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Abstract   The steadily accumulating literature on technical efficiency in fisher-
ies attests to the importance of efficiency as an indicator of fleet condition and
as an object of management concern. In this paper, we extend previous work by
presenting a Bayesian hierarchical approach that yields both efficiency esti-
mates and, as a byproduct of the estimation algorithm, probabilistic rankings of
the relative technical efficiencies of fishing boats. The estimation algorithm is
based on recent advances in Markov Chain Monte Carlo (MCMC) methods—
Gibbs sampling, in particular—which have not been widely used in fisheries
economics. We apply the method to a sample of 10,865 boat trips in the US Pa-
cific hake (or whiting) fishery during 1987–2003. We uncover systematic
differences between efficiency rankings based on sample mean efficiency esti-
mates and those that exploit the full posterior distributions of boat efficiencies
to estimate the probability that a given boat has the highest true mean effi-
ciency.

Key words   Ranking and selection, hierarchical composed-error model,
Markov Chain Monte Carlo, Pacific hake fishery.
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Introduction

Ranking production units—firms, employees, or machines, say—by efficiency is
useful for a variety of managerial purposes. In retail, a firm may wish to identify
and replace its less productive salespersons (Fernandez-Gaucherand et al. 1995). In
agriculture, more efficient farms may be used as models for less efficient ones
(Ahmad and Bravo-Ureta 1996). In fisheries, efficiency rankings may aid firms
wishing to compare the relative performances of boats. Such rankings may also as-
sist fisheries managers in gauging the likely impacts of prospective management
measures or the effects of measures already enacted. For example, rankings of boat
efficiencies before and after the implementation of mesh size limits might indicate a
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differential impact of the regulation on home port groups or boat sizes. Similarly,
the effects of a permit buyback on the composition of fleet efficiency might be a
concern during formulation of the buyback program, especially if ‘high-’ or ‘low-
ranking’ boats might be given priority in the buyback. To take another example,
efficiency rankings could help assess the likelihood that ostensibly conservation-
neutral transfers of days at sea among boats would affect fishing mortality. While
such rankings may be useful, they raise a variety of challenging questions related to
their derivation and statistical properties. For example, can the most or least effi-
cient boats be identified reliably? When boats have different estimated efficiency
scores, how probable is it that the difference is real and not due to statistical noise?
And, can boats be categorized in statistically defensible ways—for example, into
high, medium, and low efficiency types?

In this paper, we outline a framework within which these and similar questions
can be addressed. One major difference between our approach and those preceding it
is that we define ‘the best’ as that boat that has the highest probability of having the
lowest inefficiency score. In this context, the key points we make are three. First,
because they are functions of other random variables, technical efficiency scores are
themselves random variables with associated probability distribution functions
(pdfs). Second, rankings of mean efficiency scores based on the complete distribu-
tion of those random variables may produce different results from rankings based on
point estimates of mean efficiency. That is, using only sample means in ranking and
selection ignores vital information, and a ranking of production units according to
point estimates of technical efficiency may lead to error. Third, while frequentist
methods have been successfully applied in this context (Horrace 2005), the Bayesian
hierarchical approach to ranking and selection has some significant advantages. Its
range of applicability is broad, since any function of posterior estimates can be esti-
mated directly. Further, its implementation is attractive, producing the requisite
probability calculations as a byproduct of the estimation algorithm.

The basis of our approach is the composed-error stochastic frontier model com-
monly used for efficiency studies (Kumbhakar and Lovell 2000). While most
stochastic production frontiers, both within fisheries and within the wider produc-
tion economics literature, are estimated using maximum likelihood techniques, we
adopt a Bayesian hierarchical approach for three reasons. First, recent advances in
Bayesian estimation permit implementation of significantly more complex models
than previously thought possible. Second, the hierarchical approach enables us to in-
corporate, formally and robustly, aspects of intra-sample heterogeneity that are
important in the data generating environment in which the technical efficiency
scores are established. In the fisheries context, heterogeneity can assume several
forms, including variations in performance across seasons, variations in perfor-
mance across boats within seasons, and variations in performance across trips within
seasons and across boats. Such heterogeneity can impact efficiency scores, so it is
important to account for it when it is present. Finally, as a byproduct of the estima-
tion algorithm, the Markov Chain Monte Carlo (MCMC) routine used to estimate
frontier parameters and unit efficiencies generates estimates of probabilities that a
particular vessel or group of vessels is most efficient, as we illustrate below.

We demonstrate the ranking and selection problem with an application to the US
Pacific whiting fishery. The data set used consists of a panel of 10,865 Pacific whit-
ing trips taken off the US West Coast1 by 41 boats between years 1987 and 2003. We
suppose that each trip has associated with it a measure of technical efficiency that
depends, among other things, on the management of the boat making the trip and the

1 West Coast here refers to California, Oregon, and Washington.



Bayesian Ranking of Boat Efficiencies 417

year in which the trip occurs. Importantly, we consider the trip-specific technical ef-
ficiency measure to be a draw from an underlying distribution characterized by an
unobserved set of parameters. Because these parameters are important determinants
of the technical efficiency score associated with each boat, a key objective is to esti-
mate them. In standard hierarchical estimation, the end point of the investigation is a
description of the marginal distribution of the parameters in question. Although the
marginal distributions that we seek are not available in closed form, an estimation
procedure using recent advances in MCMC methods supplies them. Having esti-
mated the parameters in the underlying data-generating process, we then go on to
compare the probability that the true values of each boat’s mean efficiency score is
the maximum among the set of all boats’ true mean efficiencies.

