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Diptesh Ghosh

Abstract

Conventional genetic algorithms suffer from a dependence on the initial generation used by
the algorithm. In case the generation consists of solutions which are not close enough to a global
optimum but some of which are close to a relatively good local optimum, the algorithm is often
guided to converge to the local optimum. In this paper, we provide a method which allows a
genetic algorithm to search the solution space more effectively, and increases its chance to attain
a global optimum. We provide computational experience with real-valued genetic algorithms on
functions of two variables.

1 Introduction

Genetic algorithms (see, e.g. Holland, 1992) are a widely applied technique in optimization prob-
lems, especially in situations where efficient algorithms are too difficult to formulate (see Karr and
Freeman, 1999; Goldberg et al., 1997). These techniques are attractive since they often yield good
quality solutions even when intricate details of the characteristics of the problem at hand are not
clearly understood.

Genetic algorithms belong to the class of population based metaheuristics. They mimic the evo-
lutionary process observed in the natural world, and primarily incorporate the concept of “survival
of the fittest”. A genetic algorithm starts out with a population (called a generation) consisting
of a predetermined number of individuals. In case of optimization problems, these individuals are
appropriately coded solutions to the problem. In each iteration of a genetic algorithm, the algorithm
transforms the generation into the next generation by applying a certain set of operations, namely,
reproduction, crossover, and mutation. The newly formed generation then becomes the starting
point of the next iteration of the algorithm. The aim of the algorithm is to effectively use these
operations so that each successive generation is superior to the preceding generation in terms of the
objective function values of the component solutions, and the algorithm, at termination, ends up
with a generation consisting of solutions of good quality, if not optimal solutions.

In a reproduction operation, a solution from a generation is simply copied into the next gener-
ation. The justification behind this operation is that a “good quality” solution in one generation
is also a good quality solution in the next generation, and can aid in the process of creating the
next generation. A crossover operation imitates sexual reproduction in biological evolution. In this
operation, two parent solutions are chosen from the current generation based on their objective
function values, and are “mated” to form child solutions for the next generation which have some
desirable properties of the parents. There are two widely used methods for crossover operations.
In the standard method, a common position is chosen in the coding of both parents. Then two
children are produced as a result of the mating. The first child consists of the partial representation
of the first parent up to the position, and the partial representation of the second parent starting
from that position. The second child consists of the partial representation of the second parent
up to the position, and the partial representation of the first parent starting from that position.
These two children are then transferred to the new generation. In the second method (called uni-
form crossover), each position in the representation is randomly chosen from one of the two parents.
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Experimentally, uniform crossover has been found to perform better than the standard crossover
method. The mutation operation chooses solutions in a particular generation with a low probability,
and with a low probability alters the value of one component of the solution chosen. This operator
is not much preferred since its effect is completely random. In our paper, we do not consider the
mutation operator.

Conventional genetic algorithms suffer from problems similar to local search algorithms, in that
they are liable to get stuck in local optima. Consider for example, a function f1 which is a mixture
of two bivariate normal distributions, one with a mean at (1,1) and a standard deviation of 0.5 and
another with a mean at (3,3) and a standard deviation of 0.25. Let us also suppose that we are
interested in finding the maximum value attained by this function over the set S = {(x, y) : 0 ≤
x, y ≤ 3}. The shape of this function is shown in Figure 1. As is clear from the figure, f1 has two
maxima, a local maximum at (1,1) with a function value of 0.637, and a global maximum at (3,3)
with a function value of 2.547.

Figure 1: Function f1

Now consider a genetic algorithm to maximize f1 over S. Assume that this genetic algorithm
encodes a solution as a vector of coordinates (x,y). Also assume that this genetic algorithm starts
out with a generation of individual solutions none of which are close to the global maximum at (3,3),
but several of which are close to the local maximum at (1,1). Since there are solutions close to (1,1)
they are likely to have a reasonably good objective function value and hence have a high probability
of being chosen for the reproduction operation. If the local maximum is a member of the initial
generation of solutions, then it will certainly be chosen for reproduction. Again, since f1 is smooth,
the individuals chosen for mating in the crossover operation are very likely to be ones close to (1,1).
By the very nature of the crossover operation, the children generated from such mating will again
be close to the point (1,1).

