Volume 29, Issue 3

Equilibrium in Matching Models with Employment Dependent Productivity

Gabriele Cardullo
DIEM, Faculty of Economics, University of Genoa

Abstract

In a standard search and matching framework, the labor market presents frictions while in the competitive product market the demand is infinitely elastic. To have a more realistic framework, some models abandon the assumption of infinite elasticity and consider a two-tier productive scheme in the goods market. In this paper, I establish the conditions that are sufficient for the existence and the uniqueness of a steady-state equilibrium for this kind of models. I also notice that some standard assumptions about the production and matching technology (a Cobb-Douglas function) do not fulfill such conditions and so may hinder the existence of an equilibrium.

[^0]
1 Introduction

In a standard search and matching model, the labor market presents frictions, whereas in the perfectly competitive product market the demand is infinitely elastic, so that an increase in supply does not affect the equilibrium price (Mortensen and Pissarides 1999, and Pissarides 2000).

In order to introduce a more realistic framework for the goods market, some scholars (e.g. Joseph, Pierrard, and Sneessens 2004, and Pierrard 2005, and Cahuc and Zylberberg 2004, p. 618-622) abandon the assumption of an infinite elasticity of demand and consider a two-tier productive scheme. Different types of workers (usually, low-skilled and highskilled ones) are hired in intermediate good sectors. Such goods face a decreasing demand from a final representative firm that produces the unique consumption good ${ }^{1}$. Papers of this kind make often use of numerical simulations and scant attention is paid to analytical properties.

This paper takes a different stand. I consider a simplified framework in which there are only two intermediate sectors and I look for the conditions under which a (unique) steadystate equilibrium exists. Uniqueness is guaranteed by the assumption of constant returns to scale (henceforth, CRS) in the final good function, whereas a sufficient condition for the existence concerns the difference between the marginal productivity and the income received when unemployed. If it is positive as the levels of labor market tightness in both sectors tend to zero, then an equilibrium exists.

Since this condition is not fulfilled by imposing a Cobb-Douglas technology both in the matching and in the production function, introducing such a functional form may hinder the existence of an equilibrium.

2 The Model

2.1 Production Technology

Assume an economy with one final good (the numeraire), two intermediate goods sectors and two types m and n of infinitely-lived and risk-neutral workers. The goods markets are perfectly competitive. Each producer of an intermediate good hires only one type of worker. Moreover, every m-skilled (respectively, n-skilled) employee produces one unit of the intermediate good m (resp. n). So $E_{i}(i \in\{m, n\})$ denotes both the amount of the i intermediate good produced and the number of employees in the i-th sector. The final good production function exhibits CRS and is written as:

$$
\begin{equation*}
Y=F\left(E_{m}, E_{n}\right), \quad \text { with } \frac{\partial F}{\partial E_{i}}>0 \text { and } \frac{\partial^{2} F}{\partial E_{i}^{2}}<0, \quad i \in\{m, n\} . \tag{1}
\end{equation*}
$$

The two inputs are p-substitutes $\left(\frac{\partial^{2} F}{\partial E_{m} \partial E_{n}}>0\right) .{ }^{2}$ Let p_{i} denote the real price of the intermediate good i. Cost minimization in the final sector leads to $p_{i}=\partial F\left(E_{m}, E_{n}\right) / \partial E_{i}$, with $i \in\{m, n\}$. Further, the value of home production is denoted by $b_{i}>0$.

