
 
 

NONPARAMETRIC IDENTIFICATION OF MULTINOMIAL CHOICE 
DEMAND MODELS WITH HETEROGENEOUS CONSUMERS 

 
 

By 
 

Steven T. Berry and Philip A. Haile 
 
 
 

August 2009 
Updated February 2010 

 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1718 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6442664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nonparametric Identi�cation of Multinomial Choice
Demand Models with Heterogeneous Consumers�

Steven T. Berry
Yale University

Department of Economics
Cowles Foundation

and NBER

Philip A. Haile
Yale University

Department of Economics
Cowles Foundation

and NBER

February 5, 2010

Abstract

We consider identi�cation of nonparametric random utility models of multinomial
choice using �micro data,�i.e., observation of the characteristics and choices of individ-
ual consumers. Our model of preferences nests random coe¢ cients discrete choice mod-
els widely used in practice with parametric functional form and distributional assump-
tions. However, the model is nonparametric and distribution free. It allows choice-
speci�c unobservables, endogenous choice characteristics, unknown heteroskedasticity,
and high-dimensional correlated taste shocks. Under standard �large support�and in-
strumental variables assumptions, we show identi�ability of the random utility model.
We demonstrate robustness of these results to relaxation of the large support condition
and show that when it is replaced with a weaker �common choice probability�condi-
tion, the demand structure is still identi�ed. We show that key maintained hypotheses
are testable.

�We have had helpful conversations on this topic with Liran Einav, Jin Hahn, Hide Ichimura, Jon Levin,
Rosa Matzkin and Yuichi Kitamura. We also received useful comments from Sunyoung Park and participants
in several conferences and seminars. Financial support from the NSF is gratefully acknowledged.



1 Introduction

We consider identi�cation of nonparametric random utility models of multinomial choice

using �micro data,� i.e., observation of the characteristics and choices of individual con-

sumers. Our model of preferences nests random coe¢ cients discrete choice models widely

used in practice with parametric functional form and distributional assumptions. However,

the model is nonparametric and distribution free. It allows choice-speci�c unobservables,

endogenous choice characteristics, unknown heteroskedasticity, and high-dimensional corre-

lated taste shocks. Under standard �large support�and instrumental variables assumptions,

we show identi�ability of the random utility model, i.e., of (i) the choice-speci�c unobserv-

ables and (ii) the joint distribution of preferences conditional on any vector of observed and

unobserved characteristics. We demonstrate robustness of these results to relaxation of the

large support condition and show that when it is replaced with a weaker �common choice

probability�condition (de�ned below), the demand structure is still identi�ed. We also show

that key maintained hypotheses are testable.

Motivating our work is the extensive use of discrete choice models of demand for di¤eren-

tiated goods in a wide range of applied �elds of economics and related disciplines. Examples

include transportation and urban economics (e.g., Domencich and McFadden (1975)), in-

dustrial organization (e.g., Berry, Levinsohn, and Pakes (1995)), international trade (e.g.,

Goldberg (1995)), marketing (e.g., Guadagni and Little (1983)), education (e.g., Manski and

Wise (1983)), migration (e.g., Schultz (1982)), voting (e.g., Poole and Rosenthal (1985)),

and health economics (e.g., Capps, Dranove, and Satterthwaite (2003)). We focus in par-

ticular on models in the spirit of Berry (1994), Berry, Levinsohn and Pakes (1995, 2004),

Nevo (2001), Petrin (2002) and a large related literature. These models combine two es-

sential features: heterogeneous tastes for choice characteristics, and endogeneity through

market/choice-speci�c unobservables. Although this class of models is used in a wide range

of applications, their identi�cation has not been addressed in the prior literature. Without

an understanding of the sources of identi�cation in these models, it is di¢ cult to know what

quali�cations are necessary when interpreting estimates or policy conclusions.
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Our analysis demonstrates that with su¢ ciently rich micro data, random utility multino-

mial choice models featuring unobserved market/choice characteristics are identi�ed without

the parametric or distributional assumptions used in practice� typically, linear utility with

independent additive and/or multiplicative taste shocks drawn from parametrically speci�ed

distributions. Our results may therefore lead to greater con�dence in estimates and policy

conclusions obtained in empirical work based on discrete choice models. In particular, para-

metric speci�cations used in estimation can often be viewed as parsimonious approximations

in �nite samples rather than as essential maintained assumptions. We view this as our

primary message. However, our results also suggest that with large samples even richer

speci�cations (parametric or nonparametric) of preferences might be considered in empirical

work, and our identi�cation proofs may suggest estimation approaches.

An important strategy in our work is modeling utility as a nonparametric random func-

tion of observed and unobserved characteristics. This contrasts with the usual approach

of building up randomness from random coe¢ cients and/or other taste shocks. Our for-

mulation not only enables us to consider a very general model of preference heterogeneity,

but also leads us to focus directly on identi�cation of the conditional joint distribution of

utilities. The advantage of this approach might be unexpected: a natural intuition is that

added structure on the way randomness enters the model would aid identi�cation. However,

whereas the conditional distribution of utilities has the same dimension as the observable

conditional choice probabilities (i.e., the dimension of the choice set), even the standard lin-

ear random coe¢ cients model will involve taste shocks of larger dimension unless signi�cant

restrictions are placed on the correlation structure. Focusing directly on the joint distribu-

tion of utilities naturally leads to primitives whose dimension exactly matches the dimension

of the observables without imposing strong distributional or functional form restrictions.

A second key aspect of our work is our explicit modeling of market/choice-speci�c un-

observables. Although this is standard in the applied literature, much of the prior work on

identi�cation of discrete choice models has embedded the sources of preference heterogeneity

and the sources of endogeneity in the same random variables. In applications to demand
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estimation, an endogeneity problem typically arises because some observed choice character-

istics (price being a leading example) depend on unobserved choice characteristics. For such

environments, explicitly modeling market/choice-speci�c unobservables enables one to de�ne

counterfactuals involving exogenous changes in endogenous characteristics within a model

of heteroskedastic random utilities. For example, our formulation allows characterization

of demand elasticities, which require evaluating the e¤ects of a change in price (including

resulting changes in the variance or other moments of random utilities), holding unobserved

product characteristics �xed.1

A third novel component of our work is its exploration of both identi�cation of the full

model and identi�cation of �demand,�i.e., the mapping from observed and unobserved char-

acteristics to the vector of choice probabilities. For many questions motivating estimation

of discrete choice models, knowledge of this demand structure su¢ ces. Not surprisingly,

identi�cation of demand can be obtained under weaker conditions than those giving full

identi�cation of the random utility model.

Despite these di¤erences from the prior literature, we rely heavily on two standard ideas.

One is the use of variation in exogenous observables to �trace out�the distribution of un-

observables. Antecedents in the discrete choice literature include Manski (1985), Matzkin

(1992, 1993), Lewbel (2000), Honoré and Lewbel (2002), and Briesch, Chintagunta, and

Matzkin (2005), among others. We show that this strategy is particularly useful in a micro

data setting, where one can exploit variation in individual-level observables within a market,

holding market-level unobservables �xed. As usual, we require the observables tracing out

the joint distribution to have dimension as large as the choice set. However, we show that the

support conditions commonly used with this strategy can be substantially relaxed without

losing identi�cation of demand. A second standard idea is the use of exogenous variation

in choice sets to decompose variation in the distribution of utilities into the contributions

1Although this is the type of endogeneity typically relevant to demand applications, it obviously is not
the only possibility. For example, our model typically would not be appropriate for evaluating treatment
e¤ects on multinomial outcomes when treatments depend on individual-speci�c unobservables. See Berry
and Haile (2009b) for additional discussion and examples in the context of a generalized regression model.
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of observed and unobserved characteristics. This strategy has been exploited in parametric

discrete choice models by, e.g., Berry (1994) and Berry, Levinsohn and Pakes (1995, 2004).

Here we rely heavily on results from the recent literature on nonparametric identi�cation of

regression models using instrumental variables, particularly Newey and Powell (2003) and

Chernozhukov and Hansen (2005). To our knowledge, the applicability of these results to

discrete choice settings has not been previously exploited. An implication of our results is

that the primary requirement for identi�cation of demand is the availability of instruments.

As discussed below, one advantage of micro data is the variety of instruments that may be

available.

In the following section we provide some additional discussion of related literature. We

then set up the choice framework and de�ne the observables and structural features of inter-

est in section 3. Section 4 provides an illustration of key lines of argument in a simple case:

binary choice with exogenous characteristics. Section 5 addresses full identi�cation in the

case of multinomial choice with endogeneity. There we consider two alternative instrumen-

tal variables conditions that deliver full identi�cation of the model. In section 6 we show

identi�ability of demand under weaker support conditions and illustrate the robustness of

the full identi�cation results to the relaxation of the large support assumption (cf. Cham-

berlain (2010)). Section 7 discusses testable restrictions of key maintained hypotheses. In

section 8 we show how our results can be reinterpreted to show identi�cation in one type of

environment in which only market level data are available. We conclude in section 9.

