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Abstract

We consider whether survey respondents’probability distributions, reported as histograms,

provide reliable and coherent point predictions, when viewed through the lens of a Bayesian

learning model, and whether they are well calibrated more generally. We argue that a role

remains for eliciting directly-reported point predictions in surveys of professional forecasters.
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1 Introduction

Survey respondents’ subjective probability distributions of inflation and output growth are not

always consistent with the corresponding point predictions, and when they differ it tends to be

in the direction of the point forecasts presenting a more favourable outlook. For the US Survey

of Professional Forecasters (SPF), Engelberg, Manski and Williams (2009) and Clements (2009,

2010) examine the relationship between the subjective probability distributions of the individual

respondents, which are reported as histograms, and the respondents’point forecasts, for both real

output growth and inflation. They conclude that for the majority of cases the two match, but that

when they are inconsistent the point forecasts of output growth and inflation tend to suggests a

rosier outlook: the output growth and inflation point forecasts are higher and lower, respectively,

than measures of central tendency derived from the subjective probability distributions reported

as histogram forecasts.1

Engelberg et al. (2009, p. 40) draw the conclusion that:

‘...point predictions may have a systematic, favorable bias. ...agencies who commission forecasts

should not ask for point predictions. Instead, they should elicit probabilistic forecasts....’

However, Clements (2010) suggests that the point predictions are more accurate than mea-

sures of central tendency derived from the probability distributions, when judged by conventional

squared-error loss, casting doubt on the recommendation that surveys need only elicit information

on respondents’probability distributions even when ‘most likely’outcomes are of interest.

The first conjecture we address in this paper is that professional forecasters taken as a whole

are less successful in communicating their best point prediction when they are required to produce

a probability distribution or histogram forecast. We suppose they do not use fully-integrated

forecasting systems that produce forecast distributions and point forecasts in a mutually consistent

fashion, otherwise we ought not observe the inconsistencies documented by Engelberg et al. (2009)

and Clements (2009, 2010).

Evidence from the direct questioning of survey participants about the forecasting methods or

tools that they use suggests that participants ‘use a variety of procedures to predict the major

expenditure components of GNP, combine these predictions in nominal and real terms, and check

and adjust the resulting forecasts for consistency with logic, theory, and the currently available

1García and Manzanares (2007) find that the growth and inflation forecasts of the European Central Bank’s Survey
of Professional Forecasters follow a similar pattern, and Boero, Smith and Wallis (2008b, 2008a) find that the same
is generally true of the Bank of England Survey of External Forecasters, especially for the output growth forecasts.
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information’(as summarised by Zarnowitz and Braun (1993, p. 23)). Zarnowitz and Braun go on

to state that forecasters rarely rely on a single forecasting method or model, and usually draw on

a range of sources to inform their forecasts (including econometric models, leading indicators, and

anticipations surveys) as well as exercising their own judgment. Batchelor and Dua (1991) found

that ‘judgment’was cited as being the single most important forecasting technique by 51% of the

Blue Chip Panel, with 28% reporting econometric modelling, and 21% time series analysis.

Given the use of different methods and the vagaries of the application of judgment at different

levels, it is perhaps not surprising that the different ways of expressing forecasts of the same

object do not always match. And that forecasters may be better able (or have more incentive)

to communicate their ‘best’or ‘most likely’ forecasts as single point predictions, rather than as

implied central tendencies of histograms.2

Our second conjecture is that the fault may lie with the econometrician. When probability

distributions are elicited, it is typically in the form of a histogram. Generally this provides insuf-

ficient information for the purpose at hand, such as calculating moments and probability integral

transforms. We consider whether the ways of estimating probability distributions from histograms

used in the literature may fail to do justice to the underlying subjective distributions. We propose a

way of doing so based on an assessment of those histograms which provide near error-free estimates

for a probability-integral-transform approach.

The evidence we provide in support of the first conjecture is based on fitting the Bayesian

learning model (BLM) jointly to each individual respondent’s histogram mean forecasts (derived

from the respondents’ histograms using the approach favoured by Engelberg et al. (2009)) and

their point predictions. We then develop a formal test of whether the respondents update both

types of forecast in the same way as the forecast horizon shortens. This is our first methodological

contribution. The BLM offers a simple description of how forecasts should be updated as new

information becomes available. If the estimates of the histogram means constitute a coherent set of

forecasts, we would expect that more weight would be given to new information when the forecast

horizon is short, relative to when it is long. At long horizons the respondents’beliefs about the

2The literature on the psychology of judgement under uncertainty recognises that there may be differences. For
example, O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley and Rakow (2006, ch. 3) provides a
concise review of Kahneman and Tversky’s ‘heuristics and biases’research programme, which suggest that probability
assessments are made using limited information and ‘quick-and-easy’shortcuts. Further, their review of Hammond’s
cognitive continuum theory (O’Hagan et al. (2006, p.56)) suggest that task characteristics may matter, and specifically
that intuitive as opposed to analytical thinking may be encouraged when ‘minimal feedback is obtained, and high
accuracy is not expected’. The individuals’histograms are less amenable to accuracy assessment, and comparison
one to another, than the point forecasts.
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expected long-run mean growth rate should hold sway, with current developments becoming more

influential as the horizon shortens. The estimates of the BLM key parameters allow a simple

assessment of whether the forecasts conform to these fairly minimal requirements. Manzan (2011)

has recently estimated such a model for the point predictions, and found that these properties hold,

albeit that there is heterogeneity in the model estimates across individuals. When we jointly model

an individual’s histogram means and point predictions we find that the evolution of the means of the

histograms are not well explained by the BLM, contrary to the findings for the point predictions.

Secondly, we assess whether the histograms are accurate in the sense of being ‘correctly calibrated’,

and so go beyond an assessment of the first-moment properties.

With regard to the second conjecture, we are aware that estimates of the means of the histograms

will depend on the distributional assumptions we make, as will our assessments of whether they are

correctly calibrated. Hence we undertake sensitivity exercises - we present results for a number of

distributional assumptions to assess whether the findings are sensitive to the assumptions we make.

By and large, our qualitative findings are not sensitive to the distributional assumptions. It turns

out that our proposed method of determining whether the underlying subjective distributions are

‘well calibrated’, in the sense that the forecast probabilities are close to the actual probabilities, is

not definitive because of certain characteristics of the sample of forecasts and outturns, as explained

below. However, our novel way of testing the the underlying subjective distributions directly (that

is, free of any additional assumptions about the distribution of probability mass within a histogram

interval) might prove useful in other applications.

Although doubts remain as to how well we approximate the underlying subjective distributions,

our general conclusion is that the use of best-practice methods to calculate continuous distributions

from histograms results in poorly calibrated probability distributions and gives estimates of means

that turn out to be relatively inaccurate compared to point predictions. This suggests there is a

case for eliciting point predictions irrespective of whether the underlying subjective distributions,

or the distributional assumptions made by the econometrician, are at fault.

