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1. Introduction

     The measurement of efficiency is important in nearly every field of applied economics. In

the long run, only efficient firms can survive competition, and a reasonable business strategy

to achieve success is to imitate existing best practices in the industry as far as possible. The

typical efficiency study starts from a production or cost function and uses estimated residuals

or estimated fixed effects to produce efficiency measures. However, recent advances in time

series analysis have brought to attention an important problem. If, for each unit, the time

series are integrated, then the issue of false correlation arises. If the underlying variables are

not cointegrated (in other words, if the estimated production or cost function is spurious)

efficiency measurement is meaningless.

The present paper applies panel cointegration techniques to ensure that the estimated

technological relationship is structural as opposed to spurious, and uses fully modified OLS to

obtain parameter estimates and efficiency measures. We compare our results with those

obtained by measuring efficiency along traditional lines, and find quantitatively important

differences. In addition, we conduct a small Monte Carlo experiment to show that

independent random walks, when combined in a panel data context, will produce apparently

reasonable efficiency estimates, whereas in fact such measures do not even exist because the

underlying technology is spurious.

     The paper is organized as follows. The model is presented in Section 2. The small

experiment is presented in Section 3. In Section 4, we apply the techniques to estimate the

efficiency of U.S. airlines. A summary and concluding remarks are contained in the final

section.

2. The model

Consider the model

itititit uvy −+′= βx ,  Ni ,..,1= , Tt ,..,1=                                  (1)

where ity  is the observation in year t  for the ith dependent variable (typically the log of

production level), itx  is a K ×1 vector of observations of the explanatory variables (typically

logs of inputs) in year t and β  is a 1×K  vector of coefficients. Measurement errors itv  are

assumed to be i.i.d. ),0( 2σN . The non-negative disturbance itu  reflects an inefficiency

component that forces production to be below the frontier. If 0=itu , then the firm is fully

efficient. When all variables are integrated of order one, i.e. )1(I , if (1) represents a

cointegrating relationship, then least squares provides super-consistent estimates. Otherwise,

(1) is a spurious relationship, and efficiency measurement is seriously misguided. Additional
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complications arise if (1) is not balanced, that is, when different variables have different

orders of integration; for example, some are stationary but others contain unit roots.

3. An experiment with artificial data

We have conducted the following experiment. We set 2=K  so that we have a linear model
with an intercept and a single explanatory variable itx , with 25=N  firms and 10=T
years. We assume that ity  and itx  are independent random walks with drift:

ititit ycy ξ++=                                                  (3a)

ititit xdx ζ++= −1                                                  (3b)
Ni ,..,1= , Tt ,..,1=

with 1.0== dc , where itit ζξ ,  are mutually independent )1.0,0(N  errors. 5,000 different

data sets were generated and each time the model (1) was estimated using OLS with fixed

effects. For each data set, efficiency was estimated using the usual approach. The density of

average efficiency estimates is presented in Figure 1. It is clearly skewed to the left, and may

produce a false sense of security that these data are compatible with inefficiency levels near

14%. These results look quite plausible despite the fact that there is no underlying production

function. Therefore, one must be extremely careful in interpreting efficiency from time series

cross-section models.

4. Empirical application

In this section we consider nine (N=9) US airlines over the period 1971-1985 (T=15). In

this application, total cost (C ) is a function of output (Y ) and the prices of capital ( KP ),

labour ( LP ), materials ( MP ) and fuel ( FP ). For the sources and the structure of the variables,

see Appendix A of Baltagi, Griffin and Vadali (1998)1. We assume that the parametric form

of our cost function is Cobb-Douglas and can be written as follows

∑
=

+++=
m

k
itititkkiit eYPC

1

lnln βα                                    (4)

ititit uve +=
Pitk is the kth input price (k=K,L,M,F) of the ith firm (i=1,2,..9) in time period t

(t=1971,1972,…1985), itY is the output of the ith firm in time period t, itu  is a non-negative

error representing technical inefficiency, and itv  is the usual statistical noise.

