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Abstract
We survey Bayesian methods for estimating dynamic stochastic general equilibrium (DSGE)
models in this article. We focus on New Keynesian (NK)DSGE models because of the interest
shown in this class of models by economists in academic and policy-making institutions. This
interest stems from the ability of this class of DSGE model to transmit real, nominal, and fis-
cal and monetary policy shocks into endogenous fluctuations at business cycle frequencies.
Intuition about these propagation mechanisms is developed by reviewing the structure of a
canonical NKDSGE model. Estimation and evaluation of the NKDSGE model rests on being able
to detrend its optimality and equilibrium conditions, to construct a linear approximation of
the model, to solve for its linear approximate decision rules, and to map from this solution
into a state space model to generate Kalman filter projections. The likelihood of the linear
approximate NKDSGE model is based on these projections. The projections and likelihood are
useful inputs into the Metropolis-Hastings Markov chain Monte Carlo simulator that we employ
to produce Bayesian estimates of the NKDSGE model. We discuss an algorithm that implements
this simulator. This algorithm involves choosing priors of the NKDSGE model parameters and
fixing initial conditions to start the simulator. The output of the simulator is posterior esti-
mates of two NKDSGE models, which are summarized and compared to results in the existing
literature. Given the posterior distributions, the NKDSGE models are evaluated with tools that
determine which is most favored by the data. We also give a short history of DSGE model esti-
mation as well as pointing to issues that are at the frontier of this research.
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1 Introduction

Macroeconomists have made substantial investments in Bayesian time series during the last
30 years. One reason is that Bayesian methods afford researchers the chance to estimate and
evaluate a wide variety of macro models that frequentist econometrics often find challenging.
Bayesian vector autoregressions (BVARs) represent an early return on this research project
manifested, for example, by Doan, Litterman, and Sims (1984). They show that BVARs are use-
ful forecasting tools.1 More recent work focuses on developing Bayesian methods capable of
estimating time-varying parameter (TVP) VARs, associated with Cogley and Sargent (2005) and
Primiceri (2005), and Markov-switching (MS) VARs initiated by Sims and Zha (2006).2 The com-
plexity of TVP- and MS-VARs underline the efforts macroeconomists have put into developing
useful Bayesian time series tools.3

Bayesian times series methods are also attractive for macroeconomists studying dynamic
stochastic general equilibrium (DSGE) models. Although DSGE models can be estimated using
classical optimization methods, macroeconomists often prefer to use Bayesian tools for these
tasks. One reason is that advances in Bayesian theory are providing an expanding array of
tools that researchers can employ to estimate and evaluate DSGE models. The popularity of
the Bayesian approach is also explained by the increasing computational power available to
estimate and evaluate medium- to large-scale DSGE models using Markov chain Monte Carlo
(MCMC) simulators. These DSGE models can pose identification problems for frequentist esti-
mators that no amount of data or computing power can overcome.

Macroeconomists are also drawn to the estimation and evaluation framework Bayesians
have created because DSGE models are often seen as abstractions of actual economies. A
frequentist econometrician might say that DSGE models are misspecified versions of the true
model. This is not consistent with the beliefs often held about DSGE models. These beliefs
are animated by the well known mantra that “all models are false.” Since Bayesians eschew the
existence of a true model, employing Bayesian methods to study DSGE models dovetails with
the views held by many macroeconomists.

This chapter presents an overview of Bayesian time series methods that have been de-
veloped to estimate and evaluate linearized DSGE models.4 We aim to bring the reader to the
point where her priors and DSGE model can, subsequent to linearization, meet the data to be
estimated and evaluated using Bayesian methods. The reader may wonder why this chapter
puts aside nonlinear estimation of DSGE models. Since these methods represent the frontier,
which is being pushed out at an extraordinary rate, a review of Bayesian nonlinear estimation
of DSGE models waits for more consensus about the merits of the different approaches.5

We describe procedures for estimating a medium-scale New Keynesian (NK) DSGE model
in this chapter. The NKDSGE model is a descendant of ones analyzed by Smets and Wouters
(2003) and Christiano, Eichenbaum and Evans (2005). As those authors do, we estimate a
linearized approximation of the NKDSGE. The linearization is grounded in the stochastically

1L. Kilian gives a progress report on BVARs in this handbook.
2This volume has surveys of MS models by J-Y. Pitarakis and TVP models by A. Hall and O. Boldea.
3L. Bauwens and D. Korobilis provide a chapter on Bayesian methods for macroeconomists in this handbook.
4Fernández-Villaverde, et al (2009) and Schorfheide (2011) review Bayesian estimation of DSGE models, while
Canova (2007) and DeJong and Dave (2007) give textbook treatments of the subject.

5An and Schorfheide (2007), Fernández-Villaverde and Rubio-Ramírez (2007), Fernández-Villaverde, et al (2010),
Aruoba, et al (2011), and Liu, Waggoner, and Zha (2011) propose different nonlinear estimators of DSGE models.
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detrended optimality and equilibrium conditions because the growth rate of the technology
shock is stationary. These optimality and equilibrium conditions yield a solution that is cast
in state space form, which is the starting point for the Kalman filter. Since the Kalman filter
generates predictions and updates of the state vector of the linearized NKDSGE model, we have
a platform for computing its likelihood. This likelihood is used by Bayesian MCMC simulators
to produce posterior distributions of NKDSGE model parameters given actual data and prior
beliefs about these parameters. Posterior distributions represent confidence in an NKDSGE
model conditional on the evidence provided by its likelihood. Marginal likelihoods are used to
evaluate which member of a suite of NKDSGE models is most favored by the data.

A brief history of DSGE model estimation is presented in the next section. Our purpose
is to give a framework for understanding the interaction between the need to connect macro
theory to current data and the development of tools to achieve that task. Section 3 outlines
the DSGE model we study. The NKDSGE model is prepared for estimation in section 4. This is
followed by a discussion of Bayesian methods to estimate the linear approximate solution of
the NKDSGE model described in section 5. Results appear in section 6. Section 7 concludes.

2 A Brief History of DSGE Model Estimation

Efforts to estimate and evaluate DSGE models using Bayesian methods began in ernest in the
late 1990s. Previously, macroeconomists used classical optimization methods to estimate DSGE
models. This section reviews these frequentist approaches to estimate DSGE models, covers
the transition from frequentist to Bayesian methods, and ends by mentioning several issues at
the frontier of Bayesian estimation of DSGE models.

Non-Bayesians have used maximum likelihood (ML), generalized method of moments
(GMM), and indirect inference (II) to estimate DSGE models. These estimators rely on classical
optimization either of a log likelihood function or of a GMM criterion.6

Early examples of frequentist ML estimation of DSGE models are Altuǧ (1989) and Ben-
civenga (1992). They apply classical optimization routines to the log likelihood of the restricted
finite-order vector autoregressive-moving average (VARMA) implied by the linear approximate
solutions of their real business cycle (RBC) models. The restrictions arise because the VARMA
lag polynomials are nonlinear functions of the DSGE model parameters.

A restricted VARMA engages an ML estimator that differs from the approach of Sargent
(1989). He maps the linear solution of permanent income (PI) models with a serially correlated
endowment shock into likelihoods that are built on Kalman filter innovations of the observed
data and the associated covariance matrix. Sargent assumes that the data are ridden with
measurement errors, which evolve as independent first-order autoregressions, AR(1)s.7 This
aids in identification because serially correlated measurement errors add restrictions to the
VARMA implied by the PI model solution. An extension of Sargent’s approach is Ireland (2001).
He replaces the independent AR(1) measurement errors with an unrestricted VAR(1); see Curdia
and Reis (2011) for a Bayesian version of this method. Besides measurement error, this VAR(1)
inherits the sample data dynamics left unexplained by the RBC model that Ireland studies.

6This handbook has chapters on frequentist ML (GMM) DSGE model estimation by M. Fukac̆ (F. Ruge-Murcia).
7Assuming sample data suffers from classical measurement error helps Altuǧ identify the Kydland and Prescott
(1982) RBC model. Bencivenga achieves the same objective with AR(1) taste shocks in an RBC model.
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The tools of classical optimization are also useful for GMM estimation of DSGE models.
Christiano and Eichenbaum (1992) construct GMM estimates of a subset of the parameters of
their RBC model using its steady state conditions and the relevant shock processes as moments.
Since the moment conditions are outnumbered by RBC model parameters, only a subset of these
parameters are identified by GMM.

Identification also matters for ML estimation of DSGE models. For example, Altuǧ, Ben-
civenga, and Ireland only identify a subset of RBC model parameters after pre-setting or cali-
brating several other parameters. Analysis by Hall (1996) suggests a reason for this practice. He
shows that whether ML or GMM is being used, these estimators are relying on the same sample
and theoretical information about first moments to identify DSGE model parameters. Although
ML is a full information estimator, which engages all the moment conditions expressed by the
DSGE model, GMM and ML rely on the same first moment information for identification. This
suggests that problems identifying DSGE models are similar whether ML or GMM is the estima-
tor of choice; see Fernández-Villaverde, et al (2009) for more discussion of these issues.

