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Abstract 

We show how ultrafilters can be used to prove a central impossibility result in judgement aggregation introduced by 
Nehring and Puppe (2005), namely that for a logically strongly interconnected agenda, an independent and monotonic 
judgement aggregation rule which satisfies universal domain, collective rationality and sovereignty is necessarily 
dictatorial.

A similar application of the ultrafilter proof strategy was presented at a workshop on judgment aggregation, Freudenstadt, September 
2007.Many thanks to Clemens Puppe, Franz Dietrich, Christian List, Philippe Mongin, Ron Holzman, and two anonymous referees for helpful 
comments. 
Citation: Christian Klamler and Daniel Eckert, (2009) ''A simple ultrafilter proof for an impossibility theorem in judgment aggregation'', 
Economics Bulletin, Vol. 29 no.1 pp. 319-327. 
Submitted: Dec 15 2008.   Published: March 12, 2009. 

 

     

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6442925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Although ultrafilters1 have long been used in the proof of Arrow’s theorem
(for a survey see e.g. Monjardet 1983), this proof technique has not been
exploited in the recent, closely related literature on judgment aggregation2

with the notable exception of Gaerdenfors 2006, Dietrich and Mongin 2007
(especially for the infinite case), Herzberg 2008 (for the use of ultraproducts)
and Daniels 2006 (the latter in the different context of the logical formal-
ization of judgment aggregation). This is allthemore astonishing as the very
first application of an ultrafilter proof strategy to Arrow’s theorem can be
found in an early extension of this result to the aggregation of logically inter-
connected propositions by Guilbaud (1952) which makes this paper the first
contribution to judgment aggregation. (For the reconstruction and historical
analysis of Guilbaud’s result see Monjardet 2003 and 2005.)

In the following we give a simple ultrafilter proof of a typical impossibility
result in judgment aggregation by Nehring and Puppe (2005). The ultrafilter
proof approach is not only technically appealing, it also makes transparent
how the logical structure of the agenda of a collective decision problem de-
termines the social structure, i.e. the distribution of decisiveness among the
individuals.

2 Ultrafilters for the analysis of judgment ag-

gregation problems

The problem of judgment aggregation consists in the derivation of collective
judgments over an agenda of logically interconnected propositions from in-
dividual judgment sets. Following Dietrich 2007, the agenda is given by a
non-empty finite set X of propositions (sentences) from a formal language L

which is closed under negation (i.e. if p ∈ L, then ¬p ∈ L) and satisfies the
following consistency conditions on sets of propositions:

(C1) For any proposition p ∈ L, the proposition-negation pair {p,¬p} is
inconsistent.

(C2) Subsets of consistent sets S ⊆ L are consistent.

1An ultrafilter on a nonempty set S is a collection F ⊂2S of subsets of S such that
(i) S ∈ F and ∅ /∈ F ,
(ii) if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ,
(iii) if X,Y ⊂ S, X ∈ F , and X ⊂ Y , then Y ∈ F ,
(iv) for every X ⊂ S, either X ∈ F or S\X ∈ F .
2See List and Puppe 2007 for a survey and the bibliography at:

http://personal.lse.ac.uk/LIST/doctrinalparadox.htm
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(C3) The empty set ∅ is a consistent set, and each consistent set S ⊆ L

can be completed to a consistent superset T ⊆ L containing a member of
each proposition-negation pair p,¬p ∈ L.

An individual judgment set is a non-empty subset A ⊂ X of the agenda,
which is assumed to consist only of contingent propositions, i.e. for any
proposition p ∈ X, the sets {p} and {¬p} are both consistent. Typically, in-
dividual judgment sets are assumed to be fully rational in the sense of being
not only consistent but also complete (i.e. p ∈ A or ¬p ∈ A for every propo-
sition p). For N being a finite set of n individuals (with n ≥ 3), a profile of
judgment sets is an n-tuple A = (A1, ..., An). A judgment aggregation rule is
a function which assigns to each profile in a set of admissible profiles a collec-
tive judgment set. Obviously, the aggregation problem crucially depends on
the properties of the agenda, essentially the logical interconnections between
the propositions in the agenda.

