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Abstract 

We analyze the comovements of a set of country-sector indexes from 45 different countries studying their factor 
decomposition based on a PCA analysis for a large cross section framework. We derive a measure to analyze the 
comovements over time based on the part of variance explained by the main extracted factors and we apply the 
method from Bai and Ng to study the relevant number of factors. We conduct rolling estimations for the period 1994-
2006 focusing on the set of emerging markets. We show that both, emerging and developed equity markets 
experienced increasing comovements over the period of study, reflecting the integration of those markets. We have 
estimated that the main factor accounts for 30\% and 20\% of the whole variation of each data set. We use the 
comovements to gauge integration in two different ways, both indicating higher integration for developed markets. 
Finally, we relate the comovements to a measure of diversification and we conclude that it is only possible to reduce 
85\% of the average risk of an equity index by diversification at the end of the period compared to 95\% at the 
beginning for the set of emerging markets.
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1. Introduction
The analysis of comovements is essential in the context of portfolio theory as it has

a direct impact on the risk reduction potential by means of diversification. The interest
in studying comovements across assets in finance comes from this interest in construct-
ing better portfolios in a mean-variance framework. Here, we analyze the comovements
within a set of international country-sector indexes over time and we study their rela-
tion to financial integration and diversification. Many documents present results about
comovements among developed markets but only a few analyze the comovements among
emerging markets or the comovements between emerging and developed markets1. Our
study gives particular attention to those markets pointing out their specific behavior, we
also use actual techniques of factor analysis mainly used in macroeconomic studies.

Our work lies within different strands of the literature. First of all, it lies within
the studies of comovements, largely explored by academics and practitioners, specially
for advanced markets. Longin and Solnik (1995) and Goetzmann et al. (2005) analyze
correlations of different developed markets and study their stability across time concluding
that correlations are time-varying and are rising during periods of high integration and
higher volatility. From our analysis, we find that the level of comovements increases during
the whole period of analysis and in a sharper way for the set of developed markets.

Second, this study is based on the factor models literature initiated by Chamberlain
and Rothschild (1983) and Stock and Watson (1988). To analyze the structure of co-
movements, we rely on a factor decomposition of returns. We suggest a dynamic measure
capturing the intensity of the comovements based on the part of variance explained by
orthogonal factors extracted with principal components analysis (PCA) and estimated
with a rolling procedure. The idea, derived from the APT literature2, is that markets
are ruled by common factors and as comovements become stronger, specific risk and di-
versification potential get lower. We use a data set with a large number of variables and
observations, therefore we estimate the factors as in Connor and Korajczyk (1986) and
we can use the inference results developed by Stock and Watson (1998), Bai (2003) and
Bai and Ng (2003). Thus, the principal components can estimate consistently the factor
space spanned by the true factors. We can therefore use information criteria to estimate
the number of factors consistently as in Bai and Ng (2002) and we are able to build con-
fidence intervals around the true factors in order to find if an observed factor lies within
them, and consequently give an interpretation to the estimated factors.

Third, we analyze the comovements with the perspective of measuring integration and
diversification. The use of comovement measures to capture integration has been largely
debated without a definite response3. We argue that in a large data setting, comovements
could be used to gauge financial integration. Extending the analysis to the international
context, the comovements would be impacted not only by the features of the assets and
the markets to which they belong, but also by the barriers existing between different mar-
kets. Here, we suggest different approaches to measure integration based on comovements
and we conclude that the level of financial integration has increased during the period.
The relation between comovements and diversification has been analyzed through the di-
versification ratio (DR) defined in Solnik (1974). We show graphically that both measures
are closely related and therefore we can conclude that the potential of diversification has
been reduced over the period.