[^1]
2.2 Search Technology

The model is developed in steady state. Time is continuous and r denotes the discount factor. Each type of worker can be either unemployed or be employed in his sector. The labor market is perfectly segmented, meaning that every i-type worker can be hired only by firms in the i sector. The matching function is written respectively $M_{i}=m\left(U_{i}, V_{i}\right)$, with U_{i} being the number of unemployed people and V_{i} the number of job vacancies in sector i. It is assumed to be increasing, concave and homogeneous of degree 1. Labor market tightness is defined as $\theta_{i} \equiv \frac{V_{i}}{U_{i}}$. The job filling rate is $q\left(\theta_{i}\right) \equiv M_{i} / V_{i}=m\left(\frac{1}{\theta_{i}}, 1\right), q^{\prime}\left(\theta_{i}\right)<0$, whereas the job finding rate is equal to $\alpha\left(\theta_{i}\right) \equiv M_{i} / U_{i}=\theta_{i} q\left(\theta_{i}\right)$, with $\alpha^{\prime}\left(\theta_{i}\right)>0 .{ }^{3}$ At an exogenous rate ϕ_{i} a match is destroyed. In steady state, the stocks of individuals in each position are constant. With an exogenous size of the labor force, L_{i}, the employment level is given by:

$$
\begin{equation*}
E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right) \equiv \frac{\alpha\left(\theta_{i}\right)}{\phi_{i}+\alpha\left(\theta_{i}\right)} \cdot L_{i}, \quad i \in\{m, n\} . \tag{2}
\end{equation*}
$$

Notice that $\mathbb{E}_{i}^{\prime}\left(\theta_{i}\right)>0$ and, from the condition in footnote $3, \lim _{\theta_{i} \rightarrow+\infty} \mathbb{E}_{i}\left(\theta_{i}\right)=L_{i}$.

2.3 Vacancy Supply and Wage-Setting Curves

Once a worker finds a firm with a vacant job, a surplus of the match arises. The Nash bargaining solution is assumed in order to split the surplus, whereas a zero profit condition is imposed on the demand side of the market.

The characterization of the model is standard. Hence, I directly present the equilibrium equations (obtained by merging the so-called vacancy supply and wage-setting curves) and refer to Pissarides (2000, chapter 1) for the primitive conditions under which they are derived:

$$
\begin{equation*}
\mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right) \equiv\left(1-\beta_{i}\right)\left[\frac{\partial F}{\partial E_{i}}\left(\mathbb{E}_{i}\left(\theta_{i}\right), \mathbb{E}_{j}\left(\theta_{j}\right)\right)-b_{i}\right]-k_{i}\left(\frac{r+\phi_{i}}{q\left(\theta_{i}\right)}+\beta_{i} \theta_{i}\right)=0 \tag{3}
\end{equation*}
$$

with $i \in\{m, n\}, i \neq j, k_{i}$ is the flow cost of posting a vacancy in units of final good, and β_{i} represents workers' bargaining power. Function $\mathbb{G}_{i}=0$ is the equilibrium condition in labor market i and depends on θ_{j} only through the marginal productivity $\frac{\partial F}{\partial E_{i}}$. Differentiating \mathbb{G}_{i} with respect to θ_{i}, I obtain:

$$
\begin{equation*}
\frac{d \mathbb{G}_{i}}{d \theta_{i}}=A_{i}+B_{i} \tag{4}
\end{equation*}
$$

with

$$
A_{i} \equiv k_{i}\left[\left(r+\phi_{i}\right) \frac{q^{\prime}\left(\theta_{i}\right)}{q\left(\theta_{i}\right)^{2}}-\beta_{i}\right]<0 \quad \text { and } \quad B_{i} \equiv\left(1-\beta_{i}\right) \frac{\partial^{2} F}{\partial E_{i}^{2}} \cdot \mathbb{E}_{i}^{\prime}\left(\theta_{i}\right)<0
$$

$i \in\{m, n\}$. I also differentiate \mathbb{G}_{i} with respect to E_{j} :

$$
\begin{equation*}
\frac{d \mathbb{G}_{i}}{d \theta_{j}} \equiv C_{i, j}=\left(1-\beta_{i}\right) \frac{\partial^{2} F}{\partial E_{i} \partial E_{j}} \cdot \mathbb{E}_{j}^{\prime}\left(\theta_{j}\right)>0 \quad \text { with } i, j \in\{m, n\}, i \neq j \tag{5}
\end{equation*}
$$

[^2]
3 Equilibrium

3.1 Conditional Equilibrium in each market

The first existence result consists in showing under which assumptions there exists a θ_{i} such that $\mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right)=0$ holds, conditional on θ_{j}.