The frequentist assumption of a true model binds the identification problem to the issue
of DSGE model misspecification. The question is whether any parameters of a DSGE model can
be identified when it is misspecified. For example, frequentist ML loses its appeal when models
are known to be misspecified.8 Thus, it seems that no amount of data or computing power will
solve problems related to the identification and misspecification of DSGE models.

A frequentist response to these problems is II. The first application of II to DSGE models
is Smith (1993). He and Gourieroux, Monfort, and Renault (1993) note that II yields an esti-
mator and specification tests whose asymptotic properties are standard even though the true
likelihood of the DSGE model is not known.9 The II estimator minimizes a GMM-like criterion in
the distance between a vector of theoretical and sample moments. These moments are readily
observed in the actual data and predicted by the DSGE model. Estimating DSGE model param-
eters is “indirect” because the objective of the GMM-like criterion is to match moments not
related directly to the structure of the DSGE model.10 Theoretical moments are produced by
simulating synthetic data from the solution of the DSGE model. A classical optimizer moves the
theoretical moments closer to the sample moments by updating the DSGE model parameters
holding the structural shock innovations fixed.11

Dridi, Guay, and Renault (2007) extend the II estimator by acknowledging that the DSGE
model is false. They argue that the purpose of dividing the vector of DSGE model parameters,Θ, into the parameters of interest, Θ1, and the remaining nuisance or pseudo-parameters, Θ2,
is to separate the part of a DSGE model having economic content from the misspecified part.
Thus, Θ1 represents the part of a DSGE model that is economically relevant for the moments
it aims to match. However, Θ2 cannot be ignored because it is integral to the DSGE model.
Fixing Θ2 or calibrating it with sample information contributes to identifying Θ1, but without

8White (1982) develops quasi-ML for misspecified models, but its consistency needs a strong set of assumptions.
9Gregory and Smith (1990, 1991) anticipate the II approach to DSGE model estimation and evaluation.
10Also, II can estimate DSGE model parameters by minimizing the distance between the likelihoods of an auxiliary

model generated using actual and simulated samples. Simulated quasi-ML yields an asymptotically less efficient
estimator because the likelihood of the auxiliary model differs from that of the DSGE model; see Smith (1993).

11Christiano et al (2005) estimate an NKDSGE model by matching its predicted impulse responses to those of
an SVAR. This approach to moment matching is in the class of II estimators. See Canova and Sala (2009) for
a discussion of the identification problem facing this estimator and Hall, et al (2012) for an optimal impulse
response matching estimator of DSGE models.
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polluting it with the misspecification of the DSGE model encapsulated by Θ2. This insight is
the basis for Dridi, Guay, and Renault (DGR) to construct an asymptotic distribution of Θ1 that
accounts for misspecification of the DSGE model. The sampling theory is useful for tests of
the degree of misspecification of the DSGE model and to gauge its ability to match the data.

Whether identification of DSGE models is a problem for Bayesians is not clear. For many
Bayesians all that is needed for identification is a well posed prior.12 Poirier (1998) points out
that this position has potential costs in that prior and posterior distributions can be equivalent
if the data are uninformative. This problem differs from identification problems frequentists
face. Identification of a model is a problem that arises in population for a frequentist estimator,
while for a Bayesian the source of the equivalence is data interacting with the prior. Nonethe-
less, Poirier provides analysis suggesting that Θ be split into those parameters for which the
data are informative, Θ1, given the priors from those, Θ2, for which this is not possible.

Bayesians avoid having to assume there exists a true or correctly specified DSGE model
because of the likelihood principle (LP). The LP is a foundation of Bayesian statistics and says
that all evidence about a DSGE model is contained in its likelihood conditional on the data;
see Berger and Wolpert (1988). Since the data’s probabilistic assessment of a DSGE model is
summarized by its likelihood, the likelihoods of a suite of DSGE models possess the evidence
needed to judge which “best” fit the data. Thus, Bayesian likelihood-based evaluation is consis-
tent with the view that there is no true DSGE model because, for example, this class of models
is afflicted with incurable misspecification.

There exist several Bayesian approaches to estimate DSGE models. Most of these meth-
ods are fully invested in the LP, which implies likelihood-based estimation. The goal of Bayesian
estimation is construction of the posterior distribution, P(Θ|YT ), of DSGE model parameters
conditional on sample data YT of length T . Bayesian estimation exploits the fact that the
posterior distribution equals the DSGE model likelihood, L(YT |Θ), multiplied by the econome-
trician’s priors on the DSGE model parameters, P(Θ), up to a factor of proportionality

P
(Θ∣∣∣YT) ∝ L

(
YT
∣∣∣Θ)P(Θ).(1)

Bayesian estimation of DSGE models is confronted by posterior distributions too complicated
to evaluate analytically. The complication arises because the mapping from a DSGE model to
its L(YT |Θ) is nonlinear in Θ, which suggests using simulation to approximate P(Θ|YT ).

Among the earliest examples of Bayesian likelihood-based estimation of a DSGE model is
DeJong, Ingram, and Whiteman (2000a, b). They engage importance sampling to compute pos-
terior distributions of functions of Θ, G(Θ).13 Importance sampling relies on a finite numberN
of IID random draws from an arbitrary density D(Θ) to approximate G(Θ). The approxima-
tion is computed with weights that smooth G(Θ). The weights,W(Θi), i= 1, . . . , N, smooth the
approximation by giving less (greater) mass to posterior draws of G(Θi) that occur frequently
(infrequently).14 One drawback of importance sampling is that it is often unreliable whenΘ has
large dimension. Another is that there is little guidance about updating P(Θ|Yt), and therefore
G(Θ), from one draw of D(Θ) to the next, given P(Θ).
12This is a proper prior that is independent of the data and has a density that integrates to one.
13The objective is to approximate E{G(Θ)} = ∫ G(Θ)P(Θ|Yt)dΘ / ∫ P(Θ|Yt)dΘ.
14Given N draws from D(Θ), E{G(Θ)} is approximated as GN = ∑N

i=1W(Θi)G(Θi) / ∑N
i=1W(Θi), where the

weights, W(Θi), equal P(Θi|Yt) / D(Θi).
4



Otrok (2001) reports estimates of a DSGE model grounded on the Metropolis-Hasting
(MH) algorithm. This is, perhaps, the first instance of MH-MCMC simulation applied to DSGE
model estimation. The MH algorithm proposes to update Θ using a multivariate random walk,
but first an initial draw of Θ from P(Θ) is needed. The initial Θ is updated by adding to it
draws from a distribution of “shock innovations.” The decision to keep the initial Θ or to move
to the updated Θ depends on whether the latter increases L(Yt|Θ). This process is repeated
by sampling from the multivariate random walk to update Θ.

The MH-MCMC simulator is often preferred to importance sampling methods to estimate
DSGE models. One reason is that the MH algorithm places less structure on the MCMC simula-
tor. Thus, a wide class of time series models can be estimated by MH-MCMC simulation. Also
MH-MCMC simulators generate serial correlation in the posterior distribution, which induces
good asymptotic properties, especially compared to importance samplers. These properties
reduce the computational burden of updating the prior. Another useful feature of MH-MCMC
simulation is that its flexibility lessens the demands imposed by high dimensional Θ. We post-
pone further discussion of the MH-MCMC simulator to section 5.3.

Bayesian estimation of NKDSGE models leans heavily on MH-MCMC simulation. Smets
and Wouter (2003, 2007), Del Negro and Schorfheide (2004), and Del Negro, Schorfheide, Smets
and Wouter (2007) estimate NKDSGE models similar to the one we estimate below. Open econ-
omy NKDSGE models are estimated using MH-MCMC simulators by, among others, Adolfson,
Laséen, Lindé, and Villani (2007), Lubik and Schorfheide (2007), Kano (2009), Justiniano and
Preston (2010), Rabanal and Tuesta (2010), and Guerrón-Quintana (2010b). Evidence of the wide
applicability of the MH-MCMC algorithm is its applications to NKDSGE models with labor mar-
ket search by Sala, Söderström, and Trigari (2008), with fiscal and monetary policy interactions
by Leeper, Plante, and Traum (2010), and that compare sticky price monetary transmission to
monetary search frictions by Aruoba and Schorfheide (2011).

Formal Bayesian evaluation of estimated DSGE models relies on Bayes factors or posterior
odds ratios. The Bayes factor is

Bj,s|YT =
L
(
YT
∣∣∣Θj,Mj

)
L
(
YT
∣∣∣Θs,Ms

) ,(2)

which measures the odds the data prefer DSGE model j, Mj (with parameter vector Θj), over
Ms .15 Multiply Bj,s|YT by the prior odds to find the posterior odds ratio, which as the name
suggests is Rj,s|YT = Bj,s|YTP(Θj)/P(Θs). Put another way, the log of the Bayes factor is the
log of the posterior odds ofMj compared toMs net of the log of the prior odds of these DSGE
models. Geweke (1999, 2005) and Fernández-Villaverde and Rubio-Ramírez (2004) discuss the
foundations of Bayesian evaluation of DSGE models, while Rabanal and Rubio-Ramírez (2005)
calculate Bayes factors to gauge the fit of several NKDSGE models.

