
Data Correcting Algorithms in Combinatorial
Optimization

Boris Goldengorin1 Diptesh Ghosh2 Gerard Sierksma1

1. Faculty of Economic Sciences
University of Groningen, 9700AV Groningen, The Netherlands
E-mail: {b.goldengorin, g.sierksma}@eco.rug.nl

2. P&QM Area, Indian Institute of Management
Vastrapur, Ahmedabad 380015, Gujarat, India
E-mail: diptesh@iimahd.ernet.in

Abstract

This paper describes data correcting algorithms. It provides the theory behind the
algorithms and presents the implementation details and computational experience
with these algorithms on the asymmetric traveling salesperson problem, the problem
of maximizing submodular functions, and the simple plant location problem.

1 Introduction

Polynomially solvable special cases have long been studied in the litera-
ture on combinatorial optimization problems (see, for example, Gilmore et
al. [19]). Apart from being mathematical curiosities, they often provide im-
portant insights for serious problem-solving. In fact, the concluding para-
graph of Gilmore et al. [19] states the following, regarding polynomially
solvable special cases for the traveling salesperson problem.

“ · · · We believe, however, that in the long run the greatest
importance of these special cases will be for approximation algo-
rithms. Much remains to be done in this area.”

This chapter describes a step in the direction of incorporating polynomi-
ally solvable special cases into approximation algorithms. We review data
correcting algorithms — approximation algorithms that make use of poly-
nomially solvable special cases to arrive at high-quality solutions. The basic

1

2 2 Data Correcting for Real-Valued Functions

insight that leads to these algorithms is the fact that it is often easy to
compute a bound on the difference between the costs of optimal solutions to
two instances of a problem, even though it may be hard to compute optimal
solutions for the two instances. These algorithms were first reported in the
Russian literature (see Goldengorin [9, 10, 11, 12, 13]).

The approximation in data correcting algorithms is in terms of an ac-
curacy parameter, which is an upper bound on the difference between the
objective value of an optimal solution to the instance and that of a solution
returned by the data correcting algorithm. Note that this is not expressed
as a fraction of the optimal objective value for this instance as in common
ε-optimal algorithms but as actual deviations from the cost of optimal so-
lutions.

Although we suggest the use of data correcting algorithms to solve NP-
hard combinatorial optimization problems, they form a general problem
solving tool and can be used for functions defined on a continuous domain
as well. We will in fact, motivate the algorithm in the next section using
a function defined on a continuous domain, and having a finite range. We
then show in Section 3, how this approach can be adapted for combinatorial
optimization problems. In the next three sections we describe actual imple-
mentation of data correcting algorithms to three problems, the asymmetric
traveling salesperson problem, the maximization of a general submodular
function, and the simple plant location problem.

2 Data Correcting for Real-Valued Functions

Consider a real-valued function f : D → �, where D is the domain on which
the function is defined. We assume that f is not analytically tractable over
D, but is computable in polynomial time for any x ∈ D, and concern our-
selves with the problem of finding α-minimal solutions to the function f over
D, i.e. the problem of finding a member of {x|x ∈ D, f(x) ≤ f(x�) + α},
where x� ∈ arg minD{f(x)}, and α is the pre-defined accuracy parameter.
The discussion here is for a minimization problem; the maximization prob-
lem can be dealt with in a similar manner.

Let us assume a partition {D1, . . . ,Dp} of the domain D. Let us further
assume that for each of the sub-domains Di of D, i = 1, . . . , p, we are able
to find functions gi : Di → �, which are easy to minimize over Di, and such
that

|f(x) − gi(x)| ≤ α

2
∀x ∈ Di. (1)

3

We call such easily minimizable functions regular.
Theorem 2.1 demonstrates an important relationship between the regular

functions gi and the original function f . It states that the function value of
f at the best among the minima of all the gi’s over their respective domains
is close to the minimum function value of f over the domain.

Theorem 2.1: Let xα
i ∈ arg minx∈Di{gi(x)}, xα ∈ arg mini{f(xα

i)}, and let
x� ∈ arg minx∈D{f(x)}. Then

f(xα) ≤ f(x�) + α.

Proof: Let x�
i ∈ arg minx∈Di{f(x)}. Then for i = 1, . . . , p, f(xα

i) − α
2 ≤

gi(xα
i) ≤ gi(x�

i) ≤ f(x�
i) + α

2 , i.e. f(xα
i) ≤ f(x�

i) + α. Thus mini{f(xα
i)} ≤

mini{f(x�
i)} + α, which proves the result.

Notice that x� and xα do not need to be in the same sub-domain of D.
Theorem 2.1 forms the basis of the data correcting algorithm to find

an approximate minimum of a function f over a certain domain D. The
procedure consists of three steps: the first in which the domain D of the
function is partitioned into several sub-domains; the second in which f is
approximated in each of the sub-domains by regular functions following the
condition in expression (1) and a minimum point of the regular function
is obtained; and a third step, in which the minimum points computed in
the second step are considered and the best among them is chosen as the
output. This procedure can be further strengthened by using lower bounds
to check if a given sub-domain can possibly lead to a solution better than
any found thus far. The approximation of f by regular functions gi is called
data correcting, since an easy way of obtaining the regular functions is by
altering the data that describe f . A pseudocode of the algorithm, which we
call DC-G, is provided below.

Procedure DC-G(f, D, α)
Output: xα ∈ D such that f(xα) ≤ min{f(x)|x ∈ D} + α.

Code:
1. begin
2. create a partition {D1, . . . , Dn} of D;
3. for each sub-domain Di

4. begin
5. fi := a lower bound to f(x), x ∈ Di;
6. if fi ≥ bestvalue

7. continue;

4 2 Data Correcting for Real-Valued Functions

8. construct a regular function gi(x) obeying (1);
9. xα

i ∈ arg minx∈Di{gi(x)};
10. end;
11. bestvalue := ∞;
12. if f(xα

i) < bestvalue;
13. begin
14. xα := xα

i ;
15. bestvalue := f(xα);
16. end;
17. return xα;
18. end.

Lines 5 through 7 in the code carry out the bounding process, and lines
8 and 9 implement the process of computing the minima of regular functions
over each sub-domain. These steps are enclosed in a loop, so that at the end
of line 10, all the minima of the regular functions are at hand. The code in
lines 11 through 16 obtain the best among the minima obtained before. By
Theorem 2.1, the solution chosen by the code in lines 11 through 16 is an
α-minimum of f , and therefore, this solution is returned by the algorithm
in line 17.

We will now illustrate the data correcting algorithm through an example.
The example that we choose is one of a real-valued function of one variable,
since these are some of the simplest functions to visualize.

Consider the problem of finding an α-minimum of the function f shown
in Figure 1. The function is assumed to be well-defined, though analytically
intractable on the domain D.

The data correcting approach can be used to solve the problem above,
i.e. of finding a solution xα ∈ D such that f(xα) ≤ min{f(x)|x ∈ D} + α.

Consider the partition {D1,D2,D3,D4,D5} of D shown in Figure 2. Let
us suppose that we have a regular function g1(x) with |g1(x) − f(x)| ≤ α

2 ,
∀x ∈ D1. Assume also, that x1 is a minimum point of g1(x) in D1. Since
this is the best solution that we have so far, we store x1 as an α-minimal
solution to f(x) in the domain D1. We then consider the next interval in
the partition, D2. We first obtain a lower bound on the minimum value
of f(x) on D2. If this bound is larger than f(x1), we ignore this domain
and examine domain D3. Let this not be the case in our example. So we
construct a regular function g2(x) with |g2(x) − f(x)| ≤ α

2 , ∀x ∈ D2, and
find x2, its minimum point over D2. Since f(x2) ≥ f(x1) (see Figure 2),

5

f(x)

x

D

f

Fig. 1: A general function f

f(x)

x

f(x)+

α

α

f(x)-

D
D1 D2 D3 D4 D5

Original Function

x1 x2 x3 x4 x5

g1 g2 g3 g4 g5

/2

/2

Regular Function

Fig. 2: Illustrating the Data Correcting approach on f

we retain x1 as our α-optimal solution over D1 ∪ D2. Proceeding in this
manner, we examine f(x) in D3 through D5, compute regular functions
g3(x) through g5(x) for these domains, and compute x3 through x5. In this
example, x3 replaces x1 as our α-minimal solution after consideration of D3,
and remains so until the end. At the end of the algorithm, x3 is returned
as a value of xα.

There are four points worth noting at this stage. The first is that we

6 3 Data Correcting for Combinatorial Optimization Problems

need to examine all the sub-domains in the original domain before we re-
turn a near-optimal solution using this approach. The reason for this is
very clear. The correctness of the algorithm depends on the result in The-
orem 2.1, and this theorem only concerns the best among the minima of
each of the sub-domains. For instance, in the previous example, if we stop
as soon as we obtain the first α-optimal solution x1 we would be mistaken,
since Theorem 2.1 applies to x1 only over D1 ∪ D2. The second point is
that there is no guarantee that the near-optimal solution returned by DC-G
will be in the neighborhood of a true optimal solution. There is in fact,
nothing preventing the near-optimal solution existing in a sub-domain dif-
ferent from the sub-domain of an optimal solution, as is evident from the
previous example. The true minimum of f lies in the domain D5, but DC-G
returns x3, which is in D3. The third point is that the regular functions
gi(x) approximating f(x) do not need to have the same functional form. For
instance in Example 1, g1(x) is quadratic, while g2(x) is linear. Finally, for
the proof of Theorem 2.1, it is sufficient for {D1, . . . ,Dn} to be a cover of
D (as opposed to a partition as required in the pseudocode of DC-G).

3 Data Correcting for Combinatorial Optimization Problems

The data correcting methodology described in the previous section can be
incorporated into an implicit enumeration scheme (like branch and bound)
and used to obtain near-optimal solutions to NP-hard combinatorial opti-
mization problems. In this section we describe how this incorporation is
achieved for a general combinatorial optimization problem.

We define a combinatorial optimization problem P as a collection of
instances I. An instance I consists of a ground set G = {e1, e2, . . . , en} of n
elements, a cost vector CI = (cI

1, c
I
2, . . . , c

I
n) corresponding to the elements

in G, a set S ⊆ 2G of feasible solutions, and a cost function fI : S → �.
The objective is to obtain a solution, i.e. a member of S that minimizes the
cost function. For example, for an asymmetric traveling salesperson problem
(ATSP) instance on a digraph G = (V,A), with a distance matrix D = [dij],
we have G = A, cI

ij = dij , S is the set of all Hamiltonian cycles in G, and
fI(s) =

∑
(i,j)∈s dij for each s ∈ S.

Implicit enumeration algorithms for combinatorial problems include two
main strategies, namely branching and fathoming. Branching involves parti-
tioning the set of feasible solutions S into smaller subsets. This is done under
the assumption that optimizing the cost function over a more restricted so-
lution space is easier than optimizing it over the whole space. Fathoming
involves one of two processes. First, we could compute lower bounds to the

7

value that the cost function can attain over a particular member of the par-
tition. If this bound is not better than the best solution found thus far, the
corresponding subset in the partition is ignored in the search for an optimal
solution. The second method of fathoming is by computing the optimum
value of the cost function over the particular subset of the solution space
(if that can be easily computed for the particular subset). We see there-
fore that two of the main requirements of the data correcting algorithm
presented in the previous section, i.e. partitioning and bounding, are auto-
matically taken care of for combinatorial optimization problems by implicit
enumeration. The only other requirement that we need to consider is that
of obtaining regular functions approximating fI over subsets of the solution
space.

