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Abstract 

Exchange rate movements in the Indian rupee (and many other emerging 
market currencies) are characterised by long periods of placidity punctuated 
by abrupt and sharp changes. Many, but by no means all, of these sharp 
changes are currency depreciations. This paper shows that econometric 
models of changing volatility like Generalised AutoRegressive Conditional 
Heteroscedasticity (GARCH) with non normal residuals which perform quite 
well in other financial markets fail quite miserably in the case of the INR-
USD process because they do not allow for such jumps in the exchange rate. 
The empirical results very convincingly demonstrate the need to model the 
exchange rate process as a mixed jump-diffusion (or normal mixture) process. 
Equally importantly, the empirical results provide strong evidence that the 
jump probabilities are not constant over time. From a statistical point of view, 
changes in the jump probabilities induce large shifts in the kurtosis of the 
process. The failure of GARCH processes arises because they allow for 
changes in volatility but not for changes in kurtosis. The time varying mixture 
models are able to accommodate regime shifts by allowing both volatility and 
kurtosis (not to mention skewness) to change. This also shows that the periods 
of calm in the exchange rate are extremely deceptive; in these periods, the 
variance of rate changes is quite low, but the kurtosis is so high (in the triple 
digit range) that the probability of large rate changes is non trivial. The 
empirical results also show that the Black-Scholes-Garman-Kohlhagen model 
for valuation of currency options is quite inappropriate for valuing rupee-
dollar options and that the Merton jump-diffusion model is the model of 
choice for this purpose. 
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Rupee-Dollar Option Pricing and Risk Measurement: 
Jump Processes, Changing Volatility and Kurtosis Shifts 

Jayanth R. Varma 

The volatility of exchange rate movements plays an important role in the pricing of foreign 
exchange options and in the measurement and management of risks arising out of open 
foreign exchange positions. In the case of the Indian rupee and many other emerging market 
currencies, the foreign exchange markets behave very differently from other financial 
markets because of the dominant role of the central bank, the presence of exchange controls 
particularly on capital account transactions and the structure of the market itself. Exchange 
rate movements in these currencies are characterised by long periods of placidity punctuated 
by abrupt and sharp changes. Many, but by no means all, of these sharp changes are currency 
depreciations. These peculiarities of the exchange rate process make the normal distribution 
an inappropriate model of exchange rate changes. Consequently, higher order moments of the 
distribution (particularly the skewness and the kurtosis) are as important as the variance 
(which is what is captured by the volatility). Since there is a great deal of evidence for regime 
shifts in the exchange rate process, modelling the time path of the volatility and the kurtosis 
becomes essential for accurate option pricing and risk measurement. 

This paper studies the statistical process underlying changes in the rupee-dollar exchange rate 
and develops robust volatility and kurtosis prediction models that can be used both for 
pricing rupee-dollar options and for value at risk calculations on open rupee-dollar positions. 

Exploratory overview of the data 

Figure 1 shows the movement of the rupee-dollar exchange rate over the period January 1994 
to June 1998. A cursory glance at this chart reveals four broad periods (i) the period up to 
August 1995 during which the rupee remained stable at the level of Rs 31.37 to the dollar; (ii) 
August 1995 to February 1996 when the rupee displayed high volatility while depreciating by 
over 10%; (iii) March 1995 to August 1997 during which the rupee remained stable at around 
Rs 35 to the dollar; and (iv) August 1997 to June 1998 when the rupee was subjected to 
renewed volatility and depreciation. A closer examination would reveal finer subdivisions 
within the two periods of volatility mentioned above. Clearly any useable statistical model of 
the currency movements must accommodate these widely varying exchange rate regimes. 
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Figure 1 

INR/USD Movements
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Price Discreteness 

In most studies of financial prices, it is harmless to regard prices as continuous variables 
capable of assuming arbitrary fractional values. In reality however, quoted prices are always 
discrete because of the minimum tick size conventions that operate in all financial markets. 
Stock prices in India, for example, typically move in multiples of 25 paise or 50 paise while 
in the United States, they move in multiples of 1/8 or 1/16 of a dollar. This discreteness is 
however usually important only when studying intra day price movements. In a study of daily 
closing prices, discreteness can be ignored because the typical daily fluctuation in share 
prices is several times the tick size. 

In the foreign exchange markets, the reference rate published by the Reserve Bank of India 
does not contain any fractions of a paise; this implies a “tick size” of one paisa. (Market 
participants may sometimes quote rates including fractions of half a paisa; in many cases, 
however, these reflect half-paise spreads around a mid rate which is in integral paise). During 
periods of relative calm in the foreign exchange markets, a tick size of one paisa would 
induce extreme discreteness in rate changes. During the first half of 1997 for example, 
absolute changes in the exchange rate on most days were 0, 1, 2 or 3 paise.  

What this means is that an adjustment for price discreteness is necessary while modelling 
exchange rate changes using a normal distribution or any other continuous distribution. Price 
discreteness does tend to be smeared out a bit when percentage changes in the exchange rate 
are computed. A one paise move from 35.85 is slightly different from a one paise move from 
35.80 when both are converted into percentage changes. However, price changes of  zero 
paise escape this smearing out because a zero paise change is zero percent whether the base is 
35.85 or 35.80 or even 31.37. What this means is that the distribution of percentages changes 
in the exchange rate would show a large probability mass at 0. This atomic distribution poses 
serious problems while using maximum likelihood methods of estimation. Maximum 
likelihood would tend to favour a degenerate distribution with all the mass concentrated at 
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zero. For example, if the distribution were modelled as a GED (generalised error 
distribution), maximum likelihood estimation drives the parameter ν (which controls the 
thickness of the tails) to its limiting value of zero. Similarly, if a mixture of normals were to 
be estimated by maximum likelihood, one of the distributions would be a degenerate normal 
distribution with mean and standard deviation both equal to zero which concentrates all its 
mass at zero. In each of these cases, one can use an ad hoc method to prevent degeneracy; for 
example, one can impose a lower limit on the standard deviation in a normal  mixture or on 
the parameter ν of a GED. It is better however to solve the problem directly by adjusting for 
price discreteness.  

