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1 Introduction

We study the existence of pure strategy Markov perfect equilibria in two-

person perfect information games. There is a state space X and each period

player’s possible actions are a subset of X . This set of feasible actions de-

pends on the current state, which is determined by the choice of the other

player in the previous period. We assume that X is a compact Hausdorff

space and that action correspondence has an acyclic and asymmetric graph.

For some states there may be no feasible actions and then the game ends.

Payoffs are either discounted sums of utilities of the states visited, or the

utility of the state where the game ends. We give sufficient conditions for

the existence of equilibrium when either feasible action sets are finite or when

players’ payoffs are continuously dependent on each other. The latter class

of games includes zero-sum games and pure coordination games.

Given an initial state x0 ∈ X , player i0 starts the game by choosing some

action x1 from the set A(x0) of feasible actions. After that his opponent

chooses an action from A(x1), and so on. Hence given an initial state x0 and

a first mover i0, we have a perfect information extensive form game. A (pure)

Markov strategy of player i selects one feasible action to each state (whenever

there are feasible actions). In a Markov perfect equilibrium (MPE), player’s

Markov strategy is a best reply against the Markov strategy of the opponent.

We find Markov equilibrium attractive as a solution concept. It is simple

and usually easy to interpret. Here we discuss the existence of such equilib-

ria. Of course, one would like to get a deeper understanding if, and when,

restriction to Markov strategies makes sense. We will not deal with such

foundational issues here, but see e.g. Bhaskar et.al (2010) and Doraszelski

and Escobar (2009).

Well-known papers dealing with the existence of a pure strategy sub-

game perfect equilibrium (SPE) in perfect information games include Harris

(1985a,b), Hellwig and Leininger (1987), Hellwig et.al (1990). Harris (1985a)

is a representative paper. In his paper terminal histories are infinitely long.

The main assumptions for the existence of a pure SPE are:

1. the set of terminal histories is compact,
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2. payoffs over terminal histories are continuous.

So discounting is a special case but other payoff structures such as limit

of means (of time averages) or quitting games are not dealt with. Markov

equilibria are also not studied.

Fink (1964) shows the existence of a mixed strategy MPE in a finite

action, finite states case with discounting. Solan and Vieille (2003) show the

existence of an ε -SPE in mixed strategies for ”quitting games”. In such

games the active player in at stage n ∈ N has two options: to stop the game

in which case payoffs are realized, or to let the game to continue to stage

n+1. Kuipers et.al. (2009) study a version of this game in which the active

player can either quit or give the move to any other player (in effect there

are n states). They show that there exists a pure strategy SPE although a

Markov perfect equilibrium need not exist.

By analyzing the examples where a pure MPE does not exist, we can

often find a technical reason that explains such an anomaly. Then we can

make assumptions to get around these problematic cases and find conditions

that are sufficient for the existence of a pure MPE.

Besides acyclicity and irreflexivity of the action correspondence, another

important assumption is that to each uncountable subset Y ⊂ X there exists

a state in Y such that the next state cannot be in Y (Assumption 2). That is,

either there exists a state (a terminal state) in Y where there are no actions

available, or there is a state in Y such that the next state is necessarily out-

side of Y . Actually this property can be seen as a generalization of acyclicity

and irreflexivity to uncountable subsets. Namely, if we we formulate As-

sumption 2 for finite subsets, then this property boils down to irreflexivity

and acyclicity.

We show that if the set of feasible actions is finite, and the closure of

the action correspondence satisfies Assumptions 1 and 2, then there exists a

Markov perfect equilibrium (Theorem 1). Utility functions over states can

be arbitrary.

When the feasible action sets may be infinite, we assume that the action

correspondence and utilities over states are continuous. If players utilities are

continuously dependent and Assumption 2 holds, then there exists a Markov

perfect equilibrium, given that a relatively weak technical assumption (As-
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sumption 3, p. 9) is satisfied (Theorem 2; Theorem 3). Players’ utilities are

continuously dependent for example in zero-sum games and in pure coordi-

nation games.

In Section 2 examples of games with no pure MPE are studied. The

model and notation is introduced in Section 3. The results are given in

Section 4. In Section 5 the assumptions of the model are discussed.

2 Examples with no pure MPE

EXAMPLE 1. [Adapted from Flesch et.al. (1997); Solan-Vieille (2003);

Kuipers et.al. (2009).]