Notice that the cost function fI(s) is a function of the cost vector C.
So if the values of the entries in C are changed, fI(s) undergoes a change
as well. Therefore, cost functions corresponding to polynomially solvable
special cases can be used as “regular functions” for combinatorial optimiza-
tion problems. Also note that for the same reason, the accuracy parameter
can be compared with a suitably defined distance measure between two cost
vectors, (or equivalently, two instances). Consider a subproblem in the tree
obtained by normal implicit enumeration. The problem instance that is
being evaluated at that subproblem is a restricted version of the original
problem instance, i.e., it evaluates the cost function of the original problem
instance for a subset Sk of the original solution space S. If we alter the data
of the problem instance in a way that the altered data corresponds to a poly-
nomially solvable special case, while guaranteeing that the cost of an optimal
solution to the altered problem in Sk is not more that an acceptable amount
higher than the cost of an optimal solution to original instance in Sk, then
the altered cost function can be considered to be a regular approximation
of the cost function of the original instance in Sk.

For combinatorial optimization problems, let us define a proximity mea-
sure ρ(I1, I2) between two problem instances I1 and I2, as an upper bound
for the difference between fI1(s

�
1) and fI1(s

�
2), where s�

1 and s�
2 are opti-

mal solutions to I1 and I2 respectively. The following lemma shows that
the Hamming distance between the cost vectors of the two instances is a
proximity measure when the cost function is of the sum type or the max
type.

Lemma 3.1: If the cost function of an instance I of a combinatorial opti-
mization problem is of the sum type, (i.e. fI(s) =

∑
ek∈s cI

k) or the max

8 3 Data Correcting for Combinatorial Optimization Problems

type, (i.e. fI(s) = maxek∈s cI
k) then the measure

ρ(I1, I2) =
∑
ei∈G

|cI1
i − cI2

i | (2)

between two instances I1 and I2 of the problem is an upper bound to the
difference between fI1(s

�
1) and fI1(s

�
2), where s�

1 and s�
2 are optimal solutions

to I1 and I2, respectively.

Proof: We will prove the result for sum type cost functions. The proof for
max type cost functions is similar.

For sum type cost functions, it is sufficient to prove the result when
the cost vectors CI1 and CI2 differ in only one position. Let cI1

k = cI2
k for

k = 1, 2, . . . , j − 1, j + 1, . . . , n, and cI1
j
= cI2

j . Consider any solution s ∈ S.
There are two cases to consider:

• ej ∈ s: In this case, |fI1(s) − fI2(s)| =
∑

ek∈S |cI1
k − cI2

k | = |cI1
j − cI2

j | .

• ej
∈ s: In this case it is clear that fI1(s) = fI2(s).

Therefore, |fI1(s)−fI2(s)| ≤
∑

ei∈G |cI1
i −cI2

i | = ρ(I1, I2) for any solution
s ∈ S, which automatically implies that ρ(I1, I2) as defined in the statement
of Lemma 3.1 is an upper bound for the difference between fI1(s

�
1) and

fI1(s
�
2), where s�

1 and s�
2 are optimal solutions to I1 and I2, respectively.

At this point, it is important to point out the difference between a fath-
oming step and a data correcting step. The bounds used in fathoming
steps consistently overestimate the objective function of optimal solutions
in maximization problems and underestimate it for minimization problems.
The amount of over- or underestimation is not bounded. In data correcting
steps however, the “regular function” may overestimate or underestimate
the objective function, regardless of the objective of the problem. However,
there is always a bound on the deviation of the “regular function” from the
objective function of the problem.

One way of implementing the data correcting for a NP-hard problem
instance I is the following. We first execute a data correcting step. We
construct a polynomially solvable relaxation IL of the original instance, and
obtain an optimal solution xL to IL. Note that xL need not be feasible to
I. We next construct the best solution x to I that we can, starting from
xL. (If such a solution is not possible, we conclude that the instance does
not admit a feasible solution.) We also construct an instance IC of the
problem, which will have x as an optimal solution. The proximity measure

9

ρ(I, IC) then is an upper bound to the difference between the costs of x
and of an optimal solution to I. IC is called a correction of the instance
I. If the proximity measure is not more that the allowable accuracy, then
we can output x as an adequate solution to I. If this is not the case, then
we partition the feasible solution space of I (these are formed by adding
constraints to the formulation of I) and apply the data correction step to
each of these subproblems.

The similarity in the procedural aspects of the data correcting step de-
scribed above (and illustrated in the example) to fathoming rules used in
branch and bound implementations makes it convenient to incorporate data
correcting in the framework of implicit enumeration. We present the pseu-
docode of a recursive version of branch and bound incorporating data cor-
recting below. The initial input to this procedure is the data for the original
instance I, the feasible solution set S, any solution s ∈ S, and the accuracy
parameter α. Notice that the data correcting step discussed earlier in this
section is implemented in lines 6 through 10 in the pseudocode.

Algorithm DC(I, S, α)
Output: xα ∈ S such that fI(xα) ≤ min{fI(x)|x ∈ S} + α.

Code:
1. begin
2. s := a solution in S;
3. lb := a lower bound on the value of fI(x) over S;
4. if fI(s) = lb return s;
5. compute an optimal solution sL to a polynomially solvable
6. relaxation IL to I;
7. if possible then construct a solution s to I starting from sL;
8. else return “infeasible”; (* No solution s can be constructed *)

9. construct an instance IC that has s as an optimal solution;
10. if ρ(IC , I) ≤ α

11. return s;
12. else begin
13. partition S into subsets S1 through Sn;
14. for i := 1 to n (* Branch *)

15. si := DC(I, Si, α);
16. return the best solution from among s1 through sn;
17. end;
18. end.

10 4 The Asymmetric Traveling Salesperson Problem

The algorithm described above is a prototype. We have not specified
how the lower bound is to be computed, or which solution to choose in the
feasible region, or how to partition the domain into sub-domains. These are
details that vary from problem to problem, and are an important part in
the engineering aspects of the algorithm. Note that this is just one of many
possible ways of implementing a data correcting algorithm.

We can now describe our implementation of data correcting on specific
combinatorial optimization problems. The next section deals with asym-
metric traveling salesperson problems. The implementation of the data cor-
recting algorithm for this problem closely follows the pseudocode above.
Sections 5 and 6 deal with the maximization of general submodular func-
tions and the simple plant location problem. Our implementations of data
correcting for these two problems are slightly different, in which the data
correction is done in an implicit manner.

4 The Asymmetric Traveling Salesperson Problem

In an asymmetric traveling salesperson problem (ATSP) instance we are
given a weighted digraph G = (V,A) and a |V | × |V | distance matrix D =
[dij] and our objective is output a least cost Hamiltonian cycle in this graph.
This is one of the most studied problems in combinatorial optimization, see
Lawler et al. [26] and Gutin and Punnen [20] for a detailed introduction.

4.1 The Data Correcting Algorithm

The data correcting algorithm (DC) presented in the previous section can be
easily mapped to the ATSP. Lemma 3.1 takes the following form for ATSP
instances.

Lemma 4.1: Consider two ATSP instances I1 and I2 defined on digraphs
G1 = (V1, A1) and G2 = (V2, A2) respectively, with |V1| = |V2|. Let D1 =
[d1

ij] and D2 = [d2
ij] be the distance matrices associated with I1 and I2.

Further let T1 and T2 be optimal solutions to I1 and I2, and let L1 and L2

respectively represent the lengths of T1 and T2 in instance I1. Then

L2 − L1 ≤
∑

(i,j)∈A

|d1
ij − d2

ij |.

Before presenting a pseudocode for the algorithm, let us illustrate the
data correcting step for the ATSP with an example. Consider the 6-city

4.1 The Data Correcting Algorithm 11

ATSP instance with the distance matrix D = [dij] shown below. (This
corresponds to I in the discussion in the previous section.)

D 1 2 3 4 5 6
1 - 10 16 19 25 22
2 19 - 10 13 13 10
3 10 28 - 22 16 13
4 19 25 13 - 10 19
5 16 22 19 13 - 11
6 13 22 15 13 10 -

If we allow subtours in solutions to the ATSP, we get the assignment problem
relaxation. Solving the assignment problem on D, using the Hungarian
method, we get the following reduced distance matrix DH = [dH

ij]. (The
assignment problem with the distance matrix D corresponds to IL.)

DH 1 2 3 4 5 6
1 - 0 6 7 16 12
2 9 - 0 1 4 0
3 0 18 - 10 7 3
4 8 14 2 - 0 8
5 5 11 8 0 - 0
6 2 11 4 0 0 -

This leads to a solution with two cycles (1231) and (4564) (corresponding
to xL). Using patching techniques (see for example Lawler et al. [26]), we
obtain a solution (1245631) (corresponding to x). Notice that (1245631)
would be an optimal solution to the assignment problem if dH

24 and dH
63 had

been set to zero in DH , and that would have been the situation, if d24 and
d63 were initially reduced by 4 and 1 respectively, i.e. if the distance matrix
in the original ATSP instance was DP defined below. (This corresponds to
IC .)

DP 1 2 3 4 5 6
1 - 10 16 19 25 22
2 19 - 10 9 13 10
3 10 28 - 22 16 13
4 19 25 13 - 10 19
5 16 22 19 13 - 11
6 13 22 14 13 10 -

Therefore DP is the distance matrix of the correction of the instance with
distance matrix D. The proximity measure ρ(D,DP) =

∑6
i=1

∑6
j=1 |dij −

dP
ij | = |d24 − dP

24| + |d63 − dP
63| = 4 + 1 = 5.

12 4 The Asymmetric Traveling Salesperson Problem

A proximity measure is an upper bound to the difference between the
costs of two solutions for a problem instance, so the stronger the bound, the
better would be the performance of any enumeration algorithm dependent
on such bounds. It is possible to obtain stronger performance measures for
ATSP instances, for example

ρ1(D,DP) = min
{ n∑

i=1

max
1≤j≤n

|dij − dP
ij|,

n∑
j=1

max
1≤i≤n

|dij − dP
ij |

}
(3)

is a better proximity measure than the one defined in (2).
Given the data correcting step, the DC algorithm presented in the pre-

vious section can be modified to solve ATSP instances. The pseudocode for
a recursive version of this algorithm is given below.

Algorithm DCA-ATSP(G, α)
Output: A tour xα such that the difference between the cost of xα and the cost
of an optimal tour is not more than α

Code:
1. begin
2. s := an arbitrary tour in G;
3. lb := a lower bound on the cost of an optimal tour;
4. if fI(s) = lb return s;
5. sL := an optimal solution to the assignment problem on G;
6. construct a solution s from sL through patching;
7. using sL, compute the proximity measure ρ;
8. if ρ ≤ α

9. return s;
10. else begin (* Branch *)

11. branch according to a pre-decided branching rule;
12. for each subproblem i generated
13. si := the solution output by DCA-ATSP on subproblem i;
14. return the best solution from among all si’s;
15. end;
16. end.

Note that a good lower bound can be incorporated into DCA-ATSP to
make it more efficient.

4.1 The Data Correcting Algorithm 13

We next illustrate the DCA-ATSP algorithm above on an instance of the
ATSP. Consider the 8-city ATSP instance with the distance matrix D = [dij]
shown below. (This example was taken from Balas and Toth [1], p. 381).

D 1 2 3 4 5 6 7 8
1 - 2 11 10 8 7 6 5
2 6 - 1 8 8 4 6 7
3 5 12 - 11 8 12 3 11
4 11 9 10 - 1 9 8 10
5 11 11 9 4 - 2 10 9
6 12 8 5 2 11 - 11 9
7 10 11 12 10 9 12 - 3
8 7 10 10 10 6 3 1 -

We use

• the proximity measure ρ (see Expression (2)) for data correction,

• the assignment algorithm to compute lower bounds for subproblems,

• a patching algorithm to create feasible solutions, and compute prox-
imity measures, and

• the patched solution derived from the assignment solution as a feasible
solution in the domain.