The standard approach to discreteness is to regard the observed discrete price as the rounded 
value of a true1 unobserved price which is continuous. The unobserved price can then itself 
be estimated by maximum likelihood or other means, but this can become quite complex 
when the statistical model includes time varying parameters. This paper therefore adopts the 
following simple discreteness adjustment which eliminates degeneracy at the cost of a slight 
loss of accuracy. The observed prices provide lower and upper bounds on the unobserved 
return. For example, if the observed prices move from 35.80 to 35.82, the lower bound on the 
percentage return corresponds to the unobserved prices moving from 35.805 to 35.815 and 
the upper bound corresponds to the unobserved prices moving from 35.795 to 35.825. In all 
maximum likelihood estimates in this paper, the likelihood is calculated at both of these 
bounds and the lower of the two values is taken as the likelihood for maximisation purposes. 
If we consider a normal (or any other symmetric) distribution, the likelihood defined in this 
way would be low when the mean of the distribution is far from the observed return or when 
the standard deviation of the distribution is very small in relation to the difference between 
the lower and upper bounds on the unobserved returns. The method thus penalises very low 
standard deviations and eliminates degeneracy while ensuring that means are estimated 
correctly.  

The empirical distribution function of returns is required for estimating and plotting densities 
as well as for estimates based on matching fractiles. For these purposes, the empirical 
distribution function is computed by replacing the observed returns by a pair of returns 
corresponding to the lower and upper bounds on the returns. This doubles the apparent 
sample size but the actual sample size is used for significance tests, kernel bandwidth and 
other sample size dependent parameters. 

Distribution of Exchange Rate Changes 

 

Figure 2 shows the probability density function of the distribution of exchange rate changes 
estimated using a gaussian kernel2 with a bandwidth of 0.25 standard deviations. (in this and 
all subsequent density plots, the units on the X axis are in terms of the historical standard 
deviation calculated over the full sample). Exchange rate changes (here and, unless otherwise 
stated, elsewhere in this paper) are defined to be changes in the logarithm of the exchange 

                                                 
1 Some authors object to the description of this unobserved price as the “true” price. They contend that the 
observed price is the true price. (Campbell, et al. 1997). 

2 For a description of kernel and other methods of density estimation, see Silverman (1986). 
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rate or equivalently as the logarithmic return ln(St /St-1). The logarithmic return is widely used 
in finance in preference to the proportional return ([St - St-1]/St-1) because its distribution is 
more symmetric and therefore closer to normality. As can be seen the distribution is 
characterised by a thin waist, fat tails and a slight asymmetry induced by the hump in the 
right tail between 2 and 3 standard deviations above the mean. The summary statistics of the 
distribution are as follows: 

Mean 0.03% 
Median 0.00% 
Standard Deviation (σ) 0.36% 
Quartile Deviation x 0.7413 (this should equal 
the standard deviation for a normal distribution) 

0.06% 

Skewness 0.52 
Excess Kurtosis (Excess of the kurtosis over the 
normal distribution value of 3). 

21.00 

Maximum 3.04% (= 8.4 σ) 
Minimum -2.73% (= -7.5 σ) 

 

Figure 2 

Probability Density Function of Actuals (Estimated using 
Gaussian Kernel with bandwidth of 0.25) Compared with the 

Normal Density
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The extreme non normality of the distribution is evident from the large extreme values, the 
very high excess kurtosis, and the fact that 0.74 times quartile deviation is only one-sixth of 
the standard deviation while for an normal distribution it should be equal to the standard 
deviation. 

GARCH Approaches to Modelling Exchange Rates 

This section reports results obtained using the GARCH (Generalised Autoregressive 
Conditional Heteroscedasticity) approach (Bollerslev, 1986) to modelling the exchange rate. 
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This includes as a special case, the Exponentially Weighted Moving Average (EWMA) 
approach adopted in the RiskMetrics® methodology of J. P. Morgan. 

The simple GARCH (1,1) model can be written as follows: 

σ ω βσ α

σ
t t t

t t

r

r N

2 2
1

2
1

2

0 1

= + +− −

/ ~ ( , ) or more generally iid with zero mean & unit variance
(1) 

where rt is the logarithmic return on day t (defined as ln(St /St-1) where St is the exchange rate 
on day t), σt is the standard deviation of rt, α and β are parameters satisfying 0 ≤ α ≤ 1,  0 ≤  
β ≤ 1, α + β ≤ 1 and ω2/(1 - α - β) is the long run variance. This is the simplest GARCH 
model in that it contains only one lagged term each in σ and r and uses the normal 
distribution. More general models can be obtained by considering longer lag polynomials in 
σ and r and using non normal distributions. 

Essentially, the GARCH model accommodates different exchange rate regimes by allowing 
the volatility of exchange rates to vary over time. It also postulates that a large change in the 
exchange rate (whether positive or negative) is likely to be followed by other large changes 
in subsequent days. This effect is captured by using the squared return to update the 
estimated variance for the next day. In fact the posterior variance σt

2 is a weighted average of 
three quantities: (i) the long run variance ω2/(1 - α - β) with weight (1 - α - β), (ii) the prior 
variance σt-1

2 with weight β and (iii) the squared return rt-1
2 with weight α. The restrictions 

on the parameters α and β ensure that the weights are positive and sum to unity.  

A special case of the GARCH model arises when α + β = 1 and ω = 0. In this case, it is 
common to use the symbol λ for α and Eq 1 takes the simpler form 

σ λ σ λ
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t t t

t t
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0 1

= − +− −( )

/ ~ ( , ) or more generally iid with zero mean & unit variance
(2) 

The variance estimate can in this case be also interpreted as a weighted average of all past 
squared returns with the weights declining exponentially (λ, λ2, λ3 ...) as we go further and 
further back. For this reason, Eq. 2 is known as the Exponentially Weighted Moving Average 
(EWMA) model.  