There are other Bayesian approaches to DSGE model evaluation. Schorfheide (2000) es-
timates DSGE models using the MH-MCMC simulator as well as a richly parameterized struc-
tural BVAR, which serves as a “reference” model. The fit of the DSGE and reference models
to the data is judged within a Bayesian decision problem using a few selected moments un-
der symmetric and asymmetric loss functions. The moments are structural IRFs that have

15In general, Bayes factor involves the ratio of marginal likelihoods of Mj and Ms . The marginal likelihood
integrates out Θj from L(YT |Θj ,Mj); see Geweke (2005).
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economic meaning within the context of the DSGE models. Problems of DSGE model misspec-
ification are sidestepped in this non-LP-based Bayesian evaluation process because, according
to Schorfheide, the moments on which the DSGE models are evaluated are identified by the
structural BVAR. He also argues that this approach yields valid DSGE model evaluation when
no DSGE model fits the model well, which is not true of the Bayes factor; also see Geweke
(2010). This argument is similar to arguments DGR make for parsimony (i.e., do not rely on all
the moments inherent in the likelihood), when selecting moments to bind the DSGE model to
the data for II estimation.16 DGR are guided to choose moments most economically meaningful
for the DSGE model, which is a frequentist analogue to Schorfheide’s Bayesian approach.

Another interesting approach to these issues is Guerrón-Quintana (2010a). He confronts
a NKDSGE model with different sets of observed aggregate variables to ask which data set
is most informative for estimating DSGE model parameters. Fixing the NKDSGE models and
changing the observed data rules out using the posterior odds ratio to conduct model evalua-
tion. Instead, Guerrón-Quintana engages impulse response functions and out-of-sample fore-
cast exercises to choose among the competing data sets. These evaluation tools reveal that the
posterior of a DSGE model is affected by the composition and size of the information sets used
in Bayesian MH-MCMC estimation, which is a signal of misspecification.

Identification of DSGE models has become a research frontier for Bayesian economet-
rics. We mention briefly several here. One approach is Müller (2010). He constructs statistics
that unwind the relative contributions of the prior and the likelihood to the posterior. These
statistics measure the “identification strength” of DSGE model parameters with respect to a spe-
cific prior. Koop, Pesaran, and Smith (2011) describe two methods that depend on computing
conditional and marginal posterior distributions for checking identification of DSGE models.
Another useful approach is found in Guerrón-Quintana, Inoue, and Kilian (2010). When DSGE
models are weakly identified (i.e., Bayesian posterior distribution cannot be viewed as frequen-
tist confidence sets), they advocate inverting the Bayes factor to construct confidence intervals
with good small sample properties. We return to these issues at the end of this chapter.

3 A Canonical New Keynesian DSGE Model

This section builds a canonical NKDSGE model inspired by the recent literature. The specifi-
cation of this NKDSGE model is similar to those estimated by Del Negro, Schorfheide, Smets,
and Wouters (2007), Smets and Wouters (2007) and Del Negro and Schorfheide (2008), who in
turn build on Smets and Wouters (2003) and Christiano, et al (2005).17 The main features of
the NKDSGE model are (a) the economy grows along a stochastic path, (b) prices and wages
are assumed to be sticky à la Calvo, (c) preferences display internal habit formation in con-
sumption, (d) investment is costly, and (e) there are five exogenous shocks. There are shocks
to the monopoly power of the final good firm, the disutility of work, government spending and
a shock to the growth rate of labor neutral total factor productivity (TFP). All of these shocks
are stationary AR(1)s. The fifth is a monetary policy shock embedded in a Taylor rule.

16Kim (2002), Chernozhukov and Hong (2003), and Sims (2007) give Bayesian treatments of GMM and other
limited information estimators.

17See the chapter in this handbook by P. Levine for a plethora of DSGE model specifications.
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3.1 Firms

There is a continuum of monopolistically competitive firms indexed by j ∈ [0,1]. A firm
produces an intermediate good using capital services, kj,t , and labor services, Lj,t , which are
rented in perfectly competitive markets. The production function of firm j is given by

Yj,t = kαj,t
(
ZtLj,t

)1−α − κZt, α ∈
(
0,1

)
, κ > 0,(3)

where Zt is labor neutral TFP common to all firms. The term κZt is removed from the output of
firm j to guarantee that steady state profits are zero as well as to generate the period-by-period
fixed cost needed to support monopolistic competition among intermediate goods firms. We
assume that the growth rate of the TFP shock, zt = ln (Zt/Zt−1), is an AR(1) process

zt =
(
1− ρz

)
γ + ρzzt−1 + σzεz,t.

This AR(1) is stationary around the deterministic TFP growth rate γ (> 0) because |ρz| < 1 and
the innovation of zt is time invariant and homoskedastic, εz,t ∼ NID(0,1) with σz > 0.18

Firm j chooses its price Pj,t to maximize the present value of profits subject to the
restriction that changes in their prices are time dependent. This form of price stickiness is
called Calvo pricing; see Yun (1996). At each date t, a fraction of the unit mass of firms are able
to update their price to its optimal level. The remaining firms update their prices by a fraction
of the economy-wide lagged inflation rate, πt−1. Inflation is defined as the growth rate of the
aggregate price level, πt = Pt/Pt−1 − 1. We posit that firms are able to revise their prices at
the exogenous probability 1− ζp every date t, while a firm not re-optimizing its price updates

according to the rule: Pj,t = (π∗)1−ıp (πt−1)ıp Pj,t−1, where π∗ is steady state inflation and
ıp ∈ [0,1]. This has firms indexing (the log) of their prices to inflation to a weighted average
of steady state inflation and lagged inflation, according to the weight ıp, in periods when re-
optimization is not allowed.

There is a competitive firm that produces the final good using intermediate goods aggre-
gated using the technology

Yt =
[∫ 1

0
Y

1/
(
1+λf ,t

)
j,t dj

]1+λf ,t
,

where λf,t is the time-varying degree of monopoly power (i.e., the stochastic price elasticity is
[1+ λf,t]/λf ,t). This monopoly power evolves according to the AR(1) process

lnλf,t =
(
1− ρλf

)
lnλf + ρλf lnλf,t−1 + σλf ελ,t,

where |ρλf | < 1, λf , σλf > 0, and ελ,t ∼ NID(0,1).
18A strictly positive deterministic growth term γ is also needed to have a well-defined steady state around which

we can linearize and solve the NKDSGE model.
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3.2 Households

The economy is populated by a continuum of households indexed by address i ∈ [0, 1]. House-
hold i derives utility over “net” consumption and the disutility of work.19 This relationship is
summarized by the period utility function

U
(
Ci,t, Ci,t−1, Li,t ;φt

)
= ln

(
Ci,t − hCi,t−1

)
− φt

L1+νl
i,t

1+ νl ,(4)

where Ci,t and Li,t are consumption and labor supply of household i, νl is the inverse of the
Frisch labor supply elasticity, andφt is an exogenous and stochastic preference shifter. Period
utility receives the flow of Ci,t net of a fraction h of Ci,t−1, which is the habit in consumption
displayed by preferences. Consumption habit is internal to households and governed by the
preference parameter h ∈ (0,1). The preference shifter follows the AR(1) process

lnφt =
(
1− ρφ

)
lnφ+ ρφ lnφt−1 + σφεφ,t,

with |ρφ| < 1, σφ > 0, and εφ,t ∼ NID(0,1).
Households are infinitely-lived. For household i, this means that it maximizes the ex-

pected present discounted value of period utility

Ei0

∞∑
t=0

βtU
(
Ci,t, Ci,t−1, Li,t ;φt

)
, β ∈ (0,1),(5)

subject to the budget constraint

PtCi,t + Pt
[
Ii,t + a(ui,t)Ki,t

]
+ Bi,t+1 = RKt ui,tKi,t +Wi,tLi,t +Rt−1Bi,t +Ai,t +Πt + Ti,t,(6)

and the law of motion of capital

Ki,t+1 = (1− δ)Ki,t + Ii,t
[

1− Γ ( Ii,t
Ii,t−1

)]
, δ ∈ (0,1),(7)

over uncertain streams of consumption, labor supply, capital intensity, ui,t , investment, Ii,t ,
capital, Ki,t+1, and 1-period government bonds, Bi,t+1. Here Eit is the expectation operator
conditional on the information set available to household i at time t; a(·) is the cost (in units
of the consumption good) household i generates when working Ki,t+1 at intensityui,t ; RKt is the
nominal rental rate of capital; Wi,t is the nominal wage household i charges for hiring out Li,t ;
Rt−1 is the gross nominal interest rate paid on Bi,t ; Ai,t captures net payments from complete
markets; Πt corresponds to profits from intermediate goods producers; Ti,t corresponds to
lump-sum transfers from the government to household i; and Γ(·) is a function reflecting
costs associated with adjusting the flow Ii,t into Ki,t+1. The function Γ(·) is assumed to be
increasing and convex satisfying Γ (γ∗) = Γ ′ (γ∗) = 0 and Γ ′′ (γ∗) > 0, where γ∗ ≡ exp(γ).
Also note that Kt ≡

∫
Ki,tdi is the aggregate stock of capital. Given ui,t is a choice variable for

household i, the nominal return on capital is RKt ui,tKi,t gross of the real cost a(ui,t). The cost
function a(·) satisfies the restrictions a(1) = 0, a′(1) > 0, and a′′(1) > 0.