1Some examples are: Bekaert and Harvey (1995), Carrieri et al. (2005) or Chambet and Gibson (2008)
2See Ross (1976) or Burmeister and McElroy (1988)
3see for example the work of Bekaert and Harvey (1995) or Errunza et al. (1999).
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2. Methodology
2.1. Factor Model and Comovements

We present a random variable X that follows a factor model representation. Let us
note Xit the excess returns of an index i , 1 ≤ i ≤ N , at time t, 1 ≤ t ≤ T .
The set of these returns obeys a factor model with K (unobserved) factors Fkt if:

Xit =
K∑

k=1

ΛikFkt + εit (1)

where εit represents the idiosyncratic component, Λik the sensitivity (loadings) of return
i to factor k and the idiosyncratic term are such that: E[εt] = 0 and V [εt] = Σε. This re-
lation can be rewritten as X = FΛ′+ε. where X = (X ′

1,...,X
′
T )′ with Xt = (X1t, ..., XNt)

′

denoting the N -dimensional vector of the N random excess returns Xit. Λ = (Λ1, ..., ΛN)′

is the NxK matrix of factor loadings (with Λi = (Λi1, ..., ΛiK)′) and F = (F1, ..., FT )′ (with
Ft = (F1t, ..., FKt)

′) are the K factors.
The use of models with large N and T simplifies the procedure of estimation of the

factors and loadings traditionally achieved with maximum likelihood estimation and where
normality assumptions for the errors are required. This specification also guarantees the
convergence of the estimated factors to the true factors.

The asymptotic estimation within large panel settings have been rewritten in Bai and

Ng (2007). From a standardized matrix Z, calculated from X, the factors F̂ k and the

loading Λ̂k are estimated with a principal components method such that:

N > T : F̂ k is
√

T times the k largest eigenvectors of the TxT matrix ZZ ′ and Λ̂k = T−1F̂ k
′
Z (2)

N < T : Λ̂k is
√

N times the k largest eigenvectors of the NxN matrix Z ′Z and F̂ k = N−1ZΛ̂k (3)

Another important issue of multivariate factor models is to determine the relevant number
of factors. A recent paper from Bai and Ng (2002) presents some panel based information
criteria to determine the number of factors in the case of approximate factor models in
large N settings.
Based on a k-factor model, they have studied the overall sum of the squared residuals

Vk =
1

NT

T∑
t=1

ete
′
t

where et = Zt − ΛFt and suggested several information criteria IC(k), of the form:

IC(k) = Ln(V (k)) + kg(N, T )

where g(N, T ) is a penalty function. The estimated number of common factors k̂ will be
the number k that minimize the information criterium. We use two information criteria
IC1(k) and IC2(k) presented by Bai and Ng:

IC1(k) = ln V (k) + k log(
NT

N + T
)
N + T

NT
(4)

IC2(k) = ln V (k) + k log(
min(N, T )

N + T
)
N + T

NT
(5)

2



We evaluate the number of factors with different sizes of data sets, and we combine
these results with the measures of comovements. We measure the comovements based
on the main k factors. The comovements at time t, are calculated for a matrix with W
observations4, as:

C1:k
t =

∑k
i=1 li∑N
i=1 li

(6)

where li corresponds to the ith eigenvalue of the sample correlation matrix. This mea-
sure indicates the intensity of markets comovements and represents the part of variance
explained by the k first common factors over the set of standardized variables. We can
also define a measure accounting only for the comovements explained by one of those
factors as:

Ck
t =

lk∑N
i=1 li

(7)

After analyzing the contribution of the different number of factors, we conclude that
the main factor is responsible for fundamental comovements and therefore we focus on it
for the rest of the analysis. We compute the measure C1

t of comovements that we note
Ct for simplicity.

Ct =
l1∑N
i=1 li

(8)

Ct is equivalent to the average squared correlation of each of the N variables with the
estimated factor F̂1t. We have,

Ct =
1

N

N∑
i=1

r̂2(Zit, F̂1t)

with

r̂(Zit, F̂1t) =

∑t
s=t−W ZisF̂1s√∑t

s=t−W Z2
is

∑t
s=t−W F̂ 2

1s

where W denotes the number of observations in the window and F̂1t is the main factor.
We construct confidence intervals for the eigenvalues of the correlation matrix to be

able to compare different levels of Ct based on the asymptotic results Saporta (2003) for
PCA with standardized variables. He has defined a confidence interval for the eigenvalues
of the correlation matrix using the limiting distribution of

√
N(log(λ̂i)− log(λi)) defined

in Anderson (1963). The interval applied to the measure Ck
t is:

Ĉk
t exp(−1.96

√
2

N − 1
) < Ck

t < Ĉk
t exp(1.96

√
2

N − 1
) (9)

Many authors have reported similar measures of comovements without analyzing them
over time or including confidence intervals allowing to compare the levels from different
periods.