Initial estimation of both Eq 1 and Eq 2 using the normal distribution indicated significant 
non normality. They were therefore estimated using the Generalised Error Distribution 
(GED) which was popularised in financial econometrics by Nelson (1991). The GED with 
zero mean and unit variance and tail parameter ν (0 < ν) is defined by the density: 
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The normal distribution is the special case where ν = 2. Low values of ν imply fatter tails 
than the normal while higher values imply thinner tails. In most of the GARCH estimates, the 
tail parameter ν of the GED was close to 1 (as against the value of 2 for the normal 
distribution) implying significantly fatter tails than the normal distribution. 

Estimation of the GARCH model (Eq 1) with GED residuals revealed several interesting 
features: 

1. Unrestricted estimation led to positive estimates of both α (0.67) and β (0.58), but α + β 
was significantly above unity (1.25). However, this model is unacceptable since it has the 
absurd implication that σt grows without bound over time since E(σ2

t+1) = (α + β)σ2
t + ω2. 

The log likelihood for this model was 5095.97 with ν = 1.05. 

2. When the constraint α + β ≤ 1 was imposed, the estimates of α and β were 0.789994 and 
0.209835 respectively implying α + β equal to 0.999829 while ν was estimated to be 1.05. 
The estimate of ω2 was 6.83E-08 implying a long run standard deviation of daily changes 
in exchange rates of about 2%3. The log likelihood for this model was 5080.85. Though 
the log likelihood ratio test rejected this model in favour of model 1 (χ2 with 1 df = 29.4, P 
< 0.001%), model 1 is, as already stated, an unacceptable model from a conceptual point 
of view.  

3. Imposition of the further restriction that ω = 0 collapses the GARCH model to the EWMA 
model (Eq 2). The estimate of α (or λ) was 0.886649 and ν was estimated to be 1.04. The 
log likelihood for this model was 5013.86. Therefore, the log likelihood ratio test rejected 
this model in favour of model 2 above (χ2 with 1 df = 134.0, P < 0.001%). 

                                                 
3 This is about five times the sample standard deviation over the whole period and comparable to the maximum 
standard deviation observed at any point of time using the EWMA model (model 3 below). Model 2 was 
therefore re-estimated with the constraint that the long run standard deviation should equal the historical 
average of 0.361%. The estimates of α and β were now 0.200238 and 0.794701 respectively implying α + β 
equal to 0.994939 while ν was estimated to be 1.05. The log likelihood ratio test was unable to reject this model 
as against model 2 (χ2 with 1 df = 2.54, P = 11%). This implies that the long run variance is very poorly 
estimated in the GARCH model. The large value of the long run variance is not therefore considered a sufficient 
reason to reject model 2. 
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Goodness of fit 

Out of the above models, the first is patently unacceptable, and, therefore, the second and 
third were taken up for detailed study. These are referred to below as the GARCH-GED and 
the EWMA-GED models respectively. The performance of these models can be measured by 
examining the distribution of the standardised residuals rt/σt. 

 Expected Value  
based on  

EWMA -
GED  

GARCH - 
GED 

 Normal GED (ν = 1)   
Standard Deviation 1.00 1.00 1.48 1.14 
Quartile Deviation 1.35 1.00 0.35 0.37 
Skewness 0.00 0.00 10.22 3.83 
Excess Kurtosis 0.00 2.71 192.79 48.76 
Maximum   30.85 15.05 
Minimum   -7.71 -9.66 
Number beyond ± 5 ≈ 0 1.00 10 9 
Number beyond ± 6.5 ≈ 0 0.10 7 5 
 

The standardised residuals from both the EWMA-GED and the GARCH-GED models have 
markedly thinner waists and fatter tails than even the GED distribution with ν = 1. They also 
have a very high degree of positive skewness. This indicates that both the EWMA-GED and 
the GARCH-GED models are failing to capture the true process driving changes in the 
exchange rate. This would suggest that the GARCH process would be unsuitable for 
valuation of options and other derivatives on the foreign exchange rate. 

Value at risk 

It follows from the above results that these models would be unsuitable for managing risks 
arising out of options and other derivative positions on the foreign exchange rate as these 
models would fail to even value them correctly. It is however possible that a GARCH and 
EWMA models may still be adequate for risk management of spot and forward open 
positions in certain situations. Risk management emphasises the calculation of Value at Risk 
(VaR) which is defined in terms of the percentiles of the distribution of asset values.  Where 
the asset is an open position in foreign exchange spot or forward contracts, this reduces to the 
percentiles of the distribution of exchange rate changes. What the above numbers say is that 
the GARCH model would be grossly wrong in estimating extreme percentiles like the 0.1 or 
0.01 percentile and also of percentiles close to the quartiles. However, most value at risk 
computations are based on the 1, 5 and 10 percentiles. At the 5% level, the GARCH and 
EWMA models fare reasonably level, but at the 1% and 10% levels, the performance is not 
satisfactory as seen from the following table. 



 8

 10% level 
two sided 

5% level 
two sided 

1% level 
two sided 

Percentile as number of standard deviations4 
(using GED with ν = 1) 

1.65 2.15 3.25 

Expected number of violations of VaR limit 101 50 10 
EWMA-GED: Actual number of violations 71 43 22 
EWMA-GED: Actual percentile 7.04% 4.26% 2.18% 
EWMA-GED: Significance test of actual versus 
expected 

Significant 
(P ≈ 0.2%) 

Not 
significant 

Significant 
(P ≈ 0.02%) 

GARCH-GED: Actual number of violations 63 43 18 
GARCH-GED: Actual percentile 6.24% 4.26% 1.78% 
GARCH-GED: Significance test of actual versus 
expected 

Significant 
(P ≈ 0.01%) 

Not 
significant 

Significant 
(P ≈ 1.25%) 

 

At even lower risk levels like 0.50% and 0.25%, the models fare disastrously as shown 
below: 

 0.50% level 
two sided 

0.25% level 
two sided 

Percentile as number of standard deviations 
(using GED with ν = 1) 

3.75 4.25 

Expected number of violations of VaR limit 5 3 
EWMA-GED: Actual number of violations 16 11 
EWMA-GED: Actual percentile 1.59% 1.09% 
EWMA-GED: Significance test of actual versus 
expected 

Significant 
(P < 0.01%) 

Significant 
(P < 0.01%) 

GARCH-GED: Actual number of violations 11 10 
GARCH-GED: Actual percentile 1.09% 0.99% 
GARCH-GED: Significance test of actual versus 
expected 

Significant 
(P ≈ 0.8%) 

Significant 
(P < 0.01%) 

 

We are forced to conclude that the GARCH based approach is satisfactory neither for risk 
management nor for option pricing. 

