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Abstract

This note investigates the behaviour of a parameter-constancy test statistic when near 1(2) (integrated of order 2)
variables are incorporated in a cointegrated vector autoregressive system. Simulation studies indicate that the presence
of such variables has a significant impact on size properties of the constancy test.
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1 Introduction

This note investigates the behaviour of a parameter-constancy test when near (2) (in-
tegrated of order 2) variables exist in a cointegrated system. The introductory section
briefly reviews the related literature and describes the most significant aspect of this note.

Economic time series data tend to exhibit non-stationary behaviour and should be
treated as integrated processes rather than stationary. Cointegration introduced by
Granger (1981) thus plays a crucial role in time series econometrics. A cointegrated
vector autoregressive (VAR) model for I(1) processes is introduced by Johansen (1988,
1996), and has become one of the most popular approaches to modelling economic time
series. See Hendry and Mizon (1993), Juselius (2006), and Kurita (2007), inter alia, for
econometric modelling using the cointegrated VAR analysis. The cointegrated VAR model
requires parameter stability throughout the sample period of interest, and Hansen and
Johansen (1999) explore various test statistics for constancy of the cointegrating vectors.
Some of their tests are based on Nyblom (1989) and regarded as quasi Lagrange multiplier
(LM) tests. Seo (1998) also investigates several likelihood-based tests for stability of the
cointegrating parameters.

Macroeconomic time series data, in fact, can vary in terms of the degree of integration.
Inflation data, for example, tend to be persistent and are often judged to be I(1) or near
I(1) processes, so that time series data for price indices are deemed to be I(2) or near
I(2). With the advances of 1(1) VAR analysis, econometric theories for 1(2) cointegrated
VAR models are also developed in the literature: Johansen (1992, 1995, 1997, and 2006),
Paruolo (1995, 2000), Haldrup (1998), Paruolo and Rahbek (1999), Rahbek, Kongsted
and Jorgensen (1999), Boswijk (2000), Nielsen and Rahbek (2007), and Kurita (2008),
inter alia. See also Juselius (2006, Part V) for empirical research using 7(2) VAR models.
Whether a series is really I(2) or not is a matter of debate. However, given the fact that
smooth trending features are often found in time series data of stock variables such as
price indices and aggregate money, such stock variables should be treated as near I(2)
series at least rather than conventional I(1) or stationary series. Thus it is worthwhile
to investigate testing parameter constancy when near I(2) variables are involved in the
underlying data generation process.

This note presents a limit theorem for a quasi LM parameter constancy test, which
explicitly takes account of I(2) roots in the cointegrated VAR system. The limiting dis-
tribution of the test statistic in this case consists of functionals of the standard Brownian
motion and is thus different from that in a standard case where only I(1) roots exist in
the system. The asymptotic result suggests that the use of simulated quantiles based
on a conventional /(1) specification can lead to misleading statistical inference when the
data in question are very close to I(2). Monte Carlo experiments conducted in this note
support the analytical reasoning. According to the experiments, the existence of near
I(2) series has a significant impact on size properties of a quasi LM test for parameter
stability. An empirical illustration also gives weight to this argument. It is therefore im-
portant to check if the data are I(1) or close to I(2) processes when testing for parameter
constancy. To the best of the author’s knowledge, the present note is the first quantitative
study that addresses the issue of testing stability of the cointegrating parameters in the
presence of near 1(2) roots.



The organization of this note is as follows. Section 2 reviews a quasi LM test for
constancy of the cointegrating parameters and presents a limit theorem allowing for (2)
variables. Section 3 performs Monte Carlo experiments to inspect impacts of near 1(2)
processes on the constancy test statistic. An empirical illustration of the quasi LM test is
presented in Section 4. The overall summary and conclusion are provided in Section 5. All
the numerical analyses and graphics in this note use Oz (Doornik, 2006) and OxMetrics /
PcGive (Doornik and Hendry, 2006). This note uses the following notational conventions:
For a certain matrix a with full column rank, @ = a(a’a)™" and so a’a = I. An orthogonal
complement a is defined such that a/, ¢ = 0 with the matrix (a,a,) being of full rank.
The symbol — signifies weak convergence.

