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1 Introduction

As an alternative to the traditional general equilibrium model, in which households are
treated as if they were single consumers, Haller (2000) introduces a general equilibrium
model in which each household may consist of several (heterogeneous) members. In his
model, each member of a household has his or her own utility function, which may depend
on the other members’ consumption as well as his or her own consumption (in other
words, consumption externalities may exist between members of the same household).
The exchange of goods and services takes place only among households and not among
individuals. However, the behavior of a household in markets is collectively decided by
its members: taking a price system as given, the household members collectively decide
their demand for goods and services under their common budget constraint. Haller (2000)
assumes that as a result of such collective decision-making, every household as a whole
chooses a consumption plan that is efficient in the sense that there is no other possible
choice that satisfies the budget constraint, and makes at least one member better off
without making any other members worse off. 1 Then, a competitive equilibrium among
households is defined as a state in which every household makes an efficient choice and
all markets clear.

Haller (2000) provides several fundamental results for the properties of competitive
equilibrium among households. For example, he establishes the first welfare theorem
and generalizes it to the core inclusion statement. He also examines conditions under
which a competitive equilibrium allocation among households can be realized through
competitive exchange among individuals. Further implications of competition among
multi-member households are investigated in Gersbach and Haller (2001, 2005), which
extend Haller’s (2000) model (in which the household structure is given) to the case of a
variable household structure.

In this paper, we focus on the existence of a competitive equilibrium among house-
holds and provide two main results. Our first result is based on the assumption of “budget
exhaustion.” Budget exhaustion asserts that to achieve an efficient consumption choice,
households need to exhaust their budget. Under this assumption, Gersbach and Haller
(1999) prove the existence of a competitive equilibrium among households with free dis-
posal. 2 However, in their proof they implicitly assume that budget exhaustion holds in
a truncated economy rather than in an original economy. In contrast, we assume budget
exhaustion in the original economy and derive the existence of a competitive equilibrium
among households. Our existence result also differs from the result of Gersbach and
Haller (1999), in that we discard the free disposal assumption by allowing negative equi-
librium prices. 3 Next we consider an alternative to budget exhaustion. As Haller (2000)
illustrates, when we take negative intra-household externalities into account, budget ex-
haustion may not hold even if every consumer has a monotonic preference with respect
to his or her individual consumption. However, we prove that even if budget exhaustion
fails, the existence of a competitive equilibrium among households is still ensured, pro-
vided that each household has at least one member whose utility function is nonsatiated

1This behavioral hypothesis is originated by Chiappori (1988, 1992), who intends to develop a col-
lective decision-making model such that testable implications of household behavior can be derived, and
household members’ individual preferences and the collective decision-making process can be recovered
from the observation of the household behavior.

2Budget exhaustion is also used in Haller (2000) to establish the first welfare theorem.
3With some additional assumptions, we can obtain the existence of a strictly positive equilibrium

price.
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with respect to the feasible household consumption.
This paper is organized as follows. In Section 2, we introduce the model and defi-

nitions. In Section 3, we provide a preliminary result to be used in the proofs of our
main existence results. In Section 4, we prove the existence of a competitive equilibrium
among households under budget exhaustion. In Section 5, we provide another existence
result by replacing budget exhaustion with the nonsatiation assumption. In Section 6,
we make concluding remarks. Finally, all the proofs are provided in the Appendix.

2 Model and Definitions

Following Haller (2000), we define a pure exchange economy with multi-member house-
holds as follows.

In the economy, there exist ℓ commodities and H households (ℓ,H ∈ N, 1 ≤ ℓ <
∞, 1 ≤ H < ∞). 4 Each household h = 1, · · · , H consists of finitely many members
i = hm with m = 1, · · · ,M(h) and M(h) ≥ 1.

Let I denote the set of all consumers in the economy, that is, I = {hm : h =
1, · · · , H and m = 1, · · · ,M(h)}. Each consumer i ∈ I has a consumption set Xi = Rℓ

+.
Let Xh =

∏
m Xhm for each h, and let X =

∏
i Xi. We call an element xh = (xhm)m of

Xh a household consumption bundle of h, and x = (xi)i of X an allocation. For a given
allocation x ∈ X , we denote household h’s consumption bundle in x by xh.

