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1 Introduction

The proliferation of internet-based communication and interactivity over the past decade
has led to new consumer patterns, innovative marketing approaches, and even uncon-
ventional ways of running political campaigns (e.g., Godes and Mayzlin, 2004, Salganick
et al., 2006, Willimas and Gulati, 2008). A central assumption underlying these new
strategies is that individuals influence each other when making decisions. Other relevant
social phenomena such as crime activities, religious fundamentalism, cultural fads, life-
style habits, or even epidemics also share this logic (e.g., Aguirre et al., 1988, Glaeser
et al., 1996, Young and Burke, 2001). As a result we have witnessed the arousal of a
tremendous interest in the study of social networks, leading some to herald the arrival of
a "science of networks" (e.g., Watts, 2007).

This paper analyzes how social influence determines the spread of new behaviors in
an interconnected society, a question that lies at the foundations of the theory of net-
works. This work, that emerges from the rich existing interdisciplinary literature on
social networks (see Goyal, 2007, Vega-Redondo, 2007 and Jackson, 2008 for some exten-
sive surveys), attempts to develop a tractable theoretical model that could help the testing
of specific predictions. In particular, instead of assuming a fixed network of interactions,
we consider a reiterative sampling process thus leading to an evolving influence network.*

As people may differ in the information they posses regarding the behavior of others,
we introduce heterogeneity in our model by assigning to each agent a “degree” (or con-
nectivity) indicating the number of agents observed before making a decision. We define
a dynamic process in which agents repeatedly sample from the population a subset of
agents, observe their choices regarding the new behavior, and decide whether or not to
adopt. The influence network thus determined specifies who is influenced by whom at
different time periods. We make two crucial assumptions with respect to the sampling
process. On one hand, it is assumed that sampling is directional, i.e., agent i sampling
agent j does not necessarily imply that j samples 7.2 On the other hand, some agents are
sampled more often than others (i.e., are more “visible”) and, as explained below, this is

related to their degree in a way specified by the sampling process.

! Many papers dealing with diffusion on fixed networks (although randomly generated) are theoretically
intractable and thus rely on extensive simulations studies or mean-field approximations of the models
(e.g., Pastor-Satorrds and Vespignani, 2001,Watts, 2002, Watts and Dodds, 2007, Jackson and Rogers,

2007, and Loépez-Pintado, 2008a).
Internet plays a crucial role in generating such directed influence structures (e.g., individuals with

popular websites or blogs who are observed by many others but do not necessarily observe many others).



The family of sampling processes considered encompasses a wide variety of options
characterized by a parameter « € [0, 1], which determines the correlation existing between
degree and visibility. For the sake of clarity, two polar (and extreme) cases are singled
out. First, the case in which all agents are equally visible (« = 0). Here, agents sample
uniformly from the population according to their variable degrees. Second, the situation in
which an agent’s visibility is perfectly aligned with her degree (v = 1). In other words, an
agent with degree k is k times more visible than an agent with degree 1. When o = 1 the
model essentially coincides with the mean-field approximation of an (undirected) random
network model (e.g., Pator-Satorrds and Vespignani, 2001, Jackson and Rogers, 2007 and
Loépez-Pintado, 2008a). The current work, thus, helps understand the extent and nature
of such approximations. The case a = 0 resembles the model introduced by Galeotti and
Goyal (2009) aside from the fact that these authors focus on specific adoption rules and
assume, in most instances, that diffusion only takes place over two periods.?

In our model, agents use simple rules to decide whether or not to adopt the new
behavior. The probability of adopting depends exclusively on the number of adopters and
non-adopters in an agent’s sample, and not on who specifically has adopted. Apart from
this simplification, the class of rules analyzed here is quite general and expands models
described in previous work. For instance, in the susceptible-infected-susceptible (SIS)
model, enunciated by epidemiologists to analyze the spread of a disease in a population
(e.g., Bailey, 1975), a susceptible agent becomes infected at a constant rate from each
interaction with an infected agent, whereas the transition form infected to susceptible
depends on an exogenous rate of recovery. As a result, the adoption rule exclusively
depends on the absolute number of infected interactions. We extend the SIS model to
allow for more general adoption rules (e.g., rules that depend on the relative number of
adopters) capturing features in the process of adoption that might not be relevant for the
diffusion of a disease, but that seem fundamental for diffusion of behavior or information
(see also Lépez-Pintado, 2008a).

3The objective in Galeotti and Goyal (2009) is also somewhat different. They analyze the optimal
targeting strategy of a firm who wants to introduce a new product in a population anticipating the effect
of word of mouth in the diffusion of the product. They assume the firm has incomplete information
about the network structure, and thus can only rely on the degree distribution to estimate the returns

associated with each possible strategy.
4Several authors have addressed the issue of strategic interactions and networks incorporating incom-

plete information and characterizing the Nash-Bayes equilibrium of the resulting network game. These
models assume that agents know their own degree and the degree distribution of the population, but have

incomplete information about the precise structure of the social network in which they are embedded As



In this paper we present an evolving influence network model and analyze the long-
run state of the adoption dynamics. We characterize the diffusion threshold (i.e., the
value for the spreading rate of the new behavior above which adoption by a significant
fraction of the population occurs) providing its closed-form solution. We also characterize
(implicitly) the endemic fraction of adopters (i.e., the fraction of adopters in the stationary
state of the dynamics) and perform a comparative static analysis. Roughly speaking, we
find that the new behavior will easily spread in the population if there is a high correlation
between how influential and how easily influenced an agent is, which is determined by the
sampling process and the adoption rule. We also analyze how the density and variance
of the degree distribution affect the diffusion threshold and the endemic state. To this
end, we mostly focus on the extreme case when o = 0 and compare the performance
of populations characterized by degree distributions ordered according to First Order
Stochastic Dominance and Mean Preserving Spread.