19Agents in the economy are given access to complete insurance markets. This assumption is needed to eliminate
wealth differentials arising from wage heterogeneity.
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3.3 Staggered Nominal Wage Setting

Erceg et al. (2000) introduce Calvo staggered nominal wage setting into an NKDSGE model. We
adopt their approach. Assume that household i is a monopolistic supplier of a differentiated
labor service, Li,t . Households sell these labor services to a firm that aggregates labor and sells
it to final firms. This firm aggregates household labor services using the technology

Lt =
[∫ 1

0
L1/(1+λW )
i,t dj

]1+λW
, 0 < λW <∞

where the nominal wage elasticity is (1+ λW)/λW .
The role of this firm is to sell aggregate labor services, Lt , to intermediate goods firms in

a perfectly competitive market at the aggregate nominal wage, Wt . The relationship between
Lt , Li,t , Wi,t , and Wt is given by

Li,t =
[Wi,t
Wt

]−(1+λW )/λW
Lt.

We assume, as Erceg et al. (2000) did to induce wage sluggishness, that household i is allowed
to reset its nominal wage in a similar manner to the approach that intermediate goods firms are
forced to use to update the prices of their output. Calvo staggered nominal wage setting permits
households to re-optimize their labor market decisions at the fixed exogenous probability 1−ζW
during each date t. Households not allowed to reset their nominal wages optimally employ the
ruleWi,t = (π∗γ∗)1−ıW (πt−1 exp(zt−1))ıW Wi,t−1 to update, where ıW ∈ [0,1]. This rule indexes
(the log) of those nominal wages not being set optimally to a weighted average of steady state
inflation grossed up by the deterministic growth rate and lagged inflation grossed up by lagged
TFP growth, where ıW determines the weights.

3.4 The Government

As often in the new Keynesian literature, we assume a cashless economy; see Woodford (2003).
The monetary authority sets the short-term interest rate according to the Taylor rule used in
Del Negro et al. (2007) and Del Negro and Schorfheide (2008)

Rt
R∗

=
(
Rt−1

R∗

)ρR ⎡⎣( πt
π∗

)ψ1
(
Yt
Yτt

)ψ2
⎤⎦1−ρR

exp
(
σRεR,t

)
,(8)

whereR∗ (> 0) corresponds to the steady state gross nominal interest rate, steady state inflation
isπ∗, Yτt denotes the target level of output, εR,t is a random shock to the systematic component
of monetary policy, which is distributed NID(0,1), and σR (> 0) is the size of the monetary
shock. The Taylor rule has the central bank systematically smoothing its policy rate by ρR as
well as responding to deviations of πt from its steady state π∗, and of Yt from its target Yτt .

Finally, we assume that government spending is a time-varying fraction of output, Gt =(
1− 1/gt

)
Yt . The fraction is driven by the shock gt , which follows the AR(1) process

lngt =
(
1− ρg

)
lng∗ + ρg lngt−1 + σgεg,t,
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where |ρg| < 1, g∗, σg > 0, and εg,t ∼ NID(0,1). Although taxes and 1-period bonds are
notionally used to finance Gt , the government inhabits a Ricardian world such that along the
equilibrium path 1-period bonds are in zero net supply, Bt = 0, at all dates t. This forces
aggregate lump sum taxes, Tt , always to equal Gt (i.e., the primary surplus, Tt − Gt , is zero).

4 Preparing the NKDSGE Model for Estimation

The scale of the NKDSGE model suggests that it does not admit a closed-form solution. Hence,
we rely on linearization to obtain an approximate solution. The procedure consists of comput-
ing a first-order approximation of the NKDSGE model around its non-stochastic steady state.20

4.1 Stochastic Detrending

The productivity shock Zt is non-stationary (i.e., has a unit root). Since its growth rate, zt , is
stationary, the NKDSGE model grows along a stochastic path. We induce stationarity in the
NKDSGE model by dividing the levels of trending real variables Yt , Ct , It , and Kt by Zt . This
is the detrending step, where for example yt = Yt/Zt . The nominal wage Wt also needs to be
detrended after dividing it by the price level to obtain the detrended real wage,wt =Wt/ (PtZt).
To transform the nominal rental rate of capital into the real rate, divide by Pt , rkt = Rkt /Pt .

4.2 Linearization

We engage a first-order Taylor or linear approximation to solve the NKDSGE model. The linear
approximation is applied to the levels of the variables found in the nonlinear optimality and
equilibrium conditions of the NKDSGE model.21 The first step is to detrend the optimality and
equilibrium conditions. Consider the production function (3), which after detrending becomes

yj,t = kαj,tL
1−α
j,t − κ.

We avoid excessive notation by representing the original and detrended levels of capital in firm
j with kj . Denote ỹj,t as the deviation of output from its steady state, ỹj,t = yj,t − yj . Taking
a linear approximation of the previous expression gives

ỹj,t = αk̃j,t + (1−α) L̃j,t.

The approach is easily extended to the remaining equilibrium and optimality conditions. Del
Negro and Schorfheide (2008) present the complete set of linearized optimality and equilibrium
conditions of the NKDSGE model.
20A first-order approximation is sufficient for many macroeconomic applications. Otherwise, see Fernandez-

Villaverde et al. (2010, 2011) for tools to solve and estimate DSGE models with higher-order approximations.
21First-order approximations can also linearize many variables in logs rather than in levels
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4.3 Solution

Once the model has been detrended and linearized, the collection of its equilibrium conditions
can be cast as an expectational stochastic difference equation

Et
{
F
(
Nt+1, Nt, Xt+1, Xt

)}
= 0,(9)

where Xt and Nt are vectors of predetermined (states) and non-predetermined (controls) vari-
ables, respectively. These vectors include

Xt ≡
[
ỹt−1 c̃t−1 ĩt−1 k̃t w̃t−1 R̃t−1 π̃t−1 z̃t g̃t φ̃t λ̃f ,t

]′
and

Nt ≡
[
ỹt c̃t ĩt l̃t r̃ kt ũt w̃t π̃t, R̃t

]′
.

whose elements are deviations from their steady state values. Hence, finding the solution of the
model is tantamount to solving the system of linear stochastic difference equations (9). We rely
on a suite of programs developed by Stephanie Schmitt-Grohe and Martin Uribe to solve for the
linear approximate equilibrium decision rules of the state variables of the NKDSGE model.22

The solution of the NKDSGE model takes the form

Xt = ΠXt−1 + Φξt
Nt = ΨXt,(10)

where the first system of equations is the linear approximate equilibrium decision rules of the
state variables, the second set maps from the state variables to the control variables, Π, Φ, andΨ are matrices that are nonlinear functions of the structural parameters of the NKDSGE model,

and ξt is the vector of structural innovations,
[
εz,t ελ,t εφ,t εR,t εg,t

]′
.

5 Bayesian Estimation of the NKDSGE Model

This section presents the tools needed to generate Bayesian estimates of the linear approximate
NKDSGE model of the previous section. Bayesian estimation employs the Kalman filter to
construct the likelihood of the NKDSGE model. Next, priors for the NKDSGE model are reported
because the likelihood multiplied by the prior is proportional to the posterior according to
expression (1). We end this section by reviewing several details of the MH-MCMC simulator.

22These programs are available at http://www.columbia.edu/ mu2166/2nd_order.htm. Other examples of widely
used software to solve DSGE models are found in the Dynare and Iris software packages. This handbook includes
reviews of Dynare and Iris by J. Madeira and J. Beneš, respectively.
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5.1 The Kalman Filter and the Likelihood

A key step in Bayesian MH-MCMC estimation of a linearized NKDSGE model is evaluation of its
likelihood. A convenient tool to evaluate the likelihood of linear models is the Kalman filter.
The Kalman filter generates projections or forecasts of the state of the linear approximate
solution (10) of the NKDSGE model given an information set of observed macro time series.
Forecasts of these observables are also produced by the Kalman filter. The Kalman filter is
useful for evaluating the likelihood of a linearized NKDSGE model because the forecasts are
optimal within the class of all linear models. When shock innovations and the initial state of the
NKDSGE model are assumed to be Gaussian (i.e., normally distributed), the Kalman filter renders
forecasts that are optimal against all data-generating processes of the states and observables.
Another implication is that at date t the observables are normally distributed with mean and
variance that are functions of forecasts of the state of the linearized NKDSGE model and lagged
observables. Thus, the Kalman filter provides the building blocks of the likelihood of a linear
approximate NKDSGE model.