2.2. Market Integration
A disadvantage of factor analysis is the difficulty to interpret the factors. The first factor
has been interpreted by Heston et al. (1995) as a market factor closely related to an

4from the date (t−W ) to the date t
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equally weighted index (EWI) composed of all N assets. We pushed further this analysis
using the method of Bai and Ng (2006) to build a confidence interval around the true
factor and to evaluate if an observed factor lies within its bounds5. The resulting interval
for an observed variable G has the following form:

Ĝ + ε̂jt − 1.96ŝjt < G < Ĝ + ε̂jt + 1.96ŝjt (10)

Where ε̂jt is the error term from the regression of the observed variable G on the esti-
matede factors F and ŝjt is the asymptotic variance of this error term.

If the EWI lies within the confidence interval for the first true factor, we can conclude
that the first factor represents a market factor which is close to the EWI.

With the first factor representing a market factor it makes sense to interpret Ct as a
measure of integration. We used two different approaches to measure integration. First,
a region would be considered more integrated if Ct is higher, we analyze different regions
and compare the results. Second, we measure integration to global markets6. We cal-
culate the measure of comovements explained by the main factor of the region, noted
CF1R

t . We compare it with the variance explained by the first factor extracted from
the whole set of variables noted CF1G

t on the set of variables from each group (emerging
- developed). We compare the importance of a global factor compared to a regional factor.

2.3. Diversification
As the level of comovements arises, less opportunities of diversification are left for the

investor. Comovements are therefore inversely related to diversification. Solnik (1974) has
introduced a measure capturing the part of risk that cannot be reduced by diversification,
defined as the ratio of the average sample variance of a portfolio of n assets over the sample
variance of a typical security7. The diversification ratio DRt, for a set of n variables xit

representing stocks or indexes returns, is defined as:

DRt(n) =
V ar(

∑n
i=1

xit

n
)

1
n

∑n
i=1 V ar(xit)

(11)

We show that Ct is be closely related to this measure DRt in the sense that it lies
within the confidence interval of Ct.

3. Data Description and Empirical Results
3.1. Data Description

We used Datastream8 global country-sector indexes in US Dollars for 10 sectors and 46
countries. The period of study is 1994:07-2006:06. We decomposed the set of countries
into developed and emerging markets and distinguished different regions within emerging
markets, we present the details of the different countries, regions and sectors included in
the data set in Tables ?? and ??.

Log returns were calculated from the price series at weekly horizons. We have an-
alyzed some descriptive statistics for the set of country-sector indexes. The results are
summarized by regions in Table ??. For the set of developed countries, the average an-

5The details of the method are found in the appendix.
6This approach used in other integration studies is similar to international asset pricing models (i.e.

CAPM) based on an observed global factor.
7The average variance of a single stock.
8Datastream International Ltd. 09/07. We used their total return market indexes as Datastream use

the same methodology, include at least 80% of each market and has large coverage on emerging markets.
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nualized return is 8.2% and the average annualized volatility is 19.3%. The figures for
the set of Emerging markets present lower levels of returns for the considered period and
higher volatility. These statistics for this set of markets are 6.1% and 27.5%.

We implemented a rolling estimation procedure from the set of normalized returns,
as we have series with very different levels of variance. We have used a rolling window of
size W equal to one year.

3.2. Empirical results and analysis
3.2.1. Factor Model and Comovements

We analyzed the number of common factors within each data set with Bai and Ng’s
method. We considered rolling estimations because the inclusion of very distant past
information could be misleading9. We have calculated the two criteria presented in section
2.1. but we only report the results for IC210. We observed that the number of factors is
different for each zone, it ranges from 1 to 4 for the rolling estimations with a window
length of one year. The criteria from Bai and Ng are based on the minimization of the
percentage of variance explained by a given number of factors, therefore it would be sound
to analyze jointly the number of factors and measure of comovements. We analyze it for
different number of factors. We perform this analysis for emerging and developed data
sets separately. Figure ?? presents the combined analysis.

For the set of developed markets, the first factor (F̂1) explains on average nearly 30%
of the variance of the whole data set. We observe a positive trend in the measure of
comovements explained by F̂1, from a level of 20% at the beginning of the period to a
level of 40% at the end. For emerging markets, F̂1 explains on average 16% varying from
12% to 24%. Regressing the measures Ct for emerging and developed countries over a
trend confirms this observation, both trend coefficients are significant and positive but
the coefficient for developped markets is higher and is more significant11.