The remainder of the paper is organised as follows. Section 2 describes the SPF forecast data, the

calculation of means and the fitting of continuous distributions to the histograms. Section 3 outlines

the Bayesian learning model, which will be used to contrast the means of the individuals’probability

distributions and their point predictions. Section 4 provides the analysis of whether the individual

probability distributions are well calibrated, using the probability integral transform approach, and

section 5 considers whether these findings are affected by the reported histograms only partially
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revealing the underlying subjective probability distributions. Section 6 offers some concluding

remarks. Finally, an appendix outlines the calculation of point predictions and histogram means for

a single respondent’s returns to two adjacent surveys. These forecasts were not selected randomly,

but were chosen as an example of the way in which the two types of forecasts are clearly not

generated as part of an integrated forecasting system. These forecasts are not meant in any sense

to be typical: our case against the use of histogram forecasts for point prediction rests on the

empirical findings reported in sections 3 and 4, not on this anecdotal evidence. These detailed

calculations are meant to better illuminate the nature of the calculations that underpin the results

reported in these sections. However it does serve to show that not all professional forecasters are

as careful in their deliberations as is sometimes assumed.3

2 Description of data and the calculation of means and parametric

distributions for the SPF histogram forecasts

We choose the SPF as our source of survey expectations because it contains information on respon-

dents’probability distributions for inflation and output growth as well as their point forecasts for

these key macro-aggregates, and spans a reasonably long historical period. It is a quarterly survey

of professional forecasters of the US economy. The SPF began as the NBER-ASA survey in 1968:4

and runs to the present day: see e.g., Croushore (1993). The last quarter we use is for the fourth

quarter of 2010, giving 169 quarterly surveys of expectations data spanning the last 40 years.4

The histograms are of the percentage change in the survey year relative to the previous year.

We calculate matching year-on-year point forecasts as follows. The surveys provide point forecasts

of the level of the variable in the current (survey quarter) and each of the next four quarters. We

use the forecasts of the current and subsequent quarters, along with the actual values from the

vintage of data available at that time to calculate the forecast of annual inflation or output growth

3 It is sometimes argued that surveys of professional forecasters, as distinct from surveys of ‘lay people’, are more
likely to provide meaningful, informed responses, as professional forecasters are more knowledgeable and likely to
respond to incentives (e.g., reputations).to report accurately.

4This was downloaded on 15th September 2011, and thus includes the corrections released on August 12,
2011. Further details are available at http://www.philadelphiafed.org/research-and-data/real-time-center/survey-
of-professional-forecasters/
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for the current year over the previous year.5 ,6 So for Q1 surveys, we sum the forecast of the current

quarter and the forecasts of the next three quarters,7 and divide by the data for the previous year’s

four quarters. For Q2 surveys the approach is the same except the value for the preceding quarter

(Q1) is now data, and similarly for surveys made in the third and fourth quarters of the year. So

we have forecasts of annual inflation made in Q1 through to Q4 of that year.

We analyse the mean forecasts of output growth and inflation implied by the histograms, and for

section 4 we will also require continuous distribution approximations to the histograms. To make

matters concrete, the first two columns of table 1 illustrate a typical SPF histogram forecast, where

the respondent has assigned probabilities to the given intervals. The open-ended intervals contain

the probabilities attached to inflation (say) being less than −2, and greater than 6, respectively

(in our example these happen to both be zero). These intervals are closed by replacing ‘< −2’

and ‘6+’by ‘−3 to −2.1’and ‘6 to 6.9’. Following Engelberg et al. (2009), we assume that the

histogram provides the cdf points ‘x’(recorded in the third column of the table) with the associated

probabilities in the fourth column of the table. We maintain these assumptions throughout - when

we fit parametric distributions to the histograms, and when we calculate means directly from the

histograms.

For the direct calculation of means from the histograms, we obtain the same result whether

we assume that the probability mass is uniform within an interval or all at the interval midpoint.

Alternatively, we can first fit a distribution to the histograms: Giordani and Söderlind (2003, p.

1044) fit normal distributions to the histograms8, and the generalized beta distribution is also

a popular choice (see, e.g., O’Hagan et al. (2006), and the application to the SPF histograms by

Engelberg et al. (2009)). If the distribution underlying the histogram is approximately ‘bell-shaped’

5We use the quarterly Real Time Data Set for Macroeconomists (RTDSM) maintained by the Federal Reserve
Bank of Philadelphia: see Croushore and Stark (2001). This consists of a data set for each quarter that contains
only those data that would have been available at a given reference date: subsequent revisions, base-year and other
definitional changes that occurred after the reference date are omitted. Hence we can re-create the annual growth
rate forecasts that the respondents would have made had they been asked to report these.

6Both the definition and base year of output and the price deflator have changed over time. The vintages of data
in the RTDSM match the indices for which probability assessments and point forecasts were requested in the SPF,
so that these changes are inconsequential for our use of the survey data. The only problem is that prior to 1981:3,
the output growth histogram question related to nominal GNP. Hence for output growth the sample of forecasts we
study is restricted to the surveys from 1981:3 onwards.

7As of 1981:3, forecasts of the levels of the variables for the current year were recorded. However, summing the
quarterly forecasts allows us to use data back to 1968:4 for inflation.

8Fitting normal approximations requires two or more intervals with non-zero probabilities attached. This provides
a minimum of three points on the gaussian cdf, which uniquely identify the mean and variance. For single interval
histograms (i.e., a probability of 1 assigned to one of the intervals) we take the mean to be the mid-point of that
interval.
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then the uniformity assumption will tend to overstate the dispersion of the distribution. Moreover

if there is a large difference in the probability mass attached to adjacent intervals, then it might

be desirable to attach higher probabilities to points near the boundary with the high probability

interval, which will be facilitated by fitting a parametric distribution. Engelberg et al. (2009) argue

in favour of the unimodal generalized beta distribution over the normal distribution as a way of

allowing for asymmetry in the individual’s assessments of risks. We follow their approach, and fit

unimodal generalized beta distributions when non-zero probabilities are assigned to three or more

histogram intervals, and also follow their recommendations for histograms with a single interval or

two non-zero intervals (see p.37-8 for details of the fitting methods). The estimates of the means

are then calculated from the parameters of the fitted distributions.

3 Model of Bayesian learning and differential interpretation of

information

Our learning model is based on Kandel and Zilberfarb (1999), as adapted by Manzan (2011). We let

Fit,h+1 denote the forecast by individual i at period t−h− 1 of Yt. In terms of the standard BLM,

this forecast is assumed to correspond to the mean of a gaussian prior distribution, with variance

a−1it,h+1. At time t − h, all individuals receive a common public signal, Lth, about Yt, and based

on the signal and their prior they report a new forecast, their posterior forecast. The Kandel and

Zilberfarb (1999) model allows that individuals may interpret the signal differently. Allowing that

individuals ‘have differing beliefs about the distribution of signals’- the differential-interpretation

hypothesis means that some believe the signal mean is above the mean of the distribution of Yt,

while others will interpret the signal as an under-estimate. This is modelled by assuming that

individual i’s best guess of Yt, based on the signal alone, is given by Yith = Lth − εith, where

εith ∼ N
(
µith, b

−1
ith

)
. When µith > 0, the signal is interpreted as likely to over-estimate Yt, and

when µith < 0 the signal is expected to under-estimate the outcome.