We describe the link between the solution of the linearized NKDSGE model with the
Kalman filter.23 Define the expanded vector of states as St =

[
N′t X

′
t

]′
. Using this definition,

the state space representation of the NKDSGE model consists of the system of state equations

St = FSt−1 +Qξt, ξt ∼NID
(
0, Im

)
,(11.1)

and the system of observation equations

Yt = M+HSt + ξu,t, ξu,t ∼NID
(
0, Σu).(11.2)

Here, Yt corresponds to the vector of observables at time t; F and Q are functions of the ma-
trices Π, Φ, and Ψ ; the matrix H, which contains zeros and ones, relates the model’s definitions
with the data; M is a vector required to match the means of the observed data; and ξu,t is a
vector of measurement errors. Assume the vector of observables and the vector of states have
dimensionsm andn, respectively. Also, define St|t−1 as the conditional forecast or expectation
of St given {S1, . . . ,St−1}, or St|t−1 ≡ E [St|S1, . . . ,St−1]. Its mean square error or covariance

matrix is Pt|t−1 ≡ E
[(
St − St−1

) (
St − St−1

)′]
.

The likelihood of the linearized NKDSGE model is built up by generating forecasts from
the state space system (11.1) and (11.2) period-by-period

L
(
YT
∣∣∣Θ) = T∏

t=1

L
(
Yt
∣∣∣Yt−1,Θ) ,(12)

where L (Yt|Yt−1,Θ) is the likelihood conditional on the information available up to date t−1
and to be clear Yt−1 ≡ {Y0, . . . ,Yt−1}. The Kalman filter computes this likelihood using the
following steps:

23See Anderson and Moore (2005) for more information on linear filtering and Harvey (1989) for details on the
Kalman filter and likelihood-based estimation.
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1. Set S1|0 = 0 and P1|0 = FP0|0 F + Q′, Q′ = QQ′.24

2. Compute Y1|0 = H′S1|0 = 0, Ω1|0 = E
([
Y1 − Y1|0

] [
Y1 − Y1|0

]′) = H′ P1|0 H + Σu.

3. The predictions made in Steps 1 and 2 produce the date 1 likelihood:

L
(
Y1

∣∣∣Θ) = (2π)−m/2
∣∣∣Ω−1

1|0
∣∣∣1/2

exp
[
−1

2

(
Y
′
1Ω−1

1|0Y1

)]
.

4. Next, update the date 1 forecasts:

S1|1 = S1|0 + P1|0HΩ−1
1|0
(
Y1 −Y1|0

)
,

P1|1 = P1|0 − P1|0HΩ−1
1|0H

′P1|0.

5. Repeat steps 2, 3, and 4 to generate Kalman filter predictions of St and Yt :

St|t−1 = FSt−1Pt|t−1,

Pt|t−1 = FPt−1|t−1F′ + Q′,

Yt|t−1 = H′St|t−1,

Ωt|t−1 = E
[(
Yt −Yt|t−1

) (
Yt −Yt|t−1

)′] = H′Pt|t−1H+ Σu,
the likelihood,

L
(
Yt
∣∣∣Yt−1, Θ) = (2π)−m/2

∣∣∣Ω−1
t|t−1

∣∣∣1/2
exp

[
−1

2

(
Yt −Yt|t−1

)′Ω−1
t|t−1

(
Yt −Yt|t−1

)]
and the updates of the state vector and its mean square error matrix

St|t = St|t−1 + Pt|t−1HΩ−1
t|t−1

(
Yt −Yt|t−1

)
,

Pt|t = Pt|t−1 − Pt|t−1HΩ−1
t|t−1H

′Pt|t−1.

for t = 2, . . . , T .

The likelihoods,L(Y1|Θ),L(Y2|Y1, Θ),L(Y3|Y2, Θ), . . . ,L(YT−1|YT−2, Θ), andL(YT |YT−1, Θ),
computed at Steps 2 and 5 are used to build up the likelihood function (12) of the linearized
NKDSGE model.
24Let ΣS be the unconditional covariance matrix of S. The state equations (11.1) imply ΣS = FΣSF′ + Q′. Its

solution is vec(ΣS) = [In − F ⊗ F]−1 vec(Q′), where vec(ABC) = (C′ ⊗ A) vec(B), which in turn sets P0|0 =
vec(ΣS).
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5.2 Priors

Our priors are borrowed from Del Negro and Schorfheide (2008). They construct priors by
separating the NKDSGE model parameters into three sets. Their first set consists of those
parameters that define the steady state of the NKDSGE model; see table 2 of Del Negro and
Schorfheide (2008, p. 1201). The steady state, which as Hall (1996) shows ties the steady state
of the NKDSGE model to the unconditional first moments of YT , has no effect on the mecha-
nism that endogenously propagates exogenous shocks. This mechanism relies on preferences,
technologies, and market structure. The parameters of these primitives of the NKDSGE model
are included in the second set of priors. Along with technology, preference, and market struc-
ture parameters, Del Negro and Schorfheide add parameters of the Taylor rule (8) to this set;
see the agnostic sticky price and wage priors of tables 1 and 2 of Del Negro and Schorfheide
(2008, pp. 1200–1201). The third set of parameters consist of AR1 coefficients and standard
deviations of the exogenous shocks; see table 3 of Del Negro and Schorfheide (2008, p. 1201).

We divide the parameter vector Θ into two parts to start. The 25 × 1 column vector

Θ1 =
[
ζp π∗ ıp h νl a′′ Γ ′′ λW ζW ıW R∗ ρR ψ1 ψ2 γ λf ρz ρφ ρλf ρg σz σφ σλf σg σR

]′
,

contains the parameters of economic interest, which are to be estimated, in the order in which
they appear in section 3. Under the Del Negro and Schorfheide (2008) prior rubric, the elements
of Θ1 are grouped into the steady state parameter vector

Θ1,ss =
[
π∗ γ λf λW R∗

]′
,

the parameters tied to endogenous propagation in the NKDSGE model

Θ1,prop =
[
ζp ıp h νl a′′ Γ ′′ ζW ıW ρR ψ1 ψ2

]′
,

and

Θ1,exog =
[
ρz ρφ ρλf ρg σz σφ σλf σg σR

]′
.

contains the slope coefficients and standard deviations of the exogenous AR(1) shocks that are
the source of fluctuations in the NKDSGE model.

Table 1 lists priors for Θ1,ss , Θ1,prop, and Θ1,exog . We draw priors for Θ1 from normal,
beta, gamma, and inverse gamma distributions; see Del Negro and Schorfheide (2008) for de-
tails. The priors are summarized by the distribution from which we draw, the parameters of
the distribution, and implied 95 percent probability intervals.

Our choices reflect, in part, a desire to elicit priors on Θ1 that are easy to understand.
For example, π∗ is endowed with a normally distributed prior. Its mean is 4.3 percent, which
is less than twice its standard deviation giving a 95 percent probability interval running from
nearly −1 percent to more than 9 percent. Thus, the prior reveals the extent of the uncertainty
that surrounds steady state inflation.
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The beta distribution is useful because it restricts priors on NKDSGE model parameters
to the open unit interval. This motivates drawing the sticky price and wage parameter, ζp, ıp,
ζW , and ıW , the consumption habit parameters, h, and the AR1 parameters, ρR, ρz, ρφ, ρλf ,
and ρg , from the beta distribution. The means and standard deviations of the priors display
our uncertainty about these NKDSGE model parameters. For example, the prior on h indicates
less uncertainty about it than is placed on the priors for ζp, ıp, ζW , and ıW (i.e., the ratio of
the mean to the standard deviation of the priors of these parameters is less than three, while
the same ratio for the prior of h is 14). This gives larger intervals on which to draw the sticky
price and wage parameters than on h. Also, the prior 95 percent probability interval of h is in
the range that Kano and Nason (2010) show to be relevant for consumption habit to generate
business cycle fluctuations in similar NKDSGE models.

The AR1 coefficients also rely on the beta distribution for priors. The prior on ρR suggests
a 95 percent probability interval of draws that range from 0.22 to 0.73. At the upper end of this
range, the Taylor rule is smoothing the policy rate Rt . This interval has the same length but is
shifted to the left for ρz, which endows the technology growth prior with less persistence. The
taste, monopoly power, and government spending shocks exhibit more persistence with AR1
coefficients priors lying between 0.5 and 0.95.