The paper is organized as follows. Section 2 introduces the model. Section 3 presents
the results of the paper, whereas Section 4 concludes. For a smooth passage we defer all

the proofs to the Appendix.

2 The Model

2.1 The Influence Network

There is a unit measure of agents N = [0,1]. Each agent i € N is characterized by her
degree k; which determines the number of agents whose behavior i observes (and hence is
influenced by). Some agents have more access to information than others or simply wish to
make a more informed decision. Therefore, we assume that the population is characterized
by a degree distribution denoted by P(k).> It seems reasonable to assume too that agents
with high degree are more visible and thus observed more often by others than agents with

low degree. We model this feature through a family of sampling processes encompassing

in this paper, the results crucially depend on the degree distribution (see e.g., Jackson and Yariv, 2007
and Galeott et al. 2010). Young (2009) also analyzes diffusion of behavior in a population but, unlike
what we do here, he studies the case where agents are heterogenous with respect to the adoption rule
but homogeneous with respect to their degree. Moreover, we concentrate on the stationary state of the

dynamics whereas he focuses on the shape of the curve characterizing adoption over time.
SFor simplicity in some of the proofs, let us assume that P(k) has a finite support and that the degree

of agents is at least 3. More precisely, P(k) = 0 if either k¥ < 2 or k > K, where K is a finite upperbound

of degrees.



a wide variety of options, each associated to a parameter a € [0,1]. Formally, the a-

sampling process indicates that an agent with degree k is sampled with probability

ke P(k)

D keP(k)
Note that, if o = 0, this probability becomes P(k). In this case, agents are selected com-
pletely at random and thus the probability of observing an agent with degree £ is simply
the fraction of agents with such a degree. We refer to this situation as the homogeneous-
visibility case. If, on the other hand, a = 1 then agents with degree k are k times more
visible than agents with degree 1. We refer to this situation, in which the visibility of
individuals is perfectly aligned with their degree, as the degree-visibility case.

We can then define an influence network as a result of combining a degree distribution
and a sampling process. Formally, the P,-influence network is the network obtained
when the a-sampling process described above is imposed to a population with degree
distribution P(k).

2.2 The Adoption Rule

Assume the existence of a new behavior (or product) spreading in a population over time.
In a given period ¢, agents can either be active or passive with respect to this behavior.
Let ¢ be a passive agent with degree k;. Assume that at a spreading rate v > 0 an
agent considers the possibility of adopting the new behavior. To make a decision she
samples k; agents following the sampling process defined above. Assume there are a;
active agents sampled by i at t.5 The rate of adoption of i is given by f(k;, a;), where
f(-,+) is what we define as the adoption rule.” Formally, an adoption rule is a function
f N x[0,1,2...k;] — R, satisfying two conditions:

(1) f is non-decreasing with respect to its second argument

(2) f(ki,0) =0

Condition (1) implies that the rate of adoption increases with the number of adopters.®

Condition (2) implies that in order to adopt one needs to sample at least one agent who

SFor ease of notation we avoid now the subscript ¢ that will be included later once the dynamics is

specified.
"We define rates instead of probabilities because we consider a continuous time dynamics. The intuition

should be that in a small increment of time d¢, the probability of adopting the product is v f(k;, a;)dt.
81n doing so, we are implicitly assuming the existence of incentives for coordination on the same action.

The opposite phenomenon, i.e., the existence of incentives to "anticoordinate" has also been analyzed

elsewhere (e.g., Bramoullé and Kranton, 2007, Lépez-Pintado, 2008b).
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has already done so.

We assume that an active agent becomes passive again at some constant rate 6 > 0,
which is independent of the behavior of others. Let us define the effective spreading rate
by A = % which will be one of the crucial parameters of the model. Note that the higher
the value of A the more contagious the behavior is.

A plausible interpretation for the transition from passive to active is the following.
At an exogenous rate v any given agent becomes interested in adopting the behavior or
product (e.g., due to the objective quality of the product, or the presence of mass media
advertisements). The agent’s final decision, however, depends critically on the influence
exerted by the agents in her sample characterized by the adoption rule f(k;, a;). We can
assume that the product is not indefinitely durable and it becomes obsolete at a certain
rate 4.9

Two types of adoption rules are singled out:

(1) Viral rules. These adoption rules depend exclusively on the absolute number of
adopters, i.e., f(k;,a;) = f(kl, a;) for all k; and k]. The so-called SIS model of diffusion
studied in epidemiology (e.g., Pastor-Satorrds and Vespignani, 2001) simply corresponds
to a viral rule where adoption depends linearly on the number of infected agents in the
sample, i.e., f(k;, a;) = a;.