By Bayes rule and the assumed normality of the prior and the likelihood, the optimal posterior

forecast is:

Fith = λithFit,h+1 + (1− λith) (Lth − µith) , (1)

where λith = ait,h+1 (ait,h+1 + bith)−1, the ratio of the precision of the prior to the precision of the
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posterior forecast. These are the optimal weights to attach to the prior and the signal. Given two

forecasts Fit,h+1 and Fith of the same target Yt, we can interpret Fit,h+1 as the prior and Fith as the

posterior. Equation (1) is typically augmented with a reporting error vith, where vith ∼ N
(
0, σ2v

)
,

so that:

Fith = λithFit,h+1 + (1− λith) (Lth − µith) + vith. (2)

Kandel and Zilberfarb (1999) construct a test of the differential-interpretation hypothesis based on

the cross-sectional variances of the prior and posterior forecasts. A number of recent papers follow

Kandel and Zilberfarb (1999) in considering the implications of the hypothesis for the cross-sectional

variance of survey point forecasts, or disagreement.9

At this point, we follow Manzan (2011). Rather than considering the cross-sectional dispersion,

we fit the BLM given by (2) directly to the individual-level forecast data. This allows us to estimate

the behavioural parameters of (2) on the observed (forecast) data once we have a measure of Lth.

The key parameters are allowed to differ by forecast horizon h, and individual i. One would expect

the weights given to the signal and prior to vary with h, for the reasons given by Lahiri and Sheng

(2008, 2010) and Patton and Timmermann (2010), inter alia. At long horizons, prior beliefs about

the long-run means of the variables under study are likely to dominate. Assuming stationarity (of

the output growth rate, and the rate of inflation), the current state of the economy will affect the

short-term outlook but will be far less informative about longer-term developments. Hence greater

weight would be expected to be placed on the signal as the horizon shortens. Manzan (2011) tests

homogeneity across individuals in terms of (2) as the null that: λih = λh and µih = µh. Manzan

fits the model to the SPF point predictions, and finds evidence against the null. Consequently,

we allow as part of our maintained model that the weights and interpretation parameters are both

horizon and respondent specific.

Our aim is to assess how well the BLM explains the histogram mean data. There are two aspects

to this. Firstly, we informally compare the BLM parameter estimates for the histogram mean data

with the estimates for the point prediction. We do this for those respondents who made a suffi cient

number of forecasts of both types. Secondly, we test whether the BLM parameters are the same

9Lahiri and Sheng (2008, 2010) use a Bayesian learning model to investigate the relative importance of the different
factors contributing to disagreement as the forecast horizon changes, in a fixed-event forecasting environment. Patton
and Timmermann (2010) also estimate a model of cross-sectional dispersion which allows agents to receive different
signals about the unknown state of the economy, and to have different priors about the long-run mean values of the
two variables they consider, inflation and output growth. Heterogeneity in forecasters’information sets is found to be
relatively unimportant in explaining cross-section dispersion, while heterogeneity in priors plays an important role.
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across the two types of forecast for each respondent. In both cases we fit the model simultaneously

to the point forecast and histogram mean forecasts of each of the survey respondents. We generalise

our notation such that a superscript (1) denotes a point forecast, or a parameter related to the point

forecast model, and a (2) a histogram mean. Hence (2) becomes the system of two equations:

R
(1)
ith = δ

(1)
ih + α

(1)
ih

(
Lth − F (1)it,h+1

)
+ v

(1)
ith

R
(2)
ith = δ

(2)
ih + α

(2)
ih

(
Lth − F (2)it,h+1

)
+ v

(2)
ith

where R(j)ith = F
(j)
ith − F

(j)
it,h+1 denotes the revision in the point forecast (j = 1) or in the histogram

mean (j = 2), α(j)ith =
(

1− λ(j)ith
)
is the weight on the signal (less the prior forecast F (j)it,h+1 and

adjusted for the interpretation parameter µ(j)ith). The intercepts are δ
(j)
ih = −µjihα

(j)
ih for j = 1, 2.

The error term incorporates both reporting errors and any non-observed part of the signal not

captured by Lth. We suppose the signal for the histogram mean and for the point forecasts is the

same. Hence Lth is not super-scripted. We have dropped the time t subscripts from the parameters

in order to indicate that these are assumed not to vary over time.

We can write the model more succinctly for all individual respondents i = 1, 2, . . . , Ti as:

Rh = Xhβh + vh (3)

where Rh =
[
R′1h, . . . R

′
Ti,h

]′
, Rih =

(
R
(1)′
ih R

(2)′
ih

)′
, R(j)ih =

(
. . . R

(j)
ith . . .

)′
, j = 1, 2. 10 Hence Rh

contains all the revisions to point forecasts of the first respondent, followed by all the revisions to

their histogram means, and then repeats for the second, and then the third, respondent, and so on,

up to the Ti’th respondent. The explanatory variables are similarly ordered:

Xh =



x11h

x21h
. . .

x1Ti,h

x2Ti,h


10We only use observations t which are common to both R(1)ih and R(2)ih , but generally respondents who provide

point forecasts at t also provide histograms too, and vice versa.
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where x1ih and x
2
ih contain the Tni rows of observations on the RHS variables for individual i’s

point and histogram mean forecasts, respectively. These RHS variables consist of a vector of 1’s,

then either
(
. . . Lth − F (1)it,h+1 . . .

)′
or
(
. . . Lth − F (2)it,h+1 . . .

)′
, and are augmented in each case by

the cross-sectional averages of the dependent variable and the ‘slope’explanatory variable. The

cross-sectional averages are included, as in Manzan (2011), to account for the effects of unobserved

factors that impinge on all respondents in a similar fashion at a given time: this is the common

correlated effects estimator of Pesaran (2006). However, because we have a system of two equations

for each individual, it seems reasonable to also allow for correlated idiosyncratic errors for the two

forecasts made at the same point in time. In terms of the 2Tn vector of disturbances vt, organised

consistently with the data vectors as:

vh =

(
v
(1)
11h, v

(1)
12h, . . . v

(1)
1,Tn1 ,h

; v
(2)
11h, v

(2)
12h, . . . v

(2)
1,Tn1 ,h

; . . . ; v
(1)
Ti1h

, v
(1)
Ti2h

, . . . v
(1)
Ti,TnTi

,h; v
(2)
Ti1h

, v
(2)
Ti2h

, . . . v
(2)
Ti,TnTi

,h

)′

we impose the following structure. We suppose that E
(
v
(j1)
ith v

(j2)
ksh

)
= 0 when either t 6= s or i 6= k.

When t = s and i = k, E
(
v
(j1)
ith v

(j2)
ith

)
= σ

2 (1)
ih when j1 = j2 = 1; = σ

2 (2)
ih when j1 = j2 = 2,

and = σ
(12)
ih when j1 6= j2. We estimate (3) by OLS (for each h), and then use the two-step GLS

estimator:

β̂h =
(
X ′hΩ̂−1Xh

)−1
X ′hΩ̂−1Rh

where Ω = E (vhv
′
h) is replaced by an estimator constructed from the OLS residuals in accordance

with the covariance structure defined above.