Models Based on Jump Processes and Normal Mixtures 

We therefore turn to other models for the exchange rate process. Visual inspection of the 
movements of the exchange rate (Figure 1) suggests that there are occasional jumps in the 
exchange rate where the rupee/dollar rate moves by almost one rupee, while, on most days, 
the movement is only a few paise. This immediately suggests Merton’s (1976) jump-
diffusion model in which the exchange rate process has a diffusion component and a jump 

                                                 
4 The cdf of the GED has to be calculated by numerical integration of the GED density. The percentile can then 
be obtained by a simple one dimensional search procedure or by Newton-Raphson iterations. 
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component. The diffusion component would produce changes in the exchange rate which are 
normally distributed with a fairly small standard deviation. Superimposed on this are jumps 
in the exchange rate driven by a Poisson process. Whenever the Poisson event occurs, there is 
a jump in the exchange rate, and the jump size is itself a random variable. The most tractable 
version of the Merton model is where the jump size is normally distributed. The diffusion 
process and the Poisson process are assumed to be probabilistically independent of each 
other. 

For estimation purposes using daily data, it is convenient to approximate the Poisson jump 
process by a binomial jump process. In a Poisson jump process, there can theoretically be any 
number of jumps even in a short time period. However, if we consider a short time period ∆t, 
the most likely event (with probability approximately 1-λ∆t) is that there are no jumps and 
there is a small probability (approximately λ∆t) that there is exactly one jump where λ is the 
intensity of the Poisson process. The probability of more than one jump is of order (∆t)2 and 
can be ignored if the time period ∆t is short. This leads to the binomial approximation in 
which there is either no jump or exactly one jump.  

The binomial jump model with a normally distributed jump size leads directly to a normal 
mixture for daily rate changes. If there is no jump, then the exchange rate change is derived 
from the diffusion component and is ~ N(µ0, σ2), i.e., it is normally distributed with a mean 
of µ and variance σ2. (The mean µ0 would be very close to 0 for daily returns - even a 10% 
annual depreciation would amount to less than 0.05% per day). If there is a jump, the 
exchange rate change is the sum of two normal variables - the first is ~ N(µ0, σ2) as above 
and the second is ~ N(µ1,δ2) where µ1 is the mean jump size and δ2 is its variance. Therefore 
conditional on a jump, the rate change is normally distributed ~ N(µ0+µ1, σ2 + δ2). The 
unconditional distribution of rate changes is a mixture of two normal distributions N(µ0, σ2) 
and N(µ0+µ1, σ2 + δ2). The mixture weights (or probabilities) are the probability of no jump 
and the probability of one jump. 

The normal mixture model can be extended to more than two normal distributions. In 
general, one can consider n normal distributions N(µi, σi

2) with weights pi summing to 1. 
This can also be interpreted as a binomial approximation to a jump diffusion process with 
several Poisson jump processes which have different jump size distributions. 

Static Normal Mixtures 

Estimation of the normal mixture model requires estimation of the means and variances of 
each component distribution and of the mixture weights. These parameters can be estimated 
by maximum likelihood, but there are alternative estimation methods available. Hull and 
White (1998) argue that it is preferable to estimate a normal mixture by matching fractiles. 
Specifically, they recommend dividing the observations into several groups and computing 
the fraction fi of observations falling in each group. Then they suggest forming the likelihood 
function Σfi log pi where pi is the probability that an observation falls in group i under a given 
vector of mixture parameters. The mixture parameters are chosen to maximise this likelihood.  

The normal mixture model with three component distributions was estimated for the rupee-
dollar exchange rate changes. Estimation was carried out using maximum likelihood as well 
as by matching fractiles and the results were qualitatively similar. The results reported here 
are based on maximum likelihood. 
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The three component distributions are as follows: 

 Component A Component B Component C 
Standard Deviation 1.20% 0.13% 0.39% 
Mean 0.03% 0.00% 0.18% 
Mixing Probability 11.27% 67.26% 21.47% 
 

Component B is the base distribution (representing the diffusion process) and accounts for 
the behaviour of the exchange rate change on more than two-thirds of all days. However, the 
two components arising out of the jump process are very important: component A accounts 
for more than 75% of the variance of the mixture and component C for more than 90% of its 
mean. A and C thus represent two very different kinds of jumps in the exchange rate. A 
involves large jumps (a mean jump size5 of 40 paise at an exchange rate of Rs 42 to the 
dollar) but these jumps are almost equally likely to be upward jumps (probability of 51%) or 
downward jumps (probability of 49%). C on the other hand involves more modest jumps (a 
mean jump size of 17 paise at an exchange rate of Rs 42 to the dollar) but these jumps are 
about twice as likely to be upward jumps (depreciations of the rupee) as downward jumps.  

So the general picture that emerges is as follows: most of the time, the rupee remains steady 
against the dollar with rate changes of a few paise a day. Superimposed on these are days 
when the rupee undergoes depreciation in modest jumps with occasional slightly smaller 
corrections6. More rarely, the rupee enters periods of high volatility when the rupee moves 
upwards or downward by nearly half a rupee a day. The rupee depreciations of this order 
often happen when there is panic in the market, while rupee appreciations of this order are 
often the result of decisive intervention by the Reserve Bank. 