Following Nehring and Puppe 2002, and Dokow and Holzman 2005, the
logical interconnections between the propositions in an agenda X are cap-
tured by a binary relation ⊢∗⊂ X × X of conditional entailment between
propositions.

Definition 1 For any propositions p, q ∈ X such that p 6= ¬q, (p, q) ∈⊢∗

if there exists a minimal inconsistent superset S of {p,¬q} (i.e. a set P ⊂
X\{p,¬q} such that S = P ∪{p,¬q} is inconsistent while every proper subset
of S is a consistent set of propositions).

Thus for any contingent propositions p, q ∈ X, (p, q) ∈⊢∗ means that
there exists a set of propositions P ⊂ X\{p,¬q} conditional on which holding
proposition p entails holding proposition q.

Example 2 Consider an agenda X = {p,¬p, q,¬q, p∨q,¬(p∨q), p∧q,¬(p∧
q)}. Then the set S = {¬p, p ∨ q,¬q} is a minimal inconsistent set which
establishes the conditional entailment relation between e.g. ¬p and q.

Definition 3 An agenda X will be called totally blocked if the relation
of conditional entailment is transitively closed, i.e. if the transitive closure
T (⊢∗) = X × X.

Total blockedness means that any contingent proposition in the agenda
is related to any other one by a sequence of conditional entailments.

Example 4 Verify that the above agenda X = {p,¬p, q,¬q, p∨q,¬(p∨q), p∧
q,¬(p∧ q)} is totally blocked, while neither the agenda Y = {p,¬p, q,¬q, p∧
q,¬(p ∧ q)} nor Z = {p,¬p, q,¬q, p ∨ q,¬(p ∨ q)} is totally blocked.
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Observe that in the case of an agenda with more than two non-equivalent
proposition-negation pairs (a condition of minimal logical richness that can
plausibly be assumed), total blockedness implies that there always exists a
minimal inconsistent set of propositions with cardinality strictly larger than
two.

The social choice literature provides a wide range of domain conditions
for aggregation rules. The following conditions are extensions of classical
Arrovian conditions to the area of judgment aggregation.

Definition 5 A judgment aggregation rule f : Dn → D satisfies universal

domain and collective rationality if D is the set of fully rational judgment
sets.

Definition 6 A judgment aggregation rule f : Dn → D satisfies sovereignty

if f(Dn) = D, i.e. if it is surjective.

Like social welfare functions, judgment aggregation rules can be analyzed
with the help of decisive sets of individuals (decisive coalitions). In the
following and for any profile A ∈ Dn and any proposition p ∈ X denote by
A(p) := {i ∈ N : p ∈ Ai} the set of all individuals who hold proposition p.
This yields the following definition of decisiveness.

Definition 7 A coalition U ⊆ N is decisive for proposition p ∈ X if for
all profiles A ∈ Dn,
U = A(p) ⇒ p ∈ f(A).
The collection of all decisive coalitions for proposition p will be denoted by
Wp ⊆ 2N .

This allows to define the core property of (non)dictatoriality in terms of
decisive coalitions.

Definition 8 A judgment aggregation rule f : Dn → D is dictatorial if
there exists an individual i ∈ N such that for any proposition p ∈ X the
collection of decisive coalitions Wp is the set of all supersets of the singleton
set {i}.

An important class of properties are independence conditions which are
- in general - crucial for the derivation of impossibility results in aggregation
problems. We use another but equivalent definition of the usual independence
condition3:

3In the standard formulation the judgment aggregation rule f is independent if for any
proposition p ∈ X, and any profiles A,A′ ∈ Dn, [A′(p) = A(p)] ⇒ [p ∈ f(A) ⇔ p ∈ f(A′)].
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Definition 9 A judgment aggregation rule f : Dn → D is independent if
for any proposition p ∈ X, and any profiles A,A′ ∈ Dn,
p ∈ f(A) ⇒ [A′(p) = A(p) ⇒ p ∈ f(A′)].

