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Abstract

Using Monte Carlo methods, the behaviour of the momentum threshold autoregressive
(MTAR) unit root test of Enders and Granger (1998) is examined in the presence of structural
breaks under the null. It is found that for level breaks the MTAR test exhibits similar
behaviour to that derived by Leybourne et al. (1998) for the Dickey−Fuller (1979) test, with
size distortion apparent for early breaks only. In contrast, the results for breaks in drift show
the MTAR test to experience severe size distortion when breaks occur both early and late in
the sample period. The divergence in results for the MTAR and DF tests is further examined,
showing that in the presence of late breaks the MTAR test can lead a practitioner to draw
false inferences of both stationarity and asymmetry.
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1 Introduction

The use of the Dickey-Fuller (1979,1981) (DF) test to examine the order of
integration of economic time series has become a standard feature of applied
econometric research. Following the work of Perron (1989) it has long been
recognised that the DF test can have very low power when applied to series
which are stationary but experience a structural break. In response to the
possibility of I(0) series appearing to be I(1) in the presence of structural
breaks, a huge literature has subsequently evolved addressing the issue of
unit root testing in such circumstances (see, inter alia, Bai et al. 1998; Bai
and Perron 1998; Banerjee et al. 1992; Perron 1989, 1990; Zivot and Andrews
1992). However, in contrast to this, Leybourne et al. (1998) have recently
considered the converse issue of spurious rejections by the DF test when there
is a break under the null. The results obtained show that when there is a
break in either the level or the drift of a unit root process early in the sample
period, the DF test can experience severe size distortion, leading to the false
conclusion that an I(1) series is I(0).
In this paper the impact of structural breaks upon the more recently

proposed momentum-threshold autoregressive (MTAR) asymmetric unit root
test of Enders-Granger (1998) (EG) is considered. The results obtained show
that breaks in the level of a unit root process have a similar impact on both
DF and MTAR unit root tests. However, for breaks in drift the MTAR test
experiences size distortion for both early and late breaks. It is shown that
this can lead to false inferences of stationarity and asymmetry being drawn.
This paper will proceed as follows. In section [2] the EG unit root tests

are outlined. Following a discussion of the seminal work of EG, a recent re-
evaluation by Enders (2001) is presented. Consideration of this more recent
research leads to the present analysis focussing upon just one of the two tests
developed by EG. In section [3] Monte Carlo simulation results for the level
break case are presented, with section [4] containing results for a break in
drift. Section [5] examines the di®ering results obtained for MTAR and DF
tests, with section [6] concluding.

2 Asymmetric unit root tests

To extend the familiar DF statistic to allow the unit root hypothesis to be
tested against an alternative of stationarity with asymmetric adjustment,
EG employ the threshold autoregressive models of Tong (1983, 1990). This
allows the lagged levels term of the DF test to be partitioned into positive and
negative components. Considering the simplest case excluding deterministic
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and lagged di®erence terms, the EG asymmetric testing equation can be
given as:

¢yt = It½1yt¡1 + (1¡ It) ½2yt¡1 + ºt (1)

where It is the zero-one Heaviside indicator function. The use of two speci-
¯cations for It leads to the derivation of two forms of asymmetric unit root
test. Under the ¯rst approach partitioning is based upon the sign of yt¡1,
while under the second approach partitioning is based upon the sign of the
change in yt¡1. This results in the speci¯cations for It given below:

It =

½
1 if yt¡1 ¸ 0
0 if yt¡1 < 0

(2)

It =

½
1 if ¢yt¡1 ¸ 0
0 if ¢yt¡1 < 0

(3)

Asymmetric unit root tests combining (1) and (2) are referred to as threshold
autoregressive (TAR), while use of (1) and (3) leads to the momentum thresh-
old autoregressive (MTAR) test. To distinguish between these approaches,
the TAR and MTAR tests are denoted as © and ©¤ respectively. Under
both methods the unit root hypothesis is tested via the joint signi¯cance of
f½1; ½2g. While the results of Tong (1983) show f½1; ½2g to converge to a mul-
tivariate Normal distribution under the assumption of stationarity, under the
null of a unit root f½1; ½2g have a non-standard distribution. The unit root
hypothesis (H0 : ½1 = ½2 = 0) is therefore examined using speci¯cally derived
critical values provided by EG. Should the unit root hypothesis be rejected,
the process is assumed to be stationary with asymmetric adjustment.
In (1) above, the implicit underlying attractor about which adjustment

occurs is zero (yt = 0) : However, in practice it is more appropriate to consider
the attractor as either a constant or trend. To employ these attractors, the
original series fytg is regressed upon the relevant deterministic terms. The
resulting revised series feytg is then employed in the testing equation of (1),
giving the following model:

¢eyt = It½1eyt¡1 + (1¡ It) ½2eyt¡1 + ³t (4)

Similarly, the above Heaviside indicator functions are also modi¯ed to use
the new feytg series. In the presence of non-zero attractors the resulting ©
and ©¤ employ the subscripts ¹ and T to distinguish between the constant
and constant & trend cases, respectively.
In recent research Enders (2001) has re-evaluated the seminal work of

EG, noting that in the presence of asymmetric adjustment the EG two-step
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approach will lead to the derivation of a biased estimate of the threshold.
Consequently, Enders employs the estimation methods of Chan (1993) and
Chan and Tsay (1998) to derive TAR and MTAR unit root tests using `super-
consistent' threshold estimates. A subsequent power analysis of these models
by Enders led to two interesting results. First, under TAR asymmetric ad-
justment, the DF test was found to be more powerful than the TAR test
under either consistent or non-consistent threshold estimation. Second, un-
der MTAR adjustment, the original MTAR test was seen to be more powerful
than both the consistent MTAR test and the DF test. The results lead to the
conclusion that of the rival asymmetric unit root tests, only the MTAR test
using non-consistent threshold estimates improves upon the DF test. For
this reason, the original MTAR tests (©¤¹ and ©

¤
T ) are the only asymmetric

unit root tests considered here.1

Following the results of Leybourne et al. (1998) for the DF test, section
[3] examines the behaviour of the ©¤¹ in the presence of a level break in a
unit root process, while section [4] considers the ©¤T test in the presence of a
break in drift.

3 Unit root with a break in level

In the presence of a level break in a unit root process, the appropriate test
to consider is the ©¤¹ test.

2 To examine the possible size distortion of the
©¤¹ test, the following data generation process (DGP) given by (5)-(8) was
employed:

yt = ®st (¿ ) + »t t = 1; :::T (5)

»t = »t¡1 + ´t (6)

´t » i:i:d: N (0; 1) (7)

st (¿ ) =

½
0 for t 6 ¿T
1 for t > ¿T

¿ 2 (0; 1) (8)

The above is therefore the DGP of Leybourne et al. (1998). The error series
f´tg was generated using the RNDNS procedure in the Gauss programming

1Enders (2001) also considers the impact of lag order on the critical values of asym-
metric unit root tests. However this issue is not relevant in the present context as only
non-augmented tests are employed.

2Note that in the case of a level break, Leybourne et al. (1998) also consider the use
of a misspeci¯ed DF test which includes a trend term. Results for the use of misspeci¯ed
models are not presented here.
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language. All experiments were performed over 5,000 replications using a
sample size of 100 observations (T = 100): An additional initial 100 observa-
tions were discarded to remove the in°uence of the initial condition y0 = 0.
To further replicate the experimental design of Leybourne et al. (1998)

the values ® 2 f2:5; 5; 10g were chosen for the break magnitude. For each
replication the ©¤¹ test was estimated with the (false) rejections of the unit
root hypothesis noted at the 5% level of signi¯cance. Following the arguments
of Davidson and MacKinnon (1998), the results of the above experiments are
presented graphically in Figure One. From inspection of this graph it can
be seen that the behaviour of the ©¤¹ test is similar to that of the DF test.
To summarise the results, size distortion is only present for breaks which
occur early in the sample period and is greater for larger values of the break
magnitude ®. To illustrate this, the empirical size of the ©¤¹ test for ® = 10
is 58.96% for ¿ = 0:01 (t = 1); but rapidly approaches nominal size (0.05) as
the breakpoint appears later in the sample.
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Figure One: MTAR unit root rejections (break in level)
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4 Unit root with a break in drift

To analyse the break in drift case, the earlier DGP of (5)-(8) is modi¯ed as
below:3

yt = ®st (¿ ) + yt¡1 + ²t t = 1; :::T (9)