2 Relation to the Literature

Our work is motivated by a large applied literature using models of discrete choice demand

incorporating two key components: heterogeneous preferences for choice characteristics and

endogeneity through market/choice-speci�c unobservables. The former allows a �exible

model of substitution patterns (e.g., cross-elasticities),2 while the latter is essential if one

2See, e.g., the discussions in Domencich and McFadden (1975), Hausman and Wise (1978) and Berry,
Levinsohn, and Pakes (1995). Early models of discrete choice with heterogeneous tastes for characteristics
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is to control for the classical endogeneity of prices. Although there is a large literature

on identi�cation of discrete choice models,3 there has been no analysis that covers even the

linear version of these models typically used in the applied literature. Thus, although we

relax functional form restrictions considered in the prior identi�cation literature, a more fun-

damental distinction is that our model allows simultaneously for heterogeneity in preferences

for choice characteristics and endogeneity through market/choice-speci�c unobservables.

Identi�cation of heterogeneous preferences for choice characteristics has been explored by

Ichimura and Thompson (1998) and Briesch, Chintagunta, and Matzkin (2005). Ichimura

and Thompson (1998) studied the linear random coe¢ cients binary choice model. Briesch,

Chintagunta, and Matzkin (2005) considered multinomial choice, allowing generalizations of

the linear random coe¢ cients model. Neither considers endogenous choice characteristics,

and both impose restrictions we do not require on how heterogeneity enters preferences.

Lewbel (2000) considered identi�cation in the semi-parametric linear random utility

model

vij = xij� + �ij (1)

where the distribution of �ij can vary with xij. Unlike (1), our model makes a distinction

between the unobservables responsible for taste heterogeneity and those responsible for en-

dogeneity.4 To see why this is essential in applications to discrete choice demand, suppose

we wish to describe how quantities would change in response to an exogenous change in

the price of good j� e.g., to describe own- and cross-price demand elasticities. Accounting

for heterogeneity in tastes requires that the entire distribution of vij (not just its mean)

be permitted to change with the change in price. At the same time, controlling for the

endogeneity of price requires that all else (in particular, market/product-level unobservables

that are correlated with price) be held �xed. Meeting both requirements is not possible

include those in Quandt (1966), Quandt (1968), and Domencich and McFadden (1975).
3Important early work includes Manski (1985, 1987, 1988) and Matzkin (1992, 1993), who study linear

models with exogenous regressors.
4We also relax functional form restrictions; for example, we do not require mean e¤ects of observables to

enter separably from unobservables.
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in a model like (1) that has a single �composite�error term. Thus, while (1) provides an

attractive structure if the parameter � is the object of interest, the model lacks the structure

needed to de�ne key objects of interest in the context of discrete choice demand.

Honoré and Lewbel (2002) consider a binary panel version of the model in Lewbel (2000),

relying on linearity in a composite error term and focusing on identi�cation of a slope pa-

rameter. Altonji and Matzkin (2005) consider a similar but nonparametric model. Their

results for discrete choice models focus on identi�cation and estimation only of local average

responses. Other work considering models similar to (1) includes Hong and Tamer (2004),

Blundell and Powell (2004), Lewbel (2005), and Magnac and Maurin (2007).

Matzkin (2004) (section 5.1) considers a model incorporating choice-speci�c unobserv-

ables and an additive preference shock, but in a model without random coe¢ cients or other

sources of heteroskedasticity/heterogeneous tastes for characteristics.5 Hoderlein (2008)

allows for both heteroskedasticity and endogeneity in the case of a binary choice model,

focusing on identi�cation of a particular average derivative. Hoderlein (2008), like Blundell

and Powell (2004) and Matzkin (2004), limit attention to binary choice in semiparametric

triangular models, leading to the applicability of control function methods or the related

idea of �unobserved instruments.�6 For binary choice demand, triangular models can be

appropriate when price depends on either a demand shock or a cost shock, but not both. In

the case of multinomial choice, standard oligopoly models imply that each price depends on

the entire vector of demand shocks (and cost shocks, if any). Thus, triangular models do not

permit the type of endogeneity relevant for most applications to discrete choice demand.7

Berry and Haile (2009a) considers identi�cation of multinomial choice models allowing

heterogeneity and endogeneity, but for the case when only market level data are available.8

5See also Matzkin (2007a, 2007b).
6See also Lewbel (2000), Honoré and Lewbel (2002), Altonji and Matzkin (2005), and Petrin and Train

(2009).
7Gautier and Kitamura (2007) have considered binary choice in a linear random coe¢ cients environment.

They include a brief discussion of endogeneity under a triangular structure.
8Berry and Haile (2009b) provide additional results for binary choice and other models that are special

cases of a �generalized regression model.�
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Although the results there extend immediately to the richer micro data environment consid-

ered in the present paper, here our focus is on the gains that micro data can deliver. The lack

of micro data in Berry and Haile (2009a) makes it impossible to exploit the within-market

variation that plays a central role throughout the present paper. Consequently, the results

in Berry and Haile (2009a) require more restrictive representations of preferences than those

considered here. However, given the results on identi�cation of demand below, the results

in Berry and Haile (2009a) on identi�cation of marginal costs do extend to the micro data

environment considered here.

Our work is distinguished from much of the prior literature by a neglect of estimation.

This limited focus is shared by the concurrent work of Fox and Gandhi (2009), which explores

identi�ability of several related models, including a model of multinomial choice in which

consumer types are multinomial and utility functions are analytic. More recently, Chiappori

and Komunjer (2009) have explored identi�cation of a multinomial choice model with an

additive structure in a micro data environment, allowing for heterogeneous preferences and

endogeneity through choice-speci�c unobservables. They use a change of variables approach

more closely related to one of the approaches we have developed in Berry and Haile (2009a).

3 Model

3.1 Preferences and Choices

Consistent with the motivation from demand estimation, we describe the model as one in

which each consumer i in each market t chooses from a set Jt of available products. We will

use the terms �product,��good,�and �choice� interchangeably to refer to elements of the

choice set. The term �market�is synonymous with the choice set. In particular, consumers

facing the same choice set are de�ned to be in the same market. In practice, markets will

typically be de�ned geographically and/or temporally. Variation in the choice set will of

course be essential to identi�cation, and our explicit reference to markets provides a way to

discuss this clearly.
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Each consumer i in market t is associated with a matrix of observables zit = (zi1t; : : : ; ziJtt).

The j subscript on zijt allows the possibility that some characteristics are both consumer- and

choice-speci�c. This can result from interactions between consumer characteristics and prod-

uct characteristics, or from measures that are inherently consumer/choice-speci�c. Examples

from the literature include interactions between family size and automobile size (Goldberg

(1995), Berry, Levinsohn, and Pakes (2004)), distance from an individual�s home to a hos-

pital, school, or retailer (Capps, Dranove, and Satterthwaite (2003), Hastings, Staiger, and

Kane (2007), Burda, Harding, and Hausman (2008)), household exposure to product-speci�c

advertising (Ackerberg (2001)), matches between a voter�s position and party a¢ liation and

those of each candidate (Rivers (1988)), and matches between the income, education and

race of a household to that of a neighborhood (Bayer, Ferreira, and McMillan (2007)). We

will require one such measure for each market t and each product j � 1.9

In applications to demand it is important to model consumers as having the option to

purchase none of the products the researcher focuses on.10 We represent this by choice j = 0

and assume 0 2 Jt 8t. Choice 0 is often referred to as the �outside good.�We denote the

number of �inside goods�by Jt = jJtj � 1.11 Observables (to us) at the level of the good

and/or market are denoted by xjt. Among other things, xjt can include product dummies

and price. Let xt = (x1t; : : : ; xJtt). Unobservables at the level of the product and/or

market are characterized by a scalar �jt (zit) for each j; t; zit. This may re�ect unobserved

choice characteristics, unobserved market characteristics, and/or unobserved taste for choice

j in market t. Although we follow the literature in restricting �jt (zit) to be a scalar, we

permit it to vary across subpopulations with di¤erent zit:12 For simplicity we will assume

9If zijt = ~zit for all j, the identi�cation problem is identical to that in the case of market-level data (see
Berry and Haile (2009a)) conditional on each value of ~zit.
10See, e.g., Bresnahan (1981), Anderson, DePalma, and Thisse (1992), Berry (1994), Berry, Levinsohn,

and Pakes (1995), and Goldberg (1995).
11In applications with no �outside choice�our approach can be adapted by normalizing preferences relative

to those for a given choice. The same adjustment applies when characteristics of the outside good vary
across markets in observable ways.
12Athey and Imbens (2007) point out that the assumption of a scalar vertical unobservable �jt can lead to

testable restrictions in some models. Although their observation does not apply to our more general model,
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that �jt (zit) has an atomless marginal distribution in the population for all zit.