For any given proposition, independence excludes the use of any infor-
mation about the individual support for other propositions. Thus, it also
seems natural to introduce a monotonicity condition which guarantees that
the social acceptance of a proposition is not reduced by additional individual
support for it:

Definition 10 A judgment aggregation rule f : Dn → D is monotonic if
for any profiles A,A′ ∈ Dn and any proposition p ∈ X,
p ∈ f(A) ∧ A(p) ⊂ A′(p) ⇒ p ∈ f(A′).

Thus for any monotonic judgment aggregation rule f : Dn → D and any
proposition p ∈ X, the collection Wp of all decisive coalitions for proposition
p is closed under supersets (i.e. U ∈ Wp ∧ U ⊂ V ⇒ V ∈ Wp).

It should be clear that monotonicity excludes any form of inverse decisive-
ness as in particular through an inverse dictator who indirectly determines
the collective outcome by forcing the opposite of her position.

From these properties and their combination follow other facts which are
of importance for the proof, but also of significance on their own.

(i) Independence can equivalently be characterised in terms of decisive-
ness:

Remark 11 A judgment aggregation rule f : Dn → D is independent if
for any proposition p ∈ X and any profile A ∈ Dn,
p ∈ f(A) ⇒ A(p) ∈ Wp.

(ii) Together with monotonicity and sovereignty, independence implies
the classical Pareto property:

Definition 12 A judgment aggregation rule f : Dn → D is paretian if for
any proposition p ∈ X, N ∈ Wp.

(iii) An independent and monotonic judgment aggregation rule which
satisfies universal domain and collective rationality can be characterised by
a family {Wp} of collections of decisive coalitions for each proposition (i.e.
for any proposition p ∈ X and any profile A ∈ Dn, p ∈ f(A) if and only if
A(p) ∈ Wp) which satisfies an intersection property introduced by Nehring
and Puppe 2007:
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Definition 13 A family {Wp} of collections of decisive coalitions satisfies
the intersection property if for any minimal inconsistent set of proposi-

tions S = {p1, ..., pk} ⊂ X and every selection Wj ∈ Wpj
,

k⋂

j=1

Wj 6= ∅.

From preference aggregation it is well known that Arrovian impossibility
results are driven by a ”contagion” property (as discussed e.g. in Kelly 1988),
which propagates the decisiveness of a coalition from some pair of alternatives
to any pair. For the case of independent and monotonic judgment aggregation
rules which satisfy universal domain and collective rationality, this contagion
property can be captured with the help of the following lemma:

Lemma 14 Wp ⊆ Wq for all propostions p, q such that (p, q) ∈⊢∗.

Proof. Consider a pair of propositions (p, q) ∈⊢∗ and a non-empty set P of
propositions such that P∪{p,¬q} is a minimal inconsistent set of propositions
with cardinality strictly larger than two and a profile A ∈ Dn such that
(i) A(p) = U ∈ Wp

(ii) A(q) = U
(iii) A(P ) = N .
By the decisiveness of U for p, p ∈ f(A) and, by the Pareto property,
P ⊂ f(A). Therefore, q ∈ f(A) by minimal inconsistency of P ∪{p,¬q}. By
independence, for any profile A′ ∈ Dn such that A′(q) = A(q), q ∈ f(A′) and
hence U ∈ Wq.

Iterated application of this lemma establishes the following neutrality
property, which is equivalent to the condition of systematicity (or equal treat-
ment of all propositions) with which the first impossibility result in judgment
aggregation was derived (List and Pettit 2002).

Lemma 15 For a totally blocked agenda, Wp = Wq for all propositions p, q ∈
X.

Hence, one and the same collection W ⊆ 2N of decisive coalitions de-
termines the collective acceptance of every proposition in a totally blocked
agenda.