Note that $\frac{d \mathbb{G}_{i}}{d \theta_{i}}<0$ and $\lim _{\theta_{i} \rightarrow+\infty} \mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right) \rightarrow-\infty$ for the conditions imposed in footnote 3 and the limit behavior of equation (2). This result holds for any value of $\theta_{j} \in[0,+\infty)$. If $\lim _{\theta_{i} \rightarrow 0} \mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right)>0 \forall \theta_{j} \in[0,+\infty)$, I could use the intermediate value theorem to prove the existence of a conditional equilibrium. However, I can compute such a limit only for values of θ_{j} that are not close to zero ${ }^{4}$. In fact, as both θ_{i} and θ_{j} (and consequently E_{i} and E_{j}) tend to 0 , the input of the marginal productivity takes an indeterminate form ${ }^{5} \frac{0}{0}$ and it is not possible to ascertain the sign of this expression ${ }^{6}$.

To rule out this possibility, two alternative assumptions are needed. Lemma 1 summarizes the results.

Lemma 1 There always exists a $\theta_{i} \in(0,+\infty)$ that solves $\mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right)=0 \forall \theta_{j} \in[0,+\infty)$, $i, j \in\{n, m\}, i \neq j$ if, alternatively,:

1. $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=0$ and $\frac{\partial F}{\partial E_{i}}\left(\mathbb{E}_{i}, \mathbb{E}_{j}\right)>b_{i} \forall \theta_{i}$ and $\theta_{j} \in[0,+\infty)$ (except for $\left.\theta_{i}=\theta_{j}=0\right)$ with $i, j \in\{m, n\}, i \neq j$.
2. $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=\epsilon_{i}>0$, and $\frac{\partial F}{\partial E_{i}}\left(\mathbb{E}_{i}=\epsilon_{i}, \mathbb{E}_{j}=\epsilon_{j}\right)>b_{i}$ with $i, j \in\{m, n\}$, $i \neq j$.

Proof.
CASE 1
Since $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=0, i \in\{m, n\}$, the sets $\theta_{i} \in[0,+\infty)$ and $E_{i} \in\left[0, L_{i}\right]$ are respectively the domain and the range of the function $\mathbb{E}_{i}\left(\theta_{i}\right)$.
Consider the term inside the square brackets in (3) as $\theta_{j}=0$; it is positive, decreasing in $\theta_{i} \in(0,+\infty)$, and tends to $\frac{\partial F}{\partial E_{i}}\left(L_{i}, \mathbb{E}_{j}=0\right)-b_{i}>0$ as $\theta_{i} \rightarrow+\infty$. The second term in (3) is a ray starting from the origin and that tends to $+\infty$ as $\theta_{i} \rightarrow+\infty$.

So, there exists a $\theta_{i} \in[0,+\infty)$ such that $\mathbb{G}_{i}\left(\theta_{i}, \theta_{j}=0\right)=0$. The same reasoning can be applied for any $\theta_{j}>0$.
CASE 2
Since $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=\epsilon_{i}>0$, the domain and range of the function $\mathbb{E}_{i}\left(\theta_{i}\right)$ become respectively $\theta_{i} \in[0,+\infty)$ and $E_{i} \in\left[\epsilon_{i}, L_{i}\right], i \in\{m, n\}$. Imposing $\frac{\partial F}{\partial E_{i}}\left(\mathbb{E}_{i}=\epsilon_{i}, \mathbb{E}_{j}=\epsilon_{j}\right)>$ b_{i} implies that $\lim _{\theta_{i} \rightarrow 0} \mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right)>0 \forall \theta_{j} \geq 0$.
I can apply the intermediate value theorem and conclude that there exists a $\theta_{i} \in[0,+\infty)$ such that $\mathbb{G}_{i}=0 \forall \theta_{j} \in[0,+\infty)$.

[^3]
Some Examples

CASE 1: CES production function with $s>1$.