We consider preferences represented by a random utility model. Letting � denote the

support of
�
xjt; �jt (zit) ; zijt

�
, each consumer i in market t has a conditional indirect utility

function uit : � ! R. However, consumers have heterogeneous tastes, even conditional on

observables. Thus, from the perspective of the researcher, each utility function uit can be

viewed as a random draw from a set U of permissible functions fu : �! Rg :

More formally, let (
;F ;P) denote a probability space. Given any
�
xjt; �jt (zit) ; zijt

�
2 �,

uit
�
xjt; �jt (zit) ; zijt

�
= u

�
xjt; �jt (zit) ; zijt; !it

�
(2)

where !it 2 
, and u is measurable in !it. The realization of !it determines the utility

function of consumer i in market t. The draw !it from the sample space 
 is independent

of the arguments of the utility function; i.e., the probability measure P does not depend

on
�
xjt; �jt (zit) ; zijt

�
. This is without loss of generality, since the function u permits the

distribution of uit
�
xjt; �jt (zit) ; zijt

�
to vary arbitrarily with

�
xjt; �jt (zit) ; zijt

�
. P also does

not vary with the market index t. This re�ects our earlier assumption that all unobserved

choice/market-level heterogeneity is captured by �jt (zit). We discuss testable implications

below.

Let

vijt = u
�
xjt; �jt (zit) ; zijt; !it

�
:

We emphasize that !it is not a random variable (or random vector) but an elementary event

in the sample space 
. The realization of !it could determine the realizations of any number

of number of random variables with arbitrary joint distribution. As one example, consider

mapping our general model to a more familiar special case:

Example 1. Consider the linear random coe¢ cients random utility model

u
�
xjt; �jt; zijt; !it

�
= xjt�it + zijt
 + �jt + �ijt: (3)

below we derive a testable implication that does.
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Here �jt (zit) = �jt and the random variables
�
�
(1)
it ; : : : ; �

(K)
it ; �i1t; : : : ; �iJtt

�
can be de�ned

on the probability space (
;F ;P), for example as �(k)it = �(k) (!it) and �ijt = �j (!it).13

This speci�cation permits an arbitrary joint distribution of
�
�
(1)
it ; : : : ; �

(K)
it ; �i1t; : : : ; �iJtt

�
but requires that it be the same for all t and

��
xjt; �jt; zijt

�	
j=1:::Jt

.14 This speci�cation

of
�
�it; f�ijtgj

�
relaxes standard assumptions in the literature but is still more restrictive

than we require, even within a linear random coe¢ cients model. For example, recalling

that xt can include product dummies, a more general model is obtained by letting �it =

(�(1) (zit; !it) ; : : : ; �
(K) (zit; !it)) and �ijt = �

�
xjt; �jt; !it

�
. We could generalize further by

specifying �ijt = �
�
xjt; �jt (zit) ; zijt; !it

�
; however, then the sum xjt�it + zijt
 + �jt in (3)

would be redundant and the model would collapse to our fully general formulation (2).

Aside from the restriction to scalar market/choice-speci�c unobservables, our representa-

tion of preferences is so far fully general. However, all of our results will require a restriction

on the set U of permissible utility functions. Let zijt =
�
z
(1)
ijt ; z

(2)
ijt

�
, with z(1)ijt 2 R. Let

z
(1)
it denote the vector

�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�0
and z(2)it the matrix

�
z
(2)
i1t ; : : : ; z

(2)
iJtt

�0
: For most of our

results we will require that for every z(2)it there exist a representation of utilities with the

form

�itz
(1)
ijt + ~�

�
xjt; �jt

�
z
(2)
it

�
; z
(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (4)

where the function ~� is strictly increasing in its second argument, and the random coe¢ cient

�it = � (!it) is strictly positive with with probability one.15

This imposes three restrictions:

(i) invariance of �jt (zit) to z
(1)
it

(ii) separability in a �vertical�attribute z(1)ijt

(iii) monotonicity in �jt.

Part (i) requires one component of zit whose variation is not confounded with variation in the

13We can write choice-speci�c functions such as �j (�) because xt is permitted to include product dummies.
14This formulation allows variation in Jt across markets. For example, !it determines the values of the

random variables �ijt = �j (!it) for all possible choices j, not just those in the current choice set.
15If �it < 0 w.p. 1, we replace z

(1)
ijt with �z

(1)
ijt . As long as j�itj > 0 w.p. 1, identi�cation of the sign of �it

is straightforward.
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market/choice-speci�c unobservable. While an important restriction, this relaxes the stan-

dard assumption �jt (zit) = �jt 8zit. Part (ii) requires that, for each z
(2)
it , there be a monotonic

transformation of utilities such that z(1)ijt enters in additively separable form.
16 With separa-

bility, the invariance of P to
�
xjt; zijt; �jt (zit)

	
j2J� previously without loss� now has bite:

conditional on
�
xjt; �jt

�
z
(2)
it

�
; z
(2)
it

�
, z(1)ijt is independent of

n
~�
�
xjt; �jt

�
z
(2)
it

�
; z
(2)
ijt ; !it

�o
j2J
.

Part (iii) requires that, conditional on
�
xjt; z

(2)
ijt

�
, all consumers rank the possible values of

�jt

�
z
(2)
it

�
the same way. If we interpret �jt

�
z
(2)
it

�
as an unobserved product characteristic,

this means �jt
�
z
(2)
it

�
is a �vertical� rather than �horizontal� characteristic. We do still

allow heterogeneity in preferences for �jt
�
z
(2)
it

�
, and we allow a di¤erent representation (4)

for each value of z(2)it .

The invariance and separability restrictions together give z(1)ijt the properties of a �special

regressor�(e.g., Lewbel (2000)) that will provide a mapping between units of (latent) utility

and units of (observable) choice probabilities.17 Monotonicity plays important roles as well,

enabling us to map observed conditional choice probabilities to values of the market/choice

unobservables. We show in section 7 that all three restrictions have testable implications.

Henceforth we condition on Jt = J , with jJ j = J . We also condition on a value of

z
(2)
it and suppress it in the notation. For simplicity, we will now write only zijt and zit to

16For binary choice, if we assume �t (zit) = �t
�
z
(2)
it

�
and that u (xt; �t (zit) ; zit; !it) is strictly increasing

in z(1)it , fu (xt; �t (zit) ; zit; !it) > 0g is equivalent to
n
z
(1)
it > u�1

�
0; �t

�
z
(2)
it

�
; z
(2)
it ; !it

�o
. This leads to

an observationally equivalent model with separability in z(1)it . This is well known. Nonetheless, additive
separability is not without loss under these assumptions. This is because there may be no monotonic
transformation of the original utility function that leads to the separable form. For example, suppose that

according to u
�
xt; �t

�
z
(2)
it

�
; zit; !it

�
the marginal rate of substitution between z(1)it and xt varies with z

(1)
it .

This property would be preserved by any monotonic transformation but fails under separability. Thus,
although the separable structure preserves consumers�ordinal rankings of the outside good and any inside
good, it need not preserve their ordinal rankings of alternative inside goods. An implication is that there
can be simultaneous changes in z(1)it and xt that would raise welfare under one model but lower welfare under
the other. Nonetheless, the observational equivalence demonstrates why it may be di¢ cult to obtain full
identi�cation without a restriction like the separability we assume. Note that quasilinearity also provides a
cardinal representation of utility, making it possible to characterize aggregate welfare.
17We can allow z(1)ijt to be an index g (cijt) where cijt is a vector, as long as �jt

�
z
(2)
it

�

j= cijt. Fixing t and

z
(2)
it , utilities have the form vijt = g (cijt)+�ijt with cijt j= �ijt. If g (�) is linear, identi�cation of g (�) follows
by standard results (e.g., Manski (1985)). Identi�cation of nonlinear g (�) can be obtained under restrictions
considered in Matzkin (1993).
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represent z(1)ijt and z
(1)
it , respectively. Likewise, we will write �jt instead of �jt

�
z
(2)
it

�
. With

this simpli�ed notation, each market t is de�ned by the values of
�
xjt; �jt

	
j2J :

3.2 Normalizations

Before discussing identi�cation, we must have a unique representation of preferences for

which the identi�cation question can be posed. This requires several normalizations.