In the next section, we describe measures of technical efficiency that have been
developed in the econometric literature and consider how they should be modified to
evaluate boat efficiency in fisheries. We then describe our estimation techniques and
apply them to the US West Coast Pacific hake fishery. The final section of the paper
offers an assessment and conclusions.

Bayesian Ranking and Selection

Statistical ranking and selection procedures have developed over the last fifty years,
with fundamental contributions from Bechhofer (1954) and Gupta (1956) and dis-
cussions of the modifications since then by Gibbons, Olkin, and Sobel (1977);
Gupta and Panchapakesan (1979); and Dudewicz and Koo (1982). More recently, a
Bayesian procedure for ranking and selection of related means with alternatives to
analysis-of-variance methodology is proposed by Berger and Deely (1988). Subse-
quently, Fong (1992) develops an extension to incorporate covariates. The main
ideas underlying ranking and selection are articulated appealingly in Berger and
Deely’s example of ranking and selecting among baseball scores, which we repro-
duce as table 1 (Berger and Deely 1988, table 1, p. 365). This table reports the
performance levels of twelve leading batters in the National League in 1984 (ob-
tained for all players that had at least 150 at bats), showing each batter’s rank, based
on his batting average (xi, in column 2), his number of at bats (ni, column 3), and his

Table 1
Observed Batting Averages

i xi ni 1,000 × σi
2 pi

1 0.362 185 1.25 0.159
2 0.351 606 0.38 0.222
3 0.351 342 0.67 0.165
4 0.346 214 1.06 0.125
5 0.324 262 0.84 0.077
6 0.321 474 0.46 0.061
7 0.314 636 0.34 0.038
8 0.312 600 0.36 0.035
9 0.311 550 0.39 0.036
10 0.303 535 0.39 0.024
11 0.298 181 1.16 0.048
12 0.290 607 0.34 0.010

Note: Reproduced from Berger and Deely 1988, table 1, p. 365.
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associated variance in batting averages (1,000 × σ2, column 4). Column 5 reports the
probabilities that each of the batters is ‘best’ in the sense of having the highest true
probability of a hit, θi. An important outcome of this problem is that the player with
the largest observed sample mean (player one) is judged, by the hierarchical Baye-
sian method, to have a lower probability of having the highest true mean, because
the player with the highest true mean (player two) has a batting average that has as-
sociated with it a much smaller variance.

In the remainder of this paper, we develop a similar analysis of technical effi-
ciency in the Pacific hake fishery. Using a notation that we later justify, given a set
of unobserved mean inefficiency scores, {zA, zB, … zN} for N boats, we wish to se-
lect the boat that is most efficient, which is the boat with the smallest zi. Suppose
that Boat A has a higher estimated mean inefficiency than does boat B (that is,
ˆ ˆz zA B> ). Suppose also that boat A, with only a few trips, has a considerably higher

variance in inefficiency score than Boat B (that is, ˆ ˆω ωA B
2 2> ). Given these differ-

ences in the mean and variance of inefficiency scores, which of the two boats can
correctly be adjudged more efficient in the sense that it has higher probability of
having true mean inefficiency (zA or zB, as the case may be) that is lower than the
one associated with the other boat? By exploiting Gibbs sampling techniques, which
were not available to Berger and Deely (1988) at the time of their investigation, we
demonstrate how this question can be resolved simply and intuitively as a byproduct
of the estimation algorithm, without the need to resort to complex integration such
as that in Berger and Deely (1988) and in the literature preceding it.

The main attraction of the procedure is its simplicity. Although we observe nei-
ther the true values {zA, zB, … zN} nor the marginal probability density functions that
generate them, say {fA(zA), fB(zB), … fN(zN)}, we are able to estimate the correspond-
ing pdfs and, as a consequence, draw samples from the underlying distributions.
Consequently, we can compute the numerical analogue of the integral associated
with the probability ℘A(zA ≤ zJ, ∀ J ≠ A). This estimate is:

ˆ ( )℘ ≤ ∀ ≠ ≡ ×−A
Jz z J A GA [the total number of occurences in G draws from1 (1)

{ ( ), ( ), , ( )} , .f z f z f z z z z zN
A

A
B

B
N

A B A N in which the condition  holds]… ≤ … ≤

Similarly, we are able to repeat this calculation for each of the remaining boats in
the sample. If we are able to draw samples of sufficient size, we can appeal to the
asymptotic rule that, in the sequence of draws, g = 1, 2,…, G, the limit of the ex-
pression on the right converges to the true probability that we seek. However, in
order for the procedure to work, it is necessary that we simulate draws from the ap-
propriate pdfs. Although these pdfs are unavailable to us, we do have available the
corresponding fully conditional distributions, as required by the Gibbs sampling
procedure. As a consequence, we can estimate the marginal pdfs by the process of
Rao-Blackwellization (see Casella and George (1992) for discussion) in the se-
quence of iterations in the Gibbs sample, simulating as a byproduct of the estimation
algorithm the true probabilities that we seek.