The branching rule used in this example is as follows. At each sub-
problem, we construct the assignment problem solution and then patch it.
We also correct the original matrix to a new matrix that would output the
patched solution if the assignment problem is solved on it. We next identify
the arc corresponding to the entry in the new matrix that had to be cor-
rected by the maximum amount. The tail of this arc is identified, and we
branch on all the arcs in the subtour containing that vertex. For example, in
this problem, the assignment solution is (1231)(4564)(787), which is patched
to (123786451) and the cost of patching is 9. If we correct the problem data,
we will see that the entry d51 (corresponding to arc (5, 1)) contributes the
maximum amount (7) to the patching. Hence we branch on each arc in the
cycle (4564), and construct three subproblems, the first with the additional
constraint that arc (4, 5) be excluded from the solution, the second with
the additional constraint that arc (5, 6) be excluded from the solution, and
the third with the additional constraint that arc (4, 5) be excluded from the
solution.

14 4 The Asymmetric Traveling Salesperson Problem

The polynomially solvable special case that we consider is the set of all
ATSP instances for which the assignment procedure gives rise to a cyclic
permutation.

Using the branching rule described above, depth-first branch and bound
generates the enumeration tree of Figure 3. The nodes are labeled accord-
ing to the order in which the problems at the corresponding nodes were
evaluated.

� �

� �

1

2 3 4

5 6 7 8

(6, 4) out(4, 5) out

(7, 8) out
�(5, 6) out

� �
(8, 7) out(7, 8) out

Fathomed

Fathomed Tour Fathomed Fathomed

(8, 7) out

Subproblem Upper Lower Assignment Patched Cost of Revised
at node bound bound solution tour patching bound

1 ∞ 17 (1231)(4564)(787) (123786451) 9 26
2 26 29 Fathomed by bounds – 26
3 26 25 (12631)(454)(787) (126453781) 6 26
4 26 25 (12631)(454)(787) (126453781) 6 26
5 26 31 Fathomed by bounds – 26
6 26 26 (123786451) Patching not required 26
7 26 31 Fathomed by bounds – 26
8 26 27 Fathomed by bounds – 26

Fig. 3: Branch and bound tree for the instance in the example.

Since the cost of patching equals the value of ρ, we can now evaluate the
performance of data correcting on this example. If the allowable accuracy
parameter α is set to 0, then the enumeration tree constructed by DC will
be the one shown in Figure 3 and evaluates 8 subproblems. However if the
value of α is set to 1, then enumeration stops after node 4, since the lower
bound obtained is 25 which is one less than the solution we have at hand.

The previous example shows that the data correcting algorithm can be
a very attractive alternative to branch and bound algorithms. In the next
subsection we report experiences of the performance of the data correcting
algorithm on ATSP instances from the TSPLIB [30].

4.2 Computational Experience with ATSP Instances 15

4.2 Computational Experience with ATSP Instances

TSPLIB has twenty seven ATSP instances, out of which we have chosen
twelve for our experiments. These twelve can be solved to optimality within
five hours using an ordinary branch and bound algorithm. Eight of these
belong to the ‘ftv’ class of instances, while four belong to the ‘rbg’ class. We
implemented DCA-ATSP in C and ran it on a Intel Pentium based computer
running at 666MHz with 128MB RAM.

Fig. 4: Accuracy achieved versus α for ftv instances

The results of our experiments are presented graphically in Figures 4
through 7. In computing accuracies, (Figures 4 and 6) we have plotted
the accuracy and deviation of the solution output by the data correcting
algorithm from the optimal (called ‘achieved accuracy’ in the figures) as a
fraction of the cost of an optimal solution to the instance. We observed that
for each of the twelve instances that we studied, the achieved accuracy is
consistently less than 80% of the pre-specified accuracy.

There was a wide variation in the CPU time required to solve the different
instances. For instance, ftv70 required 17206 seconds to solve to optimality,
while rbg323 required just 5 seconds. Thus, in order to maintain uniformity
while demonstrating the variation in execution times with respect to changes
in α values, we represented the execution times for each instance for each α
value as a percentage of the execution time required to solve that instance to
optimality. Notice that for all the ftv instances when α was 5% of the cost

16 4 The Asymmetric Traveling Salesperson Problem

Fig. 5: Variation of execution times versus α for ftv instances

Fig. 6: Accuracy achieved versus α for rbg instances

17

Fig. 7: Variation of execution times versus α for rbg instances

of the optimal solution, the execution time reduced to 20% of that required
to solve the respective instance to optimality. The reduction in execution
times for rbg instance was equally steep, with the exception of rbg323 which
was in any case an easy instance to solve.

In summary, it is quite clear that data correcting is an effective method-
ology for solving ATSP instances. There are usually steep reductions in
execution times even when the allowed accuracy is very small. This makes
the method very useful for solving real world problems where a near-optimal
solution is often acceptable provided the execution times are not too long.

5 Maximization of General Submodular Functions

Let N = {1, 2, . . . , n} and 2N denote the set of all subsets of N . A function
z : 2N → � is called submodular if for each I, J ∈ 2N , z(I)+z(J) ≥ z(I∪J)+
z(I ∩ J). The solution process of many classical combinatorial optimization
problems, like the generalized transportation problem, the quadratic cost
partition (QCP) problem with nonnegative edge weights, and set covering,
can be formulated as the maximization of a submodular function (MSF),
i.e. the problem:

18 5 Maximization of General Submodular Functions

max{z(I)|T ⊆ N}.

Although the general problem of the maximization of a submodular func-
tion is known to be NP-hard (see Lovasz [28]), there has been a sustained
research effort aimed at developing practical procedures for solving medium
and large-scale problems in this class. In the remainder of this section we
suggest two data correcting algorithms for solving the problem. Note that
Lemma 3.1 assumes the following form for this problem.

Lemma 5.1: Consider two submodular functions z1(x) =
∑n

i=1

∑n
j=i c

1
ij∏j

k=i xk and z2(x) =
∑n

i=1

∑n
j=i c

2
ij

∏j
k=i xk. Let x∗

1 and x∗
2 be the maxi-

mum points of z1(x) and z2(x) respectively. Then

z1(x∗
1) − z1(x∗

2) ≤
n∑

i=1

n∑
j=1

|c1
ij − c2

ij |.

The algorithm described in Section 5.1 have been published in Gold-
engorin et al. [14] while that described in Section 5.2 have been published
in Goldengorin and Ghosh [18]. For each of the two algorithms in we first
describe a class of polynomially solvable instances for submodular function
maximization problems. We then describe the data correcting algorithms
that uses this class of polynomially solvable instances to solve a general sub-
modular function maximization problem. The classes of polynomially solv-
able instances are algorithmically defined, i.e. they are classes of instances
that are solved to optimality using a pre-specified polynomial algorithm.

5.1 A Simple Data Correcting Algorithm

The class of polynomially solvable instances that we describe here is defined
using a polynomial time algorithm called the Preliminary Preservation (PP)
algorithm. Normally these algorithms terminate with a subgraph of the
Hasse diagram of the original instance which is guaranteed to contain the
maximum. However, for instances where PP returns a subgraph with a
single node, that node is the maximum, and the instance is said to have
been solved in polynomial time. Instances such as these make up the class
of polynomially solvable instances that we consider here.

Let z be a real-valued function defined on the power set 2N of N =
{1, 2, . . . , n}; n ≥ 1. For each S, T ∈ 2N with S ⊆ T , we define

5.1 A Simple Data Correcting Algorithm 19

[S, T] = {I ∈ 2N | S ⊆ I ⊆ T}.

Note that [∅, N] = 2N . Any interval [S, T] is a subinterval of [∅, N] if
∅ ⊆ S ⊆ T ⊆ N . We denote this using the notation [S, T] ⊆ [∅, N]. In this
section an interval is always a subinterval of [∅, N]. It is assumed that z
attains a finite maximum value on [∅, N] which is denoted by z∗[∅, N], and
z∗[S, T] = max{z(I)|I ∈ [S, T]} for any [S, T] ⊆ [∅, N] . We also define
d+

k (I) = z(I + k) − z(I) and d−k (I) = z(I − k) − z(I).
The following theorem and corollaries from Goldengorin et al. [14] act as

a basis for the Preliminary Preservation (PP) algorithm described therein.

Theorem 5.2: Let z be a submodular function on [S, T] ⊆ [∅, N] and let
k ∈ T\S. Then the following assertions hold.

1. z∗[S + k, T] − z∗[S, T − k] ≤ z(S + k) − z(S)) = d+
k (S).

2. z∗[S, T − k] − z∗[S + k, T] ≤ z(T − k) − z(T) = d−k (T).

Corollary 5.3: (Preservation rules of order zero). Let z be a submodular
function on [S, T] ⊆ [∅, N], and let k ∈ T\S. Then the following assertions
hold.

1. First Preservation Rule: If d+
k (S) ≤ 0, then z∗[S, T] = z∗[S, T − k] ≥

z∗[S + k, T].

2. Second Preservation Rule: If d−k (T) ≤ 0, then z∗[S, T] = z∗[S+k, T] ≥
z∗[S, T − k].

The PP algorithm accepts an interval [S, T], S ⊆ T and tries to apply
Corollary 5.3 repeatedly. It returns an interval [X,Y], S ⊆ X ⊆ Y ⊆ T ,
such that z∗[S, T] = z∗[X,Y]. The pseudocode for this algorithm is given
below.

Algorithm PP([S, T])
Output: A subinterval of [S, T] containing the maximum of z over [S, T].

Code:
1. begin
2. if T = S return [S, S];

20 5 Maximization of General Submodular Functions

3. while T
= S do begin
4. d+

max := max{d+
k |k ∈ T \ S};

5. d−max := max{d−k |k ∈ T \ S};
6. if d+

max ≤ 0 then begin
7. k+

max := arg min{k ∈ T \ S|d+
k = d+

max};
8. T := T − k+

max;
9. end
10. else if d−max ≤ 0 then begin
11. k−

max := argmin{k ∈ T \ S|d−k = d−max};
12. S := S + k−

max;
13. end
14. else return [S, T];
15. end;
16. end.

The PP algorithm is called repeatedly by the DCA-MSF to generate a
solution to the MSF instance within the prescribed accuracy level α. The
pseudocode for DCA-MSF is given below. As in the case of ATSP, a good
problem-specific upper bound will improve the performance of the algorithm.

Algorithm DCA-MSF([S, T], α)
Output: xα ∈ [S, T] such that z(xα) ≥ z∗[S, T]− α.

Code:
1. begin
2. [S, T] := PP([S, T]);
3. if T = S return S;
4. d+

max := max{d+
k |k ∈ T \ S};

5. d−max := max{d−k |k ∈ T \ S};
6. if d+

max ≤ d−max then begin
7. if d+

max ≤ α then begin
8. k+

max := arg min{k ∈ T \ S|d+
k = d+

max};
9. return DCA-MSF([S, T − k+

max], α− d+
max) (* Correction *)

10. end;
11. else begin (* Branch *)

12. x1 := DCA-MSF([S + k+
max, T], α);

13. x2 := DCA-MSF([S, T − k+
max], α);

14. if z(x1) ≥ z(x2) return x1

5.2 A Data Correcting Algorithm based on Multi-Level Search 21

15. else return x2;
16. end;
17. end
18. else begin
19. if d−max ≤ α then begin
20. k−

max := arg min{k ∈ T \ S|d−k = d−max};
21. return DCA-MSF([S +k−

max, T], α−d−max) (* Correction*)
22. end;
23. else begin (* Branch *)

24. x1 := DCA-MSF([S + k−
max, T], α);

25. x2 := DCA-MSF([S, T − k−
max], α);

26. if z(x1) ≥ z(x2) return x1

27. else return x2;
28. end;
29. end;
30. end.