First, because unobservables enter non-separably and have no natural units, we must

normalize the location and scale of �jt for each j. It will be useful to employ di¤erent

normalizations for di¤erent results, so we provide these below.

We must also normalize the location and scale of utilities. Without loss, we normalize

the scale of each consumer i�s utility using his marginal utility from zijt, yielding utilities

with the form

zijt +
~�j
�
xjt; �jt; !it

�
�it

8i; j = 1; : : : ; J:

Here we include a subscript j on the function ~�j because in general we will have conditioned

on a di¤erent value of z(2)ijt for each j. Letting

�j
�
xjt; �jt; !it

�
=
~�j
�
xjt; �jt; !it

�
�it

this gives the representation of preferences we will work with below:

vijt = zijt + �j
�
xjt; �jt; !it

�
8i; j = 1; : : : ; J: (5)

To normalize the location we set vi0t = 0 8i; t. Treating the utility from the outside good

as non-stochastic is without loss, since choices are determined by di¤erences in utilities and

we have not restricted the joint distribution of utilities across products.

12



3.3 Observables and Structural Features of Interest

Each consumer i maximizes her utility, choosing good j whenever vijt > vikt 8k 2 J � fjg.

For simplicity we assume that any ties with the outside good are broken in favor of the

outside good. We denote consumer i�s choice by

yit = argmax
j2J

vijt:

We will typically require excluded instruments, which we denote by �wjt. One advantage

of micro data is the variety of instrumental variables that may be available. Depending

on the environment, instruments for prices18 might include cost shifters excludable from the

utility function, prices in other markets (e.g., Hausman (1996), Nevo (2001)), characteristics

of competing products (e.g., Berry, Levinsohn, and Pakes (1995)), and/or �average�values

of zit in market t (e.g., Waldfogel (2003), Gentzkow and Shapiro (2009)).19 Because the

arguments are standard, we will not discuss assumptions necessary to justify the exclusion

and �rank�conditions, which we will assume directly below.

The observables then consist of the market index t and the variables

(yit; fxjt; �wjt; zijtgj2J ) :

To discuss identi�cation, we treat their joint distribution as known. In particular, we take

the conditional probabilities

pijt = PrP (yit = jjt; fxkt; �wkt; ziktgk2J ) (6)

18We discuss instruments for prices here because price is the leading case of an endogenous product char-
acteristic. Our results permit any number/types of endogenous characteristics as long as valid instruments
are available.
19The last of these obviously is unavailable without micro data. The analysis in Berry and Haile (2009a)

suggests that characteristics of other goods may not be su¢ cient on their own without micro data or addi-
tional restrictions on preferences. Thus the variety of instruments that may be available can be an important
advantage of micro data.
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as known. Loosely speaking, we consider the case of observations from a large number of

markets, each with a large number of consumers, who are anonymous conditional on zit.

Our �rst objective is to derive su¢ cient conditions for identi�cation of the market/choice-

speci�c unobservables and the distribution of preferences over choices in sets J , conditional

on the characteristics
�
xjt; zijt; �jt

	
j2J . In particular, we will show identi�cation of

�
�jt
	
j2J

and the joint distribution of fvijtgj2J conditional on any
�
xjt; zijt; �jt

	
j2J in their support.

These conditional distributions fully characterize the primitives of this model. We therefore

refer to identi�cation of these probability distributions as full identi�cation of the random

utility model.

We will also consider a type of partial identi�cation: identi�cation of demand. For many

economic questions motivating estimation of discrete choice demand models, the joint distri-

bution of utilities is not needed. For example, to discuss cross-price elasticities, equilibrium

markups, or pricing/market shares under counterfactual ownership or cost structures, one

requires identi�cation of demand, not the full random utility structure. Identi�cation of

demand naturally requires less from the model and/or data than identi�cation of the distri-

bution of preferences. Demand is fully characterized by the unobservables
�
�jt
	
j2J and the

structural choice probabilities

�j
�
fxjt; �jt; zijtgj2J

�
= Pr

�
yit = jjfxjt; �jt; zijtgj2J

�
: (7)

These conditional probabilities are not directly observable from (6) because of the unobserv-

ables �jt.

4 Illustration: Binary Choice with Exogeneity

To illustrate key elements of our approach, we begin with the simple case of binary choice

with exogenous xjt. Dropping the j subscripts, consumer i selects the inside good whenever

zit + � (xt; �t; !it) > 0:

14



Here we normalize �t by letting it have a uniform distribution on (0; 1). We consider

identi�cation under the following assumptions.

Assumption 1. �t j= (xt; zit) :

Assumption 2. supp zitjxt; �t = R 8x:

Assumption 1 merely restates that for this illustration we are considering the special

case of exogenous observables. This assumption is dropped in the following section. A

�large support�condition like Assumption 2 is common in the literature on nonparametric

and semiparametric identi�cation of discrete choice models (e.g., Manski (1985), Matzkin

(1992), Matzkin (1993), Lewbel (2000)).20 We relax this assumption in section 6.

Here we show that Assumptions 1 and 2 are su¢ cient for full identi�cation of the random

utility model. Let �it = � (xt; �t; !it) as shorthand. Holding the market t �xed, all variation

in �it is due to !it. The observed conditional probability that a consumer chooses the outside

good in market t is

Pr (�it � �zitjxt; zit) :

Because zit and �it are independent conditional on t (i.e., conditional on (xt; �t)), Assumption

2 guarantees that variation in zit within market t identi�es the distribution of �itjt. Call

this F�itjt (�). This argument can be repeated for all markets t.

In writing �itjt, we �x the values of xt and �t, although only the former is actually

observed. However, once we know the distribution of �itjt for all t, we can recover the value

of each �t as well. To see this, let

�t = med [�itjt] = med [� (xt; �t; !it) jxt; �t] :

With F�itjt (�) now known, each �t is known and satis�es

�t = D (xt; �t) (8)

20As usual, the support of zit need not equal the entire real line but need only cover the support of
� (xt; �t; !it). We will nonetheless use the real line (real hyperplane below) for simplicity of exposition.
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for some function D that is strictly increasing in its second argument. Identi�cation of each

�j then follows standard arguments. In particular, for � 2 (0; 1) let �� (xt) denote the �th

quantile of �tjxt across markets. Recalling the normalization of �t, strict monotonicity of D

in �t implies

�� (xt) = D (xt; �) :

Since �� (xt) is known for all xt and � , D is identi�ed on fsupp xtg� (0; 1). With D known,

each �t is known as well.

Thus far we have shown identi�cation of F�itjt and of each latent �t. So for any (xt; �t)

in their support, the value of

F� (rjxt; �t) � Pr (� (xt; �t; !it) � rjxt; �t)

= F�itjt (r)

is uniquely determined for all r 2 R. Since vit = zit + � (xt; �t; !it), this proves the following

result.

Theorem 1. Consider the binary choice setting with preferences given by (5). Under As-

sumptions 1 and 2, each �t and the distribution of vit conditional on any (xt; �t; zit) 2 � is

identi�ed.

Our argument involved two simple steps, each standard on its own. First, we showed that

variation in zit can be used to trace out the distribution of preferences across consumers. It is

in this step that the role of idiosyncratic variation in tastes is identi�ed. Antecedents for this

step include Matzkin (1992), Matzkin (1993), Lewbel (2000).21 Here we apply this step within

each market, exploiting the fact that conditioning on the market �xes all characteristics of

the choice set, even those not observed. In the second step, we use variation in choice

characteristics across markets to decompose the variation in utilities across products into

the variation due to observables and that due to the unobservables �t. This idea has been

21See also Matzkin (2007a, 2007b).

16



used extensively in estimation of parametric multinomial choice demand models following

Berry (1994), Berry, Levinsohn, and Pakes (1995), and Berry, Levinsohn, and Pakes (2004).

This second step is essential once we allow the possibility of endogenous choice characteristics

(e.g., correlation between price and �t), as will typically be necessary in demand estimation.

Our approach for the more general cases follows the same broad outline.

5 Multinomial Choice: Full Identi�cation

We now consider the general case of multinomial choice with endogenous characteristics

using the speci�cation of preferences in (5). We will use the following generalization of the

large support assumption:

Assumption 3. supp fzijtgj=1;:::;J j
�
xjt; �jt

	
j=1;:::;J

= RJ :

This is a strong assumption, essentially requiring su¢ cient variation in (zi1t; : : : ; ziJtt)

to move choice probabilities through the entire unit simplex.22 Equivalent conditions are

assumed in prior work on multinomial choice by, e.g., Matzkin (1993), Lewbel (2000), and

Briesch, Chintagunta, and Matzkin (2005). Such an assumption provides a natural bench-

mark for exploring identi�ability under ideal conditions. However, we will also explore

results that do not require this assumption in section 6.