                                                          
1 The whole data set consists of annual observations on the domestic operations of twenty-four airline
firms over the period 1971-1986 (panel data). A balanced panel was constructed by including the nine
firms that operated throughout the period 1971-1985.
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Following Jondrow et al. (1982), the conditional distribution of itu  given ite is

])/()/(/[)|( 1−Φ+= itititititititititititit eeeseuE σλσλφσλ                    (5)

where itituvits σσσ /,= ,  vu σσλ /= , 222
vu σσσ += , φ  and Φ  denote the standard

normal density function and the standard normal distribution function respectively evaluated

at σλ /)( ite .

Next, we use panel unit root tests to see if our series are )1(I . To test for the existence of a

unit root in a panel data setting, we have used tests due to Harris and Tzavalis (HT) (1999),

Im, Pesaran and Shin (IPS) (1997) and Maddala and Wu  (MW) (1999).  In each test, the null

hypothesis is that of a unit root. The results are reported in Table 1. All series contain a unit

root with the exception of prices of materials ( MPln ) where the IPS statistic indicates that

this series is stationary, and the cost ( Cln ) and output ( Yln ) series where the HT test rejects

a unit root. However, according to IPS and MW tests this is not the case. Therefore, it seems

reasonable to proceed on the working hypothesis that all series are )1(I .

The results of the MW and HT panel cointegration tests are reported in Table 2 and can be

used to test for the existence of a cointegrating cost function. Panel cointegration tests are

used in order to draw sharper inferences since the time spans of our economic time series are

very short. Since the null hypothesis of no cointegration is rejected at the 10% level of

significance, these results suggest that there is a cointegrating cost function.  Having

established that the dependent variable ( Cln ) is structurally related to the explanatory

variables, itp  (i=K,L,M,F) and ity , we proceed to estimate the cost function using fully

modified OLS (FMOLS) for heterogeneous cointegrated panels (Pedroni, 2000). This allows

consistent and efficient estimation of cointegrating vectors. It is well known that OLS

estimation is biased due to the endogeneity of the )1(I  regressors. More specifically, we

consider the following cointegrated system for panel data

 ititiit uxy +′+= βα                                                 (6)

 ittiit exx += −1,                                                     (7)

 where ],[ ititit eu ′=ξ  is stationary with covariance matrix iΩ . Following Phillips and Hansen

(1990), a semi-parametric correction can be made to the OLS estimator in order to eliminate

the second order bias caused by the fact that the regressors are endogenous. Pedroni (2000)

follows the same principle in the panel data context, and allows for heterogeneity in the short

run dynamics and the fixed effects.   Pedroni’s estimator is

 ∑ ∑∑ ∑
= =

−−
−

= =

− 




 −−ΩΩ⋅





 −Ω=−

N

i

T
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 iiitit uu 21
1

22
* ˆˆˆ ΩΩ−= − , )ˆˆ(ˆˆˆˆˆ 0

222221
1

22
0
2121 iiiiiii Ω+ΓΩΩ−Ω+Γ= −γ               (9)

where the covariance matrix can be decomposed as iiii Γ+Γ+Ω=Ω 0  where 0
iΩ  is the

contemporaneous covariance matrix, and iΓ  is a weighted sum of autocovariances. Also, 0ˆ
iΩ

denotes an appropriate estimator of 0
iΩ .

FMOLS parameter estimates of the cost equation together with traditional stochastic

frontier ML estimates are reported in Table 3. It must be noted that the estimated cost

function includes fixed effects when estimated by either ML or FMOLS. The results in Table

3 indicate that the majority of coefficients are statistically different from zero at conventional

levels of statistical significance, as expected. The value of λ  is 4.27 and 1.018 for the ML

and FMOLS estimation techniques, respectively. These results imply that the one-sided error

term u  dominates the symmetric error v  in ML, whereas they have about the same

magnitude in FMOLS. In other words, breaking up the residuals into noise and inefficiency is

very sensitive to the method of estimation. Also, the inefficiency effects based on ML

estimates are greater compared to those derived from the FMOLS results.