We have used Ti to denote the number of forecasters, Tni the number of forecasts by i, so that

Tn =
∑Ti

i=1 Tni is the total number of forecasts of either type. Consequently, the number of rows of

Rh and Xh is 2Tn, and the column dimension of Xh is 8Ti (we are freely estimating 8 parameters

for each of the Ti individuals - 4 for each of their point and histogram mean forecasts).

Our focus is on whether for each individual the weight and interpretation parameters are equal

across the two types of forecasts. This contrasts to Manzan (2011) who tests whether the weight and

interpretation parameters are identical across individuals for the point forecasts. The hypothesis

that each individual forecaster gives the same weight to news when they update their point forecast

as they do when they update their histogram mean forecast, when the forecast horizon is h, is given

by:

10



i) Equal weights on news. H0 : α
(1)
i − α

(2)
i = 0, i = 1, 2, . . . , Ti.11

The hypothesis that each forecaster interprets the news in the same way when they update their

point and histogram mean forecasts is:

ii) Equal interpretation of news. H0 : µ
(1)
i −µ

(2)
i = 0, i = 1, 2, . . . , Ti. In terms of the estimable

parameters, µ(1)i − µ
(2)
i = 0⇒ δ

(1)
i

α
(1)
i

− δ
(2)
i

α
(2)
i

= 0.

The two hypotheses of interest are tested using Wald-type tests. That is, the test statistic takes

the form:

f
(
β̂h

)′ [
R
(
β̂h

)(
X ′hΩ̂Xh

)−1
R
(
β̂h

)′]−1
f
(
β̂h

)
(4)

which is distributed χ2Ti under the null. The test for equal weights is a linear hypothesis, and f (βh)

specialises to f (βh) = Rβh, where R is Ti by 8Ti, with typical ith row given by

Ri. =
(
01×(i−1)8, 0 1 0 0 0 − 1 0 0, 01×(Ti−i)8

)
. (5)

The parameter vector βh is ordered as:

βh =
(
δ
(1)
1 , α

(1)
1 , ∗, ∗, δ(2)1 , α

(2)
1 , ∗, ∗; . . . ; δ(1)Ti , α

(1)
Ti
, ∗, ∗, δ(2)Ti , α

(2)
Ti
, ∗, ∗

)′
where the ‘∗’s denote coeffi cients on the cross-sectional averages of the dependent and the explana-

tory variables. Hence for the ith forecaster, the form of (5) gives Ri.βh = 0 ⇒ α
(1)
i − α

(2)
i = 0, i.e.,

equality of the weights on the signal in the equations for an individual’s point and histogram mean

forecasts.

For the hypothesis of equal interpretation effects,

f (βh) =



δ
(1)
1

α
(1)
1

− δ
(2)
1

α
(2)
1

δ
(1)
2

α
(1)
2

− δ
(2)
2

α
(2)
2

...
δ
(1)
Ti

α
(1)
Ti

−
δ
(2)
Ti

α
(2)
Ti


11We have dropped the h-subscript from the elements of βh for simplicity.
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and R (βh) = ∂f(βh)
∂β′h

has typical row:

∂ [f (βh)i.]

∂β′h
=

[
01×(i−1)8,

(
1

α
(1)
i

−δ(1)1
α
(1) 2
i

0 0
1

α
(2)
i

−δ(2)2
α
(2) 2
i

0 0

)
, 01×(Ti−i)8

]
.

where f (βh)i. denotes the i
th row of f (βh).

3.1 Fitting the Bayesian learning model to the SPF data

We estimate (3) for three values of h, h = 0, 1, 2, where h = 0 defines a forecast of the annual growth

rate made in a fourth-quarter survey. When h = 0, we calculate the vector of forecast revisions Ri0

as the difference between the fourth-quarter and preceding third-quarter survey forecasts; h = 1

uses the third and second-quarter survey forecasts; and h = 2 the second and first-quarter survey

forecasts. We use only those individuals for which we have at least 10 revisions for each type of

forecast at a given horizon, i.e., Tni ≥ 10.

Estimation of (3) requires that we specify the signal at period t − h, Lth. While it seems

reasonable to assume that this is the same for all individuals, in the sense that private information

would be expected to be largely unimportant for macro-aggregates such as output growth and

inflation, there is nevertheless a potentially vast amount of economic and financial data that might

be expected to be informative about the future course of the economy. The solution proposed by

Manzan (2011) is simply to use the latest estimate of Y available at period t − h, on the grounds

that this should be a good predictor of Yt. Given the delay of one quarter in the publication of

national accounts data, the latest data available at t− h will be the advance estimate of Y in the

previous period: we denote this by Y t−h
t−h−1, where the superscript denotes the data vintage and

the sub the observation time period.12 That part of the signal not captured by Lth = Y t−h
t−h−1 is

assumed to affect the revision to the forecast between t − h − 1 and t − h via the error term vith

in (3), and we use the estimator proposed by Pesaran (2006) to allow for correlated effects across

respondents. As a check that our results are not being driven by this choice for the signal, we also

generate the signal as a model-based forecast of the target given data up to and including Y t−h
t−h−1.

12Note that the use of the latest-available data observation as the signal corresponds to a ‘no-change’predictor.
At least for inflation, there is evidence to suggest that such a predictor offers competitive forecasts. Atkeson and
Ohanian (2001) show that a random walk model for US inflation is generally as good as models that use ‘activity
variables’as explanatory variables (as in Phillips Curve forecasting models). See also Stock and Watson (2007, 2010)
for recent assessments. However, a variable such as output growth (first-order autocorrelation coeffi cient of around
0.3) is less persistent, and the no-change forecast may be dominated by a simple autoregression, other things being
equal.
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We use forecasts from autoregressive forecasting models for the quarterly percentage growth rates,

using an estimation period that includes data through t− h− 1 from the t− h data vintage.13

Our coverage of the results begins by plotting the estimates of
{
µ
(1)
ih , µ

(2)
ih , α

(1)
ih , α

(2)
ih

}
obtained

from GLS estimation of (3) for each respondent for h = 0, 1, 2: see figures 1 to 4. The first two

figures are for output growth, and figures 3 to 4 are for inflation. Figures 1 and 3 are for Lth equal

to the model forecast of Yt, and figures 2 and 4 are for Lth = Y t−h
t−h−1. Within each figure, the

left-hand-side panels refer to the weight parameter and the bias parameter for the point forecasts,

those on the right are for the histogram mean forecasts. Within each panel, the estimates for a

given individual for each of the three forecast horizons are joined up.

For output growth, the estimates of the weight parameter for the point forecasts
{
α
(1)
ih

}
indicate

a reduction in dispersion and more weight being placed on the signal as h shortens. Forecasters

regard the signal as being more informative at short horizons. Secondly, the interpretation para-

meter for the point forecasts is for most respondents relatively small, especially at h = 0, when

the estimates µ(1)i0 are tightly clustered about zero. These findings hold for both definitions of the

signal (figures 1 and 2).

The findings for the inflation point forecasts are broadly similar.14 By and large, we find

reasonable estimates of the parameters of the Bayesian learning model when fitted to the individual-

level point forecasts for inflation and output growth. This was to be expected given the results in

Manzan (2011).