Without Assumption 1, we will require instrumental variables. Let xjt =
�
x
(1)
jt ; x

(2)
jt

�
,

where x(1)jt 2 RK denotes the endogenous characteristics. We then let wjt �
�
x
(2)
jt ; �wjt

�
denote the vector of exogenous conditioning variables. We will consider two alternative

sets of instrumental variables conditions below, each taken from the recent literature on

nonparametric instrumental variables regression.

22This is only �essentially�required by the large support condition because we do not require continuity
of choice probabilities in z(1)it .
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5.1 Identi�cation with Fully Independent Instruments

We �rst explore identi�cation using instrumental variables conditions from Chernozhukov

and Hansen (2005). We normalize
�
�jt
	
j2J by assuming that for each j, �jt has a uniform

marginal distribution on (0; 1). Here we will assume x(1)jt is continuously distributed, with

conditional density function fxj
�
x
(1)
jt jwjt

�
.23 We will condition on a value of

�
x
(2)
1t ; : : : ; x

(2)
Jt

�
,

suppress these arguments in the notation, and let xjt now denote x
(1)
jt . De�ne the random

variable

�jt = Dj

�
xjt; �jt

�
� med

�
�j
�
xjt; �jt; !it

��� xjt; �jt� (9)

and let f�j (�jxjt;wjt) denote its conditional density.

Let �� and �f be some small positive constants. For each j and � 2 (0; 1) de�ne Lj (�)

as the convex hull of functions mj (�; �) that satisfy

(a) for all wjt, Pr (�jt � mj (xjt; �) jwjt) 2 [� � �� ; � + �� ]; and

(b) for all xjt, mj (xjt; �) 2 sj(xjt) �
�
� : f�j (�jxjt;w) � �f 8w with fxj (xjtjw) > 0

	
.

We now make the following instrumental variables assumptions, taken from Chernozhukov

and Hansen (2005, Appendix C).24

Assumption 4. �jt j= (wjt; zijt)8j; t:

Assumption 5. For all j and � 2 (0; 1), (i) for any bounded function Bj (x; �) = mj (x; �)�

Dj (x; �) withmj (�; �) 2 Lj (�) and "jt � �jt�Dj (xjt; �), E
�
Bj (xjt; �) j (xjt;wjt; �) jwjt

�
=

0 a.s. only if Bj (xjt; �) = 0 a.s., for  j (x;w,�) =
R 1
0
f"j (�Bj (x; �) jx;w) d� > 0.

(ii) the density f"j (ejx;w) of �jt is continuous and bounded in e over R a.s.;

(iii) Dj (xjt; �) 2 sj(xjt) for all xjt.

Assumption 4 is a strong exclusion restriction requiring fully independent instruments.

Assumption 5 is a particular type of �bounded completeness�condition, requiring that the

23This could be dropped by appealing below to Theorems 2 and 3 (and the associated rank conditions)
in Chernozhukov and Hansen (2005) instead of their Theorem 4. We focus on continuous endogenous
characteristics here because price is our leading example.
24Chernozhukov and Hansen�s �rank invariance�property holds here because the same unobservable �jt

determines potential values of �jt for all possible values of the endogenous characteristics. As in their
framework, �jt and xjt can be assumed without loss to be tranformed to have bounded support.
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instruments induce su¢ cient variation in the endogenous variables. This condition plays the

role of the standard rank condition for linear models, but for the nonparametric nonseparable

model �j = Dj(x; �).25 With these assumptions, we obtain the following result.

Theorem 2. Under the representation of preferences in (5), suppose Assumptions 3�5 hold.

Then each �jt and the joint distribution of fvijtgj2J conditional on any
�
(xjt; zijt; �jt)

	
j2J

in their support is identi�ed.

Proof. Let �ijt = �j
�
xjt; �jt; !it

�
and observe that

lim
zikt!�1
8k 6=j

pijt = Pr
�
zijt + �ijt > 0jzijt

�
: (10)

Holding t �xed, �ijt j= zijt, so Assumption 3 guarantees identi�cation of the marginal distri-

bution of �ijtjt for each j. This implies identi�cation of the conditional median

�jt = med
�
�j
�
xjt; �jt; !it

�
jxjt; �jt

�
= med

�
�j
�
xjt; �jt; !it

�
jt
�
: (11)

Thus, the left side of (9) can be treated as known for all j and t. Noting that the function

Dj in (9) must be strictly increasing in �jt, Theorem 4 of Chernozhukov and Hansen (2005)

then implies that under Assumptions 4 and 5, each function Dj (and therefore each �jt) is

identi�ed. Finally, observe that for any market t

pi0t = Pr (zi1t + �i1t � 0; : : : ; ziJt + �iJt � 0j t; zi1t; : : : ; ziJt) (12)

= Pr (�i1t � �zi1t; : : : ; �iJt � �ziJtj t; zi1t; : : : ; ziJt)

so that Assumption 3 implies identi�cation of the joint distribution of (�i1t; : : : ; �iJt) jt.

Since each xjt is observed and each �jt is identi�ed, this implies identi�cation of the joint

distribution of (�i1t; : : : ; �iJt) conditional on any
�
(xjt; zijt; �jt)

	
j2J in their support. Since

25Chernozhukov and Hansen (2005) discuss su¢ cient conditions. We also consider an alternative to As-
sumption 5 below.
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vijt = zijt + �ijt, the result follows. �

Our proof exploits the large support condition wherever possible, including in an �identi-

�cation at in�nity�argument (equation (10)) often employed in this literature (e.g., Matzkin

(1993)). However, we will show below that demand is identi�ed without this assumption,

and that even full identi�cation is robust to relaxation of the support assumption.26

5.2 Identi�cation with Mean-Independent Instruments

Any application of instrumental variables methods requires that the instruments induce

su¢ cient exogenous variation in the endogenous variables. Assumption 5 provides the ap-

propriate formal condition for the model (9), and this is the same condition that has been

used to show identi�cation of nonseparable regression models. Nonetheless, a possible limita-

tion of Theorem 2 is that Assumption 5 may be di¢ cult to check and/or interpret. Whether

there are useful su¢ cient conditions on economic primitives delivering this property is an

open question of broad interest in the literature on nonparametric instrumental variables

regression, but beyond the scope of this paper.27 However, if we are willing to impose

additional structure on the utility function, we can utilize a somewhat more intuitive suf-

�cient condition for full identi�cation. Doing so also enables us to relax the excludability

restriction to require only mean independence.

Conditioning on x(2)t as in the prior section, suppose (for this subsection only) that each

consumer i�s conditional indirect utilities can be represented as

vijt = �itzijt + ~�j (xjt; !it) + 
it�jt j = 1; : : : ; J (13)

where �it and 
it are strictly positive with probability one and the expectations E [�it],

E [
it], and E
�
~�j (xjt; !it) jxjt

�
are �nite. This imposes a restriction relative to (5) but is

26See also Berry and Haile (2009a), which does not use an identi�cation at in�nity argument even for full
identi�cation.
27In Berry and Haile (2009a) we explore an alternative argument relying on classical exclusion and support

conditions in an environment combining discrete choice demand with a partially speci�ed model of supply.
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still quite general relative to the prior literature. A representation of preferences equivalent

to (13) is

vijt = zijt + �j
�
xjt; �jt; !it

�
8i; j = 1; : : : ; J (14)

where now

�j
�
xjt; �jt; !it

�
=
~�j (xjt; !it)

�it
+

it
�it
�jt: (15)

Here we also use a di¤erent normalization of �jt. Instead of letting �jt have a standard

uniform distribution, we make the location normalization

E
�
�jt
�
= 0 8j

and scale normalization

E

�

it
�it

�
= 1: (16)

Both are without further loss of generality.

With this structure we can replace the full independence assumption (Assumption 4)

with mean independence.

Assumption 6. E
�
�jtjwjt; zijt

�
= 0 8j; t;wjt; zijt.

To show identi�cation of the joint distribution of fvijtgj2J conditional on
�
xjt; zijt; �jt

	
j2J ,

�rst note that the marginal distribution of �j
�
xjt; �jt; !it

�
jt for each j is identi�ed using the

same argument used in the �rst lines of the proof of Theorem 2. This implies identi�cation

of the conditional means

�jt � E
�
�j
�
xjt; �jt; !it

��� t�
for all j and t. With the separable structure (15) and the normalization (16), for each j and

t we have

�jt = Dj (xjt) + �jt

for some unknown functionDj. It is then straightforward to con�rm that, under Assumption
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6, the following �completeness�condition is necessary and su¢ cient for identi�cation of each

function Dj from observation of (�jt; xjt; �wjt) (Newey and Powell (2003)).