2 Cointegrated VAR Model and Parameter Constancy

This section briefly reviews a cointegrated VAR model and parameter-constancy test
statistic. Johansen (1996) is the main reference for details of the model. Let us consider
an unrestricted VAR(k) model for a p-dimensional time series X; as follows:

k—1
X,
AXt:(ILHC)( t11> +Y TiAX, i +&, for t=1,..T, (1)
=1

where the innovations €1, ...,er have independent and identical normal N(0,(2) distrib-
utions conditional on the starting values X 4,1, ..., Xo, and II, I'; € RP*P and II, € RP
all vary freely. In order to justify a standard (1) cointegration analysis, three regularity
conditions need to be introduced. These are given in Assumption 2.1.

Assumption 2.1 (¢f. Theorem 4.2 in Johansen, 1996)

1. The characteristic roots obey the equation |A(z)| = 0, where

k-1

Alz) = (1= 2)I, Tz = > T;(1-2) 2,

i=1
and the roots satisfy |z| > 1 or z = 1.
2. (ILTL.) = a(B',9), wherea,B € RP*" and v € R" forr < p.

3. rank (o/,\IT'B,)=p—r, wherel =1, — Zi.:ll ;.

The first condition ensures that the process is neither explosive nor seasonally cointe-
grated, and the second is a reduced rank condition, implying that there are at least p — r
common stochastic trends and cointegration arises when r» > 1. The third condition is
of particular importance in the present note, in that it prevents the process from being
I(2) or of higher order. This paper is concerned with a case where the third condition is
satisfied only marginally. Let 87 = (8',7') and X;_, = (X;_;,1)’ for future reference. A
set of vectors « are called adjustment vectors, while 5% are referred to as cointegrating
vectors or cointegrating parameters.



Parameter constancy is usually required in order to demonstrate the validity of em-
pirical models, and various testing procedures have been explored in the literature on
non-stationary time series. Hansen and Johansen (1999), among all, investigate various
test statistics for parameter-constancy in the cointegrated VAR framework. Briiggeman,
Donati and Warne (2003) then find that some of the Hansen-Johansen tests, if con-
structed directly from a score function, tend to perform better in finite sample than the
original formulations suggested by Hansen and Johansen (1999). The present note adopts
a modification by Briiggeman et al. to construct the Hansen-Johansen average test for
constancy of 3*. For this purpose, define Z; = (AXt’_l, L AXY +1), and introduce no-
tational conventions as follows: Ry; denotes residuals from regression of AX; on Z;, while
Ry; represents residuals from regression of X; ; on Z;. A sequence of sample product
moments of Ry and Ry; is then given by

Sty So BN (Rm ) ( Ry, )
:—§ . for t=1,..,T. 2
( Sﬁ? Sﬁ) t = Ry Ry ' 2)

The Hansen-Johansen average test consists of an element denoted by ng), which is defined
as

2
ng) _ <i) tr {(V(T))’l gty (M'(T))f1 S(t)}, for t=1,..,T,

T
where
N -1
V(T) — o (Q) a7
~%k —1

SO = ¢ (sg?—aﬁ ’S(?) <Q> &,

MDD = 7 5D
for

CJ_:(ﬁOL (1])

where # denotes the maximum likelihood estimator of a certain parameter #. Note that
S® corresponds to a score function based on the Gaussian distribution. The average test
statistic for constancy of 5* is then defined as

T
QLMy =Ty QY
t=1

which can be regarded as a quasi LM test statistic in the context of Nyblom (1989).
Hansen and Johansen (1999) show that, under Assumption 2.1, Q LMz has the following
asymptotic distribution:

QLMyp =5 /0 tr{S*(s)" J (1) S*(s)} ds, (3)

where



for

T (s) = /0 S ( B ) ( Pl )ldu and S (s) = /0 S<Bi:“ > (dBo) ) (4)

and s € [0, 1]. The processes B;, and Bs, are independent standard Brownian motions
of dimension (p — r) and r, respectively.