So we see that in a conventional genetic algorithm, successive generations will contain solutions
converging to the local optimum, ignoring the presence of a global optimum elsewhere in the domain
under consideration. If a moderate quality local optimum enters a generation at any stage during
the execution of the genetic algorithm, it is likely to be a member of each succeeding generation,
and by its presence, will influence the solutions in each generation close to be close to itself.

Our contribution in this paper is to present a method of avoiding this premature convergence and
encouraging the genetic algorithm to search the domain more thoroughly. In Section 2 of this paper,
we present our methods to do this. We describe our computational experience with our methods on
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two complex functions in two variables in Section 3, and compare our results with those obtained
through conventional genetic algorithms using the same parameters. In Section 4 we present a
summary of our contribution and provide directions for future work in this area.

2 Our Genetic Algorithms

As described in the previous section, the problem with conventional genetic algorithms (referred to
as CONV GA in this paper) is the “immortality” of good quality locally optimal solutions, and the
influence they exert to guide all solutions in subsequent generations to cluster around them. We
alleviate this problem by introducing the concept of the life-span of an individual solution.

The life-span of an individual solution in a genetic algorithm is the maximum number of con-
secutive generations in which that solution can be propagated through the reproduction operation.
Once the life-span is exceeded, the solution is not considered while designing the next generation of
solutions. We include this parameter in CONV GA and refer to this variation of the genetic algorithm
as EXP GA.

If a solution is of poor quality, then the solution will not get propagated to the next generation
through reproduction, and will automatically be absent in the next generation. A good quality
solution will influence a certain number of generations while its life-span is not exceeded and then
be removed from future generations. Hence no individual solution will have a direct long term effect
on the cohort of solutions in a particular generation. The effect of a good quality solution may
however be indirect. If its quality is good, then within its life-span, it will repeatedly be chosen for
mating, and will generate a relatively large number of solutions close to itself in the domain of the
functions. When it is eliminated after its life-span, the other solutions which were created by it, and
which, hopefully, were of good quality, will attract further generations in the vicinity of the original
solution.

If the life-span of a solution in EXP GA is chosen to be too small, then a good quality solution
has little chance of influencing successive generations and the search becomes totally random. If
the life-span is chosen to be too big, then the genetic algorithm will not be able to move away from
the vicinity of a once generated good quality solution. Our next two variants of genetic algorithms
aim to make genetic algorithms search in a more diversified manner by not only removing a solution
from a generation once its life-span is exceeded, but by replacing it with another solution. They
vary in the way the new solution is chosen.

In the EXP R1 GA variation, as soon as a solutions lifespan is exceeded, it is replaced by a solution
chosen randomly from the domain of the function. Since the problem is of the genetic algorithm
concentrating excessively on a small part of the domain, the randomly chosen solution has a chance of
being far away from the other solutions, and guiding future generations away from the previous region
in the domain. In the EXP R2 GA variation, as soon as a solutions lifespan is exceeded, it is replaced
by a solution randomly chosen from a portion of the domain that is far away from other solutions.
This choice of the new solution is exercised as follows. The domain of the function is portioned into
a rectangular grid. Assume that each cell of the grid is denoted by a vector (i, j) denoting that
the cell is in the i-th row and j-th column of the grid. Each solution in a particular generation lies
on exactly one cell of the grid (ties are broken arbitrarily but consistently). Let nij represent the
number of solutions in the current generation in cell (i, j), with the exception of the solution being
replaced. Now each cell (p, q) of the grid is assigned a weight wpq =

∑
i

∑
j nij{|p − i| + |q − j|}.

These wpq values are normalized, and the normalized values are taken as probabilities that the new
solution generated will be in a particular cell of the grid. Once the cell is determined, a solution is
chosen randomly from the part of the function domain represented by that cell.
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3 Computational Experience

