(1+B0)
Φ(x1) − 1 for all t ≥ 1, i.e., debt is constant

after the initial period. Thus, {x0, x1, c, g} solve

αη(ux,0 − φ)− (vg − α)Φx,0(1 +B0) = 0

αη(ux,1 − φ) + (vg − α)Ωx,1 = 0

vg(Uc − α) + (vg − α)Uccc = 0

(Uc − α)c− αg + βΩ(x1)− (1− β)Φ(x0)(1 +B0) = 0.

Suppose B0 = B∗. We now verify that {x∗, x∗, c∗, g∗} solves the above system. We get

αη(u∗x − φ)− (v∗g − α)Φ∗x(1 +B∗) = 0 (50)

αη(u∗x − φ) + (v∗g − α)Ω∗x = 0 (51)

v∗g(U
∗
c − α) + (v∗g − α)U∗ccc

∗ = 0 (52)

(U∗c − α)c∗ − αg∗ + βΩ(x∗)− (1− β)Φ(x∗)(1 +B∗) = 0. (53)

Equations (52) and (53) are identical to the MPME steady state conditions, (39) and (40), re-
spectively. Note that εx = −Φx(1 + B); thus, (50) is identical to (38). Finally, note that
εx′ = β(Ω′x + Φ′x(1 + B′)); since (37) states that ε∗x = 0, we get Ω∗x = −Φ∗(1 + B∗) and (51)
is identical to (50). Thus, given B0 = B∗, the solution to the Ramsey problem is {Bt = B∗, xt =
x∗, ct = c∗, gt = g∗} for all t ≥ 0.
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D Parameter-elasticities for Table 4

Competitive Markets Financial Intermediation Trading Frictions
∆α ∆φ ∆η ∆ρ ∆σ ∆ψ ∆α ∆φ ∆η ∆ρ ∆σ ∆ψ ∆α ∆φ ∆ρ ∆σ ∆ψ

B∗(1+µ∗)
Y ∗ −0.55 0.69 1.82 −0.38 2.22 −0.13 −0.43 0.47 0.80 −0.22 2.69 −0.21 −0.50 −0.72 −0.32 13.07 −0.19

π∗ −0.96 0.00 1.74 −1.51 2.04 1.45 −0.90 0.00 0.00 −1.39 1.89 1.31 −0.91 −0.85 −1.48 7.70 1.38
τ∗ −0.55 0.00 0.00 −0.09 0.00 0.73 −0.54 0.00 0.00 −0.05 0.00 0.71 −0.54 0.00 −0.11 0.00 0.73
p∗τ∗n∗

Y ∗ −0.55 −0.06 0.00 −0.15 0.00 0.83 −0.51 −0.10 −0.16 −0.10 −0.10 0.85 −0.54 −0.02 −0.17 −0.15 0.83
p∗g∗

Y ∗ −0.51 −0.06 0.00 −0.07 0.00 0.77 −0.47 −0.10 −0.16 −0.03 −0.10 0.79 −0.50 −0.02 −0.10 −0.15 0.77

E Numerical approximation of stochastic economies

The monetary economies with aggregate uncertainty are solved globally using a projection method
with the following algorithm:

(i) Define a grid of NΓ points over Γ. The stochastic state space S is discretized in NS states,
using the method described in Tauchen (1986).19 Create the indexed functions Bi(B), X i(B),
Ci(B), and Gi(B), for i = {1, . . . , NS}, and set an initial guess.

(ii) Construct the following system of equations: for every point in the debt and exogenous
state grids, evaluate equations (44)—(47). Since (45) contains X j(Bi(B)) (and its derivative)
and Gj(Bi(B)), use cubic splines to interpolate between debt grid points and calculate the
derivatives of policy functions.

(iii) Use a non-linear equations solver to solve the system in (ii). There are NΓ×NS×4 equations.
The unknowns are the values of the policy function at the grid points. In each step of the
solver, the associated cubic splines need to be updated so that the interpolated evaluations
of future choices are consistent with each new guess.

We could alternatively simplify step (iii) by using value function iteration: simply solve the
maximization problem of the government at every grid point. Update the policy and value functions
and iterate until convergence is achieved. This method is simpler to implement, but less precise.
However, relative to the algorithm described above, it serves a dual purpose: first, it can be used
to obtain a good initial guess for policy functions; and second, it provides a method to verify the
numerical approximation found using the first-order conditions, as described above.

Each exogenous stochastic process is approximated by 7 discrete states, which implies NS = 49.
For debt, I set NB = 10 and let Γ = [−1.0, 3.5]. There are a total of 196 functions to solve. Given
that the debt grid has 10 points, we have to solve a system of 1, 960 equations. To measure the
precision of the solution, I create a debt grid of 1, 000 points for Γ, evaluate (44)—(47) for all these
debt points and all s ∈ S, and sum the squared residuals. For the case with competitive markets,
the sum of squared residuals for each equation are, respectively: 2e−11, 2e−14, 3e−12 and 3e−13.
The other two cases feature similar degrees of precision.

19See Flodén (2008) for a recent comparison with alternative methods.
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Finally, we need to construct measures of real GDP and the inflation rate. In the model, real
GDP is measured using the non-stochastic steady state as the base period for prices. Thus, let
yt = ln(p̃∗xt+p

∗(ct+gt)) be the measure of log real GDP in the artificial economy and let dyt be log
real GDP in period t minus its sample average. To calculate the inflation rate, define the aggregate
(normalized) price level P as the weighted average of prices in the day and night markets. I.e., for
any period t, let Pt ≡ sDp̃t + sNpt, where sD and sN are the expenditure shares for the day and
night markets, respectively. Expenditure shares are constructed using the non-stochastic steady
state statistics as the base period: sD ≡ p̃∗x∗

Y ∗ and sN ≡ p∗(c∗+g∗)
Y ∗ . The inflation rate is defined as:

πt ≡ Pt(1+µt−1)
Pt−1 − 1.
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Figure 1: Impulse response functions

Response to one Cholesky s.d. expenditure innovation Response to one Cholesky s.d. productivity innovation

Note. Competitice Markets: solid lines; Financial Intermediation: solid lines with diamonds markers; Trading Frictions: dashed lines.
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Figure 2: k-variance ratios of policy variables
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Figure 3: Money demand

U.S. Data 1962-2006
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Figure 4: Phillips curve

U.S. Data 1962-2006
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