However, we do not obtain readily-interpretable estimates of the BLM when it is estimated on

the histogram mean forecasts for either variable. There is little evidence that the bias parameter

gets smaller as h shortens for inflation, and remains as large as ±0.4 percentage points at h = 0.

For output growth the values of this parameter are more dispersed than for the point predictions at

h = 0. There is less evidence that the weight on news increases as the horizon shortens, relative to

the case for the point predictions, for both variables. In short, neither the histogram mean forecasts

of output growth or of inflation appear to constitute coherent sets of forecasts when viewed through

13The AR model orders are estimated on rolling windows of 40 observations, selecting the model order at each
instance by BIC. To illustrate, when h = 2, we have a Q2 survey. This means that we have the level of Y up to Q1.
A model is estimated on quarterly growth rates, and 1 to 3 step ahead forecasts are generated iteratively using actual
data up to Q1. These forecast quarterly growth rates are used to calculate forecasts of the level of Y in Q2, Q3 and
Q4. This enables us to construct the ‘signal’—the expected annual year-on-year growth rate using the Q2 vintage
data.
14For inflation a few ‘rogue’parameter value estimates are excluded from the figures to aid their interpretability.

For the h = 2 forecasts we obtained a few estimates of α close to zero, which translated into very large µ values
relative to the range of the majority of the points plotted in the figures. (Recall that the µ’s are the ratio of the
intercepts to the α parameters).
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the lens of the BLM. When forecasters update their histogram mean forecasts they do not appear

to do so in a way which is consistent with the BLM.

Next, we turn to the formal tests of the equivalence of the BLM weight and interpretation

parameters for each individual. Recall that we are not testing whether the key parameters are the

same across all respondents, as in Manzan (2011), but whether they are equal across the two types

of forecast for a given individual. The results are shown in table 2. The first panel records the

results for our preferred method of estimating means - from fitting generalized beta distributions as

in Engelberg et al. (2009) to allow asymmetry in the underlying subjective probability distributions.

We find that we can reject the hypothesis that every respondent applies the same weight to

news when they revise their point forecast and histogram mean predictions for the shortest horizon

revision h = 0 for both output growth and inflation, and also for h = 1 for output growth. These

results hold irrespective of how the signal is defined. We also reject the null of equal interpretation

bias for h = 1 for output growth forecasts (using the lagged actual as the signal). There is perhaps

less formal evidence against the null hypotheses than might be expected given the differences in

the estimates in the figures. This is likely to be due to low power given the relatively small samples

of forecasts for a given individual at a particular horizon.

The second and third panels are the sensitivity check: that the results are not solely due to

fitting the generalised beta distiribution to estimate mean forecasts. The second panel records

results for calculating means in the ‘standard way’, which assumes the probability mass in each

histogram interval is located at the midpoint of the interval. In the bottom panel the means are

estimated from gaussian distributions fitted to the histograms as in Giordani and Söderlind (2003).

The results are largely unchanged in each case: the null that each individual applies the same

weight to news when they revise their point predictions, as when they revise their histogram means,

is again rejected for both variables at h = 0, and for output growth for h = 1.

4 Probability integral transform evaluation of the individual fore-

cast histograms

The recent popularity of density forecasts in the economics and finance forecasting literature stems

from the fact that they provide more information than an estimate of the central tendency (see Tay

and Wallis (2000), and Hall and Mitchell (2009) for surveys). A now standard way of evaluating

density forecasts is the probability integral transform (pit) approach popularized by Diebold, Gun-
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ther and Tay (1998), which evaluates the whole density, rather than specific moments derived from

the density. The approach requires a continuous distribution function, so the results we obtain

may in general depend on the assumptions we make in calculating distributions from the reported

histograms. Fortunately, for a subset of the forecast data, the histograms are fully informative for

the pit-evaluation of those histograms. In section 5 we consider this subset of forecasts, and what it

indicates about i) the accuracy of the histograms in general and ii) the validity of our parametric

approximations to the histograms.

We begin with an analysis of all the histograms. If we let the h-step ahead forecast density

for the value of a random variable {Yt} be denoted by pY,t|t−h(y), then the probability integral

transform (pit) is the forecast probability of Yt not exceeding the realized value yt:

zt =

yt∫
−∞

pY,t|t−h(u)du ≡ PY,t|t−h (yt) . (6)

When the forecast density equals the true density, fY,t|t−h (y), it is simple to show that zt ∼ U (0, 1).

When h = 1, and given a sequence t = 1, . . . , n, the time series {zt}nt=1 is independently identically

uniform distributed, i.e., iid U (0, 1), under the null that at each t the forecast and true densities

match. We can obtain non-overlapping series of forecasts — in the sense that the realized value

is known before the next forecast is made — by treating separately the density forecasts made

in a given quarter of each year. This avoids the counterpart of the well-known problem in the

point forecast evaluation literature, whereby a sequence of optimal h-step ahead forecasts (with

forecasting interval of one period) will follow a moving-average process of h− 1. Hence we are able

to evaluate the series of pits as if they were from one-step ahead forecast densities. We take as

actual values the data released in the second quarter of the subsequent year.15

The diffi culties in calculating moments from histograms discussed in section 2 extend to the

calculation of pits from histograms. We calculate pits after fitting generalized beta distributions,

normal distributions, and by assuming probability mass is uniform within a interval. The last is

best explained by an example. Suppose the actual value is y = 3.6. For the example in table 1, the

15The first estimate of the annual growth rate available in the first quarter of the subsequent year would include
an advance estimate of the last quarter of the year. Our choice is inkeeping with the literature which generally uses
BEA ‘final’estimates in preference to advance estimates. Note we do not use the latest-available data vintage (at the
time of the study), as this will include benchmark revisions and annual revisions (see, e.g., Fixler and Grimm (2005,
2008) and Landefeld, Seskin and Fraumeni (2008)).
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probability integral transform is:

Pr (Y < y = 3.6) = F (3) +
y − 3

1
(F (4)− F (3)) = 0.5 + 0.6× 0.2 (7)

(for the earlier histograms with interval widths of two percentage points, the denominator in the

above expression is 2).

Table 3 contains the evaluation of the individuals’histograms. Rather than assessing whether

the individual sequences, say, {zt}
Tni
t=1 are iid U (0, 1), we follow the suggestion of Berkowitz (2001)

and assess whether the inverse normal CDF transformation of the {zt} series (say, {z∗t }) is iid

N(0, 1).16 Berkowitz argues that more powerful tools can be applied to testing a null of iid N(0, 1),

compared to one of iid uniformity. We calculate a three-degree of freedom likelihood ratio test

of zero-mean, unit variance and independence (specifically, zero first-order autocorrelation) using

gaussian likelihood functions. The assumption of normality of {z∗t } is also amenable to testing,

and we calculate the Doornik and Hansen (1994) tests of normality. For each respondent with a

minimum of 10 responses at a given horizon, we calculate these two tests of their transformed pits.

The table reports the proportion of individuals for which we reject the null for each of the two tests

at the 10% significance levels.