As we have seen, the ideas of statistical ranking and selection date at least to
1954, yet there have been few applications in the resource and environmental eco-
nomics literature. Holloway and Ehui (2002) show how the Gibbs output can be
further exploited in order to estimate the probability that a particular policy is best
for achieving stated objectives. In assessing alternative measures for effecting mar-
ket participation among households in the Ethiopian highlands, they compute the
probability that a particular policy dominates in the sense that it effects outcomes at
least cost. Atkinson and Dorfman (2005) pursue similar objectives in an application
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that is contextually similar to the one in this paper. Using data from a sample of
electric generating plants in the US, they focus on identifying preferred sets of effi-
cient plants, where efficient means those plants that produce closest to the frontier
of a minimum distance function. Finally, related ideas, particularly those pertaining
to the truncated-Normal composed-error setting of this paper, appear in Horrace
(2005). His method is sample-theoretic and is focused on estimating sets of sample
units that are ‘most efficient,’ in the sense that with a preselected level of confi-
dence, that set of firms lies closest to the production frontier.

Several features of our econometric approach merit emphasis. First, by virtue of
the fact that the Gibbs sampler iterates over a large number of draws, the estimate in
expression (1) is a marginal probability measure even though the distributions from
which it is obtained are fully conditional. Second, with reference to the probability
calculations and previous work (Newey and West 1987), we can place numerical
standard errors on the probabilities computed, and thereby place confidence bounds
on the estimates derived. Lastly, the procedure is attractive for its generality as well
as its simplicity, as the probability calculations are equally applicable to arbitrary
functions of the estimated model parameters. This makes the procedure applicable to
a wide class of statistics that the analyst or the policymaker may wish to rank.

Bayesian Composed-error Model Estimation

Our statistical framework is the composed-error stochastic production frontier, with
heterogeneous production inefficiency incorporated using truncated normal distribu-
tions. The composed-error model has origins in the deterministic-frontier works of
Aigner and Chu (1968) and Afriat (1972) and the subsequent extension by Aigner,
Lovell, and Schmidt (1977) to make the frontier stochastic. Since the appearance of
these seminal works, composed-error modelling has experienced routine application
due, in part, to the availability of specialized software, particularly the freely avail-
able FRONTIER software package (Coelli 1996). In addition, a growing literature
emphasizes the versatility and value of applying the composed-error model in a
broad set of circumstances. Some of the more important developments since its in-
ception include extensions of the distributional assumptions on the inefficiencies
(Jondrow et al. 1982); incorporating explicit linkages between the mean inefficien-
cies and covariates to model efficiency change over time (Battese and Coelli 1992);
and extensions to panel settings in which production units are observed repeatedly
over time (see Battese and Coelli (1995) for a review).

Application of the composed-error model to fisheries came relatively late, but
the number of studies has grown in recent years. The first analysis of fisheries effi-
ciency appears to be Hannesson (1983). Recent applications include Kirkley,
Squires, and Strand (1995); Squires and Kirkley (1999); Grafton, Squires, and Fox
(2000); Bjorndal, Kondouri, and Pascoe (2002); Pascoe and Coglan (2002); Herrero
and Pascoe (2003); and Pascoe et al. (2003).2 From these recent studies, several gen-
eral themes emerge. First, the null hypothesis of zero inefficiency is generally
refuted; non-negligible inefficiencies appear to be the rule in fisheries. Second, the
overall distribution of technical performance in fisheries appears to be highly con-
textual, with some studies deriving widely dispersed estimates of technical
efficiency, whereas others produce estimates that are concentrated. Third, the effects

2 Overviews of technical efficiency and productivity in fisheries are available in Alvarez (2001);
Felthoven and Morrison Paul (2004); and Holloway, Tomberlin, and Irz (2005).  A recent review of the
more general economic efficiency literature is Murillo-Zamorano (2004).
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of regulation are an over-arching theme, and the analysis of how regulation affects
technical efficiency is a matter of considerable interest. Generally speaking, mea-
sures aimed at solving the open-access nature of fisheries tend to increase the
overall level of technical efficiency, and this positive force appears greater when the
fishery intervention is more flexible, although exceptions exist (see Grafton,
Squires, and Fox 2000; Felthoven 2002; and Pascoe et al. 2003).

While most studies of technical efficiency in fisheries are conducted with panel
data, they seem in most cases not to fully exploit the panel structure. This is partly
due to the econometric difficulties that arise in panel estimation when some regres-
sors are time-invariant. Our approach circumvents such issues by employing a
Bayesian hierarchical methodology, as has previously been done by Fernandez, Ley,
and Steel (2002) and Holloway, Tomberlin, and Irz (2005). Bayesian applications of
the composed-error model began with a series of seminal papers (Koop, Osiewalski,
and Steel 1994, 1997; Koop, Steel, and Osiewalski 1995) which were made possible
by the advent of MCMC techniques, Gibbs sampling in particular (Gelfand and
Smith 1990). These papers form the basis for our hierarchical investigation of tech-
nical efficiency in the Pacific hake fishery.

We assume that the data are generated from the observational equation:

y u z i N j T k Sijk ijk ijk ij i ij= ′ + = … = … = …x ββ – ,  , , , ; , , , ;  , , , ,1 2 1 2 1 2  (2)