                                                 
5 The mean jump size is the expectation of the absolute value of the jump. This can be easily computed using 
the truncated means of a normal distribution. 

6 The expected depreciation is the conditional expectation of the absolute jump size given that the jump  is 
positive (about 18 paise) while the expected correction is the conditional expectation of the absolute jump size 
given that the jump is negative (about 15 paise). Again, these values are computed using the truncated means of 
a normal distribution. 
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Figure 3 

Probability Density Function of Static Normal Mixture 
Distribution Compared with Density of Actuals (Estimated using 

Gaussian Kernel with bandwidth of 0.25)
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The summary statistics of the mixture are compared with that of the actual data in the 
following table, while Figure 3 shows a plot of the mixture density compared with the 
estimated density of the actual data. It is evident that though the normal mixture captures the 
important qualitative characteristics of the empirical distribution it still has lower skewness, 
fatter waists and thinner tails than the actual data.  

 Actual 
data 

Normal 
Mixture 

Pure 
Normal 

Mean 0.03% 0.04% 0.03% 
Median 0.00% 0.02% 0.03% 
Standard Deviation (σ) 0.36% 0.46% 0.36% 
Quartile Deviation x 0.7413 (this should 
equal the standard deviation for a normal 
distribution) 

 
0.06% 

 
0.18% 

 
0.36% 

Skewness 0.52 0.09 0.00 
Excess Kurtosis (Excess of the kurtosis 
over the normal distribution value of 3). 

21.00 13.01 0.00 

Number beyond ±2% (approximately 6 σ) 
in a sample of 1000 

7 11 0.00003 

 

Dynamic Normal Mixtures 

For many purposes, the normal mixture estimated above may be a reasonable approximation 
to the exchange rate process and one could try to improve the fit even better by using more 
than three normal distributions. However, the static normal mixture would differ sharply 
from the actual return generating process in one very important manner. It is visually 
apparent from Figure 1 that the exchange rate process is not constant over time. As already 
pointed out, one can readily identify periods of turbulence and periods of placidity in the 
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movement of the exchange rate. The GARCH and EWMA models discussed above were 
motivated by this fact and attempted to model these shifts in the exchange rate regime. The 
natural analogue of these models in the context of a jump-diffusion model would be to allow 
the jump probability to vary over time. Periods of placidity arise when the jump probability is 
very low and turbulent periods arise when the jump probability is higher. In the context of 
normal mixtures, we should allow the mixing probabilities (or weights) to vary over time.  

One could think of several different ways in which to model time varying mixing 
probabilities. This paper uses a method which is inspired by Bayesian ideas. After observing 
the rate change on any day, we can use Bayes theorem to estimate the probability that a jump 
occurred on that day. Bayes theorem says that  

P J X
P X J P J

P Xt t
t t t

t

( | )
( | ) ( )

( )
=  

If Jt denotes the occurrence of a jump today and Xt denotes the observed rate change today, 
Bayes theorem says that the posterior probability that a jump occurred today (P(Jt|Xt)) is 
obtained by multiplying the prior probability of the jump (P(Jt)) by the ratio of the likelihood 
of the observation conditional on a jump (P(Xt|Jt)) to the unconditional likelihood of the 
observation (P(Xt)).  

What can we conclude about tomorrow if the posterior probability turns out to be high? 
Under the static model discussed earlier, the answer is nothing. The Poisson process is 
memoryless, and the fact that a jump occurred today tells us nothing about whether a jump 
will or will not occur tomorrow. However, the time varying model that we are discussing in 
this section takes a different view. It says that there are different exchange rate regimes in 
some of which jumps are more common that in others. The fact that a jump occurred today 
suggests that we are in a regime of frequent jumps and that the probability of a jump 
tomorrow is higher than the prior probability.  

This means that we must have a mechanism for changing the prior probability of a jump 
tomorrow on the basis of the posterior probability that a jump occurred today. To model this, 
we take our cue from the GARCH model where the prior variance for tomorrow is modelled 
as a weighted average of three quantities: (i) the long run variance, (ii) the prior variance for 
today and (iii) the squared return observed today. Analogously, we postulate that the prior 
probability for a jump tomorrow is equal to a weighted average of three quantities: the long 
run probability of a jump (taken from the static mixture), the prior probability of a jump 
today and the posterior probability that a jump occurred today:  

P J P J P J P Jt t t t t t( ) ( ) ( ) ( ) ( ) ,*
+ −= − ′ − ′ + ′ + ′ ≤ ′ ′ ≤1 11 0 1α β β α α β (4) 

where P*(J) is the long run probability of a jump as estimated in the static mixture, and the 
subscript t in Pt means that the probability is conditional on all the information available at 
the end of day t including the exchange rate change on day t. The parameters α′ and β′ have 
to be estimated by maximum likelihood. 

GARCH-like Taper 

There is one additional complexity to be taken care of in order to complete the model. The 
normal mixture model with time varying mixing probabilities is constrained to produce a 
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standard deviation which lies within the range of standard deviations of the three mixing 
distributions. In our example, the lowest possible standard deviation is 0.13% which results 
in the limiting case when the prior probability of the jumps becomes zero and the mixture 
coincides with component B. Similarly, the highest possible standard deviation is 1.29% 
which is achieved when the probability of component A goes to unity. These are not 
acceptable restrictions from a risk management point of view. There are extended periods of 
time when the standard deviation of changes in the exchange rate are very much smaller than 
0.13%. The upper bound of 1.29% is not too strongly violated in the period under study, but 
it may well be breached in future. It is worth recalling that during the East Asian crisis in 
1997, the daily standard deviation of changes in currencies like the Indonesian rupiah might 
have reached 10%. 