5.2 A Data Correcting Algorithm based on Multi-Level Search

The preservation rules mentioned in Corollary 5.3 look at a level which is
exactly one level deeper in the Hasse diagram than the levels of S and T .
However, instead of looking one level deep we may look r levels deep in order
to determine whether we can include or exclude an element. Let

M+
r [S, T] = {I ∈ [S, T]||I\S| ≤ r},

M−
r [S, T] = {I ∈ [S, T]||T\I| ≤ r}.

The set M+
r [S, T] is a collection of all sets representing solutions contain-

ing more elements than S, and which are no more than r levels deeper than
S in the Hasse diagram. Similarly, the set M−

r [S, T] is a collection of all
sets representing solutions containing less elements than T , and which are
no more than r levels deeper than T in the Hasse diagram. Let us further
define the collections of sets

N+
r [S, T] = M+

r [S, T]\M+
r−1[S, T],

N−
r [S, T] = M−

r [S, T]\M−
r−1[S, T].

22 5 Maximization of General Submodular Functions

The sets N+
r [S, T] and N−

r [S, T] are the collection of sets which are
located exactly r levels above S and below T in the Hasse diagram, respec-
tively.

Further, let v+
r [S, T] = max{z(I)|I ∈ M+

r [S, T]}, v−r [S, T] = max{z(I)|I ∈
M−

r [S, T]}, w+
rk[S, T] = max{d+

t (I)|I ∈ N+
r [S + k, T]} and w−

rk[S, T] =
max{d−t (I)|I ∈ N−

r [S, T − k]}.

Theorem 5.4: Let z be a submodular function on [S, T] ⊆ [∅, N] with k ∈
T\S and let r be a positive integer. Then the following assertions hold.

1. If |N+
r [S +k, T]| > 0, then z∗[S +k, T]−max{z∗[S, T −k], v+

r [S, T]} ≤
max{w+

rk[S, T], 0}.
2. If |N−

r [S, T −k]| > 0, then z∗[S, T −k]−max{z∗[S +k, T], v−r [S, T]} ≤
max{w−

rk[S, T], 0}.

Proof: We prove only part 1 since the proof of the part 2 is similar. We
may represent the partition of interval [S, T] as follows:

[S, T] = M+
r [S, T] ∪

⋃
I∈N+

r [S,T]

[I, T].

Using this representation on the interval [S + k, T], we have z∗[S +
k, T] = max{v+

r [S + k, T],max{z∗[I + k, T]|I ∈ N+
r [S, T]}}. Let I(k) ∈

arg max{z∗[I + k, T]|I ∈ N+
r [S, T]}.

There are two cases to consider: z∗[I(k) + k, T] ≥ v+
r [S + k, T], and

z∗[I(k) + k, T] < v+
r [S + k, T].

In the first case z∗[S + k, T] = z∗[I(k) + k, T]. For I(k) ∈ N+
r [S, T] we

can apply Theorem 5.2(a) on the interval [I(k), T] to obtain z∗[I(k)+k, T]−
z∗[I(k), T −k] ≤ d+

k (I(k)), so that in this case z∗[S+k, T]−z∗[I(k), T −k] ≤
d+

k (I(k)). Note that for [I(k), T − k] ⊆ [S, T − k] we have z∗[S, T − k] ≥
z∗[I(k), T − k], which implies that z∗[S + k, T] − z∗[S, T − k] ≤ d+

k (I(k)).
Adding two maximum operations we get

z∗[S + k, T] − max{z∗[S, T − k], v+
r [S + k, T]} ≤ max{d+

k (I(k)), 0}.
Since w+

rk[S, T] is the maximum of d+
k (I) for I ∈ N+

r [S + k, T], we have
the required result.

In the second case z∗[S + k, T] = v+
r [S + k, T] which implies that z∗[S +

k, T]−v+
r [S+k, T]} = 0 or z∗[S+k, T]−max{z∗[S, T −k], v+

r [S+k, T]} ≤ 0.
Adding a maximum operation with w+

rk[S, T] completes the proof.

5.2 A Data Correcting Algorithm based on Multi-Level Search 23

Corollary 5.5: (Preservation rules of order r). Let z be a submodular function
on [S, T] ⊆ [∅, N] and let k ∈ T\S. Then the following assertions hold.

1. First Preservation Rule of Order r: If w+
rk[S, T] ≤ 0, then z∗[S, T] =

max{z∗[S, T − k], v+
r [S + k, T]} ≥ z∗[S + k, T].

2. Second Preservation Rule of Order r: If w−
rk[S, T] ≤ 0, then z∗[S, T] =

max{z∗[S + k, T], v−r [S, T − k]} ≥ z∗[S, T − k]

Notice that when we apply Corollary 5.3 to an interval, we get a reduced
interval, however, when we apply Corollary 5.5, we get a value vr in addition
to a reduced interval.

It can be proved by induction that the portion of the Hasse diagram
eliminated by preservation rules of order r − 1 while searching for a maxi-
mum of the submodular function will certainly be eliminated by preservation
rules of order r. In this sense, preservation rules of order r are not weaker
than preservation rules of order r − 1. (A detailed proof for the result that
preservation rules of order 1 are not weaker than preservation rules of order
0, refer to Goldengorin [17]).

In order to apply Corollary 5.5, we need functions that compute the value
of w+

rk[S, T], w−
rk[S, T] v+

r [S +k, T], and v−r [S, T −k]. To that end, we define
two recursive functions, PPArplus to compute w+

rk[S, T] and v+
r [S + k, T],

and PPArminus to compute w−
rk[S, T] and v−r [S, T − k]. The pseudocode

for PPArplus is shown below. Its output is a 3-tuple, containing, in order,
w+

rk[S, T] and v+
r [S + k, T], and a solution in M+

r [S + k, T] whose objective
function value is v+

r [S + k, T]. The pseudocode for PPArminus can be
constructed in a similar manner.

function PPArplus([S, T], r, k)
1. begin
2. w := −∞;
3. v := −∞;
4. vset := ∅;
5. (w, v, vset) := IntPPArPlus([S + k, T], r, w, v, vset);
6. return (w, v, vset);
7. end;

function IntPPArplus([X, Y], r, w, v, vset)
1. begin
2. for each t ∈ Y \ X do begin

24 5 Maximization of General Submodular Functions

3. if z(X + t) > v then begin
4. v := z(X + t);
5. vset := (X + t);
6. end;
7. if d+

t (X + t) > w then w := d+
t (X + t);

8. if d+
t (X + t) > 0 and r > 1 then

9. (w, v, vset) := IntPPArPlus([X + t, Y], r − 1, w, v, vset);
10. end;
11. return (w, v, vset);
12. end;

Note that PPArplus and PPArminus are both O(n
(n
r

)
), i.e. polynomial

for a fixed value of r. However, in general, they are not polynomial in r.
We now use PPArplus and PPArminus to describe the Preliminary

Preservation Algorithm of order r (PPAr(r)). Given a submodular function
z on [X,Y] ⊆ [∅, N], PPAr outputs a subinterval [S, T] of [X,Y] and a set B
such that z∗[X,Y] = max{z∗[S, T], z(B)} and min{w+

rk[S, T], w−
rk[S, T]} > 0

for all k ∈ T\S. At iteration i of the algorithm when the search has been
restricted to [Si, Ti], starts by applying the PP algorithm (from Goldengorin
et al. [14]) to this interval and reducing it to [S′

i, T
′
i]. If |T ′

i \S′
i| > 0, an ele-

ment k ∈ T ′
i \S′

i is chosen, and the algorithm tries to apply Corollary 5.5.1 to
decide whether it belongs to the set that maximizes z(·) over [Si, Ti] or not.
If it does, then the search is restricted to the interval [S′

i +k, T ′
i]. Otherwise,

the search tries to apply Corollary 5.5.2 to decide whether the interval can
be reduced to [S′

i, T
′
i − k].

Algorithm PPAr([S, T], r)
Output: xα ∈ [S, T] such that z(xα) ≥ z∗[S, T]− α.

Code:
1. begin
2. X := S, Y := T ; B := arg max{z(S), z(T)};
3. while Y
= X do begin
4. [Si, Ti] := PP([X, Y]);
5. d+ := max{d+

k (S)|k ∈ T \S};
6. d− := max{d−k (T)|k ∈ T \S};
7. if d+ > d− then begin
8. k := argmax{d+

t (S)|t ∈ T \S};

5.2 A Data Correcting Algorithm based on Multi-Level Search 25

9. (w, v, vset) := PPArplus([Si, Ti], r, k);
10. if v > z(B) then B := vset;
11. if w ≤ 0 then Y := Ti − k;
12. else return ([Si, Ti], B);
13. else begin
14. k := arg max{d−t (S)|t ∈ T \S};
15. (w, v, vset) := PPArminus([Si, Ti], r, k);
16. if v > z(B) then B := vset;
17. if w ≤ 0 then X := Si + k;
18. else return ([Si, Ti], {w+

ri[Si, Ti]}, {w−
ri[Si, Ti]}, B);

19. end;
20. end;
21. end.

It is clear that if r = |T \ S|, PPAr will always find an optimal solution
to our problem. However, PPAr is not a polynomial in r, and so PPAr with
a large r is not practically useful.

We can embed PPAr in a branch and bound framework to describe
DCA-MSFr, a data correcting algorithm based on PPAr. It is similar to
the DCA-MSF proposed in Goldengorin et al. [14]. For DCA-MSFr we are
given a submodular function z to be maximized over an interval [S, T], and
an accuracy parameter α, and we need to find a solution such that the
difference between the objective function values of the solution output by
DCA-MSFr and the optimal solution will not exceed α.

Notice that for a submodular function z, PPAr with a fixed r may ter-
minate with T
= S and min{w+

ri[S, T], w−
ri[S, T] | i ∈ T\S} = ω > 0. The

basic idea behind DCA-MSFr is that if this situation occurs, then the data
of the current problem is corrected in such a way that ω is non-positive for
the corrected function and PPAr can continue. Moreover, each correction of
z needs to be carried out in such a way that the corrected function remains
submodular. The attempted correction is carried out implicitly, in a manner
similar to the one in Goldengorin et al. [14] but using Corollary 5.5 instead
of Corollary 5.3. Thus, for example, if w+

rj [S, T] = ω ≤ α, then PPAr is
allowed to continue, but the accuracy parameter reduced to α − ω.

If such a correction is not possible, i.e. if ω exceeds the accuracy param-
eter, then we branch on a variable k ∈ arg max{d+

i (S), d−i (T)|i ∈ T \ S} to
partition the interval [S, T] into two intervals [S + k, T] and [S, T − k]. This
branching rule was proposed in Goldengorin [10]. An upper bound for the

26 5 Maximization of General Submodular Functions

value of z for each of the two intervals is then computed to see if either of
the two can be pruned. We use an upper bound due to Khachaturov [23]
described as follows. Let d+(S, T) = {d+

i (S)|d+
i (S) > 0, i ∈ T\S} and

d−(S, T) = {d−i (T)|d−i (T) > 0, i ∈ T\S}. Further let d+[i] (respectively
d−[i]) denote the ith largest element of d+(S, T) (respectively d−(S, T)).
Then ub described below is an upper bound to z∗[S, T].

ub[S, T] = max{ min
i=1,...,|T\S|

{z(S) +
i∑

j=1

d+[j], z(T) +
i∑

j=1

d−[j]}}.

The following pseudocode describes DCA-MSFr formally.