where the subscript i = 1, 2, …, N, denotes the boats in the sample; j = 1, 2,…, Ti,
denotes the years in the sample in which boat i operates; and k = 1, 2,…, Sij, denotes
the trips undertaken by boat i in year j; yijk denotes (the natural logarithm of) catch
by boat i in year j on trip k; x′ijk ≡ (xijk1, xijk2,…, xijkM) denotes an M-vector of (the
natural logarithm of) relevant covariates affecting catch (inputs to production or ex-
ogenous factors such as weather); βββββ ≡ (βββββ1, βββββ2,…, βββββM)′ denotes an M-vector of
corresponding coefficients; uijk denotes a random error affecting catch by boat i in
season j on trip k; and zij denotes the level of technical inefficiency corresponding to
the ith boat in the jth year. Implicit is the assumption that, for a given boat in a given
year, each trip has the same level of technical inefficiency associated with it, but
that this zij may vary across boats and across years. We will make assumptions about
the uijk and the zij for which some additional notation will prove useful.3 Let fa(b|c,
d,…, e) denote a probability density function (pdf) of type a for random variable b,
fully described by the (unknown) parameters c, d,…, e. Consequently, our assumption
that the sampling errors are iid Normal can be formalized by writing uijk ~ fN(uijk|0,σ). We
need also to make assumptions about the data-generating process for the ineffi-
ciency terms. Many distributions have been proposed for the inefficiency terms zij,
in both the Bayesian and classical settings. These forms include the exponential, the
Gamma, the half-normal, and the truncated normal pdf (see Dorfman and Koop
2005, and the literature cited there, for a review of this work). While offering con-
siderable flexibility, the truncated-normal distribution is, arguably, among the
easiest to implement in hierarchical settings. Hence, we assume that each zij is

3 It remains to explain our choice of notation in the presentation of the rankings {zA, zB, …, zN}. The
observed data are denoted x and y and the unknown parameters are denoted by θ. We use z to denote
latent or missing data which, here, refers to the boat-and-year specific inefficiencies. However, the boat-
specific inefficiencies {z1, z2, …, zN} are also latent data in the hierarchy, thus the notation {zA, zB, …, zN}. An
alternative is to assume that the z’s are parameters contained in θ, as advocated, for example, in Koop
(2003, see, in particular, the discussion on pages 169–70). For most of the estimation, the choice of in-
terpretation is moot. However, the choice is significant in the context of marginal-likelihood estimation
(see Chib (1995) for discussion), and we prefer the latent-data interpretation of the inefficiencies, find-
ing it to be somewhat more intuitive.
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drawn from a normal distribution, truncated at zero, with unknown mean, zi, and
variance, ωi

2. We assume, in the hierarchical manner, that the boat-specific means
(i.e., the zi) are iid draws from another truncated-normal distribution with mean μ
and variance λ2. As an alternative, one could assume that the zijs are iid across years
with year-specific means, zj, and that the year-specific means are iid from the upper-
level distribution. However, in previous use of the data (Tomberlin, Irz, and
Holloway 2006) we find that the former specification is preferred.4 The form of the
hierarchical structure is presented diagrammatically in figure 1 and can be defined
formally by the relations zij ~ ftN(zij|zi,ωi) and zi ~ ftN(zi|μ,λ). Note that each boat-level
distribution—each ftN(.|zi,ωi)—is defined by a separate mean and a separate variance,
which is important in the context of calculating probabilities of ‘the best.’ This
problem, which is the main motivation of our inquiry, would degenerate if the
means and variances were constrained a priori to be the same. Yet the validity of
such a constraint can only be established a posteriori using our Bayesian hierarchi-
cal methodology. In short, what makes it interesting and motivates our investigation

4 In our context of Bayesian model comparison, ‘preferred’ means the model that has higher posterior
probability over all alternatives under consideration. Marginal likelihoods are the essential inputs in
Bayes factors which are, in turn, essential in calculating posterior probabilities in favour of a particular
model (see Zellner (1996), pp. 291–318, for a comprehensive discussion). Until quite recently, computa-
tion of marginal likelihoods had proven extremely troublesome (see for alternative attempts at computa-
tion Carlin and Polson 1991; Gelfand and Dey 1994; Newton and Raftery 1994; Carlin and Chib 1995).
The MCMC approach to estimation leads, by a simple extension (see Chib 1995), to estimates of mar-
ginal likelihoods, hence to diagnostics for model selection.

Figure  1.  A Three-layer Hierarchy of Boat Efficiency
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is the notion that different boats have different ftN(.|zi,ωi). For later reference it will
prove useful to group the boat inefficiency means into a vector zi ≡ (z1, z2,…, zN)′
and group also the boat inefficiency standard errors into ωωωωωi ≡ (ω1, ω2,…, ωN)′. Note
the use of superscripts in these definitions in order to distinguish between the col-
lection of boat-level inefficiencies (z i) and the collection of year-specific
inefficiencies pertaining to boat i (zi).

Suitably rearranging the system in matrix terms will enable us to develop the es-
timation procedure more transparently. Stacking observations across the trips yields:

y x uij ij ij ij ij iz i N j T= + = … = …ββ ιι– , , , , ; , , , ,  1 2 1 2 (3)

where yij ≡ (yij1, yij2,…, yijSij)′ denotes a vector of Sij observations on observed catch;
xij ≡ (xij1, xij2,…, xijSij)′ denotes a matrix of observed covariates of dimension Sij × M;
uij ≡ (uij1, uij2,…, uijSij)′ denotes a vector of random disturbances; and ιιιιιij denotes an
Sij-unit vector. It will prove useful to write the system in a boat-specific form. Stack-
ing observations over the respective years yields:

y x u v zi i i i i i N= + = …ββ – , , , , ,  1 2 (4)

where yi ≡ (y′i1, y′i2,…, y′iTi)′ denotes a vector of ΣjSij observations on boat i’s catch;
xi ≡ (x′i1, x′i2,…, x′iTi)′ denotes a corresponding matrix of covariates; ui ≡ (u′i1, u′i2,…,
u′iTi)′ denotes a corresponding vector of disturbances; vi denotes a binary matrix of
dimension ΣjSij×Ti containing the unit vectors ιιιιιi1, ιιιιιi2,…, ιιιιιTi; and zi ≡ (zi1, zi2,…, ziTi)′
denotes the technical inefficiency of boat i across the Ti seasons in which it operates.
Finally, by stacking observations over the corresponding boats, the system can be
written compactly as:

y x u wz= + −ββ , (5)

where vector y ≡ (y′1, y′2,…, y′N)′ has dimension S; x ≡ (x′1, x′2,…, x′N)′ has dimension
S×M; u ≡ (u′1, u′2,…, u′N)′ is an S-vector of disturbances; and w denotes a binary ma-
trix of dimension S×ΣiTi containing an appropriate arrangement of the unit matrices
v1, v2,…, vN.