Let Ui : Xh → R be the utility function of consumer i = hm. We allow consumption
externalities only between members of the same households (intra-household externali-
ties).

Each household h is endowed with a commodity bundle ωh ∈ Rℓ
+.

A price system p is a ℓ-dimensional vector in Rℓ.
Note that this model coincides with the standard Arrow–Debreu economy if M(h) = 1

for all h.
An allocation x ∈ X is feasible if

∑
h

∑
m xhm =

∑
h ωh (free disposal is not allowed).

For each h, a household consumption bundle xh ∈ Xh is feasible for h if there exists
(xk)k ̸=h ∈ ∏

k ̸=h Xk such that x = (xh, (xk)k ̸=h) ∈ X is feasible. Let Fh denote the set of
household consumption bundles of h that are feasible for h. Since Xi = Rℓ

+ for all i ∈ I,
it is easy to check that

Fh = {xh ∈ Xh :
∑

m xhm ≤ ∑
k ωk} for all h.

Note that Fh is compact for all h, and if x = (xh)h ∈ X is a feasible allocation, then
xh ∈ Fh for all h.

Along with the standard continuity and concavity, we use the following properties of
consumers’ utility functions.

Strict Monotonicity. Uhm is strictly monotonic if Uhm(xhm, (xhn)n̸=m) is strictly in-
creasing in xhm. 5

4We use the following mathematical notations. Let N denote the set of natural numbers. For k ∈ N,
let Rk denote the k-dimensional Euclidean space．For x, y ∈ Rk, by x ≥ y, we mean xj ≥ yj for all
j = 1, · · · , k, and by x ≫ y, we mean xj > yj for all j. Further, by x > y, we mean x ≥ y and x ̸= y.
Let Rk

+ = {x ∈ Rk : x ≥ 0}. For x, y ∈ Rk, we denote by x · y =
∑k

j=1 xjyj the inner product, by
∥x∥ =

√
x · x the Euclidean norm, and by B(x0, r) = {x ∈ Rk : ∥x − x0∥ < r} the open ball centered at

x0 with radius r. For a set A ⊂ Rk, we denote by intA, clA and co A the interior of A, closure of A and
convex hull of A, respectively.

5For X ⊂ Rℓ, a function f : X → R is strictly increasing if f(y) > f(x) for all x, y ∈ X with y > x.
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Nonsatiation. Uhm is nonsatiated on Fh if for all xh ∈ Fh, there exists yh ∈ Xh such
that Uhm(yh) > Uhm(xh).

Local Nonsatiation. Uhm is locally nonsatiated on Fh if for all xh ∈ Fh and r > 0,
there exists yh ∈ B(xh, r) ∩ Xh such that Uhm(yh) > Uhm(xh).

Non-Negative Externalities. Uhm exhibits non-negative externalities if Uhm is nonde-
creasing in (xhn)n̸=m. 6

It is clear that the strict-monotonicity of Uhm implies the local nonsatiation. Note
also that under the concavity of Uhm, the nonsatiation implies the local nonsatiation.

For xh ∈ Xh and p ∈ Rℓ, we denote

p ∗ xh = p ·
∑
m

xhm.

Then, we define h’s budget set Bh(p) by

Bh(p) = {xh ∈ Xh : p ∗ xh ≤ p · ωh}.

Further, we define h’s efficient budget set EBh(p) as follows.

Definition 1. Household h’s consumption bundle xh ∈ Xh belongs to EBh(p) if and only
if xh ∈ Bh(p) and there is no yh ∈ Bh(p) such that

Uhm(yh) ≥ Uhm(xh) for all m, and

Uhm(yh) > Uhm(xh) for some m.

We call an element xh of EBh(p) an efficient choice or efficient consumption bundle
of h. Note that Definition 1 does not specify the exact decision mechanism used in a
household to achieve its efficient choices.