The gamma distribution is applied to NKDSGE model parameters that only require priors
that rule out non-negative draws or impose a lower bound. The former restriction describes
the use of the gamma distribution for priors on the goods and labor market monopoly power
parameters, λf and λW , the capital utilization parameter, a′′, and the Taylor rule parameter on
output, ψ2. A lower bound is placed on the prior of the deterministic growth of technology,
γ, the mean policy rate R∗, the labor supply parameter, νl, the investment cost parameter,Γ ′′, and the Taylor rule parameter on inflation, ψ1. The prior on ψ1 is set to obey the Taylor
principle that Rt rises by more than the increase in πt net of π∗. This contrasts with the prior
on ψ2 that suggests a smaller response of Rt to the output gap, Yt − Yτt , but this response is
non-zero.

The priors on the standard deviations of the exogenous shocks are drawn from inverse-
gamma distributions. This distribution has support on an open interval that excludes zero and
is unbounded. This allows σz, σλf , σg , and σR to have priors with 95 percent probability inter-
vals with lower bounds near zero and large upper bounds. These priors show the uncertainty
held about these elements of the exogenous shock processes of the NKDSGE model. The same
is true for the prior on σφ, but its scale parameter has a 95 percent probability interval that
exhibits more uncertainty as it is shifted to the right especially for the upper bound.

The remaining parameters are necessary to solve the linearized NKDSGE model but are
problematic for estimation. The fixed or calibrated parameters are collected into

Θ2 =
[
α δ g∗ LA κ

]′
.

The calibration of Θ2 results in

[
α δ g∗ LA κ

]′ = [
0.33 0.025 0.22 1.0 0.0

]′
.
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Although these values are standard choices in the DSGE literature, some clarification is in
order. As in Del Negro and Schorfheide (2008), our parametrization imposes the constraint
that firms make zero profits in the steady state. We also assume that households work one
unit of time in steady state. This assumption implies that the parameter φ, the mean of the
taste shock φt , is endogenously determined by the optimality conditions in the model. This
restriction on steady state hours worked in the NKDSGE model differs from the sample mean
of hours worked. We deal with this mismatch by augmenting the measurement equation in the
state space representation with a constant or “add-factor” that forces the theoretical mean of
hours worked to match the sample mean; see Del Negro and Schorfheide (2008, p. 1197). This
amounts to adding LA to the log likelihood of the linearized NKDSGE model

lnL
(
YT
∣∣∣Θ1; Θ2

)
+ lnLA.

Also, rather than imposing priors on the great ratios, C∗/Y∗, I∗/K∗, K∗/Y∗, and G∗/Y∗, we
fix the capital share, α, the depreciation rate, δ, and the share of government expenditure, g∗.
This follows well established practices that pre-date Bayesian estimation of NKDSGE models.

5.3 Useful Information about the MH-MCMC Simulator

The posterior distribution of the NKDSGE model parameters in Θ1 is characterized using the
MH-MCMC algorithm. The MH-MCMC algorithm is started up with an initial Θ1. This parameter
vector is passed to the Kalman filter routines described in section 5.1 to obtain an estimate of
L(YT |Θ1; Θ2). Next, the initial Θ1 is updated according to the MH random walk law of motion.
Inputing the proposed update of Θ1 into the Kalman filter produces a second estimate of the
likelihood of the linear approximate NKDSGE model. The MH decision rule determines whether
the initial or proposed update of Θ1 and the associated likelihood is carried forward to the next
step of the MH algorithm. Given this choice, the next step of the MH algorithm is to obtain a new
proposed update of Θ1 using the random walk law of motion and to generate an estimate of the
likelihood at these estimates. This likelihood is compared to the likelihood carried over from
the previous MH step using the MH decision rule to select the likelihood and Θ1 for the next
MH step. This process is repeatedH times to generate the posterior of the linear approximate
NKDSGE model, P(Θ1|YT ; Θ2).

We summarize this description of the MH-MCMC algorithm with

1. Label the vector of NKDSGE model parameters chosen to initialize the MH algorithm Θ̂1,0.

2. Pass Θ̂1,0 to the Kalman filter routines described in section 5.2 to generate an initial esti-

mate of the likelihood of the linear approximate NKDSGE model, L
(
YT
∣∣∣Θ̂1,0; Θ2

)
.

3. A proposed update of Θ̂1,0 is Θ1,1 which is generated using the MH random walk law of

motion, Θ1,1 = Θ̂1,0 + �ϑε1, ε1 ∼ NID
(
0d, Id

)
, where � is a scalar that controls the

size of the “jump” of the proposed MH random walk update, ϑ is the Cholesky decom-
position of the covariance matrix of Θ1, and d (= 25) is the dimension of Θ1. Obtain

L
(
YT
∣∣∣Θ1,1; Θ2

)
by running the Kalman filter using Θ1,1 as input.
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4. The MH algorithm employs a two-stage procedure to decide whether to keep the initialΘ̂1,0 or move to the updated proposal Θ1,1. First, calculate

ω1 = min

⎧⎨⎩L
(
YT
∣∣∣Θ1,1; Θ2

)
P
(Θ1,1

)
L
(
YT
∣∣∣Θ̂1,0; Θ2

)
P
(Θ̂1,0

) , 1

⎫⎬⎭ ,
where, for example, P

(Θ1,1
)

is the prior at Θ1,1. The second stage begins by drawing a

uniform random variable ϕ1 ∼ U(0,1) to set Θ̂1,1 = Θ1,1 and the counter ℘ = 1 if ϕ1 ≤
ω1, otherwise Θ̂1,1 = Θ̂1,0 and ℘ = 0.

5. Repeat steps 3 and 4 for � = 2, 3, . . . ,H using the MH random walk law of motion

Θ1,� = Θ̂1,�−1 +�ϑε�, ε� ∼ NID
(
0d×1, Id

)
,(13)

and drawing the uniform random variable ϕ� ∼ U(0,1) to test against

ω� = min

⎧⎨⎩ L
(
YT
∣∣∣Θ1,�; Θ2

)
P
(Θ1,�

)
L
(
YT
∣∣∣Θ̂1,�−1; Θ2

)
P
(Θ̂1,�−1

) , 1

⎫⎬⎭ ,
for equating Θ̂1,� to either Θ1,� or Θ̂1,�−1. The latter implies that the counter is updated
according to ℘ = ℘ + 0, while the former has ℘ = ℘ + 1.

Steps 1–5 of the MH-MCMC algorithm produce the posterior, P(Θ̂1|YT ; Θ2), of the linear ap-

proximate NKDSGE model by drawing from
{Θ̂1,�

}H
�=1

. Note that in Steps 4 and 5 the decision

to accept the updated proposal, ϕ� ≤ω�, is akin to moving to a higher point on the likelihood
surface.

There are several more issues that have to be resolved to run the MH-MCMC algorithm to
create P(Θ̂1|YT ; Θ2). Among these are obtaining an Θ̂1,0 to initialize the MH-MCMC, computing
ϑ, determiningH , fixing� to achieve the optimal acceptance rate for the proposalΘ1,� of℘/H ,
and checking that the MH-MCMC simulator has converged.25

Step 1 of the MH-MCMC algorithm leaves open the procedure for setting Θ̂1,0. We employ
classical optimization methods and an MH-MCMC “burn-in” stage to obtain Θ̂1,0. First, a classi-
cal optimizer is applied repeatedly to the likelihood of the linear approximate NKDSGE model
with initial conditions found by sampling 100 times from P(Θ1).26 These estimates yield the
mode of the posterior distribution of Θ1 that we identify as initial conditions for a “burn-in”
stage of the MH-MCMC algorithm. The point of this burn-in of the MH-MCMC algorithm is to

25Gelman et al (2004, pp 305–307) discuss rules for the MH-MCMC simulator that improve the efficiency of the
law of motion (13) to give acceptance rates that are optimal.

26Chris Sims is responsible for the optimizer software that we use. The optimizer is csminwel and available at
http://sims.princeton.edu/yftp/optimize/.
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remove dependence of P(Θ̂1|YT ; Θ2) on the initial condition Θ̂1,0. Drawing Θ̂1,0 from a distri-
bution that resembles P(Θ̂1|YT ; Θ2) eliminates this dependence. Next, 10,000 MH steps are
run with � = 1 and ϑ = Id to complete the burn-in stage. The final MH step of the burn-in
gives Θ̂1,0 to initialize the H steps of the final stage of the MH-MCMC algorithm. The 10,000
estimates of Θ1 generated during the MH burn-in steps are used to construct an empirical es-
timate of the covariance matrix ϑϑ′. The Cholesky decomposition of this covariance matrix is
the source of ϑ needed for the MH law of motion (13).