With this notation at hand, the likelihood is easy to formalize. Given the as-
sumptions about the stochastic disturbance in equation (2), a Jacobian
transformation from u to y allows us to write the complete-data likelihood:

f f z f z fN
ij ij ij ij

TN
ij i i

TN
i

j

T

i

N i

( ) ( – , ) ( , ) ( , ).y , z y x z zθθ ββ ιι≡ × ×
==

∏∏ σ ω μ λ
11

(6)

At this point, we distinguish between the parameters θθθθθ ≡ (βββββ′, σ, ωωωωωi′, μ, λ)′, which are
unobserved; the observed data, x and y; and the unobserved or latent data, z, which
are the boat-year technical inefficiencies. A natural-conjugate prior over the ele-
ments of θθθθθ consists of independent normal and inverted-Gamma components,
namely:

π σ σ σ β( ) ( , ) ( , )θθ ββββ≡ ×f s v fiG
o o

mvN
o oC (7)

× × ×f s v f v f s viG
o o

N
o o i

iG
i io io( , ) ( , ) ( , ).λ μμ ωλ λ μ ω ωΠ
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It follows that the complete-data posterior is proportional to the product of equa-
tions (6) and (7), or:

π π( , ) ( , ) ( ).θθ θθ θθy z y z∝ ×f (8)

We also distinguish between the observed data likelihood f(y|θθθθθ) and the complete
data likelihood f(y|θθθθθ,z), noting that f(y|θθθθθ) = ∫f(y|θθθθθ,z)dz. An artifact of this distinction
is that we must obtain estimates of the latent z in the process of Gibbs sampling the
posterior in equation (8) and, hence, there are seven blocks of parameters for which
the fully conditional distributions must be derived. Some algebra (available from the
authors upon request) reveals that the fully conditional distributions comprising the pos-
terior consist of inverted-Gamma, univariate-Normal, multivariate-Normal, and
truncated-Normal forms, namely:

π σ μ λ σ σ σ( , , , , , , ) ( , ),y z z i i iGf v sββ ωω ∝ 2 (9)

where  vσ ≡ S, vσs2
σ ≡ (y – xβββββ + wz)′(y – xβββββ + wz) + vσos2

σo;

π σ μ λ( , , , , , , ) ( ˆ , ),ˆββ ωω ββββ ββy z z Ci i mvNf∝ (10)

where ˆ ( ) ( ) ( ) ;ββ ββ ββββ ββ ββ≡ ′ + ′ − +[ ] ≡ ′ +− − − − − − − −σ σ σβ
2 1 1 2 1

0
2 1 1x x C x y x C C x x C

o o
and

π σ μ λ( , , , , , , ) ( ˆ , ), , , , ; , , , ,ˆz f z z c j T i Nij
i i tN

ij ij z iij
y z ββ ωω ∝ = … = …1 2 1 2 (11)

where ˆ ( ) ( ) ( ) ;ˆz z cij ij ij i ij ij ij i i z ij ij iij
≡ ′ + ′ − ′ +[ ] ≡ ′ +− − − − −

−
− − −σ ω σ ω σ ω2 2 1 2 2

1
2 2 1ιι ιι ιι ββ ιι ιιy x and

π ω σ μ λ ω ω ω( , , , , , , ) ( , ), , , , ,i
i iG

i i if v s i Ny z z ββ ∝ = …2 1 2 (12)

where v T v s z z v si i i i j ij i io ioω ω ω ω ω≡ ≡ − +Σ Σ, ( ) ;2 2 2

π σ μ λ( , , , , , , ) ( ˆ , ), , , , ,ˆz f z z c i Ni
i N

i i zi
y z ββ ωω ∝ = …1 2 (13)

where ˆ ( ) ( ) ( ) ;ˆz z ci i i i i i ij z i i ii
≡ ′ + ′ + ≡ ′ +− − − − − − − −ω λ ω λ μ ω λ2 2 1 2 2 2 2 1ιι ιι ιι ιι ιιand

π λ σ μ σ λ λ( , , , , , , ) ( , ),y z z i i iGf v sββ ωω ∝ 2 (14)

where v N v s v si
N

i
N o oλ λ λ λ λμ μ≡ ≡ − ′ − +, ( ) ( ) ;2 2z zιι ιι and

π μ σ λ μμ μ( , , , , , , ) ( ˆ , ),ˆy z z i i Nf cββ ωω ∝ (15)
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where ˆ ( ) ( ) ( ).ˆ ˆ ˆμ λ λ μ λμ μ μ μ≡ ′ + ′ + ≡ ′ +− − − − − − − −2 1 1 2 1 1 2 1ιι ιι ιι ιι ιιN N N
i

o N Nc c c c
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z and

Each of these probability distribution functions is easy to sample from. Note that all
but one of the unknown random variables is required to initiate calculations, and we
select the draw for σ to initiate the chain. It follows that, given arbitrary starting
values {βββββ(0)′, z(0)′, ωωωωωi(0)′, zi(0)′, μ(0), λ(0)}, an efficient algorithm for estimating the pa-
rameters of the composed-error model consists of the steps:

A
1
: Draw, respectively, σ(g) from (9); βββββ(g) from (10); z(g) from (11); ω

i
(g) from

(12); z
i
(g) from (13); λ(g) from (14); and μ(g) from (15). Iterate a sufficient

number of times until the draws are independent of the starting values and
then repeat for iterations g = 1, 2,…, G, collecting output {σ(g), βββββ(g)′, ωωωωωi(g)′,
μ(g), λ(g)} g

G
=1  and {z(g), zi(g)} g

G
=1 .

From the outputs collected we can conduct posterior inference about the locations
and scales of the marginal distributions of interest and, indeed, any function of the
parameters which is of interest. Concerns about how long to iterate algorithm A1 are
answered by assessing convergence of the Markov chain, using appropriately chosen
convergence statistics. A large and growing literature on convergence exists (see
Gelman and Rubin (1992), Geweke (1992), Brooks and Gelman (1998), Mengersen and
Guihenneuc-Joyaux (1999), and Brooks and Giudici (2000) for comprehensive cov-
erage). In our case, convergence is assessed by using the convergence diagnostic:

CD
g g

S S

S S

A

A

C

C

A C=
−

+

ˆ ˆ
ˆ ˆ ,σ σ (16)

which is advocated, for example, by Koop (2003, p. 66). The convergence diagnos-
tic, CD, is obtained by iterating for a sequence of draws g = 1, 2,…, S0; then,
another sequence, g = 1, 2,…, SA; then, a third sequence, g = 1, 2,…, SB; and finally,
a fourth sequence g = 1, 2,…, SC; and collecting outputs from the second and fourth
sequences which, if the third sequence is sufficiently large, are likely to be indepen-
dently distributed. Then, with ĝSA

 and ĝSC
 estimates of two functions of interest,

derived with respect to the samples SA and SC, and with ˆ /σS AA
S  and ˆ /σS CC

S
their respective numerical standard errors, the statistic CD is asymptotically stan-
dard-normally distributed, making possible inference about the number of iterations
deemed to be sufficient for convergence. We estimate that convergence is achieved
after about G = 2,000 iterations, but we iterate conservatively using G = 25,000. The
empirical reports that follow are derived from this G = 25,000 sample, after a ‘burn-
in’ phase of G = 25,000.

Study Fishery, Data, and Prior Information

Pacific hake (Merluccius productus), also known as Pacific whiting, is a migratory
species found from Baja California to the Gulf of Alaska. Most of the commercial
catch is taken with mid-water trawl gear in the northern half of this range. The hake
fishery is a high-volume, low-margin fishery that accounted for 64% of the catch
(by weight) in the shore-based, limited-entry trawl fleet during 1993–2003. Because
of a tendency to spoil rapidly, hake were long regarded as undesirable by US fisher-
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men. During the 1990s, growth in the surimi market and improved processing tech-
niques led to huge increases in domestic catch, with most boats having refrigerated
seawater storage to reduce spoilage, making them a fairly distinct segment.

Along the West Coast of the United States, the hake fishery is managed by the
Pacific Fisheries Management Council, which allocates the total allowable catch
among a tribal fishery and three non-tribal sectors (a shore-based fleet, a catcher-
processor fleet, and a factory trawler fleet). In this paper, we consider only the
shore-based fleet; specifically, the 41 boats that caught hake on at least 100 trips during
our study period (1987–2003). While trip limits apply before and after the main sea-
son (to allow for incidental catch), during the main season there are no trip limits.

Pacific whiting were declared overfished in 2002—meaning that estimated bio-
mass had fallen below 25% of estimated unfished biomass—but have rebounded
recently. In 2004, the National Marine Fisheries Service declared the stock rebuilt,
which means that current biomass is over 40% of unfished biomass. Although there
are bycatch concerns (salmon and rockfish, in particular), trawlers operating off the
coastal shelf can often net hake with little or no bycatch. Hence, we adopt a single-
output stochastic production function in our analysis.

Our primary data source is the logbook information required of all vessels with
federal limited-entry groundfish permits. Logbooks record information on each trip
and tow, including species and estimated catch weight, gear used, location of fish-
ing, and duration of tow. Supplementary data on boat characteristics were obtained
from the Pacific Fisheries Information Network. In order to keep the analysis fo-
cused on the boats that form the core of the whiting fleet, we do not include boats
that had fewer than 100 whiting trips during 1987–2003. We further limit attention to
trips made during May-September, when trip limits are not in effect. This leaves a data
set consisting of 10,865 whiting trips taken by an unbalanced panel of 41 boats. These
data account for 82% of the shore-based fleet’s whiting catch during 1987–2003.

In order to implement the marginal likelihood calculation, a proper prior must
be chosen. Although the frontier estimates are in the form of input elasticities, we
have decidedly diffuse information about the remaining quantities of interest.
Hence, we adopt a weakly informative specification of the prior in equation (7),
consisting of values sσo = 0.1, vσo = 1, βββββo = 0M Cβββββo = 100×IM, sλo = 0.1, vλo = 1, μo = 0,
vμo = 100, and for i = 1, 2, .., N, sωio = 0.1 and vωio = 1. Experiments with alternative
priors suggest that inferences from the 10,865 observation sample are little affected
by the choice of prior.