The limiting distribution given in (3) assumes the processes to be I(1). Given the I(2)-
type features of price indices and monetary aggregates observed in a number of empirical
studies, it is also useful to investigate the asymptotic distribution of QLMp when (1)
roots are all replaced by 1(2) roots. The limit result is presented in the next theorem.

Theorem 2.2 Suppose that both 1 and 2 in Assumption 2.1 are fulfilled, whereas 3 in
Assumption 2.1 is violated with the number of 1(2) stochastic trends given by p—r. Then,
the limiting distribution of QLMr given in (8) is modified such that By, in (4) is replaced
by By, defined as

u u —1
Bi. = Bi. —/ BI,UBLUdu (/ BlmBimdv) By, (5)
0 0
for
BTU = / BLUdU,
’ 0
and the restricted intercept is also corrected for By ,,.

Proof. See the Appendix. m

That is, the limiting distribution of QQ LMy varies according to (1) and I(2) cases.
This result suggests the possibility that the use of simulated I(1) quantiles based on
(3) can lead to misleading statistical inference when the data in question are very close
to I(2). The next section, using Monte Carlo experiments, inspects the performance of
QLMy in the presence of near I(2) roots.

3 Monte Carlo Experiments

A data generation process (DGP) for Monte Carlo experiments is given by the following
bivariate system:

X141
AX, —0.1 7
( AXy! ) — ( 0 ) (1 -1 —05) XQit,1

0.2 0 AXi4 €1t
+ ’ R
( 0 ¢)<AX2¢1)+(52¢)
where (g14,¢2,) ~ IN (0,9) for

1 0.5
Q_O'OQX(O.E) 1 )
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Figure 1: Sample Paths of ng)

In the DGP, 1 is allowed to take four different values: 0.7, 0.8, 0.9, and 0.95. Note that the
third condition in Assumption 2.1 is satisfied but only marginally when ¢ approaches to
1, corresponding to near I(2). If ¢ = 1, then X, is a complete I(2) process, which carries
over to X;,; by way of the cointegrating linkage. The complete I(2) case is precluded in
the DGP considered here. The number of replications is set to be 10,000, although the
sample size T' varies according to experiments.

Figure 1 displays a sample path of ng) with T" = 500 for two cases, ¢» = 0.7 and
1 = 0.95. The former case should fall in the category of I(1), while the latter case clearly
corresponds to a near I(2) process. According to the example in Figure 1, the overall
path for ¢ = 0.95 seems to be located lower than that for ¢» = 0.7, suggesting that the
magnitude of the Q) L My statistic for v» = 0.95 can be quite different from that for b = 0.7,
in line with the theoretical argument presented in the previous section.

Figure 2 plots estimated quantiles of QLM7 for T = 500 against the corresponding
simulated asymptotic quantiles. The methodology in Johansen (1996, Ch.15) enables the
author to tabulate the asymptotic quantiles of (3); the tabulation is performed using 2, 000
observations with 10,000 replications. The vertical axis corresponds to the estimated
quantiles, while the horizontal axis to the asymptotic quantiles. The baseline asymptotic
quantile-quantile (QQ) plots are given by the straight thick line of 45 degree, whereas
the estimated QQ plots are represented by various other lines. Figure 2 shows that all
the estimated QQ plots lie below the baseline asymptotic case. In addition, the figure
indicates that the test statistic tends to be under-sized as v gets closer to 1, even though
the number of observations is very large. In other words, the test statistic, calculated
from the above specific DGP even using a large number of observations, tends to be very
conservative as the degree of a near I(2) root becomes larger. This result is difficult to
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Figure 2: QQ Plots of QLM

generalise, but is consistent with the fact that the limiting distribution of Q) LMr varies
according to cases where I(1) or I(2) roots are involved in the system.

