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Abstract 

We have made a correction to "A generalization of monotone comparative statics", which is published in Economics 
Bulletin Vol. 3, No. 39. We correct the following three aspects of the original paper: the first and the second are the 
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[Proposition 2.1, pp.5].
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1 Correction

We have made a correction to “A generalization of monotone compara-
tive statics”, which is published in Economics Bulletin Vol.3, No.39. In that
paper, we generalized Milgrom and Shannon’s Theorem (Milgrom and Shan-
non (1994)) from a partially ordered set to a preordered set. As a result, we
showed the following two necessary and sufficient relations. The first is the
equivalence of the “w-quasisupermodularity” of objective function and the
monotonicity of the solution of the constrained optimization problem with
respect to “w-strong set order”. The second is the similar relation of the
“s-quasisupermodularity” of the function and the monotonicity of solution
with respect to “s-strong set order”.

We correct the following three aspects of the original paper: The first
is the name of a fundamental notion. In our main proposition, the notion
that is called “prelattice” in the original paper plays a crucial role. However,
it turns out that the term “prelattice” has already been used as the name
of a mathematical notion that is different from ours. Hence, we alter the
name of ours to “preordered lattice structure”. The second is the definition
of s-quasisupermodularity. Thanks to a private communication from Richard
Ruble, it has become clear that the original version of s-quasisupermodularity
is not the necessary and sufficient condition of the monotonicity of the so-
lution of the optimization problem with respect to the s-strong set order
but only a necessary condition of it. Hence, we alter the definition of s-
quasisupermodular in such a way that the necessary and sufficient relation
is realized. The third is the proof of [Proposition 2.1, pp.5] in the original
paper, specifically, the necessity part of it. It turns out that the original ver-
sion is incomplete. Hence, we intend to replace it. For these purposes, we
introduce some basic notions as follows.

Definition 1: Let X be a preordered set endowed with a preorder 4. We
say that Ux,y is the set of upper bounds of x, y ∈ X if x 4 u and y 4 u for all
u ∈ Ux,y. Similarly, we say that Lx,y is the set of lower bounds of x, y ∈ X if
l 4 x and l 4 y for all l ∈ Lx,y.

Definition 2: We say that Ax,y ⊂ Ux,y is the set of supremums of x, y ∈ X
if a 4 u for all a ∈ Ax,y and u ∈ Ux,y. Similarly, we say that Tx,y ⊂ Lx,y is
the set of infimums of x, y ∈ X if l 4 t for all t ∈ Tx,y and l ∈ Lx,y.

The following is our first correction: the name of this notion is altered
from the original paper. In Shirai (2008), we called this a “prelattice”.
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Definition 3: We say that X is a preordered lattice structure if Ax,y ̸= ∅
and Tx,y ̸= ∅ for every x, y ∈ X.

Then, we proceed to the second and the third corrections. We introduce
the following notion and lemmas. In particular, the lemmas stated below play
fundamental roles in the third correction: that is, in the corrected version of
the proof of Proposition 2.1 in the original paper.

Definition 4: We say that x and y are indifferent to each other if we have
both x 4 y and y 4 x. We write this as x ∼ y or y ∼ x. We define the set
Ix = {y ∈ X | x ∼ y}, which is called the indifference set of x in the rest of
this paper.

Lemma 1: If x′ ∈ Ix for some x, then Ux,y = Ux′,y and Lx,y = Lx′,y for
every y ∈ X.

Proof. Let u ∈ Ux,y and u′ ∈ Ux′,y. By the definition, x 4 u and y 4 u.
Since x ∼ x′, by transitivity, we have x′ 4 u and thus Ux,y ⊂ Ux′,y. By
similar arguments, we can prove that Ux′,y ⊂ Ux,y, hence Ux,y = Ux′,y. The
rest of our claim also follows from almost the same arguments. [Q.E.D.]

Lemma 2: If b ∼ a for some a ∈ Ax,y, then b ∈ Ax,y. Moreover, Ax,y = Ia

for every a ∈ Ax,y. Similarly, if c ∼ t for some t ∈ Tx,y, then c ∈ Tx,y, and
we have Tx,y = It for every t ∈ Tx,y.