Consider a CES production function with $s>1$:

$$
Y=\left[E_{m^{\frac{s-1}{s}}}+E_{n}^{\frac{s-1}{s}}\right]^{\frac{s}{s-1}} \quad \text { where } \frac{\partial F}{\partial E_{i}}\left(E_{i}, E_{j}=0\right)=1 \quad i, j \in\{n, m\}, i \neq j
$$

For Lemma 1 (CASE 1), imposing $b_{i}<1$ is sufficient to ensure the existence of a conditional equilibrium.

CASE 2: CES matching function with $s>1$.

Consider a CES matching function:

$$
M_{i}=\left[V_{i}^{\frac{s-1}{s}}+U_{i}^{\frac{s-1}{s}}\right]^{\frac{s}{s-1}} \quad \text { and } \quad \alpha\left(\theta_{i}\right)=\left[\theta_{i}^{\frac{s-1}{s}}+1\right]^{\frac{s}{s-1}} \quad i \in\{n, m\}
$$

If $s>1, \lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=\frac{L_{i}}{1+\phi_{i}}$. Imposing $\frac{\partial F}{\partial E_{i}}\left(\frac{L_{i}}{1+\phi_{i}}, \frac{L_{j}}{1+\phi_{j}}\right)>b_{i}, i, j \in\{n, m\}, i \neq$ j, is sufficient to ensure the existence of a conditional equilibrium.

Cobb-Douglas technology.

A Cobb-Douglas production function $Y=a E_{n}^{\gamma} E_{m}^{1-\gamma}$ does not belong to CASE 1. In fact, $\frac{\partial F}{\partial E_{i}}=\gamma Y / E_{i}=0$ as $E_{j}=0, i, j \in\{n, m\}, i \neq j$.

Similarly, with a Cobb-Douglas matching function $M_{i}=a V_{i}^{\gamma} U_{i}^{1-\gamma}, \alpha\left(\theta_{i}\right)=a \theta_{i}^{\gamma}$, and $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=0$, so conditions of CASE 2 are not fulfilled.

Imposing a Cobb-Douglas formulation both in the the production and in the matching technology implies that the conditional equilibrium in market i may not be satisfied for values of θ_{j} close to 0 . As we will see in the next paragraph, this may cause the absence of the general equilibrium.

3.2 General Equilibrium

I first apply the implicit function theorem. Using (4) and (5), I get:

$$
\begin{equation*}
\left.\frac{d \theta_{i}}{d \theta_{j}}\right|_{\mathbb{G}_{i}=0}=-\frac{C_{i, j}}{A_{i}+B_{i}}>0 \quad \text { with } i \in\{m, n\}, i \neq j \tag{6}
\end{equation*}
$$

$\mathbb{G}_{i}=0$ defines a monotonously increasing relationship in $\left(\theta_{i}, \theta_{j}\right)$ space. At the general equilibrium, the values of labor market tightness solve the following system:

$$
\left\{\begin{array}{l}
G_{n}\left(\theta_{n}, \theta_{m}\right)=0 \tag{7}\\
G_{m}\left(\theta_{m}, \theta_{n}\right)=0
\end{array}\right.
$$

Proposition 1 presents the results.

Proposition 1 If the conditions in Lemma 1 are satisfied, a steady state equilibrium exists and is unique.

Proof.
I denote $\theta_{m}=g_{m}\left(\theta_{n}\right)$ the explicit function of $\mathbb{G}_{m}\left(\theta_{m}, \theta_{n}\right)=0$, and $\theta_{m}=g_{n}\left(\theta_{n}\right)$ the explicit function of $\mathbb{G}_{n}\left(\theta_{n}, \theta_{m}\right)=0$. Both functions are monotonically increasing. Let also $\theta_{n}=g_{m}^{-1}\left(\theta_{m}\right)$ and $\theta_{n}=g_{n}^{-1}\left(\theta_{m}\right)$ denote their inverse functions.