As is evident from the table, there are differences between the three panels, and across survey

horizons, but taken together the histogram forecasts are rejected for around a half of the survey

respondents on one or other of the tests of the pits. This is surprising given that these tests are

expected to have low power given the relatively small numbers of forecasts by an individual of

a given horizon. It is generally true that calculating pits by linear interpolation (middle panel)

leads to fewer rejections than the two parametric distribution methods. We conclude that there

are question marks about the accuracy of individuals’probability assessments. Because the test

rejections are not readily informative about the ways in which the histograms are deficient, we

also present box plots of the z’s (not the z∗’s) for each respondent (for a given h): see figures 5

and 6 for output growth, and figures 7 and 8 for inflation. Under the null of correct specification,

the z’s are U (0, 1), so the box which denotes the interquartile range should be approximately

positioned between 0.25 and 0.75, with the median (depicted as the horizontal line within the

box) close to 0.5. Too small (large) a box (which is correctly centred on 0.5) indicates too much

16Values of z equal to 0 or 1 are problematic when we calculate z∗ = Φ−1 (z), where Φ is the gaussian cdf. Note that
z = 1 when linear interpolation is used and the actual is above the highest interval to which a non-zero probability
is attached, and similarly for zt = 0. We set values of z of 0 and 1 to 0.01 and 0.99, respectively.
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(little) probability was assigned to both tails of the distribution. A high (low) box indicates that

too much probability mass was assigned to low (high) outcomes. Although the box locations and

sizes vary over individual, there is a preponderance of upper ends of the boxes above 0.75 for

the Q1 survey output growth histograms: outcomes were ‘too often’in the upper quartile of the

forecast distributions. For the inflation forecasts, especially for the second, third and fourth quarter

forecasts, there are a preponderance of boxes that fall short of 0.75 and extend below 0.25: too much

weight assigned by forecasters to relatively high inflation rates. These findings hold irrespective

of whether we fit generalized beta distributions and then read off the pit values, or calculate pits

by linear interpolation.17 The pit-based evaluation is consistent with the overall pessimism of the

histogram forecasts noted in the Introduction, although we have arrived at this conclusion from an

evaluation of the whole densities (by comparing them to the realized values) rather than a direct

comparison of measures of central tendency from the histograms with point predictions (as in e.g.,

Engelberg et al. (2009)).

5 Calibration when the underlying cdf is observed

The approach suggested by Engelberg et al. (2009) is a flexible way of fitting continuous distribution

functions to the reported histograms to enable the calculation of moments and pits. Moreover, the

results are qualitatively unchanged if instead we fit gaussian distributions or suppose the probability

mass is uniform within each histogram interval. However, it may be that none of these methods

closely approximate the individuals’underlying subjective distributions. To determine whether the

assumptions we have made result in the labelling of the histograms as being overly pessimistic, we

assess the pits for the subset of the histograms which essentially completely reveal the individuals’

underlying cdfs. To see this, note that the problem with the calculation of the pit outlined in (7)

is that we do not know whether the probability mass in the interval [3, 3.9) is close to 3, or to 4,

or uniformly distributed as assumed in (7).18 However, the histogram accurately reveals the pits

for realized values equal to the ‘x’values in table 1 - these are ‘error-free’pits unaffected by any

distributional assumptions. To obtain a meaningful sample of pits, we take those corresponding to

17Qualitatively similar results hold if we fit gaussian distributions: results not shown to save space.
18The two parametric distribution approaches essentially allow different assumptions about the distribution of

probability mass in this interval: the location of the mass within this interval will depend on the probabilities
assigned to the other intervals.
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actual values which are ‘close’19 to the observed points on the cdf. As an example, suppose the

realized value was 3.09 for the histogram forecast given in table 1. Using linear interpolation as in

(7), we obtain Pr (Y < 3.09) = F (3) + 3.09−3
1 (F (4) − F (3)) = 0.5 + 0.09 × 0.2, and we suppose

any error from the assumption that underlies the specific value we obtain for the second term

(0.09× 0.2 = 0.018) is small.20

The set of ‘boundary-actual’pits defined in this way is too small to permit the calculation of

tests for each individual (and horizon) of the form reported in table 3. It is tempting to compare the

distributions of the boundary and non-boundary pits across all individuals for first quarter surveys,

and for second quarter surveys, etc. However the pits for any one survey will be correlated across

individuals, so that the distributions of the pits across individuals and surveys will be unknown

even for optimal forecasts. Instead, we consider the cross-sectional median pits. The empirical

distributions of the median pits across surveys (for a given horizon) can be used to assess the

accuracy with which the assumed distribution approximates the underlying subjective distribution.

Under the assumptions that i) the assumed distributions approximate the underlying subjective

distributions and ii) the subjective distributions are approximately correctly calibrated, we would

expect both the empirical distributions of the boundary and non-boundary median to be approx-

imately U (0, 1). If the boundary pits are U (0, 1), but the non-boundary pits are not, then the

econometrician is at fault: the generalized beta distribution, for example, does not do a good job of

characterizing the individual-level subjective probability distributions. If the boundary pits them-

selves are not U (0, 1), then we conclude that the underlying distributions are poor approximations

to the true predictive densities.

Figure 9 plots boundary and non-boundary pits separately for inflation, where the pits are

calculated after fitting distributions as in Engelberg et al. (2009). For inflation there are a max-

imum of 10 boundary and 32 non-boundary pits, depending on the survey quarter,21 so that the

small samples on which these box plots are based needs to be borne in mind. For output growth

there were too few boundary pits (5) to allow a meaningful comparison of the distributions of the

19Our definition of ‘close’depends on the histogram interval widths, which are either 1 (as in the example) or 2
(for both inflation and output growth for the surveys 1981:3 to 1991:4). For interval widths of 1 (2), we consider
realized values which are within 0.1 (0.2) of the upper interval limit as generating ‘error-free’pits. This implies that
on average one fifth of all realized values give rise to such pits.
20When we fit a parametric distribution to the histogram, the estimated pit will not exactly equal the cdf prob-

abilities even for integer actuals unless the distribution fits the cdf points exactly (as when there are exactly three
non-zero intervals in the case of the generalized beta distribution, for example).
21For first quarter surveys, for example, we have 42 sets of forecasts for the quarters from 1969:1 to 2010:1 (inclusive),

but with 1985:1 and 1986:1 excluded as there were doubts about the period to which the forecasts made in these two
quarters referred: see the SPF documentation.
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two sets of pits. For inflation the evidence provided by the boundary pits is that the subjective

probability distributions assign too much weight to high rates of inflation (relative to the realized

outcomes). For correctly calibrated forecast densities the ‘boxes’in figure 9 would span 0.25 to 0.75

on the vertical axis. Figure 10 uses linear interpolation of the histograms to calculate the pits. As

expected, we obtain a similar picture for the boundary pits because both the fitting of the gener-

alized beta distribution and linear interpolation are essentially equivalent for the upper histogram

interval points. Consider now the non-boundary pits shown in figure 9 (figure 10 is essentially the

same). The non-boundary pits are better calibrated. Taken at face value, this suggests that fitting

generalized beta distributions distorts the individuals’subjective assessments, but in a way which

offsets the pessimism that characterises those assessments.