(2) Persuasive rules. These adoption rules depend on the relative number of adopters
and thus f(k;, a;) can actually be reinterpreted as a function of % These rules represent
situations where there is some persuasion in favor and against adoption by adopters and
non-adopters, respectively. A stylized case which lies in this category is the Imitation
rule, where an agent simply chooses randomly one of her sampled agents and imitates her

behavior. In such a case f(ki, a;) = .

2.3 The Adoption Dynamics and the Stationary States

Let p,(t) denote the frequency of active agents among those with degree k at time ¢.

Thus, p(t) = > P(k)p.(t) is the total frequency of active agents in the population at time
k

9 Alternatively, we could have assumed that the transition from active to passive also depends on the
behavior of others. This assumption has been considered in related models of diffusion where, unlike
what has been assumed here, an agent’s choice in a certain period does not depend on whether the agent
is currently active or passive, but exclusively on the behavior of neighbors (e.g., Lopez-Pintado, 2006,
2008b, Watts, 2002 and Jackson and Yariv, 2006).



t. The adoption dynamics is then described as follows:

WOy (ratel=(0) + (1~ pu(D)ratef (1)

where ratel 1 (t) is the rate at which a passive agent with degree k becomes active and

ratey °(t) stands for the reverse transition. As mentioned above rate;%(t) = 4. As

for rate) ! (t) we need a piece of additional notation. Let 6(¢) be the probability that a

sampled agent is active. Then, given the sampling process described above

1 «
9<t) = <l{?a> Zk P<k>pk<t) (1)
k
where, for simplicity, we denote (k%) = > k*P(k). It follows from here that
k

k

rateg ' (t) =Y v f(k,a) () 6£)"(1 - 6(t) "

a=0

Let 7, (0(t)) = S2F_ f(k,a) (F) 6(t)*(1—6(t))* =), then the dynamics can be rewritten

as

dﬂ(;;t(t) = =000 + (1= py(8) vri(0).

dp, (t)

t— =0 and therefore

In a stationary state

)\Tk (0)

=T (@) (2)

Pk

Combining (1) and (2) we obtain the following fixed-point equation whose solutions

correspond to the stationary values of 6 (denoted by 6*)

0 = H\(0), (3)
where Are(0)
1 Tk
Hy,(0) = E*P(k)—————. 4
/\( ) <]{7a> ; ( )1+>\rk<0) ( )
The frequency of adopters in the stationary state (p*) is subsequently determined by
Arg(07)
— Plk)————.

Recall that the transition from active to passive is always possible. Therefore, the
concept of a stationary state only refers to stationary values of p and # and not to the

identities of the agents choosing each action.

7



3 Results

In this section, we determine the threshold for the effective spreading rate above which
diffusion to a positive fraction of the population occurs. Formally, let A, be the set
of effective spreading rates for which an infinitely small fraction of initial active agents
spreads the behavior to a positive fraction of the population. In other words, A belongs to
A, if a finite number of of initial adopters can spread the behavior to an infinite number
of agents. Then, we define the diffusion threshold \*as the highest lower bound of such a
set, i.e., \* = inf A,.

The following lemma, which is interesting on its own, will be used to characterize the
diffusion threshold.

Lemma 1 The expected number of agents influenced by an agent with degree k in a P,-

influence network is given by %(l@)

This result establishes formally the relationship between the number of agents an agent
is influenced by (degree) and the number of agents influenced by this agent (visibility).
This lemma shows, in particular, that if & = 0 (homogenous-visibility case) all agents are
(in expected terms) equally influential (or visible) and the expected number of individuals
influenced by any given individual is (k). If & = 1 (degree-visibility case), however, the
expected number of individuals influenced by an individual coincides with her degree.
Finally, if « lies somewhere in between 0 and 1, there exists a positive correlation between
how influential an agent is and her degree, but this correlation is not perfect.

The main result of this section comes next.

Theorem 1 Given a P,-influence network and an adoption rule f, the diffusion threshold

18 gien by

(k)

A= ;kaﬂp(/ﬂ) Fk, 1)

Note that the diffusion threshold depends on the adoption rule through f(k, 1) (instead
of f(k,a)) because in the initial stages of the dynamics, the probability of sampling more
than one active agent is insignificant in comparison with sampling just one active agent.
In particular, for the SIS adoption rule the diffusion threshold is
(k)

A=
(kotT)
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which depends on the degree distribution P(k) and the sampling process characterized
through a. Nevertheless, for other adoption rules such as the Imitation rule the diffusion
threshold is

A =1

which is independent of the P, —influence network. Hence, the diffusion threshold crucially
depends on the adoption rule specified by the model. Hence, testing which rules match
best which applications is an important empirical question.

Beyond the diffusion threshold, we also analyze the endemic state of the dynamics. To
fix ideas, we say that the adoption dynamics has reached an endemic state with a fraction
of adopters p* if this fraction of adopters remains constant in the upcoming periods. In
particular, p* is obtained as the solution of the system of equations (3) and (5). The
next result provides a necessary condition over the adoption rule f for which the endemic

fraction of adopters is unique.!?