EXISTENCE

For the conditions imposed in Lemma 1, there always exists a $\theta_{m} \in(0,+\infty)$ that solves $\mathbb{G}_{m}\left(\theta_{m}, \theta_{n}=0\right)=0$. This is tantamount to writing that $\theta_{m}=g_{m}\left(\theta_{n}\right)$ has a positive intercept in the vertical axis, that I denote with χ_{m}. Similarly, there always exists a $\theta_{n} \in(0,+\infty)$ that solves $\mathbb{G}_{n}\left(\theta_{m}=0, \theta_{n}\right)=0$, implying that $\theta_{m}=g_{n}\left(\theta_{n}\right)$ has a positive intercept in the horizontal axis, that I denote with χ_{n}.
Moreover, as noticed in footnote 6 , there exists a $\theta_{m} \in(0,+\infty)$ that solves $\mathbb{G}_{m}\left(\theta_{m}, \theta_{n} \rightarrow\right.$ $+\infty)=0$. So, $\lim _{\theta_{n} \rightarrow+\infty} g_{m}\left(\theta_{n}\right)=\Psi_{m} \in \Re^{+}$. Since there also exists a $\theta_{n} \in(0,+\infty)$ that solves $\mathbb{G}_{n}\left(\theta_{m} \rightarrow+\infty, \theta_{n}\right)=0$, one gets that $\lim _{\theta_{m} \rightarrow+\infty} g_{n}^{-1}\left(\theta_{m}\right)=\Psi_{n} \in \Re^{+}$.
The domain and the range of $\theta_{m}=g_{m}\left(\theta_{n}\right)$ are respectively $[0,+\infty)$ and $\left[\chi_{m}, \Psi_{m}\right]$. The domain and the range of $\theta_{m}=g_{n}\left(\theta_{n}\right)$ are respectively $\left[\chi_{n}, \Psi_{n}\right]$ and $[0,+\infty)$. Since both functions are monotonously increasing, they must intersect at least once (see Figure 1).

UNIQUENESS

I define $H\left(\theta_{n}\right) \equiv g_{m}\left(\theta_{n}\right)-g_{n}\left(\theta_{n}\right)$. If $H\left(\theta_{n}\right)$ is a monotonic function in the neighborhood of the equilibrium steady-state, the equilibrium is unique.
Let θ_{m}^{*} and θ_{m}^{*} denote the equilibrium levels of tightness, $H^{\prime}\left(\theta_{n}^{*}\right)=g_{m}^{\prime}\left(\theta_{n}^{*}\right)-g_{n}^{\prime}\left(\theta_{n}^{*}\right)<0$ is a sufficient condition for the uniqueness of the equilibrium. This implies:

$$
\begin{equation*}
\left.\frac{d \theta_{m}}{d \theta_{n}}\right|_{\mathbb{G}_{n}\left(\theta_{n}^{*}, \theta_{m}^{*}\right)=0}>\left.\frac{d \theta_{m}}{d \theta_{n}}\right|_{\mathbb{G}_{m}\left(\theta_{m}^{*}, \theta_{n}^{*}\right)=0} . \tag{8}
\end{equation*}
$$

From (6), one derives:

$$
\begin{align*}
& \left.\frac{d \theta_{m}}{d \theta_{n}}\right|_{\mathbb{G}_{n}\left(\theta_{n}^{*}, \theta_{m}^{*}\right)=0}=-\frac{B_{n}^{*}+A_{n}^{*}}{C_{n, m}^{*}} \tag{9}\\
& \left.\frac{d \theta_{m}}{d \theta_{n}}\right|_{\mathbb{G}_{m}\left(\theta_{m}^{*}, \theta_{n}^{*}\right)=0}=-\frac{C_{m, n}^{*}}{B_{m}^{*}+A_{m}^{*}} \tag{10}
\end{align*}
$$

