Ε B С 0 \mathbb{N} \odot М L С s υ L L Е Т Т N

Generalized monotonicity and strategy-proofness: A note

Yasuhito Tanaka Faculty of Law, Chuo University, Japan

Abstract

In this note we define generalized monotonicity which is a generalized version of monotonicity due to Muller and Satterthwaite (1979) for a social choice function under individual preferences which permit indifference, and shall show that generalized monotonicity and strategy–proofness are equivalent.

I would like to thank Bhaskar Dutta and the anonymous referee for helpful comments.

Submitted: June 25, 2001. Accepted: October 10, 2001.

Citation: Tanaka, Yasuhito, (2001) "Generalized monotonicity and strategy-proofness: A note." *Economics Bulletin*, Vol. 4, No. 11 pp. 1–6

URL: http://www.economicsbulletin.com/2001/volume4/EB-01D70005A.pdf

1 Introduction

In this note we define generalized monotonicity which is a generalized version of monotonicity in Muller and Satterthwaite (1979) for a social choice function under individual preferences which permit indifference, and we shall show that generalized monotonicity and strategy-proofness are equivalent.

2 Notation, definitions and preliminary results

There are a set of individuals N, and a set of alternatives A for a social problem. The number of individuals n is a finite positive integer which is larger than or equal to 2. The number of alternatives is also a finite positive integer which is larger than or equal to 3. The individuals are represented by individual i, j and so on, and the alternatives are represented by x, y, z and so on. The preference of individual i about the alternatives is represented by a weak order R_i , which is reflexive, complete (connected) and transitive. The asymmetric part (strict preference) and the symmetric part (indifference) of R_i are denoted by P_i and I_i . We allow indifference in individual preferences.

A social choice function (or voting rule) is a mapping from an *n*-tuple of reported preferences of the individuals to an alternative. An *n*-tuple of individual preferences is called a *profile* of individual preferences (or an *individual preference profile*). Each profile is denoted by *a*, *b*, *c* and so on. At a profile *a*, for example, individual *i*'s preference is denoted by R_i^a , P_i^a and I_i^a . When a social choice function chooses *x* at a profile *a*, we denote C(a) = x. We call the alternative which is chosen by a social choice function the *winner* of the social choice function. We consider a resolute social choice function, which chooses only one of the alternatives at any profile. Further we assume that social choice functions are *non-imposed* or *onto*. It means that for any alternative and any social choice function there is a profile of individual preferences at which the alternative is chosen by the social choice function.

We define strategic manipulability and strategy-proofness of a social choice function.

Strategic manipulability There are two individual preference profiles *a* and *b* such as a social choice function chooses *x* at *a* and *y* at *b*. Between *a* and *b* only the preference of one individual (denoted by *i*) is different (*b* is an *i*-variant of *a*). If individual *i* has a preference xP_i^by , the social choice function is strategically manipulable by him at *b* because he can make the social

choice function choose x by reporting falsely his preference R_i^a when his true preference is R_i^b . Similarly, if he has a preference yP_i^ax , the social choice function is strategically manipulable by him at *a*.

Strategy-proofness If a social choice function is not strategically manipulable by any individual at any individual preference profile, it is *strategy-proof*.

Next, we define generalized monotonicity which is a generalized version of monotonicity due to Muller and Satterthwaite (1979).

- **generalized monotonicity** There is a profile of individual preferences *a* such as for alternatives *x* and *y*
 - (1) individuals in a group $V (V \subset N)$: $xP_i^a y$
 - (2) individuals in a group $V' (V' \subset N, V' \cap V = \emptyset)$: $xI_i^a y$
 - (3) others (group V''): $yP_i^a x$

and a social choice function chooses x (C(a) = x). We do not assume any specification of individual preferences about alternatives other than x and y. There is another profile b such as

- (1) individuals in V: $xP_i^b y$, other preferences are not specified
- (2) individuals in V': $xP_i^b y$ or their preferences are the same as those at a
- (3) V'': not specified

Then, the social choice function does not choose *y* at b ($C(b) \neq y$).

Now we show the following lemma.

Lemma 1. Strategy-proofness implies generalized monotonicity.

In the following proof we use notation in the above definition of generalized monotonicity.

Proof. Let individuals 1 to m ($0 \le m \le n$) belong to V, individuals m + 1 to m' ($m \le m' \le n$) belong to V', and individuals m' + 1 to n belong to V''. Consider a preference profile c other than a and b such as individuals in V and V' have a preference $xP_i^c yP_i^c z$, and individuals in V'' have a preference $yP_i^c xP_i^c z$, where z is an arbitrary alternative other than x and y.

