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1. Introduction

The Job Shop scheduling problem is concerned with scheduling jobs Ji, J3, ..., J, on
machines M;, M, ..., M. Each job J; consists of operations O;i, O, ..., O having
processing time requirements pii, pi, ..., pPim respectively. These operations must be
performed according to a predetermined sequence, called the machine sequence of each
job. A machine cannot process more than one operation at a time. In addition, preemption
of operations is not allowed. We need to decide the job sequence of each machine such
that the maximum completion time of all jobs, also known as the makespan, is

minimimed.

The Shifting Bottleneck (SB) heuristic, developed by Adams et al. (1988), has emerged
as one of the prominent approximation methods for solving the Job Shop problem. It sets
up and solves a series of One Machine Sequencing Problems (OMSPs). Each OMSP
focuses on a particular machine My and abstracts the disjunctive selections on other
machines in the form of release and due dates for operations to be processed on machine
M. Let OPy = {O,,..., O,} be the set of operations requiring processing on machine M.
Each operation O; has a release date 7, a processing time p; and a due date fi. We need to
determine a processing sequence for the operations such that the maximum lateness L,y
for the set OPy is minimized. If C; denotes the completion time of O, then its lateness L;
equals C; — fi. The OMSP is solved and the optimal sequence Sk is implemented in the
original Job Shop. In this way the SB heuristic either generates the sequence Sy for
machine My when no such sequence existed before (Schedule Generation Step) or finds a
possibly new sequence for the machine M if it already has a sequence implemented

(Rescheduling Step).

The OMSP has been shown to be equivalent to a 3 machine (M;, M,, M3) flow shop
problem with makespan minimization objective where machines M; and M3 do not have
any capacity restrictions while M, can process only one operation at a time. This problem
is known in literature as the Head and Tails problem. Each OMSP operation O; is

equivalent to a job in the Head and Tails problem which requires 7i, p; and ¢; amount of



processing on the three machines. The values 7; and ¢; denote the “head” and “tail” of O..
If Chax denotes the makespan for the Job Shop from which this OMSP data is being
abstracted, then ¢; = Ciax — fi.

Carlier (1982) provided a very efficient branch and bound solution procedure for solving
the OMSP when all operations are independent. Adams et al. (1988) used this procedure
in the original implementation of the SB heuristic. Dauzere-Peres and Lasserre (1993)
showed that a Delayed Precedence Constraint (DPC) may exist between a pair of
operations. These DPCs are the result of paths in the disjunctive graph connecting
operations to be scheduled on the specified machine. Subsequently, Balas et al. (1995)
proved that the OMSP with DPC is NP-hard and proposed a branch and bound procedure
(BLV algorithm) for solving it. This OMSP solution procedure is an integral part of one
of the best solution procedures for the Job Shop problem (Balas and Vazacopulos 1998).

In this paper we identify a new type of precedence constraint that may exist in an OMSP
between the predecessor of an operation and the successor of another. We show that the
equivalence of the OMSP and the Head and Tails problem breaks down in the presence
of such precedence constraints. A modification of the OMSP representation is proposed
incorporating a generalization of the lateness function based on a due window. We
further show that the OMSP solution procedure need not be altered for solving the
modified OMSP.

The rest of the paper is arranged as follows. In section 2 we identify two situations when
representation failures can occur. The proposed representation is presented in section 3.
The implications for the overall Job Shop problem are analysed in section 4 and the

concluding remarks are presented in section 5.



2. Representation of the OMSP

Consider a particular scheduling instant when all machines have been scheduled, S being
the sequence set for machine My. The steps involved in setting up and solving an OMSP
for machine My in the Rescheduling Step of the Shifting Bottleneck heuristic are
enumerated below. If the OMSP is created as part of the Schedule Generation Step then
all steps except Step 1 would be performed.

Procedure OMSP

Step 1: Unschedule machine My by deleting all disjunctive selections

corresponding to sequence Sk.

Step 2: Determine » values for operations to be performed on Mj.
Step 3: Determine g values for operations to be performed on M.
Step 4: Determine the values of delayed precedence (if any) between operations to

be performed on M.

Step 5: Set up the OMSP from steps 2, 3, &4.
Step 6: Solve the OMSP by Carlier’s algorithm or BLV algorithm.
Step 7: Set disjunctive arcs corresponding to the solution returned by the OMSP

algorithm in the original Job Shop

Let the makespan for the Job Shop before and after Step 1 be C. and C2 respectively.

max

The makespan for the unscheduled OMSP set up in Step 5 is denoted by C> . Then C>

max * max

= max,,, {ritpi+*qi}. Asthe OMSP set up for machine M captures the scheduling

considerations on the other machines at that scheduling instant through the » and ¢

values, for proper representation, the makespan values C> and C® have to be identical.