 Efficiency for U.S. airlines and associated efficiency rankings for 1985 are presented in

Table 4. Efficiency is 93.9% according to ML and 89.7% according to FMOLS. The standard

deviation is close to 0.04, and the extreme values seem to be about the same. However,

important differences arise when efficiency rankings are considered. According to FMOLS,

American was most efficient in 1985 whereas it is fourth according to ML. Braniff is the

second most efficient firm according to ML but it appears less efficient based on FMOLS.

We can examine the relationship between efficiency measures further for each airline, and

each year as well. The correlation coefficient between ML and FMOLS efficiency measures is

only 0.122 (0.113 in logs) and, from Figure 2 (where efficiency estimates are considered

together along with a non-parametric regression fit), it is apparent that the two sets of

estimates bear little resemblance to each other. In other words, although first and second

moments of efficiency estimates match well, the distributions are not the same. Therefore, the

choice between using ML or FMOLS is important when variables are non-stationary, since

one may end up with very different efficiency estimates.

Conclusions

We have argued in this paper that the estimation of efficiency from panel data has to

face the spurious regression problem raised in the recent time series analysis literature. In a

Monte Carlo experiment, we have shown that the effects of integrated but not cointegrated

time series can lead to misleading efficiency measures. We have applied panel cointegration

techniques to efficiency measurement in U.S. airlines, estimating the model using fully
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modified OLS. This gives efficiency measures that are radically different in terms of firm-

specific efficiency measures from those obtained by the usual estimation procedure.
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Table 1. Panel   Unit Root Tests

Levels First differences
Variables IPS HT MW IPS HT MW

Cln 1.44 2.15 15.2 -2.96 -7.38 90.68

KPln -0.85 1.21 12.8 -2.20 -9.25 39.57

LPln -0.23 1.20 18.6 -4.59 -12.07 78.22

MPln -3.01 1.52 16.9 -5.44 -8.00 69.25

FPln -1.46 1.36 18.2 -3.50 -6.28 43.93
Yln 3.23 2.77 17.1 -6.21 -14.24 50.15

 
 Notes: IPS, HT and MW are respectively the Im, Pesaran and Shin, Harris and Tzavalis, and Maddala
and Wu tests for a unit root in the model. Bold face values denote sampling evidence in favour of unit
roots. The critical value for the MW test is 25.99 at the 10% statistical level. All tests agree that first
differences are stationary for all series.
 
Table 2. Panel Cointegration Tests

MW HT
34.07* -6.69*

Notes: A *  signifies rejection of  the null hypothesis of no-cointegration at the 10% significance level.
The critical value for the MW test is 25.99 at the 10%  level of significance.

Table 3.  Maximum likelihood and fully modified OLS estimates

Maximum Likelihood Fully modified OLS
Variables Coefficients t-statistics Coefficients t-statistics

KPln 0.04 1.39 -0.04 0.04

LPln 0.15* 3.89 0.36* 6.65

FPln 0.31* 8.50 0.35* 12.62

MPln 0.11 1.13 0.01 0.60

Yln 0.81* 23.60 0.60* 14.76

vu σσλ /= 4.27* 2.82 1.018 ---

Notes: Firm-specific dummies are not reported to save space but are available from the authors upon
request. A * indicates statistical significance at the  10% level of significance.
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Table 4. Comparison of efficiency measures and rankings for 1985

 Firms  ML   FMOLS
1. Midway 0.96 1. American* 0.93
2. Braniff 0.95 2. North Central/

Republic
0.93

3. Air Cal 0.95 3. Midway 0.93
4. American* 0.94 4. Delta 0.92
5. National/PanAm* 0.94 5. National/PanAm* 0.89
6. North Central/

Republic
0.94 6. Braniff 0.88

7. Southwest 0.94 7. Eastern* 0.87
8. Eastern* 0.93 8. Air Cal 0.87
9. Delta 0.91 9. Southwest 0.82

 
 Mean efficiency 0.939 0.897

 Stand. Dev. of efficiency 0.044 0.043
 Minimum efficiency 0.759 0.738
 Maximum efficiency 0.993 0.951

*  Trunk airlines.
 

Figure 1. Density of average efficiency (N=25, T=10)

 Figure 2. Comparison of efficiency estimates from OLS and FMOLS
(nonparametric regression estimate is also provided)
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