In this vein, the conditions on the aggregation problem translate into
properties of the collection of decisive coalitions, yielding the following dic-
tatorship result.

Theorem 16 (Nehring and Puppe 2005) If and only if the agenda is totally
blocked, an independent and monotonic judgment aggregation rule which sat-
isfies universal domain, collective rationality and sovereignty is dictatorial.
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Our proof of this theorem exploits the relation between ultrafilters and
collections of decisive sets of individuals known as simple games (Neumann
and Morgenstern 1944, for a recent reference see Taylor and Zwicker 1999).

Definition 17 A simple game on the set N of individuals is a collection
W ⊆ 2N of subsets of N which satisfies closure under supersets
(i.e. U ∈ W ∧ U ⊂ V ⇒ V ∈ W).
A simple game is strong if for any U ⊆ N , U /∈ W ⇒ N\U ∈ W.

Simple games stand in a close relation to ultrafilters which, explicitly
following Guilbaud 1952, was established by Monjardet 1978 with the help
of an intersection property (for a similar characterisation of ultrafilters in
terms of simple games and their Nakamura number4 see Monjardet 2003):

Lemma 18 A strong simple game is an ultrafilter if for any U, V,W ∈ W,
U ∩ V ∩ W 6= ∅.

This yields a simple proof of the above theorem.
Proof. (if part) From Lemma 15 we know that the collection W ⊆ 2N

of decisive coalitions is the same for all propositions in a totally blocked
agenda. The proof of the theorem now proceeds by establishing that any
such collection is
(i) a strong simple game, which is
(ii) an ultrafilter.
The dictatorship result then immediately follows from the well known fact
that an ultrafilter on a finite set of individuals is a collection W = {U ∈ N :
i ∈ U} of all supersets of some singleton, - the dictator.
(i) To see that any collection W ⊆ 2|N | of decisive coalitions is a simple game
keep in mind that monotonicity of the judgment aggregation rule implies the
closure of W under supersets. To see that the simple game W is strong
consider that for any profile A ∈ Dn, any non-decisive set of individuals
U /∈ W and any proposition p ∈ X, A(p) = U implies p /∈ f(A) and hence
by completeness of the agenda, ¬p ∈ f(A), which in turn implies A(¬p) =
N\U ∈ W (by indenpendence).
(ii) To see that the simple game W is an ultrafilter, verify that for any decisive
sets of individuals U, V,W ∈ W, it must be the case that U ∩ V ∩ W 6= ∅.
Otherwise, a profile A ∈ Dn can be constructed such that for a pair of

4The Nakamura number of a simple game is the minimal number of decisive coalitions
with empty intersection (see Nakamura 1979). Observe that for a totally blocked agenda
the intersection property of Nehring and Puppe 2007 implies a Nakamura number strictly
larger than three and thus the intersection property of Lemma 18.
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propositions (p, q) ∈⊢∗ and a minimal inconsistent superset S of {p,¬q}
with cardinality strictly larger than two, A(p) = U , A(S\{p,¬q}) = V , and
A(¬q) = W which contradicts the collective rationality of the aggregation
rule.

Necessity is shown by constructing an independent and monotonic judg-
ment aggregation rule which satisfies universal domain, collective rationality
and sovereignty such that for the corresponding family {Wp} of decisive coali-
tions, Wp 6= Wq for some pair of propositions p, q ∈ X (for the details of this
construction see Nehring and Puppe 2005). Obviously, while for every to-
tally blocked subset S of the agenda with cardinality strictly larger than
two, Wp = Wp′ is an ultrafilter for any p, p′ ∈ S, this local dictatorship on
subagendas does not carry over to the full agenda if the latter is not totally
blocked.

Hence the ultrafilter proof strategy shows that it essentially is the logical
structure of the agenda of the collective decision problem which determines
the distribution of decisiveness and thus drives the dictatorship result.
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