Let a^1 be a preference profile such as only the preference of individual 1 has changed from R_1^a to R_1^c , and suppose that at a^1 the social choice function chooses an alternative other than x. Then, individual 1 has an incentive to report falsely his preference R_1^a when his true preference is R_1^c , and so we have $C(a^1) = x$. By the same logic we find that when the preferences of individuals 1 to m' change from R_i^a to R_i^c , the social choice function chooses x ($C(a^{m'}) = x$). Next, let $a^{m'+1}$ be a preference profile such as the preference of individual m' + 1, as well as the preferences of the first m' individuals, has changed from $R_{m'+1}^a$ to $R_{m'+1}^c$, and suppose that at $a^{m'+1}$ the social choice function chooses y. Then, individual m' + 1has an incentive to report falsely his preference $R_{m'+1}^c$ when his true preference is $R_{m'+1}^a$ because $yP_{m'+1}^a x$. On the other hand, if the social choice function chooses an alternative other than x and y at $a^{m'+1}$, individual m' + 1 has an incentive to report falsely his preference $R_{m'+1}^a$ when his true preference is $R_{m'+1}^c$ because $xP_{m'+1}^c z$. Therefore, we have $C(a^{m'+1}) = x$. By the same logic we find that when the preferences of all individuals have changed from R_i^a to R_i^c , the social choice function must choose x (C(c) = x).

Now, suppose that from *c* to *b* the individual preferences change one by one from R_i^c to R_i^b . Then, when the preference of some individual changes, the winner of the social choice function can not change directly from *x* to *y*. If the social choice function chooses *y* when the preference of an individual in *V* or *V'* (denoted by *j*) changes from R_j^c to R_j^b , individual *j* has an incentive to report falsely his preference R_j^c when his true preference is R_j^b because xP_j^by . On the other hand, if the social choice function chooses *y* when the preference of an individual in *V''* (denoted by *k*) changes from R_k^c to R_k^b , individual *k* has an incentive to report falsely his preference R_k^b when his true preference is R_k^c because *y* and *y*

It remains the possibility, however, that the winner of the social choice function changes from x through $z(\neq x, y)$ to y. Suppose that when the preferences of some individuals have changed from R_i^c to R_i^b , the winner of the social choice function is $z(\neq x, y)$, and further when the preference of individual *l* has changed from R_l^c to R_l^b , the winner of the social choice function becomes y. Since he prefers y to z at c, he can get y by misrepresenting his preference R_l^b when his true preference is R_l^c . Therefore, if the social choice function is strategy-proof, in the sequence of changes of individual preferences the winner of the social choice function does not change from x through z to y. Hence, we must have $C(b) \neq y$.

A group V in this lemma may be the set of all individuals, or may be a set consisting of only one individual.

3 Equivalence of generalized monotonicity and strategy-proofness

In this section we shall show the equivalence of generalized monotonicity and strategy-proofness.

Theorem 1. Generalized monotonicity and strategy-proofness are equivalent.

Proof. Lemma 1 has shown that strategy-proofness implies generalized monotonicity so that only the converse needs to be proved.

Suppose that at a profile of individual preferences *a* a social choice function chooses x (C(a) = x), and assume that the social choice function which satisfies generalized monotonicity is strategically manipulable. Then, there is a case where, when the preference of one individual (denoted by *i*) changes from R_i^a to R_i^b (denote such a profile by *b*), the winner of the social choice function changes from *x* to *y*, and individual *i* has a preference $yP_i^a x$.

Consider another profile of individual preferences c at which individual i has a preference $yP_i^c xP_i^c z$ where z is a arbitrary alternative other than x and y, and the preferences of the other individuals are the same as those at a. If the social choice function chooses y at c, since individual i prefers y to x at a and c, generalized monotonicity implies that the social choice function does not choose x at a. This contradicts with the assumption, and so y is not chosen at c. Comparing a and c about x and z, the preferences of individuals other than individual i have not changed, and individual i has a preference $xP_i^c z$ at c and his preference at a about x and z is not specified. Therefore, from generalized monotonicity z is not chosen at c, and so the social choice function must choose x at c.

On the other hand, comparing *b* and *c* about *x* and *y*, the preferences of individuals other than individual *i* have not changed, individual *i* has a preference $yP_i^c x$ at *c*, and his preference at *b* is not specified. Therefore, from generalized monotonicity *x* is not chosen at *c*. This contradicts with the above result. Hence, the social choice function must be strategy-proof.

4 Concluding remarks

The equivalence of strategy-proofness and generalized monotonicity presented in this paper does not require all preference orderings to exist like as the proof of the Gibbard-Satterthwaite theorem by Sen(2000) in the case of linear individual preferences. All that is required is that for all pairs of alternatives x and y there exists an admissible ordering where x is ranked first uniquely and y is ranked second uniquely.

We can show the Gibbard-Satterthwaite theorem (Gibbard(1973) and Satterthwaite(1975)) in the case of individual preferences which permit indifference using generalized monotonicity.

References

- [1] A. Gibbard, Manipulation of voting schemes: A general result, *Econometrica* **41** (1973), 587-602.
- [2] E. Muller and M. A. Satterthwaite, The equivalence of strong positive association and strategy-proofness, *Journal of Economic Theory* 14 (1977), 412-418.
- [3] M. A. Satterthwaite, Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions, *Journal of Economic Theory* **10** (1975), 187-217.