Theorem 2 Consider a P,— influence network and an adoption rule f(k,a) (weakly)
concave with respect to a. If X > \* there exists a unique positive endemic fraction of
adopters. Otherwise the unique endemic state is such that p* = 0. Moreover, at A = \*

there exists a first order phase transition.

The skeleton of the proof is the following. Algebraic computations allow showing that
if the adoption rule f is (weakly) concave with respect to a then H,(#) is an increasing and
a concave function of 0, where H,(0) = 0. Therefore, the fixed point equation § = H,(6)
has either no positive solution (when H}(0) < 1) or just one positive solution (when
H{(0) > 1). The value of the spreading rate A separating these two cases is obtained from
the equation H)(0) = 1. As expected, the threshold value for A obtained here coincides
with the diffusion threshold \* provided in Theorem 1. Due to the continuity of H,(6)
as a function if A, it is also straightforward to show that the transition from a zero to a

positive fraction of adopters occurs smoothly and thus p*(\) converges to 0 when A — \*

10This result is a generalization of Proposition 1 in Lépez-Pintado (2008a).



(see Figure 1).

H,.(0) p (1)

0 0 1 nE A

Figure 1: The graph in the left hand side
represents H ) (0) for a (weakly) concave
adoption rule when (i) A equals the diffusion
threshold A\* (ii) A is above the diffusion
threshold (A = A%) and (iii) A is below the
diffusion threshold (A = A*). The graph in the
right hand side represents the corresponding
fraction of adopters in the endemic state p* as
a function of A, highlighting the first order

phase transition occurring at A = \*.

There are many adoption rules satisfying the concavity assumption at the statement
of Theorem 2 (e.g., the SIS and Imitation rules). Other relevant rules (e.g., f(k,a) = a?
or f(k,a) = (£)?) do not. A persuasive rule that also violates the assumption is the
deterministic threshold rule satisfying that agents adopt with probability 1 if and only if
the fraction of adopters in the sample () is above a certain threshold (see e.g., Morris,
2000, Watts, 2002, Lopez-Pintado, 2006, Lopez-Pintado and Watts, 2008 and Young, 2009
for papers where the deterministic threshold rule, or a slightly modified version of it, has
been analyzed). In general, non-concave rules can exhibit multiple endemic states with
different corresponding fraction of adopters. Moreover, continuity of p*(\) at A = A" is

not guaranteed.

3.1 The Role of the Sampling Process («)

One of the main objectives of this paper is to understand how diffusion depends on the
correlation between degree and visibility. For this purpose, the next result takes as given
a certain degree distribution P(k) and adoption rule f and analyzes how the diffusion

threshold depends on the sampling process, characterized through the parameter a.

10
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Proposition 1 Given a P,-influence network and an adoption rule f, the following state-
ments hold:
(i) If kf(1,k) is increasing with respect to k the diffusion threshold decreases with c.
(i1) If kf (1, k) is decreasing with respect to k the diffusion threshold increases with c.
(111) If kf (1, k) is constant with respect to k, the diffusion threshold does not depend

on .

The distinction between a wvisible (or influential) agent and an easily influenced agent
is crucial for understanding the proposition. Note that, it is always the case that diffusion
will be enhanced whenever influential agents are also easily influenced. The first simply
refers to agents that are sampled by many others, whereas the second refers to agents that
are early adopters of the dynamics. In order become an early adopter two features are
relevant. On one hand, the degree of agents (i.e., how many agents somebody observes)
determines the chances of finding an adopter. On the other hand, the adoption rule
specifies the probability of becoming an adopter given the composition of the sample. As
Proposition 1 points out, it is precisely kf(1, k), a joint measure of both features, what
determines how easily influenced an agent is.!* Taking this into account, the intuition of
Proposition 1 is the following. Consider case (i) in the proposition. Given that kf(1, k)
increases with respect to degree k then early adopters correspond with high degree agents.
Recall that the higher the value of o the higher the correlation between degree and
visibility (see Lemma 1), which enhances diffusion since it consequently implies a higher
correlation between being an early adopter and a visible agent. If, on the contrary,
kf(1,k) decreases with respect to degree (case (ii) in the proposition) the opposite holds.
An influence network with a high value of a performs poorly with respect to diffusion.
The early adopters are the low-degree agents, and these are only observed by a few other
agents. In this case, the correlation between visibility and degree might prevent diffusion.
Finally, if kf(1,k) is constant with respect to k all agents are equal in terms of their
capability of becoming early adopters and thus the diffusion threshold is independent of
.

There are examples of adoption rules in each of the cases established by Proposition 1.

For instance, all viral adoption rule satisfy (i). Some persuasive adoption rules, however,

a

k
as the Imitation rule (i.e., f(a, k) = ), satisfy (iii).

as for example the rule f(a,k) = (%)?, satisfy (ii), whereas, other persuasive rules, such

'The reason is that in the initial (and crucial for determining future success) stages of the adoption

dynamics kf(1, k) approximates the rate at which an agent with degree k adopts early.