Proof. By transitivity, we must have x 4 b, y 4 b and b 4 u for all
u ∈ Ux,y. This proves that b ∈ Ax,y. Since it is obvious that a ∼ a′ for all
a, a′ ∈ Ax,y, our claims on Ax,y follow. For the proof of the claims on Tx,y,
we use the same logic as above. [Q.E.D.]

Lemma 3: If x′ ∈ Ix for some x, then we have Ax,y = Ax′,y and Tx,y = Tx′,y

for every y ∈ X.

Proof. Let a ∈ Ax,y and a′ ∈ Ax′,y. By the previous lemma, it is sufficient
to show that a′ ∈ Ia. By the definition, we have x 4 a and a 4 u for all
u ∈ Ux,y. By transitivity and Lemma 1, this means a 4 x′ and a 4 u′ for
all u′ ∈ Ux′,y and thus, Ax,y ⊂ Ax′,y. The converse relation can be shown
similarly, hence Ax,y = Ax′,y. The proof of the claim on the set of infimums
is similar. [Q.E.D.]

We introduce the following notions, which play central roles in our propo-
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sition. In particular, as mentioned in the opening sentence, the definition of
“s-quasisupermodularity” in Definition 6 is altered from the original paper
Shirai (2008). This is our second correction.

Definition 5: Let X be a preordered lattice structure and S, S ′ ⊂ X. We
say that S ′ is higher than S with respect to w-strong set order if Ax,y∩S ′ ̸= ∅
and Tx,y ∩ S ̸= ∅ for every x, y ∈ X. We write this as S ≤wa S ′. We say
that S ′ is higher than S with respect to s-strong set order if Ax,y ⊂ S ′ and
Tx,y ⊂ S. We write this as S ≤sa S ′.

Definition 6: Let X be a preordered lattice structure. We say that a func-
tion f : X → R is w-quasisupermodular if

∀t ∈ Tx,y; f(x) ≥ (>)f(t) ⇒ ∃a ∈ Ax,y; f(a) ≥ (>)f(y).

We say that f is s-quasisupermodular of

∃t ∈ Tx,y; f(x) ≥ (>)f(t) ⇒ ∀a ∈ Ax,y; f(a) ≥ (>)f(y).

It should be noted that, in the original paper, s-quasisupermodularity is
defined as

∀t ∈ Tx,y; f(x) ≥ (>)f(t) ⇒ ∀a ∈ Ax,y; f(a) ≥ (>)f(y).

However, it has become clear that this definition is too weak to assure the
monotonicity of the solution set of the maximization problem with respect to
s-strong set relation. In the following, we write the solution set of the maxi-
mization problem: maxx∈S⊂X f(x) as M(S). Our main proposition can now
be stated as follows. This is nothing but the corrected version of Proposition
2.1 in the original paper.

Proposition 1: (a): Let X be a prelattice, S, S ′ ⊂ X, and S ≤sa S ′. Then,
M(S) ≤wa M(S ′) if and only if f : X → R satisfies w-quasisupermodularity.
(b): M(S) ≤sa M(S ′) if and only if f satisfies s-quasisupermodularity.

Proof. (a): For the sufficiency part, see the original paper. The necessity
part can be shown as follows. Let S = Ix ∪ Tx,y and S ′ = Iy ∪ Ax,y for some
x, y ∈ X. It is obvious that S ≤sa S ′. Assume M(S) ≤wa M(S ′). Suppose
x ∈ M(S) and y ∈ M(S ′). Since M(S) ≤wa M(S ′), Ax,y ∩M(S ′) ̸= ∅, which
implies f(a) ≥ f(y) for some a ∈ Ax,y. Suppose x /∈ M(S), f(x) ≥ f(t) for
all t ∈ Tx,y and y ∈ M(S ′). Then, there exists some x′ ∈ Ix and x′ ∈ M(S).
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By our assumption, we have Ax′,y ∩ M(S ′) ̸= ∅ and by Lemma 3, we must
have Ax,y ∩ M(S ′) ̸= ∅. Hence, we have

∀t ∈ Tx,y; f(x) ≥ f(t) ⇒ ∃a ∈ Ax,y; f(a) ≥ f(y).