Looking closer to Figure ??, we observe different behavior of the variance explained by
the first and second factors in emerging or developed markets. The cumulative variance
explained by the factors should explain the whole variability of the data set when all the
factors are included. In some way, when C1

t increases, the part explained by the rest
of factors should decrease. This explains why for developed markets, during some short
periods, the measure C1

t drops when C2
t (and even C3

t ) rises. Another explanation for the
presence of the second or third factors should be the temporary different behavior of a
subset of markets. This second argument seems to be plausible to explain the behavior of
the second factor for the emerging markets data set during the years 1998 and the set of
developed markets during 2001. We relate the peaks of C1

t with downturns of the market
and, in the same way, comovements’ drops should correspond to bullish phases of the
market12. For the set of developed markets, we observe three peaks (in 1999, 2002-2003
and 2005) and three minimums (in 1996, 2000 and 2004). The years 1997-1998 correspond
to the presence of a relevant second factor certainly related to the asian crisis, the same as
the year 2001 for developed countries where the second factor is undoubtedly associated
to specific factors related to the technological bubble.

The second row of graphics in Figure ?? presents the optimal number of factors

9We reported the results for window sizes of one year length.
10Both criteria give similar results, we present the results for the IC2 criterium which gives a more

stable number of factors.
11The results are presented in table ??
12When investors are more confident and there is less variability in the equity market.
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calculated for the same windows with the method of Bai and Ng. During periods where
the second or third factors account for an important part of the variance, the criteria
suggest to use two or three factors, otherwise only one factor is relevant. The second
and third factors reveal specific phases of the market and are therefore important to be
included but only during some short periods. We observe a lower level in the comovements
of emerging markets but also a lower number of factors according to the applied criteria.
For developed markets, the number of factors is very unstable and difficult to interpret
economically, probably the IT bubble has an effect on the larger number of factors.

We decide to focus on the first factor for many reasons. First, we observed that only
the first factor drives the major dynamics in comovements; second, the number of factors
is very unstable for developed markets making difficult to interpret them economically and
finally, the results for emerging markets suggest to use only one factor for the later period.

3.2.2. Market Integration
We used two approaches to quantify how integrated are the different sets of markets based
on the measure Ct. Before that, we test empirically if the first factor could be interpreted
as an EWI composed of the indexes in the data set calculating a 95% confidence interval
for the true factor according to equation 10. The results of this analysis are presented in
Figure ?? for the two sets of markets. We observe that the EWI lies within the confidence
interval for the whole period of study for rolling windows of two years. We conclude that
F1 can be interpreted as the EWI of the data set.

The first approach is to test if there is an increase of Ct for the different data sets.
This would reflect a process of integration for those markets. In Figure ??, we present
the measure Ct for the two main sets of markets: developed and emerging. In order
to compare these two measures and their changes over time, we have built confidence
intervals around Ct as presented in equation 9. We observe in Figure ?? that at the
beginning of the period, these two measures are not significantly different but after 2000
the difference is significantly high. It seems possible that the introduction of the Euro
was responsible for this increase in comovements13. Also, we observe that only the set of
developed countries presents a significant increase in integration over the period.

Second, we compare if a set of variables is better explained by a global factor or a
regional factor. If the part of variance explained by the global factor is small compared
to the part of variance explained by the regional factor, then the set of markets are seg-
mented from the global market. We compare CF1R

t and CF1G
t for the sets of developed

and emerging markets, and we also look within emerging markets if the group of Latin
American (LA) markets or the group of Asian (EAS) countries present some increase in
their comovements with global or regional factors that could be related to a higher level
of integration. The results are presented in Figure ??. For each data set, the regional
factor accounts for a larger part of the variance than the global factor. Only for the set
of developed markets, we observe that the two measures are very similar. This result
suggests that developed markets are integrated to the global factors but this is not the
case for the group of emerging markets. Focusing on emerging regions, only the group
of asian countries presents an upward trend in the comovements, suggesting that they
have become more integrated to the global factors. At the beginning of the period, the
part of variance explained by CF1G

t for the set of LA markets is insignificant compared
to CF1R

t , this is a sign of segmentation before 1997. We have also reported correlation

13The European (euro zone) countries represent and important part of the developed world, and as we
do not take into account size effects, their importance is even higher.
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coefficients between the factors CF1G
t and CF1R

t for each figure. For the set of developed
markets, the two factors are highly correlated. This coefficient combined with the anal-
ysis of CF1R

t and CF1G
t over time give important information for asset pricing applications.