The scale of the “jump” from Θ1,� to Θ̂1,�−1 determines the speed at which the proposalsΘ1,� converge to P(Θ̂1|YT ; Θ2) within the MH-MCMC simulator. The speed of convergence is
sensitive to� as well as toH . The number of steps of the final stage of the MH-MCMC simulator
has to be sufficient to allow for convergence. We obtainH = 300,000 draws from the posterior
P(Θ̂1|YT ; Θ2), but note that for larger and richer NKDSGE models the total number of draws
is often many times larger. Nonetheless, the choice of the scalar � is key for controlling
the speed of convergence of the MH-MCMC. Although Gelman et al (2004) recommend that
greatest efficiency of the MH law of motion (13) is found with � = 2.4/

√
d, we set � to drive

the acceptance rate ℘/H ∈ [0.23, 0.30].27

It is standard practice to test to check the convergence of the MH-MCMC simulator, be-
sides requiring ℘/H to 0.23. Information about convergence of the MH-MCMC simulator is
provided by the R̂ statistic of Gelman et al. (2004, pp. 269–267). This statistic compares the

variances of the elements within the sequence of
{Θ̂1,�

}M
�=1

to the variance across several se-

quences produced by the MH-MCMC simulator given different initial conditions. These different
initial conditions are produced using the same methods already described with one exception.
The initial condition for the burn-in stage of the MH-MCMC algorithm is typically set at the next
largest mode of the posterior distribution obtained by applying the classical optimizer to the
likelihood of the linear approximate NKSDSGE model. This process is often repeated three to
five times. Gelman et al. (2004) suggest that R̂ < 1.1 for each element of Θ̂1. If not, across the
posteriors of the MH-MCMC chains there is excessive variation relative to the variance within the
sequences. When R̂ is large, Gelman et al propose increasing H until convergence is achieved
as witnessed by R̂ < 1.1.28

6 Results

This section describes the data and reports the results of estimating the linear approximate
NKDSGE model using the Bayesian procedures of the previous section.

6.1 Data

We follow Del Negro and Schorfheide (2008) in estimating the NKDSGE model given five aggre-
gate U.S. variables. The observables are per capita output growth, per capita hours worked,

27This involves an iterative process of running the MH-MCMC simulator to calibrate � to reach the desired
acceptance rate.

28Geweke (2005) advocates a convergence test examining the serial correlation within the sequence of each ele-
ment of Θ̂1,�, � = 1, . . . ,H .
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labor share, inflation, and the nominal interest rate on the 1982Q1–2009Q4 sample. Thus,
Bayesian estimates of the NKDSGE model parameters are conditional on the information set

Yt =
[
400Δ lnYt 100 lnLt 100 ln

WtLt
PtYt

400πt 400 lnRt
]′
,

whereΔ is the first difference operator. Per capita output growth, labor share, inflation, and the
nominal interest rate are multiplied to obtain data that are annualized, which is consistent with
the measurement of per capita hours worked, and in percentages. Real GDP is divided by pop-
ulation (16 years and older) to create per capita output. Hours worked is a series constructed
by Del Negro and Schorfheide (2008) that we extend several more quarters. They interpolate
annual observations on aggregate hours worked in the U.S. into the quarterly frequency using
the growth rate of an index of hours of all persons in the nonfarm business sector. Labor share
equals the ratio of total compensation of employees to nominal GDP. Inflation is equated to the
(chained) GDP deflator. The effective federal funds rate defines the nominal interest rate.29

6.2 Posterior Estimates

Table 2 contains summary statistics of the posterior distributions of two NKDSGE models. We
include posterior medians, modes, and 95 percent probability intervals of the NKDSGE model
parameters in table 2. Estimates of the NKDSGE model labeled M1 are grounded in the priors
that appear in table 1 and discussed in section 5.2. We also estimate an NKDSGE model that
fixes ıp at zero, which defines the weights on π∗ and πt−1 in the indexation rule used by firms
unable to update their prices at any date t. This NKDSGE model is labeled M2. The motivation
for estimating M2 is that table 6 of Del Negro and Schorfheide (2008, p. 1206) has 90 percent
probability intervals for ıp with a lower bound of zero for all but one of their priors.

We obtain similar estimates for Θ1,prop across M1 and M2 as listed in the middle panel
of table 2, except for ıp. The posterior distributions of these models indicate substantial con-
sumption habit, h ∈ (0.73, 0.87), a large Frisch labor supply elasticity, ν−1

l ∈ (0.56, 1.39), costly
capital utilization, a′′ ∈ (0.11, 0.46), investment costs of adjustments, Γ ′′ ∈ (6.9, 14.2), sticky
prices, ζp ∈ (0.58, 0.74), nominal wage indexation, ıW ∈ (0.22, 0.82), and interest rate smooth-
ing by a monetary authority, ρR ∈ (0.74, 0.82), that satisfies the Taylor principle, ψ1 ∈ (2.14,
2.90). These estimates show which elements of the NKDSGE models interact endogenously
to replicate fluctuations found YT . These estimates are also in the range often found in the
existing literature; for example, see Del Negro and Schorfheide (2008).

Sticky nominal wages, price indexation, and the monetary authority’s response to devia-
tions of output from its target appear to matter less for generating endogenous propagation in
the NKDSGE models. The 95 percent probability interval of ıp has a lower bound of 0.006 in the
posterior distribution of M1. For M1 and M2, the estimates of ζW and ψ2 are also relatively

29The data are available at http://research.stlouisfed.org/fred2/. This website, which is maintained by the Federal
Reserve Bank of St. Louis, contains data produced by the Bureau of Economic Analysis (BEA), the Bureau of
Labor Statistics (BLS), and the Board of Governors of the Federal Reserve System (BofG). The BEA compiles real
GDP, annual aggregate hours worked, total compensation of employees, nominal GDP, and the chained GDP
deflator. The BLS provides the population series and the index of hours of all persons in the nonfarm business
sector. The effective federal funds rate is collected by the BofG.
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small. Thus, sticky prices and nominal wage indexation, not sticky nominal wages and price
indexation, matter for endogenous propagation in M1 and M2 given YT and our priors.

Estimates of Θ1,exog show that exogenous propagation matters for creating fluctuations
in the posterior distributions of M1 and M2. The bottom panel of table 2 shows that the taste
shock φt , the goods market monopoly power shock λf , and the government spending shock
gt are persistent. In M1 and M2, the half-life of a structural innovation to these shocks are
about seven quarters for λf and 11 quarters for φt and gt at the medians and modes of ρλf ,

ρφ, and ρg , respectively.30 The NKDSGEM1 andM2 yield estimates of ρz that signal much less
persistence. Estimates of ρz ∈ (0.23, 0.47) surround estimates of the unconditional first-order
autocorrelation coefficient of U.S. output growth; see Cogley and Nason (1995). Further, M1

and M2 produce posterior distributions in which the lower end of the 95 percent probability
intervals of ρz suggests little or no persistence in zt .

Exogenous shock volatility contributes to M1 and M2 replicating variation in YT . The
scale parameters σφ and σλf matter most for this aspect of the fit of the NKDSGE models.
Estimates of these elements of Θ1,exog are 2.5 to more than 9 times larger than estimates of
σz and σg . When σR is included in this comparison, it reveals that exogenous variation in
monetary policy matters less for M1 and M2 to explain variation in YT . Thus, M1 and M2

attribute the sources of business cycle fluctuations more to taste and goods market monopoly
power shocks than to TFP growth, government spending, or monetary policy shocks.

The top panel of table 2 displays estimates of Θ1,ss that are nearly identical across M1

and M2. These estimates indicate that the posterior distributions of these NKDSGE models
place a 95 percent probability that steady state inflation in the U.S. was as low as 2.1 percent
and just a little more than 3.5 percent.31 There is greater precision in the posterior estimates
of γ. Deterministic TFP growth is estimated to range from 2.85 to 3 percent per annum with a
95 percent probability interval according toM1 andM2. In contrast, the 95 percent probability
intervals of R∗ are shifted slightly to the left of the ones shown forπ∗. These estimates suggest
the NKDSGE models M1 and M2 predict steady state real interest rates near zero.

Del Negro and Schorfheide (2008) report estimates of price and wage stickiness that
often differ from those ofM1 andM2. For example, the middle panel of table 2 shows that the
median degree of price stickiness yields a frequency (i.e., 1/[1 - ζp]) at which the firms of M1

andM2 change prices about once every two to three quarters. Del Negro and Schorfheide obtain
estimates of ζp that imply an almost identical frequency of price changes for only three of the
six priors they use. Notably, when they adopt priors with greater price stickiness, posterior
estimates have firms changing prices as infrequently as once every 10 quarters on average.

Nominal wages exhibit less rigidity in the posterior distributions of M1 and M2. The 95
percent probability intervals of ζW range from 0.07 to 0.27. This indicates that the households
of M1 and M2 change their nominal wages no more than every other quarter. However, at the
posterior median and modes of ıW , those households unable to optimally adjust their nominal
wages depend in about equal parts on π∗, γ∗, πt−1, and zt−1 when updating to Wi,t−1. In
comparison, the posterior of M1 shows that firms unable to reset their prices optimally rely
almost entirely on πt−1 and not π∗ when updating because the 95 percent probability interval
of ıp ∈ (0.0, 0.2). The lower end of this interval is near the restriction imposed on ıp by M2.