We have to show the case with strict inequalities. We prove the contrapo-
sition of this: assume f(a) ≤ f(y) for all a ∈ Ax,y. If x ∈ M(S), we have
Tx,y ∩ M(S) ̸= ∅, hence there exists some t ∈ Tx,y such that f(t) ≥ f(x).
Suppose x /∈ M(S) and f(x) ≥ f(t) for all t ∈ Tx,y. Then, there exists x′ ∈ Ix

such that x′ ∈ M(S). By our assumption, we must have Tx′,y ∩ M(S) ̸= ∅.
However, by Lemma 3, this contradicts the fact that f(x′) > f(t). Hence
there exists some t ∈ Tx,y such that f(t) ≥ f(x). This proves that

∀a ∈ Ax,y; f(a) ≤ f(y) ⇒ ∃t ∈ Tx,y; f(x) ≤ f(t),

which is equivalent to

∀t ∈ Tx,y; f(x) > f(t) ⇒ ∃a ∈ Ax,y; f(a) > f(y).

(b): Let x ∈ M(S) and y ∈ M(S ′). By s-quasisupermodularity, we
have ∀a ∈ Ax,y; f(a) ≥ f(y), which means Ax,y ⊂ M(S ′). Then, suppose
there exists some t′ such that t′ /∈ M(S), that is, f(t′) < f(x). In this
case, by s-quasisupermodularity, we must have f(a) > f(y) for all a ∈ Ax,y,
contradiction.

The necessity part can be shown as follows. Let S and S ′ be the same
as the proof of (a). Suppose f(y) > f(a) for some a ∈ Ax,y. What we have
to show is that f(t) > f(x) for all t ∈ Tx,y. Note that Ix ⊂ (M(S))c. This
is shown as follows. Suppose y ∈ M(S ′) and some x′ ∈ Ix is contained in
M(S). In this case, by Lemma 3, we must have Ax′,y = Ax,y ⊂ M(S ′),
which contradicts our assumption. Suppose some a′ ∈ Ax,y is contained in
M(S ′) and some x′ ∈ Ix is an element of M(S). In this case, by Lemmas 2
and 3, we must have Ax′,a′ = Ia′ = Ax,y ⊂ M(S ′), which again contradicts
our assumption. Hence, the set M(S) consists of some elements of Tx,y. Let
t′ ∈ Tx,y be an element of M(S). Note that, in fact, Ax,y ⊂ (M(S ′))c. Indeed,
if some a′ ∈ Ax,y contained in M(S ′), then we must have At′,a′ = Ia′ = Ax,y ⊂
M(S ′), contradiction. Hence, the set M(S ′) consists of some elements of Iy.
Let y′ ∈ Iy be an element of M(S ′). Based on the above arguments, we
can show that, in fact, Tx,y = M(S). Indeed, by Lemmas 2 and 3, we have
Tt′,y′ = It′ = Tx,y ⊂ M(S ′). This proves that

∃a ∈ Ax,y; f(y) > f(a) ⇒ ∀t ∈ Tx,y; f(t) > f(x),

which is equivalent to

∃t ∈ Tx,y; f(x) ≥ f(t) ⇒ ∀a ∈ Ax,y; f(a) ≥ f(y).
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The case with strict inequalities is shown as follows: suppose f(x) > f(t) for
some t ∈ Tx,y. In this case, the set M(S) must consist of some elements of
Ix. Let x′ be an element of M(S). We show that Iy ⊂ (M(S ′))c. Indeed,
if some y′ ∈ Iy is contained in M(S ′), then by Lemma 3, we must have
Tx′,y′ = Tx,y′ = Tx,y ⊂ M(S), which contradicts our assumption. Hence, the
set M(S ′) consists of some elements of Ax,y. Let a′ ∈ Ax,y be an element of
M(S ′). However, by Lemmas 2 and 3, we have Ax′,a′ = Ia′ = Ax,y ⊂ M(S ′),
which implies Ax,y = M(S ′). This proves that

∃t ∈ Tx,y; f(x) > f(t) ⇒ ∀a ∈ Ax,y; f(a) > f(y).

This completes our proof. [Q.E.D.]
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