Furthermore, Figure 3 presents recursive rejection frequencies of QLMy. The 95%
tabulated quantile is used as a critical value, so that a nominal significance level coincides
with 5%, and the figure also provides the 95% confidence band. The sample size starts at
T = 50 and increases by 50 observations until it reaches T" = 500. According to Figure
3(a) for ¢» = 0.7, the rejection frequencies tend to approach to the nominal level as the
sample size increases. However, such tendency becomes weaker when 1) gets close to 1,
as shown in Figures 3 (b), (c¢) and (d). According to Figure 3(d), the rejection rate is
only around 3.5% for T" = 500. The finding indicates that the existence of a near 1(2)
root in the above DGP renders the test statistic conservative, in line with Figure 2. The
analytical argument in the previous section is again supported by the experiment.

The experiments thus far suggest that near /(2) variables in the specified DGP cause
the problem of under-size distortions when using the standard I(1) quantile i.e. the test
is prone to be very conservative in the presence of near I(2) variables. Size control is a
fundamental requirement in classical statistical inferences, so this problem needs to be
addressed. The limiting distribution given in Theorem 2.2, which allows for the presence
of I(2) roots, could provide a better approximation in a situation where the data are
very close to I(2). Figure 4 similarly displays recursive rejection frequencies of QL Mr,
but in this case the critical value is given by a simulated 95% quantile based on the
limiting distribution in Theorem 2.2. The tabulation of the new limiting distribution is
again conducted based on Johansen (1996, Ch.15). It turns out that the rejection rates
for ¢» = 0.7 in Figure 4(a) are much larger than the nominal level. The rejection rates,
however, tend to approach the nominal level as 1 becomes larger, according to Figures 4
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(b), (¢) and (d). The rejection frequencies in Figure 4(d) tend to lie inside the confidence
band with an increase in the sample size. According to Figures 3 and 4, it is presumably
important to distinguish between I(1) and near I(2) variables in terms of size control
of the test for parameter stability; the limiting distribution allowing for the presence of
I(2) roots is likely to be a better approximation when the data are very close to I(2).
The results of the experiments are all in line with the analytical argument given in the
previous section.

4 Empirical Illustration

This section provides an empirical illustration of ) LMy when the data are judged to be
near [(2) processes. A vector autoregression consists of p, and w;, which are the logs of
price and wage indices in Japan, respectively. See the Appendix for details of the data.
An overview of quarterly data for p; and w, is provided in Figure 5, and the sample period
runs from the fourth quarter in 1982 to the second quarter in 1999. The scale of the figure
is normalised for p;.
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Figure 5: An Overview of Japan’s Time Series Data

In line with the discussion given in the introduction, smooth trending features are
found in both p; and wy, indicating that both of them may be interpreted as near [(2)
variables and share a common stochastic trend. However, according to the figure, one may
conjecture that a relationship between p; and w; becomes unstable from 1995 onwards.
It is well known that Japan suffered from a long-lasting deflation since the mid-1990s.

A VAR(2) model is estimated to conduct Johansen’s I(1) testing procedure (see Jo-
hansen, Ch.6, 1996) for the determination of the cointegrating rank r. The test suggests



the choice of » = 1, which implies the validity of a restriction of a single unit root on the
VAR system. Imposing the restriction on the system, it is then found that modulus of
eigenvalues of a companion matrix for the system, corresponding to reciprocal values of
the roots of A(z) in Section 2, are given by

1.000, 0.984, 0.291, 0.188.

The first largest eigenvalue is unity due to the restriction of a single unit root, and the
second largest one is also nearly unity. This finding, as anticipated from the overview of
the data, suggests that the data may be very close to I(2) series.