11
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To further investigate the effect of the sampling process on diffusion, the next result
assumes a certain degree distribution P(k) and a concave adoption rule f, and analyzes
how the endemic fraction of adopters depends on «. Note that, the (unique) endemic
fraction of adopters is p* = 0 for values of the spreading rate below the diffusion threshold,
and it is the unique positive solution p* of the system of equations determined by (3) and

(5) whenever the spreading rate is above the diffusion threshold.

Proposition 2 Given a P,— influence network and an adoption rule f(k,a) (weakly)
concave with respect to a, the following statements hold:

(i) If, for all 6 € [0,1], r.(0) is increasing with respect to k , the endemic fraction of
adopters p* increases with respect to c.

(11) If, for all @ € [0,1], ri(0) is decreasing with respect to k for all § € [0,1], the
endemic fraction of adopters p* decreases with respect to c.

(1i1) If, for all 6 € [0,1], ri(0) is constant with respect to k for all § € [0,1], the

endemic fraction of adopters p* does not depend on .

Recall that 71(0) is the rate at which an individual with degree k adopts as a function
of §. For values of € infinitely small r(f) can be approximated by kf(k,1), which is
the relevant measure used in the computation of the diffusion threshold and the results
obtained in Proposition 1. Regarding the endemic fraction of adopters, conditions on
() must hold for all values of  which leads to the above result.

As a consequence of Proposition 2 one finds that all (concave) viral adoption rules
satisfy (i) in the proposition and thus, the fraction of adopters in the endemic state
increases with the (positive) correlation between degree and visibility.!? The Imitation
rule, however, satisfies (iii) and thus, the fraction of adopters in the endemic state is
independent of «. Indeed, for such a case, it is straightforward to show that p* = 0 if

A <1and p* =1— 5 otherwise.

3.2 The Role of the Degree Distribution (P(k))

In this section we analyze how the degree distribution affects the diffusion outcomes. More
precisely, we fix an a-sampling process and compare populations with different degree dis-
tributions. We denote by \*(P,) the diffusion threshold obtained for the correspondingly

P, —influence network.

12Note that, for viral adoption rules 74 (p) = ZZ:O fa) () p(1— p)#~9) is increasing as a function of

k since f(a) is an increasing function of a.

12
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Proposition 3 Given two influence networks 15; and P, and an adoption rule f, the

following statements hold:

(i) If P(k) First Order Stochastic Dominates P(k) and kT f(k,1) is decreasing with
respect to k then N*(P,) < A*(Py)

(ii) If P(k) is a Mean Preserving Spread of P(k) and k' f(k,1) is convex with respect

to k then \*(P,) < X\*(P,)

The first part of Proposition 3 suggests, contrary to the basic intuition, that for certain
adoption rules the lower the density of the influence network the easier it is to spread the
behavior in the population. Note that the result applies to some convex adoption rules
such as f(k,a) = (¢)? for which early adopters coincide with low-degree agents, whereas all
viral rules, as well as other persuasive rules (e.g., the Imitation rule), are not contemplated
in this result.

As for the second part of the proposition, note that, there are many adoption rules
that satisfy the condition provided therein . In particular, all viral adoption rules, as well
as a large number of persuasive rules (including the Imitation rule, among others) satisfy
the convexity of k“T! f(k,1). Here, we compare influence networks with the same average
degree but with different variance. We find that, for a large range of adoption rules, the

diffusion threshold is lower for networks with larger variance.®

3.2.1 The Homogeneous-Visibility Case (« = 0)

In order to obtain further comparative statics results we have concentrated on the case
of & = 0 which is significantly simpler than the remaining cases where 0 < a« < 1. The
reason is that, in such a case, the value of ¢ (probability of sampling an adopter) coincides
with the overall fraction of adopters in the population p, that is 6 = p. The diffusion

threshold is simply
1

B Zk:k:f(k, 1)P(k)

)\*

and, if f(k,a) is a concave function of a, the endemic fraction of adopters p* is the unique

positive solution of the following fixed point equation

/\Tk
b= §P<’f)1m—f~fzp>'

13The result that high variance enhances diffusion can be considered as a generalization of the main
finding in the mean field model presented by Pastor-Satorrds (2001), who focused on the SIS adoption

rule and the case o = 1.

13



All agents are now equally influential and thus heterogeneity among them is only due
to the amount of information agents have about the behavior of others. The following
propositions explain the effect on the diffusion threshold of a FOSD shift and a MPS of

the degree distribution.*

Proposition 4 Given two influence networks Py and Py, where P(k) FOSD P(k), and
an adoption rule f, the following statements hold:

(i) if kf(k,1) is increasing with respect to k then \*(Py) < A*(Pp)

(ii) if kf(k,1) is decreasing with respect to k then \*(Py) < \*(P)

(iii) if kf(k,1) is constant with respect to k then A\*(Py) = \*(Py)

Proposition 5 Given two influence networks Py and Py, where P(k) is a MPS of P(k),
and an adoption rule f, the following statements hold:

(i) if kf(k,1) is convex with respect to k then )\*(/156) < \N(R)

(ii) if kf(k,1) is concave with respect to k then N*(Py) < \*(Pp)

(iii) if kf(k,1) is linear with respect to k then \*(Py) = \*(P)