Empirical Model and Results

The empirical specialization of equation (2) that we use in estimation is to transform
the observed catch and covariates levels into natural logarithms. This yields a Cobb-
Douglas form for the frontier. We also considered a production frontier in the
Translog form, but found little difference in the marginal-likelihood values of the
two models. It is important to recognize that any specialization of the frontier and
the hierarchy will affect the magnitudes of the technical inefficiencies that are re-
corded, and the only way to investigate whether such alterations make inferences
derived from a chosen specification fragile is to re-estimate the model and compute
associated model diagnostics. A fairly detailed investigation prior to the current ex-
ercise suggests that the chosen specification performs better than other conventional
specifications that a typical investigation might consider (Tomberlin, Irz, and
Holloway 2006). Moreover, for our purposes, the focus is on the ranking of ineffi-
ciencies, so we opt for the parsimonious Cobb-Douglas form. Accordingly,
coefficient estimates represent input elasticities.
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Table 2 presents summary statistics for the variables included in our preferred
model. Table 3 presents point estimates (posterior means) of parameters for the
model in which boats occupy the higher position in the hierarchy and years the
lower. Horsepower and tow duration per trip have a clearly positive effect on catch,
while crew size does not. Ratios of posterior means to standard deviations in the
Gibbs sample are reported in parentheses. As we report in Tomberlin, Irz, and
Holloway (2006), when we included exploitable biomass as a covariate, its coeffi-
cient is negative and significant, the opposite of the generally expected effect of
biomass on catch. Two factors help to explain this result. The first is that Pacific
hake school, and a boat’s ability to catch them has much more to do with the avail-

Table 3
Results

Posterior Mean Estimate
Parameter (Mean/Standard Deviation)

β1 (Horsepower)1 0.53 (10.16)
β2 (Tow hours) 0.05 (5.78)
β3 (Crew size) 0.06 (0.67)
β4 1987 Dummy Coefficient 8.30 (20.23)
β5 1988 Dummy Coefficient 11.64 (19.93)
β6 1989 Dummy Coefficient 12.47 (9.57)
β7 1990 Dummy Coefficient 13.11 (34.14)
β8 1991 Dummy Coefficient 12.52 (35.37)
β9 1992 Dummy Coefficient 12.82 (38.03)
β10 1993 Dummy Coefficient 13.20 (39.44)
β11 1994 Dummy Coefficient 13.02 (38.86)
β12 1995 Dummy Coefficient 13.22 (39.97)
β13 1996 Dummy Coefficient 13.35 (38.93)
β14 1997 Dummy Coefficient 13.34 (39.01)
β15 1998 Dummy Coefficient 13.36 (38.69)
β16 1999 Dummy Coefficient 13.39 (39.20)
β17 2000 Dummy Coefficient 13.62 (40.63)
β18 2001 Dummy Coefficient 13.58 (40.87)
β19 2002 Dummy Coefficient 13.67 (42.02)
β20 2003 Dummy Coefficient 13.74 (42.08)
σ (Sampling Error Std. Dev.) 0.52 (17.11)
μ (Mean of ftN(zi |μ,λ)) 5.2 (169.47)
λ (Std. dev. of ftN(zi |μ,λ)) 0.13 (5.93)

1 β terms are elasticities (a Cobb-Douglas production function is assumed).

Table 2
Summary Statistics for Model Data

Mean Std. Deviation Min. Max.

Catch (at-sea, in lbs.) 129,195 57,840 3 472,657
Horsepower 642 249 335 1800
Tow Hours (trip total) 4.0 2.9 0.0 29.5
Crew Size 3 0.3 1 6
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ability of a single school than with more regional measures of biomass. The second
is that the biomass was declining quite steadily throughout our study period, when
catch per trip was also increasing steadily, so that the biomass term essentially func-
tioned as a time trend in our regression. As an alternative, we allow for the
possibility of time-varying movement in the production frontier by including
dummy variables for the years. Coefficient estimates for these dummy variables are
also reported in table 3, and they show a significant upward trend. An alternative
model with both biomass and year-specific dummy variables was deemed inadmis-
sible due to extremely high levels of multicollinearity. We refer readers interested in
our model selection and diagnostics to Tomberlin, Irz, and Holloway (2006).

Table 4 presents the probabilities that each of the boats in our study fleet is the
most efficient. Column one reports the ranking of probabilities, i, across the 41
boats in the sample. Column two reports ℘i, the computed probability that boat i
has lowest inefficiency. Column three reports the mean inefficiency score, zi, de-
rived from the Gibbs samples, and column four reports the associated standard
deviation of the distribution, ωi. Column five reports the number of years that each
boat was in operation, and column six reports the total number of trips, ni, that the
boat took. Comparing the second and third columns shows that in many cases boats
with lower mean inefficiency scores (i.e., more efficient boats by that measure) also
have lower probabilities of being the most efficient. This effect can be seen, for ex-
ample, by comparing Boats 4 and 5. Boat 4 has a higher estimated mean inefficiency
score than does Boat 5 (implying that Boat 4 is less efficient by the usual compari-
son of means); but Boat 4 also has a significantly higher inefficiency standard
deviation, ωi, resulting in a higher probability that it is the more efficient of the two.
In all, 30 such cases exist in table 4. Hence, we conclude that rankings based on
point estimates of mean inefficiency scores and rankings based on computed prob-
abilities of being most efficient, which account for the standard deviation as well as
the mean of the efficiency estimates, lead to distinctly different conclusions.