We studied the performance of all four variations of genetic algorithms on two functions of two
variables. The four variations were coded both with the standard crossover operator and the uniform
crossover operator. For all our programs, we took the size of each generation to be 25, and stopped
after the genetic algorithm had created 50 generations. We stipulated that the best five solutions in
each generation will be reproduced in the next generation. For the crossover operation, we chose the
parent solutions in such a way that a solution with high objective function value has a high chance
of being selected to mate. Since the functions tested were of two variables, the standard crossover
operation was trivial; the first child solution consisted of the x-coordinate of the first parent and
the y-coordinate of the second parent, while the second solution consisted of the x-coordinate of the
second parent and the y-coordinate of the first parent. In the uniform crossover operation, the values
of the x- and y-coordinates of the first parent have a 60% chance of being copied to the corresponding
coordinate in the child, while the values of the x- and y-coordinates of the second parent have a 40%
chance. The initial generation of solutions was deliberately chosen to avoid the neighbourhood of
the global maximum. In addition, a local maximum was chosen as one of the solutions in the initial
generation. The life-span of any solution for EXP GA, EXP R1 GA and EXP R2 GA was chosen to be two
iterations.

The metrics that we used to compare the variations are (1) the best objective function value
obtained by the algorithm at each generation; (2) the diameter of each generation of solutions; and
(3) the thoroughness with which the genetic algorithm has explored the domain of the function.
For this purpose the diameter of a generation of solutions is defined as the maximum Euclidean
distance between two solutions in the generation. A low value of diameter is an indicator that the
solutions in a generation are tightly clustered in the domain of the function being maximized. A
high value is not an indicator of high diversity; all but one solution may be clustered together and
one solution may be far away in a generation with high diameter. The thoroughness of exploration
is measured by first partitioning the domain using a grid, counting the number of solutions that
the genetic algorithm generated in each cell of the grid, normalizing these values and finding the
standard deviation of the normalized values. If the number of solutions generated by two genetic
algorithms is the same, then a lower value of standard deviation indicates that a particular genetic
algorithm has searched the solution domain more thoroughly.

We now compare the performance of the four variations on f1 over the domain S = {(x, y) : 0 ≤
x, y ≤ 3}. In this comparison, we ensure that all four variations start with the same initial generation
of solutions, and choose the standard crossover operation. As mentioned in the introductory section,
none of our variations includes a mutation operation. Figures 2 through 4 depict the results of the
comparison. Recall that the minimum value of f1 over S is very close to 0.0 and the maximum
value is 2.547 at the point (3,3). The best solution in the initial generation is (1,1) with an objective
function value of 0.637. Notice from Figure 2 that CONV GA and EXP GA did not improve this solution
over the 50 iterations which both the algorithms were allowed. On the other hand, both EXP R1 GA

and EXP R2 GA managed to improve upon this solution during the execution of the algorithm. So at
the end of execution of these four variations, the best solution obtained by EXP R1 GA and EXP R2 GA

are better than those obtained by the other two variants. The best solution obtained by EXP R1 GA is
(2.807,2.905) with an objective of 1.760 while the best solution obtained by EXP R2 GA is (2.899,2.892)
with an objective function value of 2.138. In other words, both of these variations could move out
of the vicinity of the local maximum at (1,1) and evaluate solutions near the global maximum at
(3,3).

Next let us compare the diameters of the generations produced by the four variants. The varia-
tion of these diameters with the index of the generation is shown in Figurefig:dia. Notice that the
diameters for CONV GA and EXP GA reduce drastically with the generation number, and within 15
generations, reach a value of 0. This means that running these two variations after 15 iterations
does not change the objective function value of the best solution obtained by these variation. This
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Figure 2: Objective function values of the best solution in each generation for genetic algorithms
using standard crossover operation on function f1

is logical, since in both these variations, there is no mechanism for diversification of solution gener-
ations. In case of the other two variations however, the diameter of the generations do not follow a
monotonic trend. In both the variations, they show sudden large increases.

Figure 3: The diameter of each generation for genetic algorithms using standard crossover operation
on function f1

Comparing with Figure 2, we observe that improvements in the objective function value of the
best solution found by the variations closely follow some of these increases. This supports the fact
that when the life-span of a particular solution ends, and a new random solution is generated in its
place, occasionally, the new solution is present at a point in the domain close to the global maximum
and hence has high objective function values.