Definition 2. An element (x∗, p∗) ∈ X × Rℓ is a competitive equilibrium among house-
holds if

(i) x∗
h ∈ EBh(p

∗) for all h, and
(ii)

∑
h

∑
m x∗

hm =
∑

h ωh.

In a competitive equilibrium, each household makes an efficient choice under its budget
constraint and markets clear. Note that we allow negative equilibrium prices.

3 Preliminary Result

In this paper, we prove the existence of a competitive equilibrium among households
under two different sets of assumptions.

In the existence analysis, we suppose that a specific decision mechanism is used in
every household to achieve its efficient choices: every household maximizes a weighted
sum of its members’ utility functions subject to the budget constraint.

6For X ⊂ Rℓ, a function f : X → R is nondecreasing if f(y) ≥ f(x) for all x, y ∈ X with y ≥ x.
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For each h, let

∆h = {λh = (λh1, · · · , λhM(h)) ∈ RM(h)
+ :

∑
m λhm = 1}.

Let Wh : Xh × ∆h → R be the function defined by

Wh(xh, λh) =
∑
m

λhmUhm(xh).

Moreover, for each λh ∈ ∆h, we define a function W λh
h : Xh → R by

W λh
h (xh) = Wh(xh, λh).

The function W λh
h is a weighted sum of the household members’ utility functions, where

λhm is the weight of the m-th member’s utility. We call this W λh
h household h’s welfare

function with weight λh.
In a household, a maximization of the welfare function leads to an efficient consump-

tion choice. Indeed, it is easy to see that for λh ∈ ∆h with λh ≫ 0, if xh ∈ Xh maximizes
W λh

h (·) over Bh(p), then, xh ∈ EBh(p). Note that welfare functions with different weights
may yield different efficient consumption bundles.

Let ∆ =
∏

h ∆h with a generic element λ = (λh)h. Each λ ∈ ∆ defines the list of
welfare functions (W λh

h )h of the households.
The following lemma is a preliminary result to be used in the proofs of our main

existence results.

Lemma 1. Let λ ∈ ∆. Suppose that

• ωh ≫ 0 for all h,

• W λh
h is continuous on Xh for all h, and

• W λh
h is concave on Xh for all h.

Then, there exist an element (x∗, p∗) ∈ X × Rℓ and a non-negative real number α∗ ∈ R+

such that

(i) p∗ ∗ x∗
h ≤ p∗ · ωh + α∗ for all h,

(ii) For each h, if W λh
h (yh) > W λh

h (x∗
h), then p∗ ∗ yh > p∗ · ωh + α∗,

(iii)
∑

h

∑
m x∗

hm =
∑

h ωh.

4 Existence under budget exhaustion

In this section, we address the existence of a competitive equilibrium under the fol-
lowing assumption.

(BE). Budget Exhaustion

For all h and p ∈ Rℓ, if xh ∈ EBh(p), then p ∗ xh = p · ωh.
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This assumption is introduced in Gersbach and Haller (1999) as one of the suffi-
cient conditions for the existence of a competitive equilibrium. 7 Under (BE) and some
standard assumptions, they first prove the existence of a competitive equilibrium among
households with free disposal (therefore with nonnegative equilibrium price) and then
prove the existence of a strictly positive equilibrium price with exact market clearing by
adding several conditions (Gersbach and Haller 1999, Proposition 1).

However, it should be noted that in Gersbach and Haller’s proof, they implicitly
assume that (BE) holds in the truncated economy rather than in the original economy
(they employ the truncation technique in their proof, as we do in the proof of Lemma 1).
Indeed, (BE) may not hold in the truncated economy even if (BE) holds in the original
economy (and vice versa). 8

In contrast, in this paper, we derive the existence of a competitive equilibrium among
households (with exact market clearing) by assuming (BE) in the original economy:

Theorem 1. Suppose that

• ωh ≫ 0 for all h,

• Uhm is continuous and concave on Xh for all h and m, and,

• (BE) holds.

Then, there exists a competitive equilibrium among households (x∗, p∗) ∈ X × Rℓ with
p∗ ̸= 0.

The first two assumptions in Theorem 1 are also used in the first part of Proposition
1 in Gersbach and Haller (1999).