We include information on years of active fishing and number of trips because
these are both factors that might be thought to have a positive effect on efficiency as
managers learn from experience (see Coelli, Rao, and Battese (1998) for references
to this line of research). In the context of fisheries, this idea is related to the ‘good-
captain hypothesis’ that differences in catch between vessels are largely explained
by differences in skipper skill (see Alvarez, Perez, and Schmidt (2003) for a re-
view). While we have not carried out a formal analysis of possible relationships
between these variables and the rankings reported in the second and third columns,
we include these numbers to demonstrate that these relationships, if any, are not ob-
vious. The most active and experienced boats can be found throughout the entire
distribution of rankings, and it is definitely not the case that the boat with the most
or the fewest trips is the one that is most or the least efficient. These observations
suggest the potential for additional inquiry about the distribution of performance
measures and the importance of learning by doing in the Pacific hake fishery.

Conclusions

The Bayesian hierarchical approach to estimating technical efficiency in fisheries
affords great flexibility in model specification and imposes only modest computa-
tional demands on the analyst. This paper exploits a further advantage of the
estimation framework and the computational method used to implement it, which is
that important additional information about industry performance can be derived as
a byproduct of the estimation exercise. In our case, this information is the probabil-
ity that a particular observational unit (here, a boat) has the highest likelihood of
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Table 4
Inefficiency Ranking and Boat-specific Information

i ℘i
1 zi

2 ωi
3 Ti

4 ni
5

1 0.4987 4.96 0.2689 5 177
2 0.1489 5.01 0.2419 9 462
3 0.0776 5.09 0.3723 9 431
4 0.0508 5.10 0.2973 6 159
5 0.0452 5.08 0.1972 7 187
6 0.0362 5.07 0.2014 5 87
7 0.0329 5.17 1.7745 9 95
8 0.0197 5.21 2.1757 7 51
9 0.0140 5.21 1.8225 8 121
10 0.0136 5.18 0.3322 11 414
11 0.0132 5.21 0.8916 5 134
12 0.0085 5.15 0.2765 6 142
13 0.0070 5.17 0.2912 6 272
14 0.0044 5.17 0.2188 7 349
15 0.0032 5.19 0.2779 11 501
16 0.0027 5.19 0.2845 16 652
17 0.0025 5.21 0.2307 13 536
18 0.0022 5.27 0.5585 6 93
19 0.0020 5.23 0.2197 3 54
20 0.0020 5.24 0.4206 5 121
21 0.0018 5.29 0.3747 9 358
22 0.0015 5.31 0.5076 4 159
23 0.0013 5.23 0.2246 4 101
24 0.0011 5.26 0.2865 11 500
25 0.0010 5.25 0.2140 4 109
26 0.0010 5.18 0.1974 7 186
27 0.0010 5.22 0.3568 7 232
28 0.0009 5.26 0.2236 7 403
29 0.0008 5.3 0.3186 12 617
30 0.0007 5.23 0.2644 10 331
31 0.0007 5.18 0.2027 10 269
32 0.0006 5.21 0.2858 5 108
33 0.0006 5.26 0.3048 11 92
34 0.0006 5.25 0.2735 9 508
35 0.0005 5.28 0.2445 7 226
36 0.0004 5.25 0.1876 10 359
37 0.0002 5.26 0.1812 8 272
38 0.0002 5.27 0.2224 5 66
39 0.0001 5.21 0.1477 12 502
40 0.0000 5.21 0.1656 5 162
41 0.0000 5.29 0.2651 7 277

1 The probability that boat i is most efficient in the fleet, p(zi ≤ zJ ∀ j ≠ i).
2 Boat i’s mean (over years) inefficiency score.
3 The standard deviation of boat i’s yearly efficiency scores.
4 Number of years in which boat i is active.
5 Total trips made by boat i during 1987–2003.
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being ‘best’ in the sense that it produces at minimum distance from a frontier which,
although unobservable, can be estimated simultaneously along with the technical ef-
ficiency scores. We argue that efficiency rankings based on these probabilities may
be more useful to industry observers than rankings based on point estimates of mean
inefficiency estimates alone.

As Atkinson and Dorfman (2005) detail, a modest set of additional steps in the
Gibbs sampling algorithm can be incorporated to derive probabilistic statements
about many statistics of interest. For example, researchers may want to rank percent
efficiency scores to test the sensitivity of rankings to vessel omission and to assess
the probability that boats with different estimated efficiency scores are, in fact, dif-
ferent. Here, we have focused on the probability that a given boat is the least
inefficient, which we believe provides a ranking with intuitive appeal and an in-
structive contrast to ranking by point estimates of mean inefficiency scores.
Conducting this analysis within the context of a model that is hierarchical in the in-
efficiency scores has enabled us to examine the importance of heterogeneous
inefficiency per se. However, our results are conditional on a model that ignores an-
other likely source of heterogeneity, namely differences in production frontiers
among boats. Because the location of the frontier affects the derivation of the ineffi-
ciency scores and the corresponding probabilities, we should be concerned about
sample heterogeneity leading to different frontiers. In this regard, recent work by
Tsionas (2003) makes compelling reading, and provides a platform for further devel-
oping Bayesian efficiency-in-fisheries analyses where the common-frontier
assumption can be tested, and, if necessary, relaxed.
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