The GARCH model is more flexible in this respect as it is capable of driving standard 
deviations as high or as low as necessary unless the weight on the long run variance, 
(1 - α - β), is very high. We would therefore like the dynamic mixture model to taper off into 
a GARCH-like process when the variances become too small or too large. In other words, in 
addition to adjusting the mixing probabilities, we must also be willing to adjust the variances 
of the mixing distributions. However, we should do this only at the two ends of the spectrum 
when the adjustment of probabilities has gone far enough. We achieve this goal without 
introducing too many free parameters as follows. We postulate a GARCH like model for the 
variance of Component A: 

σ α β σ β σ α α βA t A A t tr, ,( ) ,2 2
1

2 21 0 1= − ′′ − ′′ + ′′ + ′′ ≤ ′′ ′′ ≤−  

Instead of letting α″ and β″ be free parameters, we constrain them as follows. First we 
enforce the condition that α″/β″ should always equal α′/β′. Second, we note that if (1-
 - α″ - β″) is kept close to unity, the GARCH like model for Component A variance is 
virtually shut off and the variance remains close to the static estimate σ2

A. On the other hand 
the influence of σ2

A is virtually eliminated when we drive (1 - α″ - β″) close to zero. What we 
therefore need is a mechanism for (i) making (1 - α″ - β″) close to zero when the mixing 
probability pA,t is very high and (ii) driving it close to unity when pA,t is close to or below the 

static probability pA. The logistic function 1
1+ aebt  (a > 0) is an ideal candidate for providing 

a smooth bridge between these two values of zero and unity. This function attains the values 
of 0 and 1 only at ±∞, but the parameters a and b can be so chosen that the function attains 
the values of say 0.999 at pA,t = 1 and say 0.001 at pA,t = 2pA. Since α″ and β″ are completely 
determined if we fix α″/β″ and (1 - α″ - β″), this completes the model for σ2

A. An entirely 
analogous model is formulated for σ2

B. 

Goodness of Fit 

The maximum likelihood estimates of α′, β′ and 1 - α′ - β′ were 0.5807, 0.3823 and 0.0370 
respectively. The fairly low value of 1 - α′ - β′ allows the dynamic mixing probabilities to 
deviate quite substantially from the static probabilities. Nevertheless, the value is large 
enough to produce a time path of mixing probabilities which is qualitatively different from 
what would result if it were arbitrarily set equal to zero. In particular, the non zero value of 
1 - α′ - β′ keeps the mixing probabilities bounded away from zero and unity, while if it were 
zero, prolonged periods of calm would drive the jump probabilities to near zero levels. 
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In case of the GARCH and EWMA models, one could measure how well the model describes 
the data by comparing the standardised residuals to a reference distribution (normal or GED). 
In the time varying mixture, we can do something similar but the transformation that is to be 
done to the rate change is more complex than dividing by a time varying standard deviation. 
We can compute N-1(Gt(Xt)) where N denotes the cumulative distribution function (cdf) of 
the normal distribution and Gt denotes the cdf of the normal mixture for day t using data up to 
and including day t-1. Standardisation of residuals which was done in case of GARCH and 
EWMA is similar to this process because in these cases, Gt differs from the reference 
distribution only by a scale factor (standard deviation). 

Figure 4 

Probability Density of Residuals from Dynamic Normal Mixtures 
(Estimated using Gaussian Kernel with bandwidth of 0.30) 

Compared with Normal Density
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Normal
Residual

On doing this transformation, we find the following picture which is far better than the 
corresponding picture for the GARCH and EWMA models. In fact, on most counts, the 
distribution is extremely close to the normal distribution. This is confirmed by the plots of the 
estimated probability density function of  the normalised residuals N-1(Gt(Xt)) in Figure 4. 

 Expected Value  
(Normal distribution) 

Dynamic Normal 
Mixture Residuals

N-1(Gt(Xt)) 
Standard Deviation 1.00 0.91 
Quartile Deviation 1.35 1.28 
Skewness 0.00 0.23 
Excess Kurtosis 0.00 0.53 
Maximum  3.17 
Minimum  -3.65 
Number beyond ± 
3.29 

1 1 

Number beyond ± 
3.89 

0.1 0 
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Value at risk analysis 

The table below shows the results of a value at risk analysis at the 10%, 5% and 1% levels 
using the dynamic normal mixture model7. The model does exceedingly well at 5% and 1% 
levels. Even at the 10% level where the model is over-conservative, the performance is 
significantly better than that of the GARCH-GED model. 

 10% level 
two sided 

5% level 
two sided 

1% level 
two sided 

Expected number of violations of VaR limit 101 50 10 
Actual number of violations 74 41 8 
Actual percentile 7.33% 4.06% 0.79% 
Significance test of actual versus expected Significant 

(P ≈ 0.5%) 
Not 

significant 
Not 

significant 
 

What is more interesting is that the model does exceedingly well at risk levels of 0.5% and 
0.25% while the GARCH-GED models fared disastrously at these levels: 

 0. 50% level 
two sided 

0.25% level 
two sided 

Expected number of violations of VaR limit 5 3 
Actual number of violations 8 4 
Actual percentile 0.79% 0.40% 
Significance test of actual versus expected Not 

significant 
Not 

significant 
 

                                                 
7 The VaR limits have to be computed by numerical methods each day. The mixture cdf is a weighted average 
of the component normal cdfs and can therefore be computed easily given any algorithm for computing the 
normal cdf. Since the mixture density is available in closed form (weighted average of the component normal 
densities), we can compute the mixture percentiles by Newton-Raphson iterations. The computational cost of 
doing this on a personal computer using a spreadsheet macro is quite modest. 
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Figure 5 

INR/USD percent changes against 1% VaR limits (Dynamic 
Normal Mixtures)
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Figure 5 shows the performance of the 1% Value at Risk limits based on this model. During 
the periods of calm in the markets, the VaR limits are quite narrow, but they widen very 
dramatically during periods of turbulence. As already stated, the number of violations of the 
VaR limits (which are indicated by solid squares) are within the expected range. Most of the 
violations appear to be on the positive side, but this is partly due to the positive skewness of 
the distribution. More importantly, the downward jumps in the INR/USD rate (rupee 
appreciation) tend to happen only during periods of turbulence when the VaR limits are very 
wide. The truly unexpected jumps (which happen during periods of relative calm) are almost 
all rupee depreciations (upward moves in the INR/USD rate) 