3.2.3. Diversification
The last important feature about comovements is their relation to diversification. We
have computed the ratio DRt described in equation 11 and we have compared it to the
measure Ct. Figure ?? shows that both measures are closely related. Both measures are
defined between zero and one, where one indicates the highest level of comovements and
no diversification opportunities; and zero indicates the opposite. The diversification ratio
captures the part of variance that can not be diversified away, which should correspond to
the part of variance explained by the common factors or the market factor. The measure
of comovements then captures the dynamics of the potential diversification14.

The diversification ratio in Solnik (1974) was calculated for a limited size of portfolios,
here we calculate this ratio over a portfolio of the largest possible size, so we can interpret
this measure of diversification as the risk reduction limit available from our data set. We
observe that for emerging countries the DRt value is 0.06 at the beginning of the period
and 0.14 at the end, and it takes a value close to 0.18 at the beginning compared to 0.3 at
the end for developed ones. This means that there are fewer diversification opportunities
within developed than within emerging markets and that for both kinds of markets the
diversification potential has been reduced with time. We concluded that for the recent
period 70% of the average risk of a security within the set of developed countries could be
reduced by diversification and 86% within emerging ones. We observe that the diversifi-
cation ratio lies within the confidence intervals calculated for Ct for the set of developed
markets and it is close to the lower confidence band for the emerging markets data set.

4. Discussion and Conclusions
We have analyzed the comovements of a global set of equity markets for a 12 years period
based on a factor decomposition in a large data setting. We have observed an upward
trend in the global comovements and also that this trend is stronger for developed than
emerging countries. We have analyzed the measures of comovements considering them as
proxies for the levels of integration. First, we have shown that the level of integration is
significantly higher for the set of developed markets and that integration has increased
for these markets during the period. Second, we have analyzed the effects of global and
regional factors as indications of integration concluding that only the set of developed
markets are integrated to global markets. Finally, we have shown that our measure of
comovements is closely related to a measure of diversification which is very important
in the context of portfolio construction. The measure of comovements can therefore be
interpreted as a indicator of potential diversification. Many extensions of this analysis are
possible. First, the analysis of comovements and the number of factors is a descriptive
analysis of the past and for any portfolio application it would be relevant to estimate the
future level of comovements and the future number of factors to use in a model. Second,
we have analyzed the comovements for a global set of indexes and we have identified
periods of high comovements and fewer diversification opportunities and periods of low
comovements and higher opportunities of diversification. It would be interesting for future
analysis to see how to take this information into account for the management of equity
portfolios, to build portfolio strategies based on the different levels of global comovements.

14Regressing DR on Ct and a constant results in coefficients close to 1 significant at 0.1%
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Appendix

1 Confidence Intervals calculation

(From Bai and Ng (2006))

Based on a factor representation for the data Xit, such that:

Xit =
K∑

k=1

ΛikFkt + eit

where Fkt is an unobserved factor, Λik is the sensitivity of asset i to factor k (or factor
loading) and eit is an error term.

Factors and loadings are estimated with the method of principal components. The
estimated variables are denoted F̃kt and Λ̃ik. We can write Λ̃ = (Λ̃1, ..., Λ̃N)′ as the matrix

of factor loadings and F̃ = (F̃1, ..., F̃T ) the matrix of estimated factors. Then:

ẽit = Xit − Λ̃′iF̃t

Letting λ = (λ1, ..., λN) be the vector of eigenvalues of the matrix X′X
NT

, Ṽ = diag(λk)
is defined as the diagonal matrix containing the k largest eigenvalues.