This follows from the equivalence of the Head and Tails problem and the OMSP as
shown in Adams et al. (1988). However, the following example highlights that there can

exist situations where this is violated.



Example 1

Consider the data for a 3 job 3 machine Job Shop presented in Table 1. A particular
scheduling instant is shown in Figure 1 where the sequences set on M, and M, are O;—
0,1 and O,,—0,,—05; respectively. S and T are the dummy start and finish operations. The
makespan for the Job Shop is now 106.

Table 1. Data for a 3 job 3 machine Job Shop

Operation Immediate Job Predecessor Duration On Machine
On - 2 M,
Oz On 3 M,
01 - 4 M,
O O 5 M,
03 - 100 M;
O3 031 6 M,
On I?I » O

S g 021 > OEI

100

Figure 1. A particular scheduling instant

Suppose now that we choose M, for rescheduling. Step 1 of the rescheduling step is

equivalent to deleting the directed arc O;1—0;;. The makespan for the Job Shop before

and after the deletion of this arc are C' = 106 and C> = 106 respectively. Since there

is no delayed precedence relationship between O;; and O,; the OMSP data for M, is as

shown in Table 2.



Table 2. OMSP data for M,

Operation | r; Di qi
O 0 2 14
0> 0 4 11

Thus C® = max; {r; + p; + ¢gi} = 16. Hence C® # C” . The reason for the difference

between the two makespan values stems from the fact that the processing time of
operation O3 is not reflected in the release or delivery time data for any operation to be
processed on M;. Hence the one machine abstraction does not remain faithful to the

original Job Shop situation.

This representation failure will occur whenever there exists an operation O such that (i)
it is neither a predecessor nor a successor (immediate or otherwise) of any operation
scheduled on machine M, and (ii) O" belongs to a critical path in the original digraph.
This situation will not arise in the commonly used test problems in literature, such as
those provided by Applegate and Cook (1991), Fisher and Thomson (1963) and
Lawrence (1984); as every job in those test problems have operations to be performed on
every machine. However, in real life applications, it is conceivable that a particular job

requires processing only on a sub set of the available machines in the Job Shop.

A representation failure can also occur when the operations of the type O do not exist.

We provide such a situation in the next example.

Example 2

Consider the data for a 2 job 2 machine Job Shop presented in Table 3. A particular

scheduling instant is shown in Figure 2 where the sequences set on M| and M, are O;;—

o
max

Oy, and O;,—0s, respectively. The makespan for the Job Shop is now 211. Hence C

211. If we now reschedule M, the data for the OMSP is as presented in Table 4.



Table 3. Data for a 2 job 2 machine Job Shop

Operation Immediate Job Predecessor Duration On Machine
On - 100 M,
On On 6 M,
O - 5 M,
Oxn 02 100 M,
O » O

100
2

Figure 2. An example of a 2 job 2 machine Job Shop

Table 4. OMSP data for machine M,

Operation | r; Di qi
O1r 100 6 0
01 0 5 100

Clearly, C» = 200 while C> = 106, and henceC® # C» . Thus a representation

max max max max *
failure can happen even if operations of the type discussed in the previous example are

absent.

The two examples show the existence of a precedence relationship in the original Job Sop
between the predecessor of one operation and the successor of another operation such

that both the operations are to be performed on the same machine. For example, such a



relationship exists in Example 2 between O, the job predecessor of operation O;, and
O1, the job successor of operation O,;. Due to this precedence relationship, the operation
O, cannot start until time 100. This relationship is not captured by the current OMSP
representation. Similarly, in Example 1, operation Os, cannot start before time 100.
Hence a precedence relationship, not captured by the OMSP representation, exists
between S, the job predecessor of operations O;; and O;;; and Oj;,, the successor (not

immediate) of O, and O;.

One possible way of overcoming the representation failure could be to introduce a
dummy operation O° to be processed on selected machine M,, having a release time of

CA

max

B _
max

and zero processing time and g value. With this representation, the condition C

A
Cmax

is always guaranteed. The OMSP data for machine M, in Example 2 would then be

as shown in Table 5. The disjunctive graph representation of the equivalent 3 machine

Head and Tails problem is shown in Figure 3.