I multiply the numerator of (9) by the denominator of (10) and the numerator of (10) with the denominator of (9). I get four positive terms on the LHS and only one positive term on the RHS. For (8) to hold, the four positive terms on the LHS must be greater than the term on the RHS. One of the term on the LHS is:

$$
\begin{equation*}
B_{m}^{*} B_{n}^{*}=\left(1-\beta_{m}\right)\left(1-\beta_{n}\right) \frac{\partial^{2} F}{\partial E_{m}^{2}}\left(\mathbb{E}\left(\theta_{n}^{*}\right), \mathbb{E}\left(\theta_{m}^{*}\right)\right) \cdot \frac{\partial^{2} F}{\partial E_{n}^{2}}\left(\mathbb{E}\left(\theta_{m}^{*}\right), \mathbb{E}\left(\theta_{n}^{*}\right)\right) \cdot \mathbb{E}^{\prime}\left(\theta_{m}^{*}\right) \mathbb{E}^{\prime}\left(\theta_{m}^{*}\right) \tag{11}
\end{equation*}
$$

The positive term on the RHS is:

$$
\begin{equation*}
C_{n, m}^{*} C_{m, n}^{*}=\left(1-\beta_{m}\right)\left(1-\beta_{n}\right)\left[\frac{\partial^{2} F}{\partial E_{m} \partial E_{n}}\left(\mathbb{E}\left(\theta_{m}^{*}\right), \mathbb{E}\left(\theta_{m}^{*}\right)\right)\right]^{2} \cdot \mathbb{E}^{\prime}\left(\theta_{m}^{*}\right) \mathbb{E}^{\prime}\left(\theta_{n}^{*}\right) \tag{12}
\end{equation*}
$$

Expressions (11) and (12) are equal because of the Euler's formula for functions with constant returns to scale, that is $\frac{\partial^{2} F}{\partial E_{n}^{2}} \frac{\partial^{2} F}{\partial E_{m}^{2}}=\left(\frac{\partial^{2} F}{\partial E_{n} \partial E_{m}}\right)^{2}$. Then, inequality (8) is verified. The equilibrium is unique.

4 Final Remarks

A Cobb-Douglas technology both in the matching and in the production function may hinder the existence of a steady-state equilibrium. The reason is that the functions
$\theta_{m}=g_{m}\left(\theta_{n}\right)$ and $\theta_{m}=g_{n}^{-1}\left(\theta_{n}\right)$ may not exist for values of respectively θ_{n} and θ_{m} close to 0 , point 1 of the existence proof cannot be established, and the two curves may not cross each other. Figure 2 illustrates this case.

This is not a rare possibility. Consider a standard parametrization such as the one performed by Cahuc and Zylberberg (2004, page 623) for this kind of models. The unit of time corresponds to one year, $r=0.05, \beta_{i}=0.5, \phi_{i}=0.15, h_{i}=0.1 \forall i$. The matching function is Cobb-Douglas with a parameter $\gamma_{i}=0.5 \forall i$. Contrarily to Cahuc and Zylberberg (that consider a CES production function with elasticity of substitution equal to 1.5), I impose a Cobb-Douglas formulation even in the production technology. A_{n} is an efficiency parameter for workers in market n and it is equal to 1.5 . For values of $b_{m} \geq 0.9$ and $b_{n} \geq 0.95$, no equilibrium exists ${ }^{7}$.

Keeping the Cobb-Douglas formulation and imposing either $b_{i}=\rho_{i} w_{i}$ with $0<\rho_{i}<1$ or $b_{i}=0 i \in\{n, m\}$ would not prevent from the absence of an equilibrium. The reason is that, even under these hypotheses, the solution of the equation $\mathbb{G}\left(\theta_{i}, \theta_{j}=0\right)=0$ is indefinite the existence proof cannot be made ${ }^{8}$.

The results of Proposition 1 should be seen as a warning about the use of a standard Cobb-Douglas technology in models of this kind.

References

Acemoglu, D. (2001) "Good Jobs versus Bad Jobs" Journal of Labor Economics 19, 1-21. Cahuc, P. and A. Zylberberg (2004) Labor Economics MIT Press: Cambridge (MA).

Joseph, G., Pierrard, O., and Sneessens, H. (2004) "Job Turnover, Unemployment and Labor Market Institutions" Labour Economics 11, 451-468.

Mortensen, D. and C. Pissarides (1999) New Developments in Models of Search in the Labor Market, in Handbook of Labor Economics, Volume 3B by O. Ashenfelter and D. Card, Eds., Elsevier Science Publisher (North-Holland): Amsterdam.