With some additional assumptions, we can obtain the existence of a strictly positive
equilibrium price, which is the same conclusion as (the corrected version of) the second
part of Proposition 1 in Gersbach and Haller (1999).

Corollary 1. Suppose that all the assumptions of Theorem 1 hold. Suppose further that
there exists at least one h such that Uhm is strictly monotonic and exhibits non-negative
externalities for all m. Then, there exists a competitive equilibrium among households
(x∗, p∗) ∈ X × Rℓ with p∗ ≫ 0.

Corollary 1 differs technically from the second part of Proposition 1 in Gersbach and
Haller (1999) since, as noted above, Corollary 1 is based on (BE) for the original economy,
whereas Gersbach and Haller’s result is based on (BE) for the truncated economy.

5 Existence under (local) nonsatiation

In this section, we provide another existence result by replacing (BE) with the follow-
ing assumption.

(PNSM). Presence of nonsatiated members

For all h, there exists at least one member m whose utility function Uhm is nonsatiated
on Fh.

7This assumption is also used in Haller (2000) to establish the first welfare theorem.
8The author is grateful to an anonymous referee for providing these observations.
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The next lemma asserts that if a household h has at least one member whose util-
ity function is nonsatiated on Fh, the nonsatiation property is inherited by h’s welfare
function with a certain weight.

Lemma 2. For a household h, suppose that

• Uhm is continuous on Xh for all m, and

• Uhm is nonsatiated on Fh for at least one m.

Then, there exists λh ∈ ∆h such that λh ≫ 0 and W λh
h is nonsatiated on Fh.

The proof is provided in the Appendix.
We now state the existence of a competitive equilibrium among households.

Theorem 2. Suppose that

• ωh ≫ 0 for all h,

• Uhm is continuous and concave on Xh for all hm, and,

• (PNSM) holds.

Then, there exists a competitive equilibrium among households (x∗, p∗) ∈ X × Rℓ with
p∗ ̸= 0.

6 Concluding Remarks

The assumption (BE) asserts that every efficient consumption bundle of a household
lies on the budget line. In a one-person households model, i.e., the standard Arrow–
Debreu model, (BE) is implied, for example, by the local nonsatiation assumption. In
contrast, in the multi-member households model, as shown in Haller (2000), 9 (BE) may
not hold even if every consumer has a monotonic preference with respect to his or her
individual consumption. However, Theorem 2 demonstrates that even if (BE) fails, the
existence of a competitive equilibrium is still ensured, provided that every household has
at least one member whose preference is nonsatiated on the feasible consumption set.

Unfortunately, unlike (BE), the assumption (PNSM) does not ensure strong Pareto
optimality (in the usual sense) of a competitive equilibrium allocation (see Example 1
below). However, it is worth noting that every competitive equilibrium allocation among
households is weakly Pareto optimal without any further assumptions. Moreover, one can
easily verify that every equilibrium allocation x∗ satisfies the following welfare property,
which is weaker than weak Pareto optimality, but stronger than strong Pareto optimality:

There is no y ∈ X such that

Uhm(yh) ≥ Uhm(x∗
h) for all hm ∈ I, and

Uhm(yh) > Uhm(x∗
h) for at least one m for each h.

In other words, for an equilibrium allocation x∗, there is no allocation y in which every
individual achieves at least the same utility as in x∗, and at least one member in each
household achieves a strictly higher utility.

9Haller 2000, Example 3.3, p.844.
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Example 1. Let ℓ = 1, H = 2. There exist three consumers, simply labeled i = 1, 2, 3,
with generic consumption bundles xi ∈ R2. Consumers 1 and 2 form a household denoted
by h. Consumer 3 forms a second household denoted by k. Let ωh = 2 and ωk = 1. The
utility functions of consumers are

U1(xh) = x1 − x2, U2(xh) = x2 − x1,

U3(xk) = x3.

Note that every Ui satisfies the local nonsatiation property.
Then, it is easy to check that x∗ = (x∗

h,x
∗
k) = [(1, 1), 1] and p∗ = 1 constitute a

competitive equilibrium among households, and x∗ is strongly Pareto dominated by the
allocation y = [(1/2, 1/2), 2].