Assumption 7. For all j and all functions Bj (xjt) with �nite expectation, E [Bj (xjt) jwjt] =

0 a.s. implies Bj (xjt) = 0 a.s.

The completeness condition is the analog of the standard rank condition for identi�ability

in linear models. Like the standard rank condition, completeness requires that variation

in wijt induce su¢ cient variation in x
(1)
jt to distinguish the true function Dj (�) from other

functions of x(1)jt using the conditional mean restriction of Assumption 6.
28

We can now state a second full identi�cation result for the multinomial choice model.

Theorem 3. Under the representation of preferences in (14)-(15), suppose Assumptions 3,

6 and 7 hold. Then each �jt and the joint distribution of fvijtgj2J conditional on any�
(xjt; zijt; �jt)

	
j2J in their support are identi�ed.

Proof. From the preceding argument, under the completeness Assumption 7, we have iden-

ti�cation of each Dj and therefore of each �jt. The remainder of the proof then follows that

of Theorem 2 exactly, beginning with (12). �

6 Identi�cation of Demand Using Limited Support

The large support assumption (Assumption 3) in the preceding section is common in the

literature but is obviously strong. Although our results describe only su¢ cient conditions for

identi�ability, it should not be surprising that a large support assumption may be needed for

full identi�cation of the random utility model: if the exogenous observables can move choice

probabilities only through a subset of the unit simplex, we should only hope to identify the

joint distribution of utilities on a subset of their support. Of course, one would like to

28Lehman and Romano (2005) give standard su¢ cient conditions and references. See also Newey and
Powell (2003) and Severini and Tripathi (2006). If we add the assumption that E

�
~�j
�
xjt; �jt

�
jxjt

�
is

bounded, the completeness assumption could be replaced with bounded completeness.
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understand how heavily the results rely on the tails of the large support and what can be

learned from more limited variation. We explore these questions here.

We show that more limited variation can be su¢ cient to identify demand, i.e., to identify

the unobservables �jt and the structural choice probabilities �j
�
fxjt; �jt; zijtgj2J

�
at all points

of support. We also show continuity of the identi�ed features with respect to the support of

the micro data. In particular, moving from our limited support condition to the large support

condition moves the identi�ed features of the model smoothly toward the full identi�cation

results of the preceding sections.

For multinomial choice we obtain these results under a somewhat more restrictive spec-

i�cation of preferences than that in (5). Up to this quali�cation, however, these results

should be a comforting. Demand is identi�ed without the large support condition. And

although we require the large support for full identi�ability of the random utility model in

the previous section, the identi�cation is not knife-edge: the tails of the large support are

needed only to determine the tails of the joint distributions of utilities.

6.1 Binary Choice

6.1.1 Identi�cation of Demand

As before, we begin with binary choice to illustrate our main insights. We begin with the

relaxed support condition on zit. We assume existence of one �common choice probability�

that is attainable in each market t by the appropriate choice of zit.

Assumption 8. For some q 2 (0; 1), for each market t there exists a unique zqt 2supp zit

such that Pr (yit = 1jzit = zqt ) = q.

This requires su¢ cient variation in zit to push the choice probability to q in each market,

not over the whole interval (0; 1) in each market.29 This is not innocuous but is much less

demanding than the full support condition.

29Implicitly we also require a continuous (region of) support for � (xt; �t; !i) jxt; �t to ensure uniqueness
of each zqt .
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Consumer i chooses the inside good if

zit + � (xt; �t; !it) > 0:

Under Assumption 8, for each market t we can �nd the value zqt such that

Pr (�� (xt; �t; !it) < zitjxt; �t; zit)jzit=zqt = q:

Observe that each zqt is the qth quantile of the random variable �� (xt; �t; !it) conditional

on t, i.e., on (xt; �t). Thus, we can write

zqt = � (xt; �t; q) (17)

for some function � (�; q) that is strictly decreasing in �t. This strict monotonicity is the key

idea here: holding xt �xed, markets with high values of z
q
t are those with low values of the

unobservable �t. Here we will revert to the uniform normalization of �t.

Identi�cation of the function � (�; q) ; and therefore of each �t; then follows from (17) as

in the preceding sections, using the nonparametric instrumental variables result of Cher-

nozhukov and Hansen (2005). This holds under the same type of bounded completeness

assumption made in section 5.1; we state this condition formally as Assumption 12 in the

Appendix. With each �t known, the observable choice probabilities reveal the structural

choice probabilities

� (xt; �t; zit) = Pr (yit = 1jxt; �t; zit) (18)

at all points (xt; �t; zit) of support. This gives the following result.

Theorem 4. In the binary choice model with preferences given by (5), suppose Assump-

tions 4, 8, and 12 hold. Then each �t is identi�ed and the structural choice probabilities

� (xt; �t; zit) are identi�ed at all points (xt; �t; zit) in their support.
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6.1.2 Continuity of the Identi�ed Features

Theorem 4 required only one common choice probability. If there is more than one, each

provides additional information about the distribution of vitjxt; zit; �t. In particular, we can

identify a function � (�; q) in (17) for each common choice probability q, each then determining

the qth quantile of �� (xt; �t; !it) jxt; �t. Since vit = zit + � (xt; �t; !it), this determines the

corresponding quantiles of the distribution of vit conditional on (xt; �t; zit). In the limit�

i.e., with su¢ cient variation in zit to make every q 2 (0; 1) a common choice probability� all

quantiles of vit conditional on (xt; �t; zit) are identi�ed, and we are back to full identi�cation

as in Theorem 2. This illustrates the notion of continuity of the identi�ed features described

above. It also shows that we require the tails of fzijtgj2J only to identify the tails of the

conditional distributions of utilities.

6.2 Multinomial Choice

For multinomial choice we will require a di¤erent representation of preferences:30

vijt = �j
�
zijt + �jt; xjt; !it

�
8i; j = 1; : : : ; J (19)

where each �j is strictly increasing in its �rst argument. This is similar to (13) in requiring

that zijt and �jt be perfectly substitutable. Here we require all consumers to have the same

marginal rate of substitution (normalized to one) between zijt and �jt, but allow the index

zijt + �jt to enter the utility function in a fully nonparametric way. This restriction �xes

the scale of each �jt but not the locations. So we set E
�
�jt
�
= 0 8j, leaving the marginal

distributions of each �jt otherwise unrestricted.

A key implication of (19) is that choice probabilities depend on the sums

�ijt � zijt + �jt

30Here we focus on identi�cation of demand. Continuity of the identi�ed features can be obtained as in
the binary model if we have the separable structure zijt + �jt + �j (xjt; !it).
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rather than on zijt and �jt separately. Thus, letting �t = (�i1t; : : : ; �iJt) and xt = (x1t; : : : ; xJt),

we can write the structural choice probabilities as

�j (�t;xt) :

For the multinomial choice model our results rely on invertibility of the mapping from

the latent indexes �t to the market shares implied by utility maximization. To show that

this holds we require a weak notion of the choice set J being a set of substitute goods that

�belong�in the same market. To state this �connected substitutes�condition, we �rst need

a de�nition.

De�nition 1. Product k substitutes to product ` at (�t; xt) if �` (�t; xt) is strictly decreasing

in �ikt.31

This de�nition provides a natural directional notion of one product�s being a substitute

for another. For example, if a reduction in �kt leads (all else equal) to a larger market share

for product `, we say that product k substitutes to product `.

Given any values of (�t; xt), let � (J ) denote the (J + 1) � (J + 1) matrix of zeros and

ones, with the (r; c) element equal to one if product (r� 1) substitutes to product (c� 1) at

(�t; xt). We will assume that the products j 2 J all belong in the same choice set in the

following sense.

Assumption 9 (�Connected Substitutes�). At any (�t;xt) such that (�1 (�t;xt) ; : : : ; �J (�t;xt))

is on the interior of 4J , the directed graph of � (J ) is strongly connected.

The directed graph of � (J ) has nodes (vertices) representing each product and an edge

from product k to product ` whenever product k substitutes to product `.32 The �connected

substitutes�condition requires that this graph include a directed path from every product

31Because we introduce this de�nition after normalizing the utility of the outside good to zero, we de�ne
an increase in �i0t to mean equal reductions in �ijt for all j > 0. Thus product 0 substitutes to product j
if the probability good j is chosen goes up whenever �ikt increases by an equal amount for all k > 0:
32In standard models � (J ) will typically be symmetric, so the edges of its directed graph will be bi-

directional.
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j 2 J to every other product j0 2 J . Of course, the path between j and j0 may be through

other nodes. Thus, for example, even a market with two independent goods satis�es this

condition if both substitute to and from the outside good. On the other hand, if the

connected substitutes condition fails, then there is some strict subset of J that substitute

only among themselves for some values of (�t;xt). In Berry and Haile (2009a) we provide

additional discussion of this condition and show that it is satis�ed in standard models. There

we also point out that this condition is equivalent to a condition used by Gandhi (2008) to

show invertibility of market shares. Using his argument, we can show the following result for

our framework, generalizing well-known invertibility results for linear discrete choice models

in Hotz and Miller (1993), Berry (1994) and Berry and Pakes (2007).33

Lemma 1. Consider any choice probability vector p = (p1; : : : ; pJ)
0 on the interior of 4J .