Rather than considering the entire distributions of the boundary and non-boundary pits (as in

figures 9 and 10), given the small numbers of observations we also formally tested simply whether

the locations of the distributions differ. For each quarter of the year, we regress the annual time

series of the cross-sectional median (of the z∗) on a constant, and test whether the constant is

significantly different from zero, as a formal test of whether the pits are zero mean, as a necessary

condition for the generalized beta distributions being correctly calibrated. We then run a further

regression which includes a dummy variable taking the value 1 for boundary actual values, and

test whether the coeffi cient on the dummy variable is significantly different from zero. If so, we

conclude that the generalized beta distribution distorts the underlying probability assessments. We

also report results for using the normal distribution in place of the beta distribution, and for using

linear interpolation, as sensitivity checks.

Although there were too few boundary-pits for output growth to be able to consider differences

in their empirical distribution relative to that of the non-boundary pits, we are able to test whether

the mean of the pits differs significantly between the two sets.

The results are shown in table 4. Consider the results in the top panel for the beta distribution.

For inflation, we reject the null that the mean is not significantly different from zero for surveys

made in all but the first quarter of the year, inferring that the distributions underlying the pit

calculations are not well calibrated. Further, the boundary dummies are clearly significant for

all four quarters, signifying that the beta distribution distorts the underlying distributions. For

output growth the first-quarter surveys are overly pessimistic (too much mass is assigned to low

rates of output growth in the histogram that gives the median pit), but there is no evidence that

the assumption of a beta distribution is at odds with the subjective distributions. The remaining
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two panels show that essentially the same results hold for the two other distributional assumptions.

A possible explanation of our findings for inflation is that the occurrences of boundary-actual

values of inflation just happen to be associated with lower than expected rates of inflation. The

conclusion that the assumed parametric distributions poorly approximate the underlying subjective

distributions requires that the outturns giving rise to the two sets of pits do not differ in a systematic

fashion. There is no reason why this should be the case, but nevertheless it might be true of

our historical sample. We can address this issue by estimating the average expected rates of

inflation from (the median of) the survey respondents’point predictions of annual inflation. Table

5 reports the RMSE and bias of the median forecasts by survey quarter for each of the two sets

of outturns. The RMSEs are roughly comparable, but the forecast biases of the boundary actuals

are markedly negative for all four survey quarters, in contrast to the non-boundary actual forecast

errors, indicating that boundary-actuals were associated with lower than expected inflation rates.

For the first two survey quarters, on average the median expected forecast error was roughly minus

a quarter of a percentage point for outturns ‘close’to points on the cdf. A formal test of the equality

of the population means (i.e., bias) of the two sets of forecasts rejects at the 5% level for all but

the fourth quarter survey forecasts. Although in principle the boundary-actual pits enable a test of

the underlying subjective distributions, in practice this is not possible for our sample because the

boundary-actual values are associated with systematically lower than expected rates of inflation.

6 Conclusions

In recent times density forecasts have taken centre-stage in policy-based economic forecasting, es-

pecially for forecasting inflation. For example, every quarter the Bank of England publishes density

forecasts of the annual rate of retail price inflation made by the UK Monetary Policy Committee

(MPC), and many other central banks have followed suite. This break with the traditional concern

of forecasting the central tendency or most likely outcome of the future value of the variable is

understandable given that an assessment of the degree of uncertainty surrounding a point forecast

is generally indispensable in a policy context.

The shift of focus to the forecast density has led some to question the value of survey respon-

dents’point predictions, and the recommendation that only density forecasts be elicited. Based on

our analysis of the point predictions and histograms of the respondents to the SPF, we question

whether professional forecasters are suffi ciently skilled at presenting their point predictions in the
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form of histograms that the point predictions themselves can be dispensed with. We show that

the updating of point predictions made by individual respondents can be reasonably well explained

by forecasters revising their forecasts as new information becomes available, whereas estimates

obtained from histograms often imply implausible parameter values for the underlying learning

model. Formally, when we test that an individual applies the same weight to new information,

and interprets that information in the same way, when he/she updates their point predictions and

histogram means, then across the forecasters taken together we tend to reject for the short horizon

forecasts.

We are careful to ensure that our results are not overly sensitive to the distributional assump-

tions we need to make. The individuals’probability assessments are reported as histograms, and

further assumptions are required to obtain continuous distributions to allow the calculation of mo-

ments and probability integral transforms. We propose a way of assessing whether the distributional

assumptions we make are appropriate, based on calculating probability integral transforms for the

subset of observations for which the histograms are (nearly) fully informative without additional

assumptions. Although in principle this enables an assessment of the underlying subjective distri-

butions, in practice we find that this subset happens to be characterised by lower than expected

rates of inflation. Nevertheless, our sensitivity checks suggest the results are robust across the dif-

ferent distributional assumptions we make. Even using ‘best-practice’methods to fit distributions

to the histograms we find that there is a case for continuing to elicit respondents’point predictions

directly.
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Figure 1: Output. Forecast as signal. Generalized beta.

Figure 2: Output. Actual as signal. Generalized beta.
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Figure 3: Inflation. Forecast as signal. Generalized beta.

Figure 4: Inflation. Actual as signal. Generalized beta.
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Figure 5: Output growth. Box plots of z’s for each respondent with # z more than 10. The box is
the interquartile range. z’s calculated by fitting Generalized Beta distributions.

Figure 6: Output growth. Box plots of z’s for each respondent with # z more than 10. The box is
the interquartile range. z’s calculated by linear interpolation.
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Figure 7: Inflation. Box plots of z’s for each respondent with # z more than 10. The box is the
interquartile range. z’s calculated by fitting Generalized Beta distributions.

Figure 8: Inflation. Box plots of z’s for each respondent with # z more than 10. The box is the
interquartile range. z’s calculated by linear interpolation.
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Figure 9: Inflation. Median pit. Generalised beta distribution.

Figure 10: Inflation. Median pit. Linear interpolation of the histogram.
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Table 1: Example of a histogram return.

Interval Probability x F (x)
‘ < −2′ 0.0 -2 0

-2 to -1.1 0.0 -1 0
-1 to -0.1 0.0 0 0
0 to 0.9 0.0 1 0
1 to 1.9 0.0 2 0
2 to 2.9 0.50 3 0.5
3 to 3.9 0.20 4 0.7
4 to 4.9 0.30 5 1.0
5 to 5.9 0.0 6 1.0

‘6+′ 0.0 7 1.0
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Table 3: Proportion of individuals for whom we reject the null that their histograms are ‘accurate’
based on probability integral transform tests

H0 : z∗ normal H0 : z∗ IID(0,1) H0 : z∗ normal H0 : z∗ IID(0,1)

z∗’s calculated by fitting Generalized Beta distributions
Survey Inflation Output growth
1 0.24 0.48 0.13 0.75
2 0.21 0.67 0.40 0.25
3 0.33 0.53 0.46 0.31
4 0.44 0.56 0.67 0.33

z∗’s calculated by linear interpolation of the histograms
Inflation Output growth

1 0.22 0.37 0.00 0.47
2 0.15 0.46 0.22 0.26
3 0.06 0.59 0.38 0.19
4 0.26 0.42 0.60 0.15

z∗’s calculated by a normal approximation to the histograms
Inflation Output growth

1 0.44 0.70 0.05 0.68
2 0.38 0.81 0.32 0.55
3 0.53 0.65 0.56 0.50
4 0.63 0.53 0.70 0.70

For each individual who reported more than 10 histogram forecasts of a given horizon, we calculate a test of the

normality of their {z∗t } (headed H0 : z∗ normal) and a three-degree of freedom likelihood ratio test of zero-mean, unit

variance and independence (specifically, zero first-order autocorrelation) using gaussian likelihood functions (headed

H0 : z∗ IID(0,1)). The entries in the table are the proportion of individuals for which we reject the null at the 10%

level. For each survey quarter there are generally around 15 forecasters who have responded to 10 or more surveys.