Kurtosis Shifts 

The analysis of the time path of the moments of the dynamic normal mixtures revealed a very 
interesting phenomenon which explains why this model does much better than the traditional 
GARCH model. In times of calm in the foreign exchange markets, all that the GARCH model 
can do is to drive the standard deviation of the price down to very low levels (as low as 
0.07% compared to the full-sample historical standard deviation of 0.36%) reflecting the fact 
that most price moves have been very small. In the same situation, the dynamic normal 
mixture also pushes the standard deviation down but it not as far down as GARCH (the 
minimum to which it goes is about 0.12%).  However, the dynamic mixture model can and 
does alter the higher moments of the distribution very sharply and effectively: there are 
periods in which the kurtosis goes above 200 (see table below). 
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Time path of moments of dynamic normal mixture 
 Mean Standard 

Deviation 
Skewness Excess 

Kurtosis 
Minimum 0.00% 0.12% -0.30         0.18  
Maximum 0.16% 2.02% 1.32      218.11 
Median 0.01% 0.19% 0.76      44.43  
Mean 0.03% 0.31% 0.71      91.87  
 

The dynamic mixture model accommodates periods of calm by lowering the standard 
deviation, raising the kurtosis and increasing the skewness. A plot of the densities of the 
GARCH model and of the dynamic mixture model in a period of extreme calm (Figure 6) is 
very revealing. In the band of ± 1 full-sample historical standard deviation, the dynamic 
mixture model has a narrower (and also taller8) peak than the GARCH-GED and is therefore 
in closer conformity to the recent pattern of constant or nearly constant exchange rates. In 
this range, the dynamic mixture has a more narrowly concentrated density than the GARCH-
GED. The GARCH-GED can achieve this degree of narrow concentration only by reducing 
the standard deviation even lower than it has already done.  

Yet, beyond ± 1 full-sample historical standard deviation, the picture is dramatically 
different. The mixture has a far thicker tail than the GARCH-GED; furthermore the right tail 
is noticeably thicker. The dynamic mixture is saying that though there is a very high 
probability that the exchange rate will remain virtually unchanged the next day, there is a 
small probability of a sharp downward jump in the value of the rupee. This is reflected in a 
low standard deviation, a high kurtosis and a high positive skewness of the distribution. The 
GARCH-GED can change the standard deviation but cannot dynamically adjust skewness 
and kurtosis. In other words, GARCH-GED leaves the shape of the distribution unchanged, 
and only changes the scale. It can therefore match the tails of the dynamic mixture only by 
increasing the standard deviation very substantially, but this would make the peak even 
shorter and wider than it already is. What GARCH-GED gives us is a compromise value 
reflecting a trade-off between these two conflicting goals. The mixture is far more flexible in 
that it can produce both a tall and narrow peak and a thick asymmetric tail by dynamically 
adjusting variance, skewness and kurtosis. 

                                                 
8 This is not apparent from the figure since both the peaks has been lopped off to reveal the tails more clearly. 
The taller peak is found between ± 0.25 full-sample historical standard deviations where the mixture density lies 
above the GARCH-GED. The narrowness of the peak is evident between 0.25 and 1 standard deviations where 
the mixture density lies below the GARCH-GED. 
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Figure 6 

Probability Density Function of Dynamic Mixture Distribution 
Compared with Density of GARCH-GED in Calm Markets (early 

1994)
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Importance of the GARCH-like tapers 

For some purposes, the GARCH-like tapers are not very important. For example, the value at 
risk analysis at 1% or lower risk levels is quite satisfactory without the GARCH-like tapers, 
but the model is intolerably over-conservative at the 10% or higher levels. The quartiles are 
even more badly off and the overall goodness of fit is unsatisfactory. Quite apart from this, 
the GARCH-like tapers are essential from a theoretical point of view. 

Implications for Option Pricing 

The empirical results show that a jump-diffusion (or normal mixture) model (at least in its 
dynamic version) provides an excellent description of the exchange rate process and that this 
model performs far better than GARCH models that do not allow for jumps. This suggests 
that the valuation of options on the rupee-dollar exchange rate must be based on the jump-
diffusion model of Merton(1976). . 

Merton’s model is based on the calculation of Black-Scholes option values conditional on 
there being exactly n jumps during the life of the option. These Black-Scholes option values 
for different values of n are then weighted with the probabilities of these many jumps from 
the Poisson distribution and the resulting weighted average is shown to be the true value of 
the option. Merton’s model is based on one jump process and corresponds to a mixture of two 
normals, but the model can be readily generalised to the case of two independent jump 
processes giving rise to a mixture of three normals.  

Consider an asset price process in which there is a diffusion process with variance σ2, and 
there are two independent jump processes with probabilities λ1 and λ2, and the jumps are 
normally distributed with means µ1 and µ2 and variances δ1

2 and δ2
2. Suppose that the current 

asset price is S, and that the risk free interest rate is r. Consider a call option with an exercise 
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price of X. The Merton model generalised to two jump process asserts that the value V of this 
option is: 
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where W(S, X, r, σ2, t) is the Black-Scholes value of an option when the asset price is S, the 
exercise price is X, the risk free rate is r, the variance is σ2 and the time to expiry is t. In 
practice the infinite summation over m and n would be truncated at levels M and N such that 
the respective cumulative Poisson probabilities are very close to 1.  