Algorithm DCA-MSFr([S, T], α, r)
1. begin
2. best set := arg max{z(S), z(T)};
3. best := z(best set);
4. (best set, best) := IntDCA-MSFr([S, T], α, r, best set, best);
5. return best set;
6. end.

function IntDCA-MSFr([S, T], α, r, best set, best)
1. begin
2. ([S, T], {w+

rk}, {w−
rk}, B] :=PPAr([S, T], r);

3. if z(B) > best then begin
4. best set := B;
5. best := z(B);
6. end;
7. if S = T return (best set, best);
8. ω+ := max{w+

rk[S, T]|k ∈ T \ S};
9. choose j+ from min{k|w+

rk[S, T] = ω+, k ∈ T \ S};
10. ω− := max{w−

rk[S, T]|k ∈ T \ S};
11. choose j+ from j− := min{k|w−

rk[S, T] = ω−, k ∈ T \ S};
12. if ω+ ≤ α then (* Correction *)

13. IntDCA-MSFr([S + j+, T], α− ω+, r, best set, best);
14. else if ω− ≤ α then (* Correction *)

15. IntDCA-MSFr([S, T − j−], α − ω−, r, best set, best);
16. else begin (* Branch [S, T] → [S + k, T], [S, T − k] *)
17. choose k from argmax{d+

i (S), d−i (T)|i ∈ T \ S};
18. if ub[S + k, T] > best then begin (* Bound *)

19. (bs1, b1) :=IntDCA-MSFr([S + k, T], α, r, best set, best);

5.3 Computational Experience with Quadratic Cost Partition Instances 27

20. if b1 > best then begin
21. best set := bs1;
22. best := b1;
23. end;
24. end;
25. if ub[S, T − k] > best then begin (* Bound *)

26. (bs2, b2) :=IntDCA-MSFr([S, T − k], α, r, best set, best);
27. if b2 > best then begin
28. best set := bs2;
29. best := b2;
30. end;
31. end;
32. end;
33. end;

5.3 Computational Experience with Quadratic Cost Partition
Instances

In this section we report our computational experience with DCA-MSFr. We
choose the quadratic cost partition problem as a test bed. The quadratic
cost partition (QCP) problem can be described as follows (see e.g., Lee et
al. [27]). Given nonnegative real numbers qij and real numbers pi with
i, j ∈ N = {1, 2, . . . , n}, the QCP is the problem of finding a subset S ⊆ N
such that the function z(S) =

∑
j∈S pi− 1

2

∑
i,j∈S qij will be maximized. The

density d of a QCP instance is the ratio of the number of finite qij values to
n(n− 1)/2, and is expressed as a percentage. It is proved in Theorem 2.2 of
Lee et al. [27] that z(·) is submodular.

In Goldengorin et al. [14] computational experiments with QCP have
been restricted to instances of size not more than 80, because instances
of that size have been considered in Lee et al. [27]. For these instances,
it was shown that the average calculation times grow exponentially when
the number of vertices increases and reduce exponentially with increasing
density.

Herein we report the performance of DCA-MSFr on QCP instances of
varying size and densities. The maximum time that we allow for an instance
is 10 CPU minutes on an personal computer running on a 300MHz Pentium
processor with 64 MB memory. The algorithms have been implemented in
Delphi 3.

28 5 Maximization of General Submodular Functions

�

�

r

SP

10000

0
0 1 2 3 4 5

d = 70

d = 80

d = 90

d = 100

Fig. 8: Average number of subproblems generated against r for QCP in-
stances with n = 100 and varying d values

The instances we test our algorithms on are statistically similar to the
instances in Lee et al.[27]. Instances of size n and density d% are gener-
ated as follows. A graph with n nodes and d

100 × n(n−1)
2 random edges is

generated. The edges are assigned costs from a U [1, 100] distribution. n
edges connect each node to itself, and these edges are assigned costs from
a U [0, 100] distribution. The distance matrix of this graph forms a QCP
instance.

We first report the effect of varying the value of r on the performance of
DCA-MSFr(r). It is intuitive that DCA-MSFr(r) will require more execution
times when the value of r increases. Our computation experience with 10
QCP instances of size 100 and different densities is shown in Figures 8-10.
Figure 8 shows the number of subproblems generated when r is increased
from a value of 0 (i.e. DCA-MSF) to 5. As is intuitive, the number of
subproblems reduce with increasing r for all density values. Figure 9 shows
the execution times of DCA-MSFr(r) with varying d and r values. Recall
that when the value of r increases, the time required at each subproblem
increases, since PPAr requires more computations for larger r values. The
decrease in the number of subproblems approximately balance the increase
in the time at each subproblem for r values in the range 0 through 4. When
r = 5, the computation times for DCA-MSFr(r) increase significantly for all
densities. From Figure 9 it seems that for dense graphs, r values of 3 or 4
are most favorable. This effect also holds for larger instances — Figure 10
shows the execution times for instances with n = 200 and d = 100.

5.3 Computational Experience with Quadratic Cost Partition Instances 29

�

�

r

0 1 2 3 4 5

Time

0

0.2

0.4

0.6 d = 70

d = 80

d = 90

d = 100

Fig. 9: Average execution time (in seconds) against r for QCP instances
with n = 100 and varying d values

�

�Time

0

3

1.5

0 1 2 3 4 5

r

Fig. 10: Average execution time (in seconds) against r for QCP instances
with n = 200 and d = 100

30 5 Maximization of General Submodular Functions

We next report the results of our experiments to solve large sized QCP
instances with DCA-MSFr(r). Using results obtained from the previous part
of our study, we choose to use DCA-MSFr(3) as our algorithm of choice. We
consider instances of the QCP with size n ranging from 100 to 500 and
densities varying between 10% and 100%. We try to solve these instances
exactly (α0 = 0%), and with a prescribed accuracy α0 = 5% within 10 min-
utes. We report in Tables 1 and 2 the average execution times in seconds for
exact and approximate solutions with DCA-MSFr(3) and DCA-MSF. The
entries marked ‘*’ could not be solved within 10 minutes. From the table, we
note that the execution times increase exponentially with increasing prob-
lem size and decreasing problem densities. Therefore QCP instances with
500 vertices and densities between 90% and 100% are the largest instances
which can be solved by the DCA-MSFr(3) within 10 minutes on a standard
personal computer. We also see that on an average DCA-MSFr(3) takes
roughly 11% of the time taken by DCA-MSF for the exact solutions, and
roughly 13% of the time taken by DCA-MSF for the approximate solutions.
The reduction in time is more pronounced for problems with higher size and
higher densities.

Tab. 1: Average execution times on QCP instances when α = 0%
Problem size (n)

Density(%) Algorithm 100 200 300 400 500

100 DCA-MSFr(3) 0.098 2.63 18.316 85.827 229.408
DCA-MSF 0.831 64.372 340.681 1894.811 *

90 DCA-MSFr(3) 0.138 3.824 37.931 173.063 624.925
DCA-MSF 1.027 78.614 794.037 3505.892 *

80 DCA-MSFr(3) 0.28 9.506 98.69 679.914 *
DCA-MSF 1.784 217.898 2681.973 * *

70 DCA-MSFr(3) 0.393 17.643 413.585 * *
DCA-MSF 2.498 631.492 * * *

60 DCA-MSFr(3) 0.731 86.33 * * *
DCA-MSF 3.509 1414.103 * * *

50 DCA-MSFr(3) 1.752 345.723 * * *
DCA-MSF 9.382 * * * *

40 DCA-MSFr(3) 3.457 * * * *
DCA-MSF 17.245 * * * *

30 DCA-MSFr(3) 11.032 * * * *
DCA-MSF 48.013 * * * *

20 DCA-MSFr(3) 47.162 * * * *
DCA-MSF 195.82 * * * *

10 DCA-MSFr(3) 70.081 * * * *
DCA-MSF 446.293 * * * *

31

Tab. 2: Average execution times on QCP instances when α = 5%
Problem size (n)

Density(%) Algorithm 100 200 300 400 500

100 DCA-MSFr(3) 0.094 2.444 17.179 85.096 222.883
DCA-MSF 0.752 38.351 229.396 1162.396 *

90 DCA-MSFr(3) 0.118 3.607 34.972 166.996 608.755
DCA-MSF 0.916 49.926 583.754 1996.544 *

80 DCA-MSFr(3) 0.228 8.186 89.685 580.789 *
DCA-MSF 1.108 162.455 1875.603 3604.715 *

70 DCA-MSFr(3) 0.304 15.693 364.48 * *
DCA-MSF 1.593 376.629 3165.384 * *

60 DCA-MSFr(3) 0.517 72.931 * * *
DCA-MSF 2.874 895.426 * * *

50 DCA-MSFr(3) 1.298 267.445 * * *
DCA-MSF 5.931 1937.673 * * *

40 DCA-MSFr(3) 2.179 * * * *
DCA-MSF 10.327 * * * *

30 DCA-MSFr(3) 5.88 * * * *
DCA-MSF 22.209 * * * *

20 DCA-MSFr(3) 17.477 * * * *
DCA-MSF 74.841 * * * *

10 DCA-MSFr(3) 12.196 * * * *
DCA-MSF 95.122 * * * *

6 The Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) takes a set I = {1, 2, . . . ,m} of
sites in which plants can be located, a set J = {1, 2, . . . , n} of clients, each
having a unit demand, a vector F = (fi) of fixed costs for setting up plants
at sites i ∈ I, and a matrix C = [cij] of transportation costs from i ∈ I to
j ∈ J as input. It computes a set P ∗, ∅ ⊂ P ∗ ⊆ I, at which plants can
be located so that the total cost of satisfying all client demands is minimal.
The costs involved in meeting the client demands include the fixed costs of
setting up plants, and the transportation cost of supplying clients from the
plants that are set up. A detailed introduction to this problem has appeared
in Cornuejols et al. [6], which also classifies the problem as NP-hard. The
objective function of the SPLP is supermodular, but we do not use the
results of the previous section explicitly in this section.

In applying data correcting to the SPLP, we work with a pseudo-Boolean
formulation of the problem. We show how data correcting can be used to
preprocess SPLP instances efficiently, and then to solve the problem.

32 6 The Simple Plant Location Problem

6.1 A Pseudo-Boolean Formulation of the SPLP

The pseudo-Boolean approach to solving the SPLP (Hammer [21], Beres-
nev [4]) is a penalty-based approach that relies on the fact that any instance
of the SPLP has an optimal solution in which each client is supplied by
exactly one plant. This implies, that in an optimal solution, each client will
be served fully by the plant located closest to it. Therefore, it is sufficient to
determine the sites where plants are to be located, and then use a minimum
cost assignment of clients to plants.

An instance of the SPLP can be described by a m-vector F = (fi),
and a m × n matrix C = [cij]; m,n ≥ 1. We will use the m × (n + 1)
augmented matrix [F |C] as a shorthand for describing an instance of the
SPLP. The total cost f[F |C](P) associated with a subset P of I consists
of two components, namely the fixed costs

∑
i∈P fi and the transportation

costs
∑

j∈J min{cij |i ∈ P}; i.e.

f[F |C](P) =
∑
i∈P

fi +
∑
j∈J

min{cij |i ∈ P},

and the SPLP is the problem of finding

P ∗ ∈ arg min{f[F |C](P)|∅ ⊂ P ⊆ I}. (4)

In the remainder of this subsection we describe the pseudo-Boolean for-
mulation of the SPLP due to Hammer [21].

A m × n ordering matrix Π = [πij] is a matrix each of whose columns
Πj = (π1j , . . . , πmj)T define a permutation of 1, . . . ,m. Given a transporta-
tion matrix C, the set of all ordering matrices Π such that cπ1jj ≤ cπ2jj ≤
· · · ≤ cπmjj for j = 1, . . . , n, is denoted by perm(C).

Defining for each i = 1, . . . ,m

yi =

{
0 if i ∈ P
1 otherwise,

(5)

we can indicate any solution P by a vector y = (y1, y2, . . . , ym). The fixed
cost component of the total cost can be written as

FF (y) =
m∑

i=1

fi(1 − yi). (6)

Given a transportation cost matrix C, and an ordering matrix Π ∈ perm(C),
we can denote differences between the transportation costs for each j ∈ J
as

6.1 A Pseudo-Boolean Formulation of the SPLP 33

∆c[0, j] = cπ1jj , and
∆c[l, j] = cπ(l+1)jj − cπljj, l = 1, . . . ,m − 1.