Finally, the following observation also clarifies the difference between the existence
result under (BE) and that under (PNSM): If (BE) holds, then any choice of utilitarian
welfare weights λ = (λh)h ∈ ∆ with λ ≫ 0 leads to the existence of a competitive
equilibrium among households (x∗, p∗) (in which each household h maximizes W λh

h on
Bh(p

∗)). In contrast, if (PNSM) holds, then some utilitarian welfare weights λ = (λh)h ∈
∆ with λ ≫ 0 lead to the existence of a competitive equilibrium among households, but
others may not. More specifically, from the proof of Lemma 2, each household must
assign a weight that is sufficiently close to 1 to a nonsatiated member.
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Appendix

In the proof of Lemma 1, we use the following theorem by Geistdoerfer-Florenzano
(1982).

Theorem 3. Let P be a closed convex cone (with vertex 0) of Rℓ, and B = {p ∈ Rℓ :
∥p∥ ≤ 1}, S = {p ∈ Rℓ : ∥p∥ = 1} be respectively the (closed) unit ball and the unit-sphere
of Rℓ. Let ζ : B ∩ P → Rℓ be an upper semicontinuous correspondence with nonempty
compact convex values. Assume that

∀p ∈ S ∩ P, ∃z ∈ ζ(p), p · z ≤ 0.

Then, there exists p ∈ B ∩ P such that ζ(p) ∩ P 0 ̸= ∅, where

P 0 = {z ∈ Rℓ : z · q ≤ 0, ∀q ∈ P}

is the polar cone of P .

Proof of Lemma 1. Let B = {p ∈ Rℓ : ∥p∥ ≤ 1} and S = {p ∈ Rℓ : ∥p∥ = 1}.
Suppose that λ ∈ ∆ is the element such that W λh

h is continuous and concave on Xh

for all h.
For each h, we define h’s relaxed budget correspondence βh : B → Xh by

βh(p) = {xh ∈ X r
h : p ∗ xh ≤ p · ωh + (1 − ∥p∥)}.

Let r = 2∥∑
h ωh∥ and X r

h = Xh ∩ cl B(0, r), where B(0, r) = {x ∈ RℓM(h) : ∥x∥ < r}.
From the definition, Fh ⊂ Xh ∩ B(0, r) for all h.

Let βr
h : B → X r

h be the correspondence defined by βr
h(p) = βh(p) ∩ X r

h . It is easy to
see that βr

h is nonempty convex valued. Moreover, since ωh ≫ 0 and X r
h is compact, the

correspondence βr
h is continuous on B. 10

For each h, we define h’s demand correspondence φh : B → X r
h by

φh(p) = {xh ∈ X r
h : xh ∈ βr

h(p) and W λh
h (xh) ≥ W λh

h (yh) for all yh ∈ βr
h(p)}.

By the concavity of W λh
h , the correspondence φh is convex valued for all h. Moreover, by

Berge’s Maximum Theorem, φh is upper semicontinuous with nonempty compact values.
For each h, we define the correspondence φh : B → Rℓ by

φh(p) = {xh ∈ Rℓ : xh =
∑

m xhm, xh ∈ φh(p)}.

Then, it is readily verified that φh is upper semicontinuous with nonempty compact
convex values.

Finally, we define the market excess demand correspondence ζ : B → Rℓ by

ζ(p) =
∑
h

φh(p) −
∑
h

ωh.

10It is readily verified that βr
h is upper semicontinuous on B. To see that βr

h is lower semicontinuous
on B, note first that the correspondence γh : B → X r

h defined by

γh(p) = {xh ∈ X r
h : p ∗ xh < p · ωh + (1 − ∥p∥)}

has an open graph in B × X r
h . Moreover, since ωh ≫ 0, we have βr

h(p) = cl(γh(p)) for all p ∈ B, where
cl(γh(p)) denotes the closure of γh(p) in Xr

h. Since the closure of a correspondence with an open graph
is lower semicontinuous, βr

h is lower semicontinuous.
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The correspondence ζ is clearly upper semicontinuous with nonempty compact convex
values, and satisfies

p · z ≤ 0 for all p ∈ S and z ∈ ζ(p).