The parameter constancy test statistic () LMy is then constructed using the price-wage
data, and its value is given by QLMr = 0.503. The 95% simulating quantile based on
(3) for I(1) roots is 0.572, while the quantile using the I(2) modification in Theorem 2.2
is 0.496. Thus, the hypothesis of time-invariant parameters is not rejected at the 5%
level based on the former I(1) quantile, whereas the hypothesis is marginally rejected at
the same level based on the latter 1(2) quantile. The possibility of parameter instability,
suggested by the use of the latter quantile taking account of 7(2) roots, seems to be in line
with the conjecture based on Figure 5. This empirical illustration, together with Monte
Carlo experiments given above, indicates the importance of allowing for 7(2) roots when
testing parameter constancy in a VAR system for stock variables, such as price indices
and monetary aggregates.

5 Summary and Conclusion

This note investigates the behaviour of a parameter-constancy test when near (2) vari-
ables exist in a cointegrated system. A cointegrated VAR analysis requires parameter
stability throughout the sample period of interest. Hansen and Johansen (1999) explore
various test statistics for this purpose, and this note focuses on a quasi LM test among
them. This note presents a limit theorem for a quasi LM parameter constancy test, which
explicitly allows for I(2) roots in the cointegrated VAR system. The limiting distribution
of the test statistic comprises functionals of the standard Brownian motion. The distribu-
tion is therefore different from that in a standard case where only (1) roots are involved
in the system. The limit theorem indicates that the use of simulated quantiles based on a
conventional /(1) specification can lead to misleading statistical inference when the data
are very close to I(2). According to the Monte Carlo experiments conducted in this note,
the existence of near (2) series, in fact, has a significant impact on size properties of a
quasi LM test for parameter stability. An empirical illustration also lends weight to this
argument. It is therefore important to check if the data are I(1) or close to I(2) processes
when testing stability of the cointegrating parameters.
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A Appendix

A.1 Proof of Theorem 2.2

Without loss off generality, the VAR model (1) under the fulfillment of both 1 and 2 in
Assumption 2.1 is expressed as

k—2
NXy=afX; | —TAX, 1+ Y UAX, +e,
i=1
where U; = — Z?;.l“ I;. Define Z; = (A2X]_,,..,A’X/_,,) and introduce notational
conventions as follows: R, denotes residuals from regression of A?X; on AX; ; and Z;,
while

t t -1
Ry =X; =Y X7 ,AX], (Z AXi_lAX{_1> AX; 1 +0,(T),
i=1

=1

which also represents residuals from regression of X;* ; on AX;_; and Z;. The final term
on the right hand side of R, arises because Z; is a vector of I(0) processes. The statistic
ng) is then constructed using (2), in which Ry and Ry are replaced by Rf, and Rj,,
respectively. Let R}, be expressed in two elements such that R}, = (R’{;f‘, RiE )/ , in which
R;# corresponds to X;_; corrected for AX; ; and Z;, while R;P corresponds to a constant
corrected for AX; 1 and Z;. As the number of I(2) trends is p — r and the trends can be
captured by expansion into the direction 3, the sequence R} is normalised by T-2 3,
which leads to a weak limit

u u —1
T30 Rifhy SV = V7 - / VAVdo ( / mﬁdv) Vi,
0 0

where

V*:/ Vodv and 'V, = ' CyW,,
0

u

and W, denotes a p dimensional Brownian motion with variance 2, and a p X p matrix Cy
is defined as Cy = (3, (o/,©3,) '/, for © =TT + I, — S5 W; (see Johansen, 1995,

1997). Thus, the p — r dimensional functional By, defined in (5) is obtained from
B, = (BLCQ056,) 2V,
and the analogous argument as in Hansen and Johansen (1999) is used to find the limiting
distribution consisting of By,
A.2 Details of the Data

(Data Definitions)
pr = the log of the implicit deflator for Gross Domestic Products (GDP) in Japan, <1>
w; = the log of monthly earning index in Japan, <2>
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(Sources and Notes)
<1> National Account Statistics, Cabinet Office web page (http://www.esri.cao.go.jp/).
<2> International Financial Statistics, International Monetary Fund.

The implicit deflator is constructed from the division of the nominal GDP by the real
GDP. The nominal and real GDP seasonally-adjusted series, and the monthly earning
index is also seasonally adjusted.
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