Table 5. Modified OMSP data

Operation | r; pi qi
O 100 | 6 0
021 0 5 100
o° 200 | 0 0
100
On » O IEI » O13 \@
A
[0] il 100N
A
A 4
O3 Ox > Os3 IEI

200

Figure 3. Disjunctive Graph of equivalent Head and Tails problem



It may be noted that the introduction of the dummy operation does not complicate the
solution procedure for the OMSP as its processing time is zero. Once the OMSP is
solved, the dummy operation may be ignored in subsequent steps. Thus the introduction
of the dummy operation will let us avoid the creation of an OMSP representation which
does not exactly mirror the prevailing Job Shop, without any detrimental effect on the

OMSP solution procedure.

However, a modification of the OMSP representation using a dummy operation fails to
capture the additional information regarding start time of operation O,; in Example 2. We
could have accommodated the precedence relationship between O;; and O,; in Example
2 as a directed arc between the corresponding operations O;; and O,3 on M; and M;
respectively in the Head and Tails problem. However, precedence relationships of the
type presented in Example 1 would require the use of a new Head and Tails formulation
consisting of 4 machines. In general such an approach would become clumsy, as
precedence relationships dictated by disjunctive constraints can exist between any two
operations in a Job Shop. The existence of such precedence relationship implies that the
Head and Tails problem ceases to be an equivalent way of representing the sequencing
decisions faced by the OMSP. Hence the need arises for a new representation of the

OMSP which captures the additional information.

3. Proposed Representation

In the OMSP representation, the lateness of an operation O; is calculated as L; = C; — f;
where C; and f; denote the completion time and due date for O;. The Lateness Function
(LF) is plotted in Figure 4 to depict how the lateness of the operation varies with

completion time.



v

Fig. 4. The Lateness Function

As we have shown in the previous section, the LF may not adequately represent the
lateness of all operations in the OMSP. For certain operations O; it may be worthwhile to

replace the due date with a due window. The left extremity (LE) of this due window is

denoted as f;" . The right extremity of the due window is the original due date f;. For such
operations, L; = (f;"— fi) for all C; < f"and L; = C; — f; otherwise. The plot of the

Modified Lateness Function (MLF) depicts the situation in Figure 5.

v

(f 'ﬁ)I £k &

v

Fig. 5. The Modified Lateness Function (MLF)

We divide the set OPy of operations to be performed on machine My into mutually

exclusive and exhaustive sets O; and O, such that the LF (MLF) adequately represents
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the lateness of all operations in set O; (O,). The lateness of an operation O; can then be

computed as L; = C; — f; if O; € Oy; max {( f;" —f)), (Ci —f))} otherwise.

The MLF can be seen as a generalization of the LF where f,"=0,V O; € O;; f">0
otherwise. Hence we call this modification of the classical lateness function as the

generalized lateness functionZ{. ThusZ{ = max {(f"— f), (Ci — f)}, V O

Consequently, LS =max; L. The OMSP is thus reclassified as a 17| LS, problem.

We are in effect proposing that instead of a due date based objective function, a due
window based objective function is more suitable for the OMSP. Due window based
objective functions have been used by researchers in Earliness-Tardiness scheduling
problems (Liman et. al. 1998, Yeung et. al. 2001). In such problems, an activity is
penalized if it does not finish inside the due window. No penalty accrues if completion

time falls within the due window. However, for the generalized lateness function L , the

lateness of an operation continues to vary inside the due window.

Let w; = f; — f." represent the length of the due window for O; and let 7" represent the

tardiness measure using the Left Extremity fiL as the due date. Then 7" =LiG +wi; V O,

1

In case wi =w, V O;; T" =L+ w; V O.. Hence T. =L° + w. Thus the MLF can be

visualized as a tardiness objective with a shifted origin if the length of the due window is

same for all operations. A solution procedure for the OMSP can then be to use solution
procedures for the 1|rj| Tinax problem with due dates defined as fiL values. It is highly
unlikely that wi = w, ¥V Oi. A counterexample is presented in Example 3 to highlight that
the 1| v | Tnax problem with due dates defined as £ values would not correctly represent

1

the MLF in general.
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Example 3

Consider the data for an OMSP presented in Table 6

Table 6. A 2-operation OMSP data

Operation ri pi fi 1t
A 0 2 5 2
B 0 2 4 3

The optimal sequence for the 1 | rj| Tmax problem, with due dates defined as f;" values, is

A-B. However, the optimal sequence under the 1|7| L¢_ formulation is B-A. Hence the
1|1"j| Tmax problem, with due dates defined as ﬁL values is not equivalent to the

17| LS formulation if the length of the due window is not same for all operations.