Applying Theorem 3 as P = Rℓ, we obtain p∗ ∈ B with 0 ∈ ζ(p∗). From the definition
of ζ, there exists x∗ = (x∗

h)h ∈ X r such that

x∗
h ∈ φh(p

∗) for all h, (1)

and
0 =

∑
h

∑
m

x∗
hm −

∑
h

ωh. (2)

Note that equation (2) implies that x∗
h ∈ Fh for all h.

Let α∗ = (1−∥p∗∥) ≥ 0. Then, it is clear that (x∗, p∗) ∈ X r ×B and α∗ ∈ R+ satisfy
conditions (i) and (iii) in the statement of the lemma. Thus, it remains to show that x∗

h

maximizes W λh
h on βh(p

∗) (not just on βr
h(p

∗)) for all h.
Suppose that for some h, there exists yh ∈ βh(p

∗) with W λh
h (yh) > W λh

h (x∗
h). Since

x∗
h ∈ βr

h(p
∗) ∩ Fh ⊂ Xh ∩ B(0, r), there exists t ∈ (0, 1) with tx∗

h +(1 − t)yh ∈ βr
h(p

∗).
Moreover, by the concavity of W λh

h , we have

W λh
h (tx∗

h +(1 − t)yh) > W λh
h (x∗

h),

which contradicts (1).

Proof of Theorem 1. Take an arbitrary λ = (λh)h ∈ ∆ with λ ≫ 0.
For each h, since Uhm is continuous and concave on Xh for all m, the function W λh

h is
continuous and concave on Xh.

Applying Lemma 1 for λ = (λh)h ∈ ∆, we obtain an element (x∗, p∗) ∈ X × Rℓ and a
non-negative real number α∗ ∈ R+ such that

(i) p∗ ∗ x∗
h ≤ p∗ · ωh + α∗ for all h,

(ii) For each h, if W λh
h (yh) > W λh

h (x∗
h), then p∗ ∗ yh > p∗ · ωh + α∗,

(iii)
∑

h

∑
m x∗

hm =
∑

h ωh.

We divide the proof into two cases according to the value of p∗.

Case 1. p∗ = 0.

Note first that (ii) implies that W λh
h (x∗

h) ≥ W λh
h (yh) for all yh ∈ Xh and h. Then,

we must have
∑

m x∗
hm = ωh for each h. Indeed, if

∑
m x∗

hm ̸= ωh for some h, then there
exists p ̸= 0 such that p · ∑

m x∗
hm < p · ωh, which contradicts (BE).

It is now clear that for any p ̸= 0, the element (x∗, p) ∈ X × Rℓ \ {0} constitutes a
competitive equilibrium among households.

Case 2. p∗ ̸= 0.
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We prove that (x∗, p∗) is a competitive equilibrium among households. In view of
(iii), it suffices to show that x∗

h ∈ EBh(p
∗) for all h.

We first prove
p∗ ∗ x∗

h ≥ p∗ · ωh for all h. (3)

Suppose that p∗ ∗ x∗
h < p∗ · ωh for some h. Since λh ≫ 0 and (ii) holds, we have

x∗
h ∈ EBh(p

∗). Then, (BE) implies that p∗ ∗ x∗
h = p∗ · ωh, which is a contradiction.

We next prove that p∗ ∗ x∗
h = p∗ · ωh for all h. Suppose that p∗ ∗ x∗

h > p∗ · ωh for some
h. Then, summing up the equations in (3) for h, we obtain

p∗ ·
∑
h

∑
m

x∗
hm > p∗ ·

∑
h

ωh,

which contradicts (iii).
Then, since λh ≫ 0 for all h, (ii) implies that x∗

h ∈ EBh(p
∗) for all h.

Therefore, we conclude that (x∗, p∗) ∈ X × Rℓ is a competitive equilibrium among
households.