Note that all viral adoption rules satisfy conditions (i) and (iii) in Propositions 4 and
5, respectively. Therefore, the higher the density of the influence network the lower its

diffusion threshold. Moreover, two populations with the same average degree but different

variance have the same diffusion threshold since \* = m Regarding persuasive adop-

tion rules, further properties of the rule are necessary in order to determine the results.
For example, when f(k,a) = \/@ , the higher the density of the network the lower the
diffusion threshold whereas the opposite holds when f(k,a) = (£)?. Furthermore, for the
adoption rule f(k,a) = \/@ the higher the variance, the higher the diffusion threshold

whereas the opposite holds when f(k,a) = (%)
To conclude, we analyze the effect of the degree distribution on the endemic state. To
this end, denote by p*(P,) to the endemic fraction of adopters obtained for a P,—influence

network .

Proposition 6 Given two influence networks Py and Py, where P(k) FOSD P(k), and
a (weakly) concave adoption rule f(k,a) with respect to a, the following statements hold:

(i) If ri(p) is increasing with respect to k for any p € [0,1] then p*(Py) < p*(Py)

YThe degree-visibility case (aw = 1) has been analyzed in a related paper where the model is presented
as a mean-field approximation of a random network (Lépez-Pintado, 2008a). The comparative statics

results are limited by the higher complexity of the model.
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(i) If ri.(p) is decreasing with respect to k for any p € [0,1] then p*(Py) < p*(Py)
(iii) If r(p) is constant with respect to k for any p € [0,1] then p*(By) = p*(Py)

Proposition 7 Given two influence networks Py and Py, where P(k) is a MPS of P(k),
and a (weakly) concave adoption rule f(k,a) with respect to a, the following statements
hold:

(i) If 22l s convex with respect to k for any p € [0,1] then p*(Py) < p*(By)

1+Ar(p) )
(i) If li;’“r(kp()p) is concave with respect to k for any p € [0,1] then p*(Fy) < p*(Fo)
(111) If 1::7:\112)(),)) is linear with respect to k for any p € [0,1] then p*(By) = p*(Pp) .

Viral adoption rules satisfy (i) in Proposition 6 and thus the higher the density of
the influence network, the higher the endemic fraction of adopters. Regarding the effect
of a MPS of the degree distribution for viral adoption rules, the result is not conclusive
and depends on the further properties of the rule. Nevertheless, for the specific case of
the SIS rule it is straightforward to show that it satisfies (ii) in Proposition 7 and thus,
the higher the variance of the degree distribution, the lower the endemic fraction of the
adopters. Figure 2 summarizes the qualitative results obtained for the SIS rule, both
regarding the diffusion threshold and the endemic fraction of adopters. The SIS rule
when o = 1 has been previously analyzed by Pastor-Satorrds and Vespignani (2001) and
Jackson and Rogers (2007). If one compares the two extreme cases (&« = 1 and o = 0),
the more striking difference is that homogeneity in the degree distribution increases the
endemic fraction of adopters for all values of A when a = 0, whereas it, instead, decreases

the endemic fraction of adopters (at least for a range of values of \) when o = 1.

P(k) FosD P(k) P(k) MPs P(k)

-
-
-
.-
-

Figure 2: The graphs plot the endemic fraction
of adopters p* as a function of the spreading
rate A, focusing on the effects of a FOSD shift
(graph on the left) and a MPS (graph on the
right) of the degree distribution for the SIS

adoption rule and o = 0.
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4 Concluding Remarks

Virtual (influence) networks typically exhibit a more directed and random structure than
traditional social networks obtained through personal interactions. In this paper, we have
proposed a stylized model to analyze some of the differences between the two types of
networks. We model the influence structure by means of an explicit sampling process
characterized by the degree distribution, and the correlation between the degree and
visibility of agents. Surprisingly, we have observed that an increase in such a correlation
may favor or harm diffusion; the effect actually depends on the specific details of the
adoption process. We have shown that an increase in the level or dispersion of information
has a strong impact on the results, hence questioning the hypothesis that more dense
and heterogeneous networks favor diffusion. The current work could contribute to gain
further insight into the dynamics of social processes, pointing out possible directions for
empirical studies of value for understanding diffusion in the real world. Influence networks
(even virtual ones) are not formed completely at random. Therefore, one might consider
enriching our model to account for clustering and community structures. There has
already been significant work analyzing network formation in a semi-random framework.!?
The study of diffusion on such more realistic networks seems to be a fertile and promising

area of research.

5 Appendix

Proof of Lemma 1: The probability that any agent samples another agent with degree

k is equal, by assumption, to
k*P(k)

> heP(h)

Note that 2% determines the relative size of the population of agents with degree h

P(k)
with respect to the population of agents with degree k. For example, % = 2 means that

the size of the population with degree h is twice as large as the size of the population

with degree k. Therefore, the expected number of links an agent with degree k receives

In particular, Jackson and Rogers (2007b) formalize the idea that individuals find others through
their current friends. Moreover, Currarini et al. (2009) introduce homophyly based networks capturing

the well-known phenomenon that individuals interact more often with similar others.
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from agents with degree 1 is

kP(k) | P()
> heP(h) P(k)

Analogously, the expected number of links an agent with degree k receives from agents

with degree 2 is
k*P (k) 2P(2)

> " hep(n) Pk)

and so on and so forth.