The left column denotes the survey quarter, where survey quarter ‘1’, for example, corresponds to the longest horizon

forecasts.

The three panels relate to three different ways of calculating the probability integral transforms from the histograms.

Technical note: z’s calculated as 0 or 1 (because the realization lies outside the intervals with non-zero weights, when

calculated by linear interplation assuming probability mass is uniformly distributed within a interval) are replaced

by 0.01 and 0.99 so that the corresponding z∗t is defined.
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Table 4: Analysis of median and cross-sectional dispersion of pits at ‘boundary actuals’

Generalized Beta distributions
Inflation

δ0 p-value α1 p-value
δ0 = 0 α1 = 0

1 -0.06 0.69 -0.78 0.00
2 -0.24 0.08 -0.87 0.00
3 -0.19 0.02 -0.52 0.00
4 -0.19 0.05 -0.49 0.00

Output growth
δ0 p-value α1 p-value

δ0 = 0 α1 = 0
1 0.49 0.04 0.55 0.48
2 0.09 0.45 0.19 0.57
3 0.07 0.45 -0.05 0.86
4 -0.02 0.91 -0.16 0.82

Linear interpolation
Inflation

δ0 p-value α1 p-value
δ0 = 0 α1 = 0

1 -0.10 0.50 -0.89 0.00
2 -0.27 0.03 -0.83 0.00
3 -0.23 0.01 -0.60 0.00
4 -0.24 0.04 -0.66 0.00

Output growth
δ0 p-value α1 p-value

δ0 = 0 α1 = 0
1 0.34 0.08 0.38 0.56
2 0.08 0.54 0.32 0.41
3 0.09 0.43 0.11 0.77
4 0.05 0.74 0.07 0.91

Normal approximation
Inflation

δ0 p-value α1 p-value
δ0 = 0 α1 = 0

1 0.02 0.90 -0.95 0.00
2 -0.28 0.05 -0.82 0.00
3 -0.27 0.02 -0.62 0.00
4 -0.20 0.15 -0.74 0.00

Output growth
δ0 p-value α1 p-value

δ0 = 0 α1 = 0
1 0.38 0.09 0.31 0.65
2 0.05 0.76 0.29 0.51
3 0.12 0.37 0.03 0.95
4 0.06 0.78 -0.39 0.68

The entries in the table are the estimates of δ0 in the regression of x = δ0 + εt, along with the p-value that
δ0 = 0, as well as the estimates of α1 in x = α0 + α1Dt + εt, along with the p-value that α1 = 0, all using
HCSEs. x is the median pit (z∗), and Dt defines boundary-actual pits. That is, Dt is a dummy variable
that takes the value 1 when the actual value (used in the pit calculation) is close to a histogram interval
boundary.
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Table 5: Properties of the median expected forecast errors for the boundary and non-boundary
actual observations

Survey RMSFE Forecast p-value of test
qtr. bias of equal bias

boundary non- boundary non-
actual bondary actual bondary

1 0.59 0.89 -0.27 0.28 0.024
2 0.35 0.54 -0.28 0.09 0.004
3 0.21 0.32 -0.17 -0.02 0.036
4 0.13 0.18 -0.08 0.02 0.051

The last column is the p-value of a t-test that the population means of the two sets of forecast errors
(those corresponding to outturns close to cdf points - boundary actuals, and those corresponding
to actuals not close to the boundary) are equal when we allow for unknown and unequal variances.
The test requires the populations are normally distributed or the sample sizes are large.

34



Appendix. Illustrative calculations for a survey respondent

An individual’s inflation histograms in response to the 2000:1 and 2000:2 surveys are given in table

6. Using our preferred method of obtaining means from histograms, we estimate the means as

1.69 and 4.00. (See Engelberg et al. (2009), p.37 for fitting methods when there are two non-zero

intervals). So between the first and second quarter of the year, the mean rate of annual year-on-

year inflation for 2000 over 1999 more than doubles. Throughout we have emphasized errors due

to the histograms only imperfectly revealing the underlying subjective distributions, whereby the

assumption that the histograms can be approximated by generalized beta distributions may be at

odds with the underlying subjective probability distributions. To guard against elicitation errors,

following Engelberg et al. (2009) we calculate the extreme values that the mean could take: these

are lower and upper bounds of 1.15 and 2.15 for 2000:1, and of 3.5 and 4.5 for 2000:2.22

So the smallest possible increase in the mean is from 2.15 to 3.5 (2000:1 upper bound to 2000:2

lower bound). There has clearly been a marked increase in the forecast inflation rate implied by the

histograms. This is entirely plausible, but becomes somewhat suspect when taken together with

the point predictions for the annual rate of inflation by this respondent to the same two surveys.

In their 2000:1 survey return, forecasts are given of the price level for the 4 quarters of the year,

as well as the annual level. These are consistent for this survey return: the average of the quarters

equals the annual. Given the latest estimate (at the time of the survey) of the annual level for 1999

of 104.32, the point prediction of the growth rate made in the first quarter of the year is 1.74 -

close to the histogram mean, and within the bounds on the mean. The 2000:2 survey return also

contains a forecast of the annual level (which is again consistent with the forecasts of the levels for

each quarter). Last year’s level has been revised up a little, to 104.55. The forecast of the annual

level is a little higher than last quarter, resulting in an annual inflation rate forecast of just over 2

(2.02). This is outside the bounds on the histogram mean, and an instance of an inconsistent pair

of forecasts as documented by Engelberg et al. (2009).

Given that the latest actual quarterly inflation rate at the time the return was made to the

second quarter survey was just 1.5 (at an annual rate, corresponding to the first quarter of the year),

as well as the point forecasts, the increase in the forecast mean implied by the 2000:2 histogram

appears unwarranted. The point forecasts may better represent this respondent’s inflation outlook.

22These bounds on the mean require only that the histogram upper limits constitute points on the individual’s cdf.
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Table 6: A respondent’s 2000:1 and 2000:2 histogram forecasts of annual inflation.

2000:1 Survey 2000:2 Survey
‘ < −0′ 0 0
0 to 0.9 0 0
1 to 1.9 85 0
2 to 2.9 15 0
3 to 3.9 0 50
4 to 4.9 0 50
5 to 5.9 0 0
6 to 6.9 0 0
7 to 7.9 0 0

‘8+′ 0 0
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