Proof of Corollary 1. From Theorem 1, there exists a competitive equilibrium among
households (x∗, p∗) ∈ X × Rℓ.

Suppose that p∗j ≤ 0 for some j = 1, · · · , ℓ.
Let h be the household such that for all m, the utility function Uhm is strictly mono-

tonic in xhm and exhibits non-negative externalities.
For each m, define hm’s consumption bundle yhm = (yhm1, · · · , yhmℓ) ∈ Xhm by

yhms =

x∗
hms + 1 if s = j,

x∗
hms if s ̸= j.

Let yh = (yhm)m ∈ Xh. Since each Uhm is strictly monotonic and exhibits non-negative
externalities, we have

Uhm(yh) > Uhm(x∗
h) for all m.

Moreover, since p∗j ≤ 0, we have p∗ ∗yh < p∗ ∗x∗
h ≤ p∗ ·ωh. However, this contradicts the

fact that x∗
h ∈ EBh(p

∗).

Proof of Lemma 2. Let h1 be the consumer whose utility function Uh1 is nonsatiated
on Fh. Note that Wh : Xh × ∆h → R is continuous on Xh × ∆h since Uhm is continuous
for all m.

Let f : ∆h → R be the function defined by

f(λh) = max
xh∈Fh

Wh(xh, λh).

By Berge’s Maximum Theorem, f is continuous on ∆h.
Let x∗

h = argmaxxh∈Fh
Uh1(xh). Since Uh1 is nonsatiated on Fh, there exists yh ∈

Xh \ Fh such that Uh1(yh) > Uh1(x
∗
h). Thus, for (1, 0, · · · , 0) ∈ ∆h,

Wh(yh, (1, 0, · · · , 0)) = Uh1(yh) > Uh1(x
∗
h) = f(1, 0, · · · , 0).
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Since Wh and f are continuous in λh, there exists λ∗
h ∈ ∆h such that λ∗

h ≫ 0 and
Wh(yh, λ

∗
h) > f(λ∗

h).

Then, W
λ∗

h
h is nonsatiated on Fh. Indeed, for all xh ∈ Fh,

W
λ∗

h
h (yh) = Wh(yh, λ

∗
h) > f(λ∗

h) ≥ W
λ∗

h
h (xh),

which completes the proof.

Proof of Theorem 2. For each h, by Lemma 2, there exists λh ∈ ∆h such that λh ≫ 0
and W λh

h is continuous and concave on Xh, and nonsatiated on Fh. Note that together
with the concavity, the nonsatiation property of W λh

h implies the local nonsatiation prop-
erty of W λh

h .
Applying Lemma 1 for λ = (λh)h ∈ ∆, we obtain an element (x∗, p∗) ∈ X × Rℓ and a

non-negative real number α∗ ∈ R+ such that

(i) p∗ ∗ x∗
h ≤ p∗ · ωh + α∗ for all h,

(ii) For each h, if W λh
h (yh) > W λh

h (x∗
h), then p∗ ∗ yh > p∗ · ωh + α∗,

(iii)
∑

h

∑
m x∗

hm =
∑

h ωh.

We prove that (x∗, p∗) is a competitive equilibrium among households. In view of
(iii), it suffices to show that x∗

h ∈ EBh(p
∗) for all h.

Note first that since W λh
h is (locally) nonsatiated on Fh for all h, we must have p∗ ̸= 0.

We next prove that x∗
h ∈ Bh(p

∗) for all h. For all h, since x∗
h ∈ Fh and W λh

h is locally
nonsatiated on Fh, we have

p∗ ·
∑
m

x∗
hm = p∗ · ωh + α∗. (4)

Summing up the equations in (4) for h, we obtain

p∗ ·
∑
h

∑
m

x∗
hm = p∗ ·

∑
h

ωh + Hα∗.

However, since (iii) implies

p∗ ·
∑
h

∑
m

x∗
hm = p∗ ·

∑
h

ωh,

we must have α∗ = 0. Thus, x∗
h ∈ Bh(p

∗) for all h.
Since λh ≫ 0 and (ii) holds, it is clear that x∗

h ∈ EBh(p
∗) for all h.
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