Note that ∆c[l, j] ≥ 0, even if the transportation cost matrix C contains
negative entries. The transportation costs of supplying any client j ∈ J
from any open plant can be expressed in terms of the ∆c[·, j] values. It is
clear that we have to spend at least ∆c[0, j] in order to satisfy j’s demand,
since this is the cheapest cost of satisfying j. If no plant is located at the
site closest to j, i.e. yπ1j = 1, we try to satisfy the demand from the next
closest site. In that case, we spend an additional ∆c[1, j]. Continuing in
this manner, the transportation cost of supplying j ∈ J is

min{cij |i ∈ P} = ∆c[0, j] + ∆c[1, j] · yπ1j + ∆c[2, j] · yπ1j · yπ2j

+ · · · + ∆c[m − 1, j] · yπ1j · · · yπ(m−1)j

= ∆c[0, j] +
m−1∑
k=1

∆c[k, j] ·
k∏

r=1

yπrj ,

so that the transportation cost component of the cost of a solution y corre-
sponding to an ordering matrix Π ∈ perm(C) is

TC,Π(y) =
n∑

j=1

{
∆c[0, j] +

m−1∑
k=1

∆c[k, j] ·
k∏

r=1

yπrj

}
. (7)

Combining (6) and (7), the total cost of a solution y to the instance
[F |C] corresponding to an ordering matrix Π ∈ perm(C) is given by the
pseudo-Boolean polynomial

f[F |C],Π(y) = FF (y) + TC,Π(y)

=
m∑

i=1

fi(1 − yi) +

n∑
j=1

{
∆c[0, j] +

m−1∑
k=1

∆c[k, j] ·
k∏

r=1

yπrj

}
. (8)

It can be shown (see Goldengorin et al. [15]) that the total cost function
f[F |C],Π(·) is identical for all Π ∈ perm(C). We call this pseudo-Boolean

34 6 The Simple Plant Location Problem

polynomial the Hammer function H[F |C](y) corresponding to the SPLP in-
stance [F |C] and Π ∈ perm(C). In other words

H[F |C](y) = f[F |C],Π(y) where Π ∈ perm(C). (9)

We can formulate (4) in terms of Hammer functions as

y∗ ∈ arg min{H[F |C](y)|y ∈ {0, 1}m, y
= 1}. (10)

As an example, consider the SPLP instance:

[F |C] =

9 7 12 22 13
4 8 9 18 17
3 16 17 10 27
6 9 13 10 11

 . (11)

Two possible ordering matrices corresponding to C are

Π1 =

1 2 3 4
2 1 4 1
4 4 2 2
3 3 1 3

 and Π2 =

1 2 4 4
2 1 3 1
4 4 2 2
3 3 1 3

 . (12)

The Hammer function is H[F |C](y) = {9(1− y1)+4(1− y2)+3(1− y3)+
6(1 − y4)} + {7 + 1y1 + 1y1y2 + 7y1y2y4} + {9 + 3y2 + 1y1y2 + 4y1y2y4} +
{10 + 0y3 + 8y3y4 + 4y2y3y4} + {11 + 2y4 + 4y1y4 + 10y1y2y4} = 59− 8y1 −
y2 − 3y3 − 4y4 + 2y1y2 + 4y1y4 + 8y3y4 + 21y1y2y4 + 4y2y3y4.

6.2 Preprocessing SPLP instances

The first preprocessing rules for the SPLP involving both fixed costs and
transportation costs appeared in Khumawala [24]. In terms of Hammer func-
tions, these rules are stated in the following theorem. We assume (without
loss of generality) that we cannot partition I into sets I1 and I2, and J into
sets J1 and J2, such that the transportation costs from sites in I1 to clients
in J2, and from sites in I2 to clients in J1 are not finite. We assume too,
that the site indices are arranged in non-increasing order of fi +

∑
j∈J cij

values.

Theorem 6.1: Let H[F |C](y) be the Hammer function corresponding to the
SPLP instance [F |C] in which like terms have been aggregated. For each
site index k, let ak be the coefficient of the linear term corresponding to yk

and let be the sum of the coefficients of all non-linear terms containing yk.
Then the following assertion holds.

6.2 Preprocessing SPLP instances 35

RO: If ak ≥ 0, then there is an optimal solution y∗ in which y∗k = 0, else

RC: If ak + tk ≤ 0, then there is an optimal solution y∗ in which y∗k = 1,
provided that y∗i
= 1 for some i
= k.

Notice that RO and RC primarily try to either open or close sites. If
it succeeds, it also changes the Hammer function for the instance, reducing
the number of non-linear terms therein. In the remaining portion of this
subsection, we describe a completely new reduction procedure (RP), whose
primary aim is to reduce the coefficients of terms in the Hammer function,
and if we can reduce it to zero, to eliminate the term from the Hammer
function. This procedure is based on fathoming rules of branch and bound
algorithms and data correcting principles.

Let us assume that we have an upper bound (UB) on the cost of an
optimal solution for the given SPLP instance. This can be obtained by
running a heuristic on the problem data. Now consider a non-linear term
s · ∏k

r=1 yπrj in the Hammer function. This term will contribute to the cost
of a solution, only if plants are not located in any of the sites π1j, . . . , πkj.
Let LB be a lower bound on the cost of solutions in which facilities are
not located in sites π1j, . . . , πkj. If LB ≤ UB, then we cannot make any
judgement about this term. On the other hand, if LB > UB, then we know
that there cannot be an optimal solution with yπ1j = . . . = yπkj

= 1. In this
case, if we reduce the coefficient s by LB −UB − ε, (ε > 0, small), then the
new Hammer function and the original one have identical sets of optimal
solutions. If after the reduction, s is non-positive, then the term can be
removed from the Hammer function. Such changes in the Hammer function
alter the values of tk, and can possibly allow us to use Khumawala’s rules to
close certain sites. Once some sites are closed, some of the linear terms in
the Hammer function change into constant terms, and some of the quadratic
terms change into linear ones. These changes cause changes in both the ak

and the tk values, and can make further application of Khumawala’s rules
possible, thus preprocessing some other sites, and making further changes
in the Hammer function. A pseudocode of the reduction procedure (RP) is
provided below.

Procedure RP(H[F |C](y))
Output: A preprocessed instance of the SPLP, i.e. an equivalent instance
of reduced size, and decisions to either locate or not locate plants in some
of the sites.

Code:

36 6 The Simple Plant Location Problem

1. begin
2. repeat
3. compute an upper bound UB for the instance;
4. for each nonlinear term s · ∏k

r=1 yπrj in H[F |C](y) do
5. begin
6. compute lower bound LB on the cost of solutions in
7. which plants are not located in sites π1j , . . . , πkj ;
8. if LB > UB then
9. reduce the coefficient of the term by
10. max{s, LB − UB − ε};
11. apply Khumawala’s rules until no further preprocessing is possi-
ble;
12. recompute the Hammer function H[F |C](y);
13. until no further preprocessing of sites was achieved in the current itera-
tion;
14. end;

Let us consider the application of all preprocessing rules to the example
with the Hammer function H[F |C](y) = 59 − 8y1 − y2 − 3y3 − 4y4 + 2y1y2 +
4y1y4 + 8y3y4 + 21y1y2y4 + 4y2y3y4. The values of ak, tk and ak + tk are as
follows:

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 27 27 12 37
ak + tk : 19 26 9 33

It is clear that neither RO nor RC is applicable here, since the coefficient
of the term 21y1y2y4 is too large. Therefore, we try to reduce this coefficient
by applying the RP.

An upper bound of UB = 51 to the original problem can be obtained by
setting y1 = y4 = 1 and y2 = y3 = 0. A lower bound to the problem under
the restriction y1 = y2 = y4 = 1 is 73, since H[F |C](1, 1, 0, 1) = 73. Using
RP therefore, we can reduce the coefficient of 21y1y2y4 by 73− 51− ε = 20,
so that the new Hammer function with the same set of optimal solutions as
the original function becomes H ′(y) = 59 − 8y1 − y2 − 3y3 − 4y4 + 2y1y2 +
4y1y4 +8y3y4 +1y1y2y4 +4y2y3y4. The updated values of ak, tk, and ak + tk
are presented below.

6.3 The Data Correcting Algorithm 37

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 7 7 12 17
ak + tk : −1 6 9 13

RC can immediately be applied in this situation to set y3 = 1. Updating
H ′(y), we can apply RO and set y2 = y4 = 0. This allows us to apply RC
again to set y3 = 1, thus giving us an optimal solution (i.e. (1, 0, 1, 0)) to
the instance, with a cost of 48.

6.3 The Data Correcting Algorithm

The basic idea behind the data correcting algorithm is to modify the Ham-
mer function in a way, such that the RO and RC rules can be applied to
the modified instance. While modifying the instance, care is taken so that
an optimal solution to the modified instance is not too sub-optimal for the
original instance. We make use of the following suitably modified version of
Lemma 3.1 for this problem.

Lemma 6.2: Consider two Hammer functions H1(y) and H2(y). Let y∗1 and
y∗2 be the optimal solutions to H1(y) and H2(y) respectively. Then

H1(y∗1) − H1(y∗2) ≤
m−1∑
i=0

n∑
j=1

|∆c1[i, j] − ∆c2[i, j]|.

Consider a SPLP instance with accuracy parameter α in which RO and
RC cannot be applied. Clearly, in the Hammer function for this instance,
ak < 0 and ak + tk > 0 for all k. Let k0 = arg min{|ak|, ak + tk}. Also let
|ak0 | ≤ ak0 + tk0. In this case, if we change (correct) the Hammer function
of the instance by increasing the coefficient of yk0 to zero, then RO can be
applied to the corrected instance and preprocessing can continue. However,
this is allowed only if min{|ak0 |, ak0 + tk0} ≤ α. In such a situation, if
|ak0 | > ak0 + tk0, then the instance can be corrected by decreasing the
coefficient of yk0 by ak0 + tk0 ; then RC can be applied to the corrected
instance and preprocessing can continue. Notice that while correcting the
instance, we allow for suboptimality to the extent of |ak0 | in the first case,
and ak0 + tk0 in the second case. Thus, the accuracy parameter for the
corrected instance is reduced appropriately.

38 6 The Simple Plant Location Problem

It may happen however, that min{|ak0 |, ak0 + tk0} > α. In that case,
correction is not possible at this stage and the problem has to be broken
down into subproblems. This is done by a branching operation. Goldengorin
et al. [16] suggest that the algorithm branches on an index from arg max{tk}.

The logic behind this rule is the following. A plant would have been
located in this site in an optimal solution if the coefficient of linear term
involving yk in the Hammer function would have been increased by −ak.
We could have predicted that a plant would not be located there if the same
coefficient would have been decreased by tk + ak. Therefore we could use
the average of −ak and ak + tk as a measure of the chance that we will
not be able to predict the fate of site k in any subproblem of the current
subproblem. If we want to reduce the size of the branch and bound tree by
assigning values to such variables, then we can think of a branching function
that branches on the index k0 with the largest average value, i.e. the largest
value of −ak + (ak + tk), i.e. the largest value of tk.

On the basis of the discussion above, the pseudocode for a data correcting
algorithm for SPLP is given below. It works by maintaining three sets, Ω
containing the sites where facilities are to be located, Λ containing the sites
where facilities are not to be located, and Ψ containing the rest of the sites.
RO and RC rules are assumed to be able to manipulate these three sets.