The computation of f;" values for all activities in an OMSP can be effected by including

the following steps in the Procedure OMSP described earlier.

Step 4a: begin
for each OMSP operation Oy
£l «0;
for each successor operation O; of O;;
ifL(S, )~ LG, 1) +pi> £
f5 < LS, )~ LG, ) + pis

end

Here L(i, j) denotes the longest path in the Job Shop problem between two operations O;
and O;. Since release time of operation O; is r; = L(S, J), nothing is gained if operation O;

is completed before L(S, j) — (L(i, j) — pi). Note that the L(S, j) values had already been

12



calculated during the forward pass calculations in Step 2 of the Procedure OMSP.
Further, all successor activities of operation O; need to be visited in Step 4 of Procedure
OMSP to check whether delayed precedence constraints exist. The L(i, j) values can be
calculated during this search. Hence the determination of the left extremity values can be
integrated with the work involved in Steps 2 and 4 of existing Procedure OMSP. Thus the

additional work involved in the determination of left extremity values is minimal.

Example 4

For the 3 job 3 machine Job Shop presented earlier in Table 1, the left extremity (LE)

values for operations O;; and O,; are calculated as follows:

LE(On) =max {0, (L(S, O12) — p11 + p11), (L(S, Ox) — p11 — p12+ p11), (L(S, Ox) —

pii—pi2—pntpn)}
=max {0, (2), (5-3), (100-3-15)

=92

LE(O21) =max {0, (L(S, Oxn) —p21 + p21), (L(S, O32) — p21 —p2n2t+ p21)}
— max {0, (5), (100 — 5)}
=905

Lemmal: f"<f,V O

Proof: Note that £,"=0,V O; € O;. Hence f,"<f,,V O; € O, since f; > 0, V O;. For
operation O; € O,, let operation O; be the immediate successor of O; such that O; is
constrained to start only on or after fiL . Then ﬁL = L(S, j). If Cpax be the makespan of the

Job Shop,

L(S, i) + L, T) < Conax
= L(S, i) < Coax — L(j, T)

13



:>L(S=J) < Cmax_CIi
= L(S,j) <fi
= fF<fi [

G
max

For any given sequence S, let L’ (S) represent the maximum lateness under the

proposed 1 |rj| LY representation. The maximum lateness for any sequence S under the

X

existing 1 | I8 | Lmax representation of is denoted as Lpax(.S).

Lemma 2: For any sequence S,
() Li< LY,V O
() Li= LV < L°=Ci— f;
(i) Linax(S) < Ly, (S)

(iV) Linan(S) = Ly (S) & L7 = L3, (S) = Ci— f;

max

Proof: Follows from definitions of Z; and L? . ]

Lemma3: Let L¢ =% (S).Then S is optimal for 1|r| LS if LS = f"—f.

Proof: Otherwise there exists sequence S’ such that LY (S") < f'— f. This is

max

impossible since L7 > ( ;" - f)) by definition. ]

Theorem 1: If § is optimal sequence for 1 |rj | Lpax then S is also optimal for 1 |rj| L¢

max *

Proof: Otherwise there exists sequence S’ such that LS (S")<LS

max max

(S). Let LY

=19 (S). Theneither LY = f'—fior LT = Ci—f.

max

Case I: LY = f"— f. Then using Lemma 3, S is also optimal for 1|rj| LS which is a

max

contradiction.

14



Case 11: Lf’ = C;i — fi. Then using Lemma 2, LiG = Lmax(S) and Ly (S') < L¢ (S"). Hence

max

Lina(S) LS (S)Y<LE (8)= Liax(S)

max max

= Linax(S") < Lmax(S)

which is a contradiction since S is an optimal sequence for 1 | I8 | Linax- n
The converse of Theorem 1 is not true as is shown in Example 5.

Example 5

Consider the data for an OMSP presented in Table 7.

Table 7. A 2-operation OMSP data

Operation ri Di fi £
A 0 2 5 4
B 0 2 4 4

Both A-B and B-A are optimal sequences for the 1|r| LS problem. However, only

sequence B-A is optimal under the 1|rj | Linax formulation. Hence it is not necessary that

an optimal sequence for the 1|7l L¢ problem is also an optimal sequence for

thel | I | Lnax problem.