Pierrard, O. (2005) "Impacts of Selective Reductions in Labor Taxation" Applied Economics Quarterly 51,49-82.

Pissarides, C. (2000) Equilibrium Unemployment Theory MIT Press: Cambridge (MA).

[^4]

Figure 1: Existence and uniqueness of the equilibrium.

Figure 2: No equilibrium. On the Left: As $\theta_{n} \rightarrow 0$ (resp. $\theta_{m} \rightarrow 0$), the function $g_{m}\left(\theta_{n}\right)$ (resp. $g_{n}\left(\theta_{n}\right)$) is not defined. On the Right: At the origin, the functions $g_{m}\left(\theta_{n}\right)$ and $g_{n}\left(\theta_{n}\right)$ are not defined.

[^0]: I am indebted to the Associate Editor Etienne Lehmann for several insightful remarks. I also thank David de la Croix, Fabien Postel-Vinay, Frank Portier, Bruno Van der Linden, and the participants to the Matagne workshop for useful discussions and comments. I acknowledge financial support from the Belgian Federal Government (Grant PAI P5/21, "Equilibrium theory and optimization for public policy and industry regulation"). The usual disclaimer applies.
 Citation: Gabriele Cardullo, (2009) "Equilibrium in Matching Models with Employment Dependent Productivity", Economics Bulletin, Vol. 29 no. 3 pp. 2380-2387.
 Submitted: Apr 29 2009. Published: September 18, 2009.

[^1]: ${ }^{1}$ Acemoglu (2001) has also constructed a similar model, but with one decisive difference: workers are identical ex ante and can be employed in high-paid or low-paid jobs.
 ${ }^{2}$ I also assume one Inada condition: $\lim _{E_{i} \rightarrow 0} \frac{\partial F}{\partial E_{i}}=+\infty$. Imposing a condition as $E_{i} \rightarrow+\infty$ is useless, since in this model the upper bounds of both inputs are given by the labor force that has a positive finite value.

[^2]: ${ }^{3}$ Moreover, I impose that $\lim _{\theta_{i} \rightarrow 0} q\left(\theta_{i}\right)=+\infty$ and $\lim _{\theta_{i} \rightarrow+\infty} \alpha\left(\theta_{i}\right)=+\infty$.

[^3]: ${ }^{4}$ In this case, it tends to infinity for the Inada condition in footnote (2) and if $\lim _{\theta_{i} \rightarrow 0} E_{i}=\mathbb{E}_{i}\left(\theta_{i}\right)=0$.
 ${ }^{5}$ Recall that the first derivatives of CRS functions can be expressed in terms of the ratio of the two inputs.
 ${ }^{6}$ On the contrary, there are no difficulties as $\theta_{j} \rightarrow+\infty$. This is because $\lim _{\theta_{j} \rightarrow+\infty} E_{j}=L_{j}$ and $\frac{\partial F}{\partial E_{i}}$ takes a positive finite value as $E_{j}=L_{j}$. So there exists a $\theta_{i}>0$ that solves $\mathbb{G}_{i}\left(\theta_{i}, \theta_{j} \rightarrow+\infty\right)=0$.

[^4]: ${ }^{7}$ The file containing the numerical exercise is available on request.
 ${ }^{8}$ In other terms, the two functions may exist for values of $\theta_{j} \rightarrow 0$ (since as $b_{i}=0$ or $b_{i}=\rho_{i} w_{i}$, it is sufficient that the marginal productivity is slightly positive for $\lim _{\theta_{i} \rightarrow 0} \mathbb{G}_{i}\left(\theta_{i}, \theta_{j}\right)$ to be positive) but are still not defined along the axis (i.e. as $\theta_{j}=0$). One could not rule out the case that the only possible point of intersection of the two curves is the origin, that however does not belong to the domain of $g_{m}\left(\theta_{n}\right)$ and $g_{n}^{-1}\left(\theta_{m}\right)$. See Figure 2 on the right.