Algorithm DCA-SPLP(H[F |C](y), α)
Output: A solution yα to the SPLP such that H[F |C](yα) ≤ H[F |C](y∗) + α.

Code:
1. begin
2. apply RP to initialize Ω, Λ and Ψ;
3. yα := Int-DCA-SPLP(Ω, Λ, Ψ, H[F |C](·), α);
4. return yα;
5. end.

Function Int-DCA-SPLP(Ω, Λ, Ψ, H[F |C](·), α)
1. begin
2. while RO or RC is applicable
3. update Ω, Λ, Ψ, and H[F |C](·) by applying RO and RC;
4. k∗ ∈ arg{k ∈ Ψ|min{|ak|, ak + tk} =
... min{min{|as|, as + ts}|s ∈ Ψ}};
5. if |ak∗ | ≤ ak∗ + tk∗ then begin
6. if |ak∗ | ≤ α then (* Correct *)
7. return Int-DCA-SPLP(Ω+k∗, Λ, Ψ−k∗, H[F |C](·), α−|ak∗ |);

6.4 Computational Experience with SPLP Instances 39

8. else begin (* Branch *)

9. kb := argmax{tk|k ∈ Ψ};
10. y1 :=Int-DCA-SPLP(Ω + kb, Λ, Ψ − kb, H[F |C](·), α);
11. y2 :=Int-DCA-SPLP(Ω, Λ + kb, Ψ − kb, H[F |C](·), α);
12. return argmax{H[F |C](y1), H[F |C](y2)};
13. end;
14. else begin
15. if ak∗ + tk∗ ≤ α then (* Correct *)
16. return Int-DCA-SPLP(Ω, Λ + k∗, Ψ − k∗, H[F |C](·), α − ak∗ − tk∗);
17. else begin (* Branch *)

18. kb := arg max{tk|k ∈ Ψ};
19. y1 :=Int-DCA-SPLP(Ω + kb, Λ, Ψ − kb, H[F |C](·), α);
20. y2 :=Int-DCA-SPLP(Ω, Λ + kb, Ψ − kb, H[F |C](·), α);
21. return argmax{H[F |C](y1), H[F |C](y2)};
22. end;
23. end;
24. end;

6.4 Computational Experience with SPLP Instances

We report our computational experience with the DCA-SPLP on several
benchmark instances of the SPLP in the remainder of this section. The per-
formance of the algorithm is compared with that of the algorithms described
in the papers that suggested these instances. We used one of two bounds in
the implementations of RP and DCA-SPLP: a combinatorial Khachaturov-
Minoux bound (Khachaturov [22] and Minoux [29]); and a much stronger
Erlenkotter bound based on a LP dual-ascent algorithm (Erlenkotter [7]).
We implemented the DCA-SPLP in PASCAL, compiled it using Prospero
Pascal, and ran it on a 733 MHz Pentium III machine. The computation
times we report are in seconds on our machine.

6.4.1 Testing the Effectiveness of the Reduction Procedure RP

Given an instance of the SPLP, the reduction procedure RP reduces it to a
smaller core instance by making decisions to locate or not locate plants in
several sites. The effectiveness of the RP can thus be measured either by
computing the number of free locations in the core instance, or by computing
the number of non-zero nonlinear terms present in the Hammer function
of the core instance. Tables 3 and 4 shows how the various methods of

40 6 The Simple Plant Location Problem

reduction perform on the benchmark SPLP instances in the OR-Library
(Beasley [3]). In the tables, procedure (a) refers to the use of the “delta”
and “omega” rules from Khumawala [24], procedure (b) to the RP with
the Khachaturov-Minoux combinatorial bound to obtain a lower bound,
and procedure (c) to the RP with the Erlenkotter bound to obtain a lower
bound.

Tab. 3: Number of free locations after preprocessing SPLP instances in the
OR-Library

Problem m n Procedure
a b c

cap71 16 50 4 0 0
cap72 16 50 6 0 0
cap73 16 50 6 3 3
cap74 16 50 2 0 0
cap101 25 50 9 0 0
cap102 25 50 13 3 0
cap103 25 50 14 0 0
cap104 25 50 12 0 0
cap131 50 50 34 32 8
cap132 50 50 27 25 5
cap133 50 50 25 19 10
cap134 50 50 19 0 0

The existing preprocessing rules due to Khumawala [24] and Golden-
gorin et al. [15] (i.e. procedure (a), which was used in the SPLP example
in Goldengorin et al. [14]) cannot solve any of the OR-Library instances to
optimality. However, the variants of the new reduction procedure (i.e. pro-
cedures (b) and (c)) solve a large number of these instances to optimality.
Procedure (c), based on the Erlenkotter bound is marginally better than
procedure (b) in terms of the number of free locations (Table 3), but sub-
stantially better in terms of the number of non-zero nonlinear terms in the
Hammer function (Table 4).

Tables 3 and 4 also demonstrate the superiority of the new preprocessing
rule over the “delta” and “omega” rules. Consider for example the problem
cap132. The “delta” and “omega” rules reduce the problem size from m = 50
and 2389 non-zero nonlinear variables to m = 27 and 112 non-zero nonlinear
variables. However, the new preprocessing rule reduces the same problem
to one having m = 5 and 3 non-zero nonlinear variables!

6.4 Computational Experience with SPLP Instances 41

Tab. 4: Number of non-zero nonlinear terms in the Beresnev function after
preprocessing SPLP instances in the OR-Library

Problem Non-zero terms Procedure
before preprocessing a b c

cap71 699 6 0 0
cap72 699 12 0 0
cap73 699 13 2 2
cap74 699 1 0 0
cap101 1147 24 0 0
cap102 1147 33 2 0
cap103 1147 38 0 0
cap104 1147 29 0 0
cap131 2389 163 135 8
cap132 2389 112 92 3
cap133 2389 101 60 11
cap134 2389 62 0 0

6.4.2 Bilde and Krarup-type Instances

These are the earliest benchmark problems that we consider here. The exact
instance data is not available, but the process of generating the problem
instances is described in Bilde and Krarup [5]. There are 22 different classes
of instances and in this subsection we use the nomenclature used in Bilde
and Krarup [5]. In our experiments we generated 10 instances for each of the
types of problems, and used the mean values of our solutions to evaluate the
performance of our algorithm with the one used in Bilde and Krarup [5]. In
our implementation, we used the Khachaturov-Minoux combinatorial bound
in the reduction procedure RP as well as in the DCA-SPLP.

The reduction procedure was not useful for these instances, but the DCA-
SPLP could solve all the instances in reasonable time. The results of our
experiments are presented in Table 5. The performance of the algorithm
implemented in Bilde and Krarup [5] was measured in terms of the number
of branching operations performed by the algorithm and its execution time in
CPU seconds on a IBM 7094 machine. We estimate the number of branching
operations by our algorithm as the logarithm (to the base 2) of the number
of subproblems it generated. From the table we see that the DCA-SPLP
reduces the number of subproblems generated by the algorithm in Bilde and
Krarup [5] by a factor of 1000. This is especially interesting because Bilde
and Krarup use a bound (discovered in 1967) identical to the Erlenkotter
bound in their algorithm (see Körkel [25]) and we use the Khachaturov-

42 6 The Simple Plant Location Problem

Tab. 5: Results from Bilde and Krarup-type instances
Problem DCA Bilde and Krarup

Type Branching CPU time Branching CPU Time†

B 11.72 0.67 43.3 4.33
C 17.17 14.81 � >250
D1 13.80 0.65 216 11
D2 12.13 0.38 218 24
D3 10.87 0.19 169 19
D4 10.25 0.15 141 17
D5 9.24 0.07 106 14
D6 8.99 0.09 101 15
D7 8.79 0.09 83 13
D8 8.60 0.09 55 11
D9 8.15 0.07 47 11
D10 7.29 0.03 43 11
E1 18.66 35.28 1271 202
E2 16.14 8.64 1112 172
E3 14.59 3.81 384 82
E4 13.65 2.74 258 65
E5 12.73 2.01 193 53
E6 11.82 0.90 136 43
E7 10.82 0.53 131 42
E8 10.79 0.68 143 48
E9 10.62 0.76 117 44
E10 10.36 0.69 79 37

† IBM7094 seconds.
� could not be solved in 250 seconds.

Minoux combinatorial bound. The CPU time required by the DCA-SPLP
to solve these problems were too low to warrant the use of any α > 0.

6.4.3 Galvão and Raggi-type Instances

Galvão and Raggi [8] developed a general 0-1 formulation of the SPLP and
presented a 3-stage method to solve it. The benchmark instances suggested
in this work are unique, in that the fixed costs are assumed to come from
a Normal distribution rather than the more commonly used Uniform dis-
tribution. The reader is referred to Galvão and Raggi [8] for a detailed
description of the problem data.

As with the data in Bilde and Krarup [5], the exact data for the instances
are not known. So we generated 10 instances for each problem size, and used
the mean values of the solutions for comparison purposes. In our DCA-SPLP
implementation, we used the Khachaturov-Minoux combinatorial bound in

6.4 Computational Experience with SPLP Instances 43

the reduction procedure RP and in the DCA-SPLP. The comparative results
are given in Table 6. Since the computers used are different, we cannot
make any comments on the relative performance of the solution procedures.
However, since the average number of subproblems generated by the DCA-
SPLP is always less than 10 for each of these instances, we can conclude
that these problems are easy for our algorithm. In fact they are too easy for
the DCA-SPLP to warrant α > 0.

Tab. 6: Results from Galvão and Raggi-type instances
Problem DCA Galvão and Raggi

Size # solved by pre- # of sub- CPU # of open CPU # of open

(m = n) processing problems† time† plants† time� plants

10 6 2.3 <0.001 4.7 <1 3
20 5 2.4 <0.001 9.0 <1 8
30 7 1.8 0.002 13.6 1 11
50 7 2.6 0.002 20.3 2 20
70 2 3.8 0.004 28.8 6 31
100 3 3.5 0.011 41.1 6 44
150 1 7.8 0.010 64.4 25 74
200 4 2.9 0.158 81.8 63 84

† Average over 10 instances.
� IBM 4331 seconds.

Notice that the average number of opened plants in the optimal solutions
to the instances we generated is quite close to the number of opened plants
in the optimal solutions reported in Galvão and Raggi [8]. Also notice that
the reduction procedure was quite effective — it solved 35 of the 80 instances
generated.

6.4.4 Instances from the OR-Library

The OR-Library [3] has a set of instances of the SPLP. These instances were
solved in Beasley [2] using an algorithm based on the Lagrangian heuristic for
the SPLP. Here too, we used the Khachaturov-Minoux combinatorial bound
in the reduction procedure RP as well as in the DCA-SPLP. We solved the
problems to optimality using the DCA. The results of the computations are
provided in Table 7. The execution times suggest that the DCA-SPLP is
faster than the Lagrangian heuristic described in Beasley [2]. The reduction
procedure was also quite effective for these instances, solving 4 of the 16
instances to optimality, and reducing the number of free sites appreciably
in the other instances. Once again the use of α > 0 cannot be justified,

44 6 The Simple Plant Location Problem

considering the execution times of the DCA.

Tab. 7: Results from OR-Library instances
DCA

Problem m after pre- # of sub- CPU CPU time # of open

name m n processing problems time (Beasley [2])† plants

cap71 16 50 � 0 <0.01 0.11 11
cap72 16 50 � 0 <0.01 0.08 9
cap73 16 50 � 0 <0.01 0.11 5
cap74 16 50 � 0 <0.01 0.05 4
cap101 25 50 9 6 <0.01 0.18 15
cap102 25 50 13 16 <0.01 0.16 11
cap103 25 50 14 16 <0.01 0.14 8
cap104 25 50 12 7 0.01 0.11 4
cap131 50 50 34 196 0.01 0.31 15
cap132 50 50 27 183 0.02 0.28 11
cap133 50 50 25 71 <0.01 0.29 8
cap134 50 50 19 25 <0.01 0.15 4

� instance solved by preprocessing only.
† Cray-X-MP/28 seconds.