Thus, the expected number of links pointing to an agent with degree k equals

“P()  PU) _ k(b
2 S o) PR ()

This lemma is used in the proof of the following theorem.

Proof of Theorem 1: If an active agent is observed by another agent in an influence
network, we say that there is an active link between them. It is not difficult to show
(with the help of Lemma 1) that the expected number of new active links generated by

an initial active link is given by

SO EPB), 1) iy

(k) 0 (k)

where ka()k) is the probability that an agent, say j, sampling an initial adopter has degree k

and v f(k,1) is the rate at which this agent adopts. While this agent is active (i.e., during
an interval of time equal to %) the number of new active links generated on average is
<Z—Z><k>, which is the average number of individuals sampling agent j since j has degree
k. Therefore, the number of new active links originated by one active link is greater than

1 if and only if

(k%)
Do ket P (k) f(k, 1)
k

A > (6)
To complete the proof let us show that diffusion occurs if and only if condition (8) holds.
Consider the discrete approximation of the dynamics. Let us show that if there is diffusion
then condition (8) must hold, or analogously, that if condition (8) does not hold there is
no diffusion. Assume that initially there is a finite number of adopters Ny and let i be
one of them. Let r{ be the number of individuals influenced by this initial adopter (i.e., in

period 0). Note that r} is also the number of active links generated by this initial adopter.
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If condition (8) does not hold then the expected number of active links generated by i
decreases with time. In a discrete version of the dynamics this implies that the number
of active links in period 1 generated by i is such that rj > ri. The same argument is
valid to show that ri > 7%, and so on. Therefore, there must exist a period ti above which
the number of active links is zero (i.e., i = 0 for all ¢ > #i). Thus, for ¢ > mazcn,{t'}
it holds that p, = 0 and thus p* = 0. A similar reasoning can be used to show the
reverse implication; if condition (8) holds then p* # 0. In this case the sequence {r!};>¢

is increasing and thus converges to infinity.

Proof of Theorem 2: In order to find the stationary fraction of active agents p* one
must first find the stationary values of the parameter ¢, denoted by 6*. Indeed, p* # 0 if
and only if 0* # 0. It is straightforward to show that 0 < H(f) < 1 for all § € [0,1]. We
also have that H(0) = 0 which implies that # = 0 is a stationary state of the dynamics
for all values of A\. Let us now determine the values of A for which there also exists a
non-null stationary state. To this end, let us first show that H is increasing and concave.
Note that

dH() 1 . )\drs_@
a9 (k) ;k P( )m,
where
drgé@ - ;f(k’“) (%) (aB(1 — 0)*= — 6(k — a)(1 — 6) V)
S D+ 1) () — (- @)k a) ()R- 0 (7)
and since
k k k!
(a+1) (ar1) =k —a) (5) = m)
then
drgéﬁ) - — C“(/f_k—clb_l)!(f(k‘, a+ 1) — f(k,a))8(1 — )k

which is non-negative given condition (1) imposed on the adoption rule f. Therefore H ()
is non-decreasing. To show that H(0) is concave we must take the second derivative of
H(#). That is

PH(0) AL (1 4 Ary (0)) — 2(A 202

1 (63
20 (ko) ; KEP(F) (14 Arp(0))3 ’
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where

k—1

d20 Za' k—a—1) (f(k a+1)— f(k,a))

(af(1 — ) k=D _ g(k —a —1)(1 — 9)F72)

or equivalently

P S Ha+y
420 Z;m_'_l) I(k—a—2)! (f(k7a+2)—f(k,aJrl))Q(l—@)( )
kK\(k—a—1)

Calk—a—1)! i (f(k,a +1) = f(k,a))f(L — )"

= D ((sla+2) = f(k,a+ 1) = (f(k,a+1) = f(k,a)))

k!
allk —a—2)!

ol
V]

Q
Il
o

(1 — g)k—a=2),

Since f(k,a) is concave with respect to a then d2;§éa) < 0 which in turn shows that H(6)

is concave. Finally, notice that, if H(6) is non-decreasing and concave, there exists a

(unique) non-null stationary state of the dynamics if and only if

dH ()
do

JG:O > 17

and

") |, o . _ (k)
’;k P(R)f(k.1) > 16 A > N = s=mpmos -

k>1
Moreover, if A < A*the unique stationary value for 6 is 0.

Proof of Proposition 1: It is straightforward to show that A\*(«) is a continuous and
derivable function of a. We then demonstrate that if k£ f(1, k) is an increasing (decreasing)
function of k then %C(Ya) <0 (%&") > O) and that if kf(1, k) is constant then %C(f‘) =0.
Note that

d\'(o) _ (k*(log k)) (k1 f(1, k)) — (k) (k£ (1, k) (log F))
do (ko1 f(1,k))?

where for ease of notation we use (g(k)) to be >, g(k)P(k) for any function g(k). Let us
characterize the sign of (k®(log k))(k®™ f(1,k)) — (k*)(k®TLf(1,k)(log k)). Tt is straight-
forward to show that for any given k, the coefficient (multiplying) P(k)? in the expression

19



(k®(log k)) (kT f(1,k)) — (k) (k** (1, k)(log k)) is 0. Let us now compute the coefficient
of P(k)P(k) for any k # k. Assume without loss of generality that k < k, the coefficient

is
K (log k)R £(1,F) + & (log B)k“ £ (1, k) — kKT £(1, %) (log k) — K kT (1, k) (log k)
which simplifies to
FFTFLE) — B R k) (log k — log k).
The sign of the above expression coincides with the sign of
kf(1,k) —kf(1,k)

which completes the proof.