Under Assumption 9, for any xt there is at most one vector � 2 RJ such that �j (�; xt) = pj

for all j:

Proof. See Berry and Haile (2009a), Lemma 1. �

Finally, we generalize the previous common choice probability assumption in the natural

way.

Assumption 10. There exists q = (q0; q1; : : : ; qJ) on the interior of 4J such that for each

market t there is a vector zqt = (zq1t; : : : ; z
q
1t) 2supp(zi1t; : : : ; ziJtt) such that for all j; qj =

Pr(yit = j jx1t; : : : ; xJt; zi1t; : : : ; ziJtt)zit=zqt :

Assumption 10 requires the vector (zi1t; : : : ; ziJt) have su¢ cient support to drive the

choice probability vector to q in each market. The value of q satisfying this condition need

not be known a priori, since this is observable. Indeed, the existence of the common choice

33Berry (1994) and Berry and Pakes (2007) show existence and uniqueness of an inverse choice probability
in models with an additive structure. Gandhi (2008) relaxes the separability requirement. Our lemma
addresses only uniqueness conditional on existence. Under the maintained assumption that the model is
correctly speci�ed, any observed choice probability vector must have a vector (�1; : : : ; �J) that rationalizes it.
Gandhi (2008) provides additional conditions guaranteeing that an inverse exists for every choice probability
vector in 4J . Our uniqueness result di¤ers from his only slightly, mainly in recognizing that the argument
applies to a somewhat more general model of preferences.
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probability is directly testable. This condition still requires su¢ ciently rich J-dimensional

micro data; however, it is considerably weaker than the full support condition, which essen-

tially required all points in 4J to be common choice probabilities.

With the connected substitutes and common choice probability assumptions, we can show

identi�cation of demand using the instrumental variables conditions of Newey and Powell

(2003).

Theorem 5. In the multinomial choice model with preferences given by (19), suppose As-

sumptions 6, 7, 9, and 10 hold. Then each �jt is identi�ed and the structural choice proba-

bilities �j
�
fxjt; �jt; zijtgj2J

�
are identi�ed at all fxjt; �jt; zijtgj2J in their support.

Proof. Fix xt = (x1t; : : : ; xJt) and let q be the common choice probability vector. By

Assumption 10 and Lemma 1, there is a unique vector � (xt; q) = (�1 (xt; q) :; : : : ; �J (xt; q))

such that

�j (� (xt; q) ; xt) = qj 8j:

Further, by the de�nitions of zqt and �j (xt; q), �j (xt; q) = �jt + zqjt, so that

zqjt = �j (xt; q)� �jt 8j; t: (20)

Under Assumptions 6 and 7, the equations (20) identify the functions �j (�; q) and each �jt
for all j and t, using the identi�cation result in Newey and Powell (2003) for nonparametric

regression with instrumental variables. As demonstrated above, knowledge of all �jt identi�es

the structural choice probability functions. �

Note that, in contrast to the results in section 5, here the entire xt vector appears as an

argument of the �regression�function �j in (20). One implication is that characteristics of

competing products are not available as instruments.
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7 Testable Restrictions

The models we have considered incorporate several important maintained assumptions.

These include the existence of a vertical consumer-choice observable zijt, the restriction

to a scalar vertical market/choice-speci�c unobservable �jt, and the invariance of �jt to zit.
34

Here we show that these assumptions imply testable restrictions. We begin with the exis-

tence of the vertical consumer-choice observable zijt.

Remark 1. Suppose preferences can be characterized by (5), or by (19) with � strictly

increasing in its �rst argument. Then Pr (yit = jjt; fziktgk2J ) is increasing in zijt:

This is immediate from the requirement that the utility from good j be strictly increasing

in zijt. Furthermore, it is clear that the restriction need not hold if utilities sometimes are

decreasing in zijt.

The assumption of a scalar vertical unobservable also leads to testable implications. For

simplicity we show this here for binary choice. To state the result it will be useful to recall

Theorem 4 and let �t (z
q
t ; q; xt) denote the value of �t identi�ed from the common choice

probability q in market t.

Remark 2. In the binary choice model with preferences given by (5), suppose Assumptions

4, 12, and 8 hold. Then �t (z
q
t ; q; xt) must be strictly decreasing in z

q
t across markets.

This follows from the fact that vit is strictly increasing in both zit and �t under the as-

sumptions of the model. Thus, the value zqt required to attain the common choice probability

q in market t will be higher when the unobservable �t is lower. The following example shows

one way that a model with a horizontal rather than a vertical unobservable characteristic

can lead to a violation of this restriction.

Example 2. Suppose � (xt; �t; �it) = ��it�t, with �it �N(0; 1). Take q > 1=2 and consider

the set of markets in which �t (z
q
t ; q; xt) > 0. Recall that each z

q
t is observable and is de�ned

34Recall that zijt and zit refer to the original z
(1)
ijt and z

(1)
it .
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such that Pr (�it�t < zqt ) = q. Letting � denote the standard normal CDF, this requires

�

�
zqt
�t

�
= q 8t: (21)

Therefore, by construction, z
q
t

�t
will take the same value in every market. Since each zqt must

also be positive when q > 1=2, this requires a strictly positive correspondence between zqt and

�t across markets, violating the restriction from Theorem 2.

The restriction in Remark 2 follows from the requirement of a vertical �jt. Additional

testable implications follow from the restriction to a scalar choice/market-speci�c unobserv-

able �jt that is invariant to zit: the values of �jt inferred from any any two common choice

probabilities must agree.

Remark 3. In the binary choice model with preferences given by (5), suppose Assumptions

4 and 12 hold. In addition, suppose q and q0 are two common choice probabilities. Then

�t (z
q
t ; q; xt) = �t

�
zq

0

t ; q
0; xt

�
for all t.

Proof. Under the assumptions of the model, �t (z
q
t ; q; xt) = �t

�
zq

0

t ; q
0; xt

�
= �t. �

The following example demonstrates that this restriction can fail if the assumption of a

scalar market/choice-speci�c unobservable is violated.

Example 3. Consider a model with two vertical unobservables, �1t and �
2
t . Let

�
�
xt; �

1
t ; �

2
t ; !it

�
=

8<: �it
�
�1t + �2t

�
�it < 1=2

�it
�
�1t + 2�

2
t

�
�it � 1=2

with �it �u[0; 1]. Let �1t and �2t be independent, each uniform on (0; 1). By de�nition, when

zit = zqt only consumers with �it > 1 � q choose the inside good. Thus, the value of zqt is

determined by the preferences of the consumer with �it = 1 � q. Now consider the �t (q)

inferred under the incorrect assumption of a scalar unobservable. From the observations

above, when q > 1=2 we have �t (q) = F�1+�2
�
�1t + �2t

�
where F�1+�2 is the CDF of the sum

of two independent uniform random variables. Thus, if for market t,
�
�1t + �2t

�
falls at
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the � quantile in the cross-section of markets, �t (q) will equal �. Similarly, for q0 < 1=2,

�t (q
0) = F�1

�1+2�2

�
�1t + 2�

2
t

�
; i.e., if �1t + 2�

2
t fall at the �

0 quantile of this sum in the cross

section of markets, �t (q
0) will be �0. In general, � 6= �0:

8 Aggregate Data with Market Groups

In many applications one is forced to work without micro data linking choices to individual

characteristics, relying instead on market level choice probabilities (market shares). In Berry

and Haile (2009a) we explore identi�cation in such settings. However, in some environments

without individual level data the results in the present paper can still be reinterpreted to

apply.

Without micro data, the observables are f(yit; xjt)gj2J . Partition xjt into
�
x
(i)
jt ; x

(ii)
jt

�
and suppose preferences can be represented by conditional indirect utilities of the form

vijt = x
(i)
jt + �(x

(ii)
jt ; �jt; !it): (22)

Assume further that the set of markets can be partitioned into market groups � such that

for all t 2 �,
�
x
(ii)
jt ; �jt

�
=
�
x
(ii)
j� ; �j�

�
. One natural example of such an environment is that

of a national industry (e.g., the U.S. automobile industry) in which the physical products

themselves are identical across regions of the nation, but regions may di¤er in average income,

product prices (e.g., due to f.o.b. pricing), prices of complementary goods (e.g., gasoline),

availability of substitute goods (e.g., public transportation), etc.