6.4.5 Körkel-type Instances with 65 Sites

Körkel [25] described several relatively large Euclidean SPLP instances (m =
n = 100, and m = n = 400) and used a branch and bound algorithm to
solve these problems. The bound used in that work is an improvement on a
bound based on the dual of the linear programming relaxation of the SPLP
due to Erlenkotter [7] and is extremely effective. In this subsection, we use
instances that have the same cost structure as the ones in Körkel [25] but for
which m = n = 65. Instances of this size were not dealt with in Körkel [25].
We implemented the Khachaturov-Minoux combinatorial bound both for
the reduction procedure RP and the DCA-SPLP.

In Körkel [25], 120 instances of each problem size are described. These
can be divided into 28 sets (the first 18 sets contain 5 instances each, and the
rest contain 3 instances each). We solved all the 120 instances we generated,
and found out that the instances in Sets 1, 2, 3, 4, 10, 11, and 12 are
more difficult to solve than others. We therefore used these instances in the
experiments in this section. The transportation cost matrix for a Körkel
instance of size n×n is generated by distributing n points in random within
a rectangular area of size 700×1300 and calculating the Euclidean distances
between them. The fixed cost are computed as in Table 8.

6.4 Computational Experience with SPLP Instances 45

Tab. 8: Description of the fixed costs for instances in Körkel (1989)

Problem Set # of instances Fixed cost for ith instance

Set 1 5 Identical, set at 141 + 6.6i
Set 2 5 Identical, set at 174 + 6.6i
Set 3 5 Identical, set at 207 + 6.6i
Set 4 5 Identical, set at 174 + 66i
Set10 5 Identical, set at 7170 + 660i
Set11 5 Identical, set at 7120.5 + 333.3i
Set12 5 Identical, set at 8787 + 333.3i

The values of the results that we present for each set is the average of
the values obtained for all the instances in that set. Interestingly, the pre-
processing rules were found to be totally ineffective for all of these problems.
Since the fixed costs are identical for all the sites, the sites are distributed
randomly over a region, and the variable cost matrix is symmetric, no site
presents a distinct advantage over any other. This prevents our reduction
procedure to open or close any site. Table 9 shows the variation in the costs
of the solution output by the DCA-SPLP with changes in α, and Table 10
shows the corresponding decrease in execution times.

Tab. 9: Costs of solutions output by the DCA-SPLP on Körkel-type in-
stances with 65 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set 1 6370.0 6404.8 6450.6 6480.6 6569.2 6781.0
Set 2 6920.6 6952.2 6971.4 7028.4 7123.8 7320.2
Set 3 7707.4 7738.0 7770.2 7797.6 7854.6 8053.8
Set 4 9601.2 9642.4 9680.2 9698.4 9786.6 9932.0
Set10 146691.2 146896.6 146909.6 147543.6 148062.0 151542.2
Set11 168598.4 168858.2 169655.0 170341.6 170597.0 173913.8
Set12 186386.3 186729.7 187112.0 188002.7 188854.2 192528.7

� As a percentage of the optimal cost.

The effect of varying the acceptable accuracy α on the cost of the solu-
tions output by the DCA-SPLP is also presented graphically in Figure 11.
We define the achieved accuracy β as

β =
cost of the DCA-SPLP output − cost of an optimal solution

cost of optimal solution

46 6 The Simple Plant Location Problem

Tab. 10: Execution times for the DCA-SPLP on Körkel-type instances with
65 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set 1 119.078 90.948 70.758 55.494 43.200 20.426
Set 2 290.388 225.108 172.422 145.828 96.240 36.966
Set 3 458.370 339.420 259.022 203.036 150.216 50.378
Set 4 158.386 129.694 109.754 89.666 65.548 30.058
Set10 428.598 370.120 319.804 283.832 230.078 142.090
Set11 542.530 476.350 418.628 408.594 290.338 160.744
Set12 479.092 416.472 370.832 326.572 261.835 149.038

� As a percentage of the optimal cost.

and the relative time τ as

τ =
execution time for the DCA-SPLP for acceptable accuracy α

execution time for the DCA-SPLP to compute an optimal solution

Fig. 11: Performance of the DCA-SPLP for Körkel-type instances with 65
sites

Note that the achieved accuracy β varies almost linearly with α, with
a slope close to 0.5. Also note that the relative time τ of the DCA-SPLP
reduces with increasing α. The reduction is slightly better than linear, with
an average slope of -8.

6.4.6 Körkel-type Instances with 100 Sites

We solved the benchmark instances in Körkel [25] with m = n = 100 to
optimality and observed that the instances in Sets 10, 11, and 12 required
relatively longer execution times. So we restricted further computations to

6.4 Computational Experience with SPLP Instances 47

instances in those sets. The fixed and transportation costs for these prob-
lems are computed in the procedure described in Subsection 6.4.5. Tables
11 and 12 show the results obtained by running the DCA-SPLP on these
problem instances. In our DCA-SPLP implementation for solving these in-
stances, we used the Erlenkotter bound in both the reduction procedure RP
and the DCA-SPLP.

Tab. 11: Costs of solutions output by the DCA-SPLP on Körkel-type in-
stances with 100 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set10 190782.0 191550.8 192755.4 192080.6 195983.2 203934.2
Set11 219583.4 220438.8 222393.6 221947.2 228467.2 235963.4
Set12 240402.4 241609.6 243336.8 244209.4 247417.6 259168.6

� As a percentage of the optimal cost.

Tab. 12: Execution times for the DCA-SPLP on Körkel-type instances with
100 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set10 133.746 91.774 65.99 65.908 44.2 32.074
Set11 81.564 55.356 39.554 38.348 33.628 17.598
Set12 111.272 85.858 65.608 55.928 61.758 33.014

� As a percentage of the optimal cost.

Fig. 12: Performance of the DCA-SPLP for Körkel-type instances with 100
sites

48 References

Figure 12 illustrates the effect of varying the acceptable accuracy α on
the cost of the solutions output by the DCA-SPLP for the instances men-
tioned above. The nature of the graphs is similar to those in Figure 11.
However, in several of the instances we noticed that β reduced when α is
increased, and in some other instances τ increased when α was increased.

References

[1] E. Balas and P. Toth, Branch and Bound Methods, Chapter 10 in
Lawler et al. [26].

[2] J.E. Beasley, Lagrangian Heuristics for Location Problems, European
Journal of Operational Research Vol.65 (1993) pp. 383-399.

[3] J.E. Beasley, OR-Library, http://mscmga.ms.ic.ac.uk/info.html

[4] V.L. Beresnev, On a Problem of Mathematical Standardization Theory,
Upravliajemyje Sistemy Vol.11 (1973) pp. 43-54 (in Russian).

[5] O. Bilde and J. Krarup, Sharp Lower Bounds and Efficient Algorithms
for the Simple Plant Location Problem, Annals of Discrete Mathematics
Vol.1 (1977) pp. 79-97.

[6] G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey, The Uncapacitated
Facility Location Problem, in P.B. Mirchandani and R.L. Francis (eds.)
Discrete Location Theory, (New York:Wiley-Interscience, 1990) pp. 119-
171.

[7] D. Erlenkotter, A Dual-Based Procedure for Uncapacitated Facility Lo-
cation, Operations Research Vol.26 (1978) pp. 992-1009.

[8] R.D. Galvão and L.A. Raggi, A Method for Solving to Optimality Un-
capacitated Location Problems, Annals of Operations Research Vol.18
(1989) pp.225-244.

[9] B. Goldengorin, Methods of Solving Multidimensional Unification
Problems, Upravljaemye Sistemy Vol.16 (1977) pp. 63-72.

[10] B. Goldengorin, A Correcting Algorithm for Solving Some Discrete Op-
timization Problems, Soviet Mathametical Doklady Vol.27 (1983) pp.
620-623.

[11] B. Goldengorin, A Correcting Algorithm for Solving Allocation Type
Problems, Automated Remote Control Vol.45 (1984) pp. 590-598.

References 49

[12] B. Goldengorin, Correcting Algorithms for Solving Multivariate Uni-
fication Problems, Soviet Journal of Computer Systems Science Vol.1
(1985) pp. 99-103.

[13] B. Goldengorin, On the Exact Solution of Problems of Unification by
Correcting Algorithms, Doklady Akademii, Nauk, SSSR Vol.294 (1987)
pp. 803-807.

[14] B. Goldengorin, G. Sierksma, G.A. Tijssen, and M. Tso, The Data-
Correcting Algorithm for Minimization of Supermodular Functions.
Management Science Vol.45 (1999) pp. 1539-1551.

[15] B. Goldengorin, D. Ghosh, and G. Sierksma, Equivalent Instances of the
Simple Plant Location Problem, (SOM Research Report-00A54, Univer-
sity of Groningen, The Netherlands 2000).

[16] B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the Sim-
ple Plant Location Problem Using a Data Correcting Approach, Journal
of Global Optimization. Vol.25 (2003) pp. 377-406.

[17] B. Goldengorin, Data Correcting Algorithms in Combinatorial Opti-
mization, (Ph.D. Thesis, SOM Research Institute, University of Gronin-
gen, Groningen, The Netherlands, 2002).

[18] B. Goldengorin and D. Ghosh, A Multilevel Search Algorithm for the
Maximization of Submodular Functions, (to appear in Journal of Global
Optimization).

[19] P.C. Gilmore, E.L. Lawler, and D.B. Shmoys, Well-Solved Special
Cases, Chapter 4 in Lawler et al. [26].

[20] G. Gutin and A.P. Punnen (eds.) The Traveling Salesman Problem and
its Variations, (Kluwer Academic Publishers, The Netherlands, 2002).

[21] P.L. Hammer, Plant Location — A Pseudo-Boolean Approach. Israel
Journal of Technology Vol.6 (1968) pp. 330-332.

[22] V.R. Khachaturov, Some Problems of the Consecutive Calculation
Method and its Applications to Location Problems, (Ph.D. Thesis, Cen-
tral Economics and Mathematics Institute, Russian Academy of Sci-
ences, Moscow, 1968), (in Russian).

[23] V.R. Khachaturov, Mathematical Methods of Regional Programming,
(Moscow, Nauka, 1989), (in Russian).

50 References

[24] B.M. Khumawala, An Efficient Branch and Bound Algorithm for the
Warehouse Location Problem, Management Science Vol.18 (1975) pp.
B718-B731.

[25] M. Körkel, On the Exact Solution of Large-Scale Simple Plant Location
Problems. European Journal of Operational Research Vol.39 (1989) pp.
157-173.

[26] E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys,
(eds.) The Traveling Salesman Problem: A Guided Tour of Combina-
torial Optimization, (Wiley-Interscience, 1985).

[27] H. Lee, G.L. Nemhauser, and Y. Wang, Maximizing a Submodu-
lar Function by Integer Programming: Polyhedral Results for the
Quadratic Case, European Journal of Operational Research Vol.94
(1996) pp. 154-166.

[28] L. Lovasz, Submodular Functions and Convexity, in A. Bachem, M.
Grötschel, B. Korte (eds.) Mathematical Programming: The State of
the Art, (Springer-Verlag, Berlin, 1983) pp. 235-257.

[29] M. Minoux, Accelerated Greedy Algorithms for Maximizing Submod-
ular Set Functions, in J. Stoer (ed.) Actes Congres IFIP, (Springer,
Berlin, 1977) pp. 234-243.

[30] G. Reinelt, TSPLIB 95, http://www.iwr.uni-heidelberg.de/iwr/
comopt/soft/TSPLIB95/TSPLIB.html, 1995.