Proof of Proposition 2: The following fixed point equation determines the endemic

value of 0

1 a )\T’k(9>
0 = ) Ek:k; P(kz)H)\—rkw).

The endemic state for # depends on the value of . To show the monotonicity of

the fixed point value 6*(a) (taken as fixed all other primitives of the model) one must
Arg (0)
1+)\Iz“k(9)

ﬁ Yo kP (k) 117:\’; Ef()ﬂ) is increasing (decreasing) as a function of « (for all 6 € [0, 1]) then

evaluate the monotonicity of ﬁ Yo kP (k) as a function of a. Note that if

0" () must be increasing (decreasing) as well. The monotonicity of ﬁ Yo kP (k) 1ii\’; Ef()a)
is determined by the sign of the following expression

k*(log k) ————=) (k%) — (k* —————=)(k“(log k

(kg ) 3 () = (k) e g ) ®)

It is straightforward to show that for any given k, the coefficient (multiplying) P(k)?
in the expression () is 0. Let us now compute the coefficient of P(k)P(k) for any k # k.
Assume without loss of generality that k < k, the coefficient is

)\Tk(¢9> )\7’%(9) )\rk(ﬁ) o o )\7’%(9)

k2 (log k) — )T T (log kY)Y _pa_pa AT g gy gt ATEY)
S v (R SR E ) T VBN )
which simplifies to
o )\rk(é) )\TE(O) —
8 _ log k — log F).
Wk (1+m(e) T+ (@) ) 108k ~logh)

The sign of the above expression coincides with the sign of

1+ re(0) 14 Arp(6)
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or analogously with the sign of
re(0) — r5(6)
which completes the proof.

Proof of Proposition 3: Notice that if P(k) FOSD P(k) then for any increasing function
u(k) we have that

> Su(k)P(k) <> u(k)P(k).

k k
Since k* is increasing then S"k*P(k) < STk®P(k). By assumption k**f(k, 1) is
k k

decreasing and therefore 3>k P(k) f(k,1) > 3"kt P(k) f(k,1). Both inequalities to-
% k

gether imply that A*(P,) < A(P,) which completes the first part of the proof.
Regarding the second part of the proof, it is the case that if P is a MPS of P then for
any concave function u(k)

> u(k)P(k) <> u(k)P(k).

k k
Notice that if k**1 f(k, 1) is convex then
S TEP(R) f(k, 1) <Y RHP(R) £(k, 1)
k k
and since k“ is concave then
> kP(k) <Y kP(k).
k

k

These two inequalities together imply that \*(P,) < A*(P,).

Proof of Proposition 4: It is immediate to show that the diffusion threshold equals
. 1
Zki kP(k)f(k,1)

for a Py-random network. Note that, if kf(k, 1) is increasing then > kP (k)f(k,1) <

S kP(k)f(k,1) which implies that A*(P,) < A(P.). If kf(k,1) isk decreasing then

zk: kP(E)f(k,1) > S kP(k)f(k, 1) which implies that A*(P,) < A*(P,). Finally 3> kP (k) f(k,1) =
z::kﬁ(k)f(k;, 1) if kl}(k, 1) is constant and thus \*(P,) = A*(P,) in such a case.k

Proof of Proposition 5: If kf(k,1) is convex then S kP(k)f(k,1) < S kP(k)f(k,1)
3 k

which implies that \*(P,) < A(P,). If kf(k,1) is concave then > kP(k)f(k,1) >
k
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Ll

S kP(k) f(k, 1) which implies that A\*(P,) < \*(P,). Flnally,Zk:P( Vf(k, 1) =S kP(k) f(k,1)

k
if kf(k,1) is a linear function of k and thus A*(P,) = A*(P,) in such a case.

Proof of Proposition 6: The fraction of adopters p* is computed as the solution of

equation
)\T’k
P(k 9
Note that if 74 (p) is increasing as a function of k for all p then 11’:\’; ip()p) is also an increasing

function of k for all p. Therefore,
Ari(p A7 (
Pk P(k
UM IR 5 Ol

for all p, which in particular implies that the value of p that solves equation (10) is smaller
or equal for the degree distribution P(k) than for P(k). The proofs of (ii) and (iii) go
along the same lines.

A (p)
1+Ark(p)

Proof of Proposition 7: If is a convex function of k for all p then

A (p) = Ari(p)
Plk)——— < Plk)————
g ()1+)\rk(p)_; ()1+)\rk(p)
for all p, which in particular implies that the value of p that solves equation (10) is smaller

or equal for the degree distribution P(k) than for P(k). The proofs of (i) and (iii) go

along the same lines.
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