Merton Model for Static Mixtures 

To see what difference the mixture distributions make to option pricing, the option prices 
from this model were computed numerically for the static mixture distribution for a variety of 
exercise prices and maturities. To compare these prices with the naive Black-Scholes process, 
we use the notion of volatility smiles. Practitioners tend to think of option prices in terms of 
implied volatilities computed from the Black-Scholes price. For any option price V (observed 
in the market or computed from an alternative option pricing model), one can calculate an 
implied volatility v such that the Black-Scholes model with σ replaced by v gives a price of 
V. In other words, v is implicitly defined by  

W(S, X, r, v2, t) = V 

Figure 7 

Volatility Smiles and Term Structure  (Static Mixture Model)
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Plots of v for different exercise prices are known as volatility smiles, and there is a different 
smile for each maturity. (The dependence of v on maturity is known as the term structure of 
volatility). If the Black-Scholes model were correct, the volatility smiles would be horizontal 
straight lines equal to σ  throughout. Figure 7 shows the volatility smiles9 (in the form of 
plots of v/σ) for the exchange rate process computed using the Merton model. It is apparent 
that the smiles are quite pronounced for maturities of one month or shorter, but are less 
significant at longer maturities. This suggests that the Black-Scholes10 model is quite 
inappropriate for valuing exchange rate options for maturities of one month or less.  

At longer maturities, however, the Black-Scholes model appears to be a reasonable model. 
However, this result must be treated with caution since the empirical results showed that 
while the static normal mixture is a very good model of the tails of the distribution, it is less 
than satisfactory in the waists of the distribution. A more complete and accurate model of 
option valuation must use the dynamic mixture model. 

Merton Model for Dynamic Mixtures 

When we use dynamic mixture models to calculate option prices, the relevant comparison is 
with the Black-Scholes prices using volatility estimates derived from the GARCH model. 
During periods of calm in the foreign exchange markets, the difference between these two 
prices is strikingly large. Consider, for example, a call option with an exercise price 1% 
above the current rate and a maturity of one day. This is about three full-sample historical 
standard deviations out of the money. In early 199411, according to the GARCH model, the 
volatility of the exchange rate was about 0.07%, the exercise price was about 15 standard 
deviations out of the money and the option was practically worthless. According to the 
Merton model based on dynamic mixtures, the option value is small but not negligible. The 
implied volatility corresponding to the Merton value of the option is about six times the 
GARCH estimate of the volatility and over three times the volatility estimated by the 
dynamic mixture. Similarly, in early 199712, the same option had a Merton value 
corresponding to an implied volatility five times the GARCH estimated volatility of 0.09% or 
about three times the dynamic mixture estimated volatility of 0.143%. On both occasions, it 
is the high kurtosis that makes the deep out of the money option so valuable. On the same 
two days, an at the money option is priced at implied volatilities which are somewhat lower 
than the GARCH estimated volatilities. The implied volatilities for these at the money 

                                                 
9 These smiles are plotted for maturities of a day, week, month, quarter and year. The exercise prices for 
different maturities are chosen to correspond to the same number of standard deviations from the prevailing 
exchange rate. In other words, a fixed set of numbers ki  were chosen (-3, -2, -1, -0.75, -0.50, -0.25, 0, 0.25, 
0.50, 0.75, 1, 2, 3) and the Xi  for each t were chosen so that ln(S/Xi) was equal to ki σ√t. This makes the smiles 
comparable across all maturities. For simplicity, we interpret S as the forward exchange rate rather than the spot 
rate and set r equal to 0. This eliminates the need to use the Garman-Kohlhagen (1983) model of exchange rate 
options and makes option prices practically insensitive to the interest rate. 

10 In this context, the Black-Scholes model is actually the Black-Scholes-Garman-Kohlhagen model. See 
footnote 9 above. 

11 February 3, 1994 to be precise 

12 February 20, 1997 to be precise. 
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options are only about half the volatilities estimated from the dynamic mixtures because the 
high kurtosis (thin waists) makes at the money options less valuable. 

These results are in accordance with our intuitive expectations. Given the evidence for 
sudden jumps in the exchange rate process that we see visually in Figure 1, a deep out of the 
money option is potentially quite valuable because there is always a non trivial probability 
that the process will jump sharply enough to bring the option into the money.  

If one were to assume that the dynamic mixture observed in say early 1994 would hold good 
for the next one year, one could use this to value options with a maturity of one year. 
Consider a one year call option with a strike price 1% above the current rate (approximately 
0.2 annualised historical standard deviations). The Merton model values this at an implied of 
nearly twice the GARCH estimated standard deviation, but approximately the same as the 
mixture standard deviation. When the exercise price is 20% out of the money (approximately 
3.5 annualised historical standard deviations), the implied is nearly thrice the GARCH 
estimated standard deviation, and about 1.6 times the mixture standard deviation. Of course, 
the assumption that the mixture would remain the same for the next one year is patently 
wrong given the reversion to the static mixture probabilities inherent in Eq. 4. A more 
complex simulation model is required to value this option correctly, but the above numbers 
show that the departures from Black-Scholes values are likely to be quite pronounced even 
for as long a maturity as one year. 

These results suggest that the Black-Scholes model is even more inappropriate for pricing 
foreign exchange options than was suggested by the moderate smiles calculated from the 
static mixtures. It is quite likely that there are periods of calm in which the Black-Scholes 
model is inappropriate even at the longer maturities at which it appeared satisfactory when 
we considered the static normal mixture. 

Conclusion 

The empirical results very convincingly demonstrate the need to model the exchange rate 
process as a mixed jump-diffusion process. Sophisticated econometric models like the 
GARCH with GED residuals which perform quite well in other financial markets fail quite 
miserably in the case of the INR-USD process because they do not allow for jumps in the 
exchange rate. Equally importantly, the empirical results provide strong evidence that the 
jump probabilities are not constant over time. From a statistical point of view, changes in the 
jump process induce large shifts in the kurtosis of the process. The results suggest that the 
failure of GARCH processes arises because they allow for changes in volatility but not for 
changes in kurtosis. The dynamic mixture models do precisely that; they accommodate 
regime shifts by allowing both volatility and kurtosis (not to mention skewness) to change. 
This also shows that the periods of calm in the exchange rate are extremely deceptive; in 
these periods, the variance of rate changes is quite low, but the kurtosis is so high (in the 
triple digit range) that the probability of large rate changes is non trivial. The empirical 
results also show that the Black-Scholes-Garman-Kohlhagen model for valuation of currency 
options are quite inappropriate for valuing rupee-dollar options and that the Merton jump-
diffusion model is the model of choice for this purpose. 
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