The matrix Γ̃t is a covariance estimator defined as:

Γ̃t =
1

N

N∑
i=1

ẽ2
itΛ̃iΛ̃

′
i

when eit is cross-sectionally uncorrelated. If E[e2
it] = σ2

e , ∀t and ∀i, then Γ̃t = σ̂2
e

Λ̃′Λ̃
N

where

σ̂2
e = 1

NT

∑N
i=1

∑T
t=1 ẽ2

it

The observed variable is denoted Gt. And the OLS estimate from the regression of
Gjt on Ft is:

Ĝjt = γ̂′jF̃t

Letting the measurement error be ε̂jt = Gjt−Ĝjt, can be defined the term s2
jt estimated

as:

ŝ2
jt =

1

T
F̃t

′
F̃tσ̂

2
ε(j) +

1

N
Âvar(Ĝjt)

when εjt is conditionally homoscedastic.

The term Âvar(Ĝjt) can be estimated as:

Âvar(Ĝjt) = γ̂′jṼ
−1Γ̃tṼ

−1γ̂′j

And finally, the confidence intervals at a 95% confidence level are defined as:

CI : [ε̂jt − 1.96ŝjt, ε̂jt + 1.96ŝjt]
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Tables and Figures

Table I: Countries and Sectors
Note: AM: Americas; AS: Asia; EUP: Europe; EUR: Euro Zone; EAS: Emerging Asia; EEMEA: Emerging
Europe Middle East and Africa; LA: Latin America; Others: Other Emerging countries.
NB: Number of series per country; NB-R: Number of series per region; NB-T: Number of series per type of market.

COUNTRY C
O

D
E

T
Y

P
E

R
E
G

I
O

N

B
A

S
I
C

C
Y

C
G

D

C
Y

S
E
R

G
E
N

I
N

I
T

E
C

H

N
C

Y
C

G

N
C

Y
S
R

R
E
S
O

R

T
O

T
L
F

U
T

I
L
S

NB NB-R NB-T
CANADA CN DM AM 1 1 1 1 1 1 1 1 1 1 10 20 204
U.S.A US DM AM 1 1 1 1 1 1 1 1 1 1 10
AUSTRALIA AU DM AS 1 1 1 1 1 1 1 1 1 9 47
HONG.KONG HK DM AS 1 1 1 1 1 1 1 1 1 1 10
JAPAN JP DM AS 1 1 1 1 1 1 1 1 1 1 10
NEW.ZEALAND NZ DM AS 1 1 1 1 1 1 1 1 1 9
SINGAPORE SG DM AS 1 1 1 1 1 1 1 1 1 9
DENMARK DK DM EUP 1 1 1 1 1 1 1 1 8 44
NORWAY NW DM EUP 1 1 1 1 1 1 1 1 1 9
SWEDEN SD DM EUP 1 1 1 1 1 1 1 1 8
SWITZERLAND SW DM EUP 1 1 1 1 1 1 1 1 1 9
UNITED.KINGDOM UK DM EUP 1 1 1 1 1 1 1 1 1 1 10
AUSTRIA OE DM EUR 1 1 1 1 1 1 1 1 8 93
BELGIUM BG DM EUR 1 1 1 1 1 1 1 1 8
FINLAND FN DM EUR 1 1 1 1 1 1 1 1 1 9
FRANCE FR DM EUR 1 1 1 1 1 1 1 1 1 9
GERMANY BD DM EUR 1 1 1 1 1 1 1 1 1 9
GREECE GR DM EUR 1 1 1 1 1 1 1 1 8
IRELAND IR DM EUR 1 1 1 1 1 1 1 7
ITALY IT DM EUR 1 1 1 1 1 1 1 1 1 1 10
NETHERLANDS NL DM EUR 1 1 1 1 1 1 1 1 1 9
PORTUGAL PT DM EUR 1 1 1 1 1 1 1 7
SPAIN ES DM EUR 1 1 1 1 1 1 1 1 1 9