Theorem 1 implies that we do not need to modify the current OMSP solution procedures
in order to arrive at a solution for the new representation. The BLV algorithm, originally

designed for the 1|rj|Lmax problem, would be an exact solution procedure for the

1lr| LS problem. The extra information available in the 1|7j| LS formulation then

seems to be of no practical use for the purpose of optimally sequencing the OMSP.

15



However, as we show in the next section, the extra information may be of use for the

solution of the overall Job Shop problem.

4. Implications of information loss for the overall Job Shop problem

Consider the data in Example 2 where the current OMSP representation for machine M,
fails to take into account the information that operation O,, cannot start before 100. Can
this information loss while scheduling the OMSP result in a degradation of solution
quality for the overall Job Shop? The following example shows that such a situation can

indeed arise.

Example 6

Consider the data for a 4 job 4 machine Job Shop presented in Table 8. A particular
scheduling instant is shown in Figure 6 where the sequences set on M), M,, M5 and M,
are O11—01, 021—031—013, O41—053 and O4,—0s3; respectively. If we choose to reschedule

machine M,, the OMSP data is presented in Table 9.

Table 8. Data for a 4 job 4 machine Job Shop

Operation Immediate Job Duration On Machine
Predecessor
O - 100 M,
On On 6 M,
O - 60 M,
O Oy 99 M,
Ox3 O 1 M;
Os; - 40 M,
O3 03 99 M,
O - 60 M;
On Oxn 50 n

16
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021 Iﬂl ;022 023 1
S
el > 92059
VY 50
O O

o]

Figure 6. A particular scheduling instant for the 4 job 4 machine Job Shop

Table 9. OMSP data for machine M,

Operation | r; pi qi
On 100 | 6 0
01 0 60 100
031 0 40 99

Both Carlier’s algorithm and BLV algorithm would return the sequence O,1—031—012
with L. = 0. Setting the sequence O,1—031—0); on M, would result in a makespan of
209 for the Job Shop. However, if we had supplied the additional information that
operation O, cannot start before 100, a possible sequence could have been O31—0,1—013
resulting in a makespan of 209 for the Job Shop. While the two sequences return the
same makespan, the differences crop up in the next iteration of the SB heuristic. If the
0,1—051—013 sequence is implemented, the SB heuristic will settle down in a local optima
as rescheduling any machine would not improve the makespan. On the other hand if
sequence (O31—0,1—0)2 is implemented, we can reschedule machine M, in the next
iteration leading to a makespan of 200 as shown in Figure 7. This is because sequence

031—0,1—01;, provides more opportunities for scheduling operation Oj; earlier.

17



100
On » O12

Figure 7. Status after rescheduling machine My

Several neighbourhood structures are known for the Job Shop problem (Blazewicz et. al.
1996). All such neighbourhood structures involve moves defined on operations on the
critical path in the digraph. Note that the critical path S—04,—04,—03,—T in Figure 6 does
not pass through any operation on M,. Thus the current neighbourhood structures do not
allow a move to sequence O3—0,—01,. Example 6 clearly demonstrates that a
neighbourhood structure involving resequencing operations not on the critical path may

be of value.

Thus the information contained in the 1| rj| ¢

. Tepresentation has the potential of being
profitably used in solving the overall Job Shop problem even though it is little
consequence for the optimal solution of the OMSP. However, a solution procedure
designed keeping this information in mind may have to focus on more than one machine.
Such a procedure can still be a machine based decomposition procedure, but instead of a

One Machine Sequencing Problem we may have to deal with a Two Machine Sequencing

Problem or a higher version.
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5. Conclusion

The Shifting Bottleneck heuristic has emerged as one of the prominent approximation
procedures for solving the Job Shop problem. The OMSP lies at the core of the SB
heuristic. In this paper we have presented two examples to highlight a lacuna in the
current representation of the OMSP and have proposed an improved representation. We
have identified a new type of precedence constraint that may exist in an OMSP between
the predecessor of an operation and the successor of another. In the presence of such
constraints, the current OMSP representation does not capture all the sequencing
relationships on other machines in the release and due date information. A modified
OMSP representation has been proposed with a generalized lateness function based on
the concept of a due window. We have proved that the current optimal solution
procedures for the OMSP would also be optimal for the OMSP under the proposed

representation. Further research can be aimed at proper utilization of the information

contained in thel | ;| LS formulation for better schedules for the Job Shop problem.
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