For simplicity, we illustrate the argument only for the case of full identi�cation with

exogenous product characteristics. However, all the identi�cation results obtained above

have analogs in this setting.

Assumption 11. supp (x(i)1t ; : : : ; x
(i)
Jt )j(x

(ii)
1t ; : : : ; x

(ii)
Jt ) = RJ 8t:

Here we require su¢ cient variation in a special product characteristic rather than a special

consumer-product characteristic (cf. Assumption 3). Further, the notion of �market group�

31



now replaces the notion of �market�in our original framework. Within each market group,

x
(i)
jt can now play the role of the �micro data.�

With this reinterpretation, the setup is isomorphic to that in section 5, and the prior

arguments apply directly. Variation in x(i)jt across market groups at the limit x
(i)
j0t ! �18j0 6=

j identi�es the distribution of �i
�
x
(ii)
j� ; �j�

�
exactly as in section 5. Letting �

�
x
(ii)
j� ; �j�

�
=

E
h
�i

�
x
(ii)
j� ; �j�

�
jx(ii)j� ; �j�

i
, identi�cation of the function �

�
x
(ii)
j� ; �j�

�
(and therefore each

�j�) follows exactly as in the previous sections. With each �j� and the distribution of

�i

�
x
(ii)
j� ; �j�

�
known, the conditional joint distribution of fvijtgj2J

����J ;�(xjt; �jt)	j2J� is
uniquely determined at any

�
J ;
�
(xjt; �jt)

	
j2J

�
in their support.

Because the setup here is isomorphic to that for the original micro data setting, extensions

to the case of endogenous characteristics (elements of x(ii)jt ), a separable error structure, and

identi�cation of demand with limited support follow directly as well.35

9 Conclusion

We have studied nonparametric identi�cation of models of multinomial choice demand, al-

lowing for market/choice-speci�c unobservables, endogenous choice characteristics, and ar-

bitrary random heterogeneity across consumers in tastes for products and/or characteristics.

We obtained full identi�cation using the same kind of large support assumption used to

show identi�cation in even the simplest semiparametric discrete choice models, and the

same instrumental variables conditions required for identi�cation of nonparametric regres-

35An interesting but unresolved question is what can be learned in a single market with a large choice
set, i.e., with J ! 1 (see Berry, Linton, and Pakes (2004)). Suppose that xjt does not include product
dummies but preferences can still be represented by (5), imposing a symmetry condition that the same
function � apply to all products. Fixing a market with a �nite choice set, the market share of the outside
good is

p0 = Pr
�
z
(1)
i1 + � (x1; �1; !it) < 0; : : : ; z

(1)
iJ + � (xJ ; �J ; !it) < 0

�
:

For any �nite J , a large support condition would give identi�cation of the joint distribution of
(� (x1; �1; !it) ; : : : ; � (xJ ; �J ; !it)), so that each �j � med �

�
xj ; �j ; !it

�
jxj ; �j could be considered known.

As J !1 one would then obtain an arbitrarily good approximation of the joint distribution of (�j ; xj). If
this joint distribution were instead known, the fact that �j = D

�
xj ; �j

�
would allow identi�cation of D from

the results of Chernozhukov and Hansen (2005). Identi�cation of demand and full identi�cation would then
follow.
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sion models. Further, the results rely on the large support only for identi�cation of tail

probabilities, whereas identi�cation of demand holds under a signi�cantly weaker support

condition. This is particularly encouraging given the su¢ ciency of the demand structure

for many questions motivating estimation of discrete choice demand models.

While one goal of our work has been to obtain results with few restrictions on preferences,

there are some costs to a choice not to place more structure on the form of utility functions.

One is that some types of counterfactuals will not be identi�able. An example is demand

for a hypothetical product with characteristics outside their support in the data generating

process. This kind of limitation is not special to our setting, but inherent to empirical analy-

sis: extrapolation and interpolation typically require some parametric structure. Of course,

one may have more con�dence in extrapolations when identi�cation holds nonparametrically

within the support of the observables.

A second limitation concerns welfare. Our model (5) incorporates quasilinear preferences.

This provides a speci�cation of cardinal utility that can be used to characterize changes in

utilitarian social welfare (in aggregate, or across subpopulations de�ned by observables)36

or changes in welfare under any social welfare function that is anonymous conditional on

observables. However, our model lacks the structure required for welfare analysis that

depends on the distribution of changes in individual utilities. Characterization of Pareto

improvements, for example, would require tracking each individual consumer�s position in

the distribution of utilities before a policy change to that after. Our model speci�es a dis-

tribution of conditional indirect utilities, not a distribution of parameters whose realizations

can be associated with individual consumers. This points out a limitation of nonparametric

random utility models as a theoretical foundation for some kinds of welfare analysis: such

welfare calculations require additional a priori structure.

36The quasilinearity generally will not be in income, but one can describe changes in aggregate compen-
sating/equivalent variation in units of the normalized marginal utility for z(1)ijt . Income (and/or price) will
typically enter preferences through the function � in (5). The potential nonlinearity of �, combined with our
inability to track individuals�positions in the distributions of normalized utilities as the choice environment
varies, prevents characterization of aggregate compensating variation or equivalent variation in income units.
One could address this limitation with an assumption that vijt is linear in price. Further, in Berry and
Haile (2009a) we provide conditions under which quasilinearity in price can replace quasilinearity in z(1)ijt .
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An example of a model with su¢ cient structure to address all types of welfare ques-

tions (and to extrapolate/interpolate) is the linear random coe¢ cients random utility model

(Example 1)

vijt = xjt�it + zijt
 + �jt + �ijt: (23)

This generates a special case of our model, so we have provided conditions for identi�cation

of
�
�jt
	
j2J and the joint distribution of fvijtgj2J j

�
xjt; �jt; zijt

	
j2J . However, it should

be clear that the joint distribution of (�it; �i1t; : : : ; �iJt) is not identi�ed without additional

restrictions.37 Moving from our full identi�cation results to identi�cation of the distribution

of parameters in (23) is equivalent to the standard problem of identi�cation of a linear random

coe¢ cients regression model. Beran and Hall (1992) and Beran, Feuerverger, and Hall

(1996) have discussed su¢ cient conditions, which involve regularity and support requirements

beyond those required for our results. Whether pursuing this line of argument enables

any relaxation of existing identi�cation results for linear random coe¢ cients models (e.g.,

Ichimura and Thompson (1998), Briesch, Chintagunta, and Matzkin (2005), Gautier and

Kitamura (2007)) is an open question.

Finally, while a novel aspect of our work is its examination of identi�cation without

large support conditions, even our weaker �common choice probability�condition requires

J-dimensional micro data. One can easily imagine applications where this will not be

available. In the extreme, when no micro data are available, one is in the case of market-

level data, and we explore that setting in Berry and Haile (2009a). Whether the su¢ cient

conditions for identi�cation there could be relaxed in intermediate cases� where there is

some micro data, but of a lower dimension than that of the choice set� is an interesting

question for future work.

37For any true model with the form (23), an observationally equivalent model is obtained by set-
ting �it = 
 = 0 and letting the joint distribution of (�i1t; : : : ; �iJt) jfxjt; zijt; �jtgj2J equal that of
(vi1t � �1t; : : : ; viJt � �Jt) jfxjt; zijt; �jtgj2J .
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Appendix
Here we state Assumption 12, used in Theorem 4. From equation (17) we have

zqt = � (xt; �t; q)

where xt denotes the endogenous characteristic of choice 1. Let fzq (�jxt;wt) denote the

density of zqt conditional on xt and the instruments wt. Fix some small positive constants

�� ; �f > 0. Fix q 2 (0; 1). For each � 2 (0; 1), de�ne L (�) to be the convex hull of functions

m (�; �) that satisfy

(a) for all wt, Pr (z
q
t � m (xt; �) jwt) 2 [� � �� ; � + �� ]; and

(b) for all x in the support of xt,m (x; �) 2 s(x) � f� : f� (�jx;w) � �f 8w with fx (xjw) > 0g.

Assumption 12. For all � 2 (0; 1), (i) for any bounded function B (x; �) = m (x; �) �

� (x; � ; q) with m (�; �) 2 L (�) and "t � zqt � � (xt; � ; q), E [B (xt; �) (xt;wt; �) jwt] = 0 a.s.

only if B (xt; �) = 0 a.s., for  (x;w,�) =
R 1
0
f" (�B (x; �) jx;w) d�.

(iii) the density f" (ejx;w) of �t is continuous and bounded in e over R a.s.;

(iv) � (xt; � ; q) 2 s (xt) for all xt.
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