30The half-life estimates are computed as ln 0.5/ lnρs , s = φ, λf , and g.
31The posterior probability interval differs from a frequentist confidence band. The latter holds the relevant

parameter fixed and depends only on data, while the former is conditional on the model, priors, and data.
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The marginal likelihoods of M1 and M2 give evidence about which NKDSGE model is
preferred by YT . The Bayes factor (2) is employed to gauge the relative merits of M1 and M2.
We adopt methods described in Geweke (1999, 2005) to integrate or marginalize Θ̂1 out of
L(YT |Θ̂1,Mj ; Θ2), j = 1, 2; also see and Chib and Jeliazkov (2001).32 The top of table 2 lists
the log marginal likelihoods of M1 and M2. The Bayes factor of the marginal likelihoods of
M1 and M2 is 2.23. According to Jeffreys (1998), a Bayes factor of this size shows that YT ’s
preference for M2 over M1 is “barely worth mentioning.”33 Thus, the marginal likelihoods of
M1 and M2 provide evidence that, although YT support ıp = 0, the evidence in favor of this
restriction is not sufficient for an econometrician with the priors displayed in table 1 to ignore
M1, say, for conducting policy analysis.

7 Conclusion

This article surveys Bayesian methods for estimating NKDSGE models with the goal of raising
the use of these empirical tools. We give an outline of an NKDSGE model to develop intuition
about the mechanisms it has to transmit exogenous shocks into endogenous business cycle
fluctuations. Studying the sources and causes of these propagation mechanisms requires us to
review the operations needed to detrend its optimality and equilibrium conditions, a technique
to construct a linear approximation of the model, a strategy to solve for its linear approximate
decision rules, and the mapping from this solution into a state space model that can produce
Kalman filter projections and the likelihood of the linear approximate NKDSGE model. The
projections and likelihood are useful inputs into the MH-MCMC simulator. Since the source of
Bayesian estimates of the NKDSGE model is the MH-MCMC simulator, we present an algorithm
that implements it. This algorithm relies on our priors of the NKDSGE model parameters and
setting initial conditions for the simulator. We employ the simulator to generate posterior
distributions of two NKDSGE models. These posterior distributions yield summary statistics
of the Bayesian estimates of the NKDSGE model parameters that are compared to results in the
extant literature. These posterior distributions are needed as well to address the question of
which NKDSGE models is most favored by the data. We also provide a short history of DSGE
model estimation as well as pointing to issues that are at the frontier of this research.

We describe Bayesian methods in this article that are valuable because DSGE models are
useful tools for understanding the sources and causes of business cycles and for conducting
policy evaluation. This article supplies empirical exercises in which NKDSGE models are esti-
mated and evaluated using data and priors that are standard in the published literature. Thus,
it is no surprise that our estimates of the NKDSGE models resemble estimates found in the
published literature. Although comforting, the similarity in estimates raises questions about
whether the data are truly informative about the NKDSGE models or if posterior distributions of
the NKDSGE models are dominated by our priors. Also, little is known about the impact of mis-
specification on the relationship between data, priors, and posterior distributions of NKDSGE
models. We hope this article acts as a foundation supporting future research on these issues.

32Geweke advises computing the marginal likelihood with a harmonic mean estimator along with several refine-
ments that he proposes. Useful instructions for computing marginal likelihoods along these lines are provided
by Fernández-Villaverde and Rubio-Ramírez (2004, pp. 169–170).

33The Bayes factor needs to exceed odds of 3 to 1 before there is “substantial” evidence against M2.
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Table 1. Priors of NKDSGE Model Parameter

Steady State Parameters: Θ1,ss
Priors Probability

Distribution A1 A2 intervals, 95%
π∗ Normal 4.30 2.50 [−0.600, 9.200]
γ Gamma 1.65 1.00 [0.304, 3.651]
λf Gamma 0.15 0.10 [0.022, 0.343]
λW Gamma 0.15 0.10 [0.022, 0.343]
R∗ Gamma 1.50 1.00 [0.216, 3.430]

Endogenous Propagation Parameters: Θ1,prop
Priors Probability

Distribution A1 A2 intervals, 95%
ζp Beta 0.60 0.20 [0.284, 0.842]
ıp Beta 0.50 0.28 [0.132, 0.825]
h Beta 0.70 0.05 [0.615, 0.767]
νl Gamma 2.00 0.75 [0.520, 3.372]
a′′ Gamma 0.20 0.10 [0.024, 0.388]Γ ′′ Gamma 4.00 1.50 [1.623, 6.743]
ζW Beta 0.60 0.20 [0.284, 0.842]
ıW Beta 0.50 0.28 [0.132, 0.825]
ρR Beta 0.50 0.20 [0.229, 0.733]
ψ1 Gamma 2.00 0.25 [1.540, 2.428]
ψ2 Gamma 0.20 0.10 [0.024, 0.388]

Exogenous Propagation Parameters: Θ1,exog
Priors Probability

Distribution A1 A2 intervals, 95%
ρz Beta 0.40 0.25 [0.122, 0.674]
ρφ Beta 0.75 0.15 [0.458, 0.950]
ρλf Beta 0.75 0.15 [0.458, 0.950]
ρg Beta 0.75 0.15 [0.458, 0.950]
σz Inv-Gamma 0.30 4.00 [0.000, 7.601]
σφ Inv-Gamma 3.00 4.00 [2.475, 28.899]
σλf Inv-Gamma 0.20 4.00 [0.000, 6.044]
σg Inv-Gamma 0.50 4.00 [0.002, 10.048]
σR Inv-Gamma 0.20 4.00 [0.000, 6.044]

Columns headedA1 andA2 contain the means and standard deviations of the beta, gamma, and normal

distributions. For the inverse-gamma distribution, A1 and A2 denote scale and shape coefficients.
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Table 2. Summary of Posterior Distributions of the NKDSGE Models

Sample: 1982Q1–2009Q4

ln Marginal Likelihoods
M1 = −39.49 M2(ıp = 0) = −38.69

Steady State Parameters: Θ1,ss
Posterior Probability Posterior Probability

medians modes intervals, 95% medians modes intervals, 95%
π∗ 2.822 2.831 [2.133, 3.635] 2.804 2.551 [2.116, 3.559]
γ 1.771 1.766 [1.206, 2.356] 1.773 2.109 [1.191, 2.409]
λf 0.178 0.178 [0.160, 0.216] 0.177 0.176 [0.160, 0.211]
λW 0.215 0.159 [0.086, 0.458] 0.225 0.274 [0.090, 0.473]
R∗ 2.629 2.705 [2.014, 3.242] 2.622 1.915 [2.001, 3.229]

Endogenous Propagation Parameters: Θ1,prop
Posterior Probability Posterior Probability

medians modes intervals, 95% medians modes intervals, 95%
ζp 0.656 0.653 [0.578, 0.734] 0.673 0.725 [0.600, 0.743]
ıp 0.059 0.007 [0.006, 0.215] NA NA NA
h 0.814 0.825 [0.729, 0.872] 0.816 0.830 [0.736, 0.873]
νl 1.157 1.003 [0.717, 1.773] 1.156 1.074 [0.720, 1.787]
a′′ 0.241 0.198 [0.112, 0.459] 0.238 0.249 [0.109, 0.462]Γ ′′ 10.05 10.14 [6.948, 13.88] 10.13 13.90 [7.029, 14.18]
ζW 0.153 0.113 [0.072, 0.270] 0.154 0.180 [0.076, 0.270]
ıW 0.461 0.514 [0.228, 0.818] 0.467 0.427 [0.224, 0.803]
ρR 0.787 0.780 [0.742, 0.823] 0.784 0.780 [0.739, 0.822]
ψ1 2.513 2.514 [2.161, 2.902] 2.503 2.356 [2.138, 2.897]
ψ2 0.055 0.052 [0.025, 0.093] 0.053 0.078 [0.024, 0.093]

Exogenous Propagation Parameters: Θ1,exog
Posterior Probability Posterior Probability

medians modes intervals, 95% medians modes intervals, 95%
ρz 0.256 0.226 [0.080, 0.454] 0.257 0.228 [0.077, 0.469]
ρφ 0.936 0.934 [0.875, 0.976] 0.936 0.963 [0.878, 0.977]
ρλf 0.915 0.921 [0.797, 0.974] 0.912 0.909 [0.804, 0.971]
ρg 0.944 0.944 [0.906, 0.975] 0.944 0.937 [0.906, 0.975]
σz 0.739 0.722 [0.659, 0.839] 0.741 0.732 [0.660, 0.846]
σφ 2.259 1.945 [1.741, 3.224] 2.239 2.133 [1.732, 3.154]
σλf 6.639 6.174 [4.987, 9.624] 6.798 8.474 [5.114, 9.822]
σg 0.772 0.757 [0.678, 0.889] 0.772 0.759 [0.679, 0.885]
σR 0.195 0.193 [0.170, 0.225] 0.196 0.203 [0.172, 0.226]
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