Finally we compare the thoroughness of exploration of the solution domain by the four variants.
Since each of the variants produce 25 solutions in each generation and each runs for 50 generations,
the total number of solutions produced by each of the variants during execution is identical, i.e.,
25 × 50 = 1250. Figure 4 shows the counts of the number of solutions in each cell of a 5 × 5 grid
covering the function domain. Cell (2,2) corresponds to the region in the domain close to the local
maximum at (1,1), while cell (5,5) corresponds to the region closest to the global maximum at (3,3).
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3 3 4 2 0 3 2 5 2 0
2 1150 44 6 2 1 1121 42 6 2
5 28 14 2 2 5 45 29 2 2
0 1 0 0 0 0 1 0 0 0
1 1 2 2 1 1 1 2 2 1

CONV GA EXP GA

3 13 4 2 0 3 7 3 2 0
5 1043 80 10 12 1 973 59 7 32
5 48 23 2 2 4 30 15 2 3
0 3 0 0 0 0 1 0 0 0
1 11 2 2 4 1 30 5 2 95

EXP R1 GA EXP R2 GA

Figure 4: Distribution of solutions generated by the four variants over the domain S of the function
f1

The standard deviations of the normalized count scores are 0.180 for CONV GA, 0.175 for EXP GA,
0.163 for EXP R1 GA, and 0.152 for EXP R2 GA. This indicates that EXP R2 GA searched the function
domain most comprehensively, while the search by CONV GA was localized. This is in agreement with
the fact that EXP R2 GA produced the best solution at the end of its execution.

When we performed the same analysis with the four variations on the same problem, but using
uniform crossover instead of the standard crossover operation, we observed similar results. Figure 5
shows the variation of the objective function values of the best solution in different generations by
the four variations, and Figure 6 shows the variation in the diameters of the different generations of
solutions. The standard deviations of the normalized count scores are 0.187 for CONV GA, 0.185 for

Figure 5: Objective function values of the best solution in each generation for genetic algorithms
using uniform crossover operation on function f1

EXP GA, 0.141 for EXP R1 GA, and 0.136 for EXP R2 GA. Note that here too, CONV GAand EXP GAperform
poorly, and never show an increase in the diameter of a generation, while EXP R1 GAand EXP R2 GA

perform much better. Note also, that in this problem, the standard crossover operation generates a
better solution than uniform crossover operation.

We ran the four variations of genetic algorithms from ten different initial generations of solutions.
Table 1 presents a summary of our findings from the ten runs using the standard crossover operator.
The second column of the table shows the average of the objective function values of the best solution
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Figure 6: The diameter of each generation for genetic algorithms using uniform crossover operation
on function f1

obtained in all ten runs. The third column shows the average number of iterations required to first
reach the best solution in a particular run. The fourth column shows the number of runs in which
the best solution obtained by the genetic algorithm is in the vicinity of the global maximum.

Table 1: Performance of genetic algorithms with standard crossover on f1

Obj. fn. value Itn. to reach Times GA reaches
Algorithm of best soln. best soln. near best soln

CONV GA 0.637 1.0 0
EXP GA 0.637 1.0 0
EXP R1 GA 1.578 26.1 9
EXP R2 GA 1.865 16.1 9

From Table 1 we see that both CONV GA and EXP GA were never able to improve upon the best
solution seen in the initial generation. Recall that by design this was a locally optimal solution. This
is understandable, since neither CONV GA nor EXP GA contained any mechanism for diversification.
EXP R1 GA and EXP R2 GA could move away from this solution in a number of runs, in fact, EXP R2 GA

was always able to move away from the local maximum. The average quality of solutions obtained by
EXP R2 GA was better than that obtained by EXP R1 GA. Table 2 presents a summary of our findings
from the ten runs using the uniform crossover operator. The structure of Table 2 is identical with
that of Table 1.

Table 2: Performance of genetic algorithms with uniform crossover on f1

Obj. fn. value Itn. to reach Times GA reaches
Algorithm of best soln. best soln. near best soln

CONV GA 0.637 1.0 0
EXP GA 0.637 1.0 0
EXP R1 GA 1.478 22.0 7
EXP R2 GA 1.350 13.9 10
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From Table 2 we see trends similar to that seen in Table 1. The only difference is that for
this crossover operator, EXP R1 GA performs marginally better than EXP R2 GA in terms of average
solution quality. Another feature to notice is that the standard crossover operator seems to produce
better quality solutions than the uniform crossover operator, especially for EXP R2 GA.