CHINA CH EM EAS 1 1 1 1 1 1 1 7 72 172
INDIA IN EM EAS 1 1 1 1 1 1 1 1 1 1 10
INDONESIA ID EM EAS 1 1 1 1 4
KOREA KO EM EAS 1 1 1 1 1 1 1 1 1 9
MALAYSIA MY EM EAS 1 1 1 1 1 1 1 1 1 9
PAKISTAN PK EM EAS 1 1 1 1 1 1 1 1 1 9
PHILIPPINES PH EM EAS 1 1 1 1 1 1 1 1 8
TAIWAN TA EM EAS 1 1 1 1 1 1 1 7
THAILAND TH EM EAS 1 1 1 1 1 1 1 1 1 9
CZECH.REPUBLIC CZ EM EEMEA 1 1 1 1 1 1 1 1 1 1 10 51
HUNGARY HN EM EEMEA 1 1 1 1 1 1 1 7
ISRAEL IS EM EEMEA 1 1 1 1 1 1 1 7
POLAND PO EM EEMEA 1 1 1 3
RUSSIA RS EM EEMEA 1 1 1 1 1 1 6
SOUTH.AFRICA SA EM EEMEA 1 1 1 1 1 1 1 1 8
TURKEY TK EM EEMEA 1 1 1 1 1 1 1 1 1 1 10
ARGENTINA AR EM LA 1 1 1 1 1 1 1 1 1 9 49
BRAZIL BR EM LA 1 1 1 1 1 1 1 7
CHILE CL EM LA 1 1 1 1 1 1 1 1 8
COLOMBIA CB EM LA 1 1 1 1 1 1 6
MEXICO MX EM LA 1 1 1 1 1 1 1 1 8
PERU PE EM LA 1 1 1 1 1 1 1 1 8
VENEZUELA VE EM LA 1 1 1 3

TOTAL 376
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Table II: Sector codes and names

Sector Code Sector Name
BASIC Basic Industries (Chemicals, construction)
CYCGD Cyclical Consumer Goods (Automobiles, Household, Textiles etc)
CYSER Cyclical Service (Leisure, media, transportation)
GENIN General Industrials (Aerospace, Industrials, machinery)
ITECH Information Technology (Hardware, Software)
NCYCG Non Cyclical Consumer Goods (Food, Beverage etc)
NCYSR Non Cyclical Services (Food retailers, telecom services)
RESOR Resources (Mining, Oil and Gas)
TOTLF Financials (Banks, Insurance, Investments)
UTILS Utilities (Electricity, Gas, Water)

Table III: Descriptive Statistics
Note: AM: Americas; AS: Asia; EUP: Europe; EAS: Emerging Asia; EEU: Emerging Europe; LA: Latin America;
Others: Other Emerging countries.
Mean: Average annualized return; Std: Average annualized volatility; Skew: Skewness coefficient; Kurt: Kurtosis
coefficient; AC1-AC4: Autocorrelation coefficient for lags 1 to 4; ADF: Augmented Dickey-Fuller Test of
Stationarity.

Mean Std Skew Kurt AC1 AC2 AC3 AC4 ADF
AM 10.52% 16.11% - 0.340 1.532 - 0.026 0.003 0.051 0.028 - 15.087
AS 3.46% 19.42% - 0.290 1.301 0.040 0.044 0.038 - 0.012 - 15.364
EU 9.36% 19.70% - 0.520 2.353 - 0.059 0.033 0.042 0.004 - 17.135
DEVELOPED 8.18% 19.32% - 0.454 2.052 - 0.035 0.033 0.042 0.003 - 16.572
EAS 0.56% 32.06% - 0.278 3.189 0.027 0.076 0.068 - 0.006 - 12.393
EEU 13.09% 35.67% - 0.286 1.673 0.025 0.065 0.094 - 0.018 - 15.424
LA 2.67% 28.89% - 0.355 3.942 0.030 0.064 0.056 0.018 - 14.135
Others 7.85% 23.61% - 0.632 2.068 0.005 0.065 0.050 0.003 - 18.236
EMERGING 6.12% 27.49% - 0.390 2.817 0.000 0.058 0.061 0.000 - 14.773
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Figure 1: Percentage of Variance explained by global and regional F1
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Table IV: Time trend regressions
Note: Standard errors in parentheses
∗∗∗ and ∗∗ indicate 0.1% and 1% significance

It-DM It-EM

(Intercept) 0.17∗∗∗ 0.15∗∗∗

(0.01) (0.01)
Trend 0.39∗∗∗ 0.08∗∗

(0.04) (0.03)
N 59 59
R2 0.64 0.14
adj. R2 0.63 0.13
Resid. sd 0.05 0.03
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Figure 2: EWI vs F1
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Figure 3: Commovements and Confidence intervals DM-EM
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Figure 4: Percentage of Variance explained
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Figure 5: Percentage of Variance explained
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