²t » i:i:d: N (0; 1) (10)

st (¿ ) =

½
0 for t 6 ¿T
1 for t > ¿T

¿ 2 (0; 1) (11)

Following Leybourne et al. (1998) the sizes of drift break considered were
® 2 f0:5; 1; 2g. The empirical rejection frequencies of the appropriate ©¤T test
at the 5% nominal level of signi¯cance for each of these cases are presented
in Figure Two. From inspection of Figure Two it is immediately apparent
that the results for the ©¤T test di®er from those for the DF test where breaks
in drift are found to cause size distortion only when occurring early in the
sample period. For a large break in drift (® = 2), size distortion can result
when the break occurs either early or late in the sample period. Further
considering the case of ® = 2; the size distortion early in the sample reaches
a maximum empirical size of 81.56% for ¿ = 0:14 (t = 14): Although this
represents huge distortion it is slightly below the value of 92.9% reported by
Leybourne et al. (1998) for the DF test. Considering the secondary distortion
late in the sample, this peaks at 24.52% for ¿ = 0:85 (t = 85): Given the
5% nominal level employed, this also represents a severe distortion, which
interestingly is not present for the DF test.

3The treatment of initial conditions, method of random number generation, sample
size, and number of replications and discards for the break in drift experiments are the
same as for the earlier level break experiments.
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Figure Two: MTAR unit root rejections (break in drift)

5 Analysing the di®ering behaviour of the

DF and MTAR tests

The above results show that in the presence of levels breaks, the MTAR
test exhibits similar behaviour to the DF test with severe size distortion
present only when breaks occur early in the sample period. However, for
breaks in drift the tests behave di®erently, with the MTAR test experiencing
size distortion when breaks occur both early and late in the sample period.
To further examine this divergence in behaviour, the case where this is most
apparent was reanalysed. Using the break in drift experiment of the previous
section with ® = 2, the MTAR ©¤T and the DF ¿ ¿ tests were performed. To
analyse the di®ering behaviour of these tests, the cases where one test rejected
the unit root hypothesis but the other did not, were noted. Figure Three
presents these results, with DF* denoting the cases where the unit root was
rejected by the ¿ ¿ test alone, and MTAR* denoting the equivalent case for
the ©¤T test.
From inspection of Figure Three it can be seen that for breaks occurring

early in the sample period, the ¿ ¿ test experiences more severe size distortion
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than the ©¤T test. Following the results of EG (1998), the DF test is known
to have higher power than the MTAR test in the presence of symmetry.
A practitioner applying these tests to an I(1) series which experiences an
early break in sample would then erroneously conclude that the series was
symmetric but stationary given the results of the test. False inferences would
therefore be drawn concerning the integrated nature of the series.
However, a more interesting case emerges when considering the results

for a break occurring late in the sample period. From the graph it can be
seen that for late breaks the ©¤T test frequently rejects the unit root null
when the ¿ ¿ test does not. In these circumstances, knowledge of the results
of EG (1998), showing the MTAR test to be more powerful than the DF test
in the presence of asymmetry of the MTAR form, would lead a practitioner
to conclude that the series being examined is stationary with asymmetric
adjustment. The inferences drawn would then be incorrect for two reasons,
as the series would be deemed to be stationary and asymmetric when neither
is true.
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Figure Three: Con°icting testing outcomes (break in drift, ® = 2)
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6 Conclusion

In this paper the size distortion of asymmetric unit root tests has been exam-
ined in the presence of breaks under the null hypothesis. Following the power
analysis results of Enders (2001), attention focussed upon the behaviour of
the original MTAR test rather than the consistent threshold equivalent. In
the case of a levels break, the results obtained for the MTAR unit root test
were broadly similar to those for the DF test presented by Leybourne et al.
(1998), with distortion apparent only for breaks occurring early in the sam-
ple period. However when drift breaks were considered it was found that
the MTAR test can experience severe size distortion when breaks occur both
early and late in the sample period. A direct comparison of the DF and
MTAR tests showed that for breaks in the drift parameter occurring late in
the sample period, a practitioner would falsely conclude that an I(1) series
was both stationary and symmetric. The results therefore suggest the MTAR
test to be less robust to structural breaks than the familiar DF statistic, with
the spurious rejection of both non-stationarity and symmetry possible.
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