Apart from f1 described in the introductory section, we performed the same experiment with
another function, which we call f2. The domain of this function was chosen as S2 = {(x, y) : 0 ≤
x, y ≤ 10}. This function is a mixture of eight bivariate normal distributions, centred around (3,3),
(3,7), (7,3), (7,7), (7,9), (8,8), (9,7) and (9,9). By altering the standard deviations of the normal
distributions, we chose (8,8) to be the global maximum with an objective function value of 1.041,
and the four neighbouring local maxima to be of moderate quality, having objective function values
of 0.639 each. The other three local maxima had objective function values of 0.249 for the maximum
at (3,3) and 0.159 for the maxima at (3,7) and (7,3). Figure 7 shows the plot of f2 over S2.

Figure 7: Function f2

As in case of f1, we chose ten initial generations of solutions which were far from the global
maximum at (8,8). The initial generations did not have any solutions in which both the x and
y coordinates were between 6 and 10. We added a locally optimal solution (3,3) to the initial
generation. We fixed the number of solutions in each generation at 25 and allowed the genetic
algorithms to run for 50 generations. The life-span of solutions for EXP GA, EXP R1 GA and EXP R2 GA

was chosen to be two iterations. Table 3 summarizes our experience with the four variations over
the ten runs using the standard crossover operator and Table 4 summarizes our experience with the
uniform crossover operator. The structures of the tables are identical with the structure of Table 1.

Table 3: Performance of genetic algorithms with standard crossover on f2

Obj. fn. value Itn. to reach Times GA reaches
Algorithm of best soln. best soln. near best soln

CONV GA 0.336 1.4 0
EXP GA 0.336 1.4 0
EXP R1 GA 0.790 26.5 8
EXP R2 GA 0.687 25.2 4

It is clear that the main inferences from these tables are similar to the inferences from Tables 1
and 2. We see that neither CONV GA nor EXP GA can get out of the local maxima reached in the
initial generation. EXP R1 GA and EXP R2 GA can both get out of the local maximum. In this
problem, clearly EXP R1 GA outperforms EXP R2 GA, both in terms of the average quality of the best
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Table 4: Performance of genetic algorithms with uniform crossover on f2

Obj. fn. value Itn. to reach Times GA reaches
Algorithm of best soln. best soln. near best soln

CONV GA 0.307 1.6 0
EXP GA 0.311 1.5 0
EXP R1 GA 0.813 24.4 8
EXP R2 GA 0.695 21.4 2

solution encountered by the algorithm, and the frequency with which the best solution is in the
neighbourhood of the global maximum. Here the difference between the two crossover operators is
not observed to be significant.

4 Summary

In this paper, we have pointed out a weakness in conventional genetic algorithms. We argued that
if a genetic algorithm uses reproduction and crossover operators for its functioning, then successive
generations constructed by the algorithms have a chance of getting concentrated around local optima,
without giving the genetic algorithm a possibility of looking at points in the domain which are far
away from that local optimum but close to a global optimum. We also argued that if a local optimum
of sufficiently high quality is encounter “immortal”, i.e., present in all successive generations, and its
solution quality will ensure that it pulls individuals towards itself in successive generations, causing
the genetic algorithm to converge prematurely to the local optimum. We proposed two diversification
mechanisms in this paper which prevents such convergence. We tested the diversification ideas
introduced here on two functions of two variables. Our computational experiments validated our
arguments on the drawbacks of conventional genetic algorithms, and showed that genetic algorithms
with diversification processes built in perform much better in the search for a globally optimal
solution.

There are several ways in which the idea introduced in this paper can be studied more deeply.
We mention two immediate extensions here.

The diversification process introduced here necessarily requires a solution to be eliminated after
its life-span is over. In our experiments we have maintained the life-span as a constant of two
iterations. It is interesting to check the effect of (a) different values of life-spans, and (b) life-spans
varying with solution properties on the quality of solutions generated by genetic algorithms.

All experiments in this paper have been carried out on continuous functions of two variables.
In the literature, realvalued genetic algorithms have been applied on functions of higher dimensions
(see Digalakis and Margaritis, 2002). The other main application of genetic algorithms, namely
in combinatorial optimization problems encounters non-smooth objective functions in many dimen-
sions. It will be interesting to see how the algorithms described here scale up when the dimension
of the problem increases. We conjecture for example, that EXP R1 GA will mostly be unaffected, but
EXP R2 GA will have to be designed carefully when dealing with problems of higher dimensions.
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