1
2, 0, 3 3, 2, 0

2

3

0, 3, 2

The state space is X = {1, 2, 3}, player i ∈ {1, 2, 3} has the move at state

i and can either quit or give the move to player i+1 (where 3+1 = 1). Util-

ities from states i are zero, no discounting. There is no pure MPE. Staying

in the cycle cannot be an MPE. If i should quit, then i− 1 would not quit,

in which case i− 2 would certainly quit. But then i would not quit. A pure

SPE exists: if i starts the game, i should quit. If after some history j should

quit but deviates, then as a punishment j + 1 must not quit and j + 2 must

quit.

EXAMPLE 2. [Solan-Vieille (2003).] The state space is X = {1, 2}, player

i ∈ {1, 2} has the move at state i and can either quit or give the move to

player i+ 1. Utilities from states i = 1, 2 are zero, discounting 1/2 < δ ≤ 1.

No pure MPE. If 1 should quit, then 2 would quit. But then 1 would

not quit, and 2 would not quit. But then 1 would quit. No mixed MPE if
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(1,−2)

1

(2,−1)

2

δ = 1. A pure SPE when 1/2 < δ < 1. (Solan-Vieille have N as a state

space (how many periods the game has lasted), so their Markov strategy is

not Markov in our model.)

When action sets are infinite, there need not exist an optimal policy even

if utility function and action correspondence are continuous and time horizon

is finite.

EXAMPLE 3. A one-person game, X = [−1, 1], the action correspondence

is A(x) = [x + 1, 1] for x ≤ 0; A(x) = ∅ for x > 0. Utility from state x is

u(x) = −x2. Either discounted sum of utilities from states, or utility only

from the terminal states (x > 0). No optimal actions. Assume discounting,

0 < δ ≤ 1, and initial state −1. Then by choosing x = 0 player gets

−1 + 0 − δ2 = −1 − δ2. By choosing x > 0 player gets −1 − δx2, which

increases to −1 as x goes to zero. Hence no optimal strategy. The same

holds for the payoff structure such that non-zero payoffs are available at the

terminal states only.

3 The Model

We study the following kind two-person games on a nonempty set X . An

initial state x0 ∈ X of the game is given, and player i0 ∈ {1, 2} is called to

make a choice x1 from a set of actions A(x0) ⊂ X (this assumption is not

restrictive as demonstrated in Section 5). If A(x0) is empty, then the game

is over. If A(x0) 6= ∅, the choice x1 is the state of the game in period 2, and

then player i1 6= i0 makes a choice from a set A(x1) ⊂ X , if A(x1) 6= ∅. If

the state of the game is xt after t stages, player it ∈ {1, 2} makes a choice

from a set A(xt) ⊂ X , if A(xt) 6= ∅, and otherwise the game is over. If t is

odd, then it = i1, and if t is even then it = i0. A state x ∈ X is a terminal

state, if A(x) = ∅.
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We assume that the set X is a compact Hausdorff space. We may view the

action sets A(x) as images of a relation A ⊂ X×X : A(x) = {y | (x, y) ∈ A}.

The relation A is asymmetric, if for all x ∈ X , x /∈ A(x). The relation A is

acyclic if for all paths (x0, . . . , xt) such that xn+1 ∈ A(xn), n < t, it holds

that x0 /∈ A(xt).

Recall that a relation A is closed if A ⊂ X×X is closed, when X×X has

the product topology. The relation Amay also be viewed as a correspondence

x ։ A(x). The correspondence (or relation) A has closed values, if A(x) ⊂

X is closed for every x ∈ X . Closed correspondences have closed values.

Since X is compact Hausdorff, A is closed iff A is an upper semicontinuous

correspondence with closed values. The correspondence A is continuous, if

it is both upper semicontinuous and lower semicontinuous.

The game has perfect information: each stage t the player it observes the

history ht = (x0, . . . , xt−1). Denote by H t the set of all histories of length t,

and let H = ∪tH
t be the set of all histories. We consider feasible histories

only: ht = (x0, . . . , xt−1) is such that xk ∈ A(xk−1), for all k = 1, . . . , t − 1.

We may denote the feasible set of actions after history ht = (x0, . . . , xt−1) by

A(ht) or by A(xt−1).

A strategy of player i ∈ {1, 2} is a function si : H −→ X such that

si(h
t) ∈ A(ht

t−1). A Markov strategy si is such that si(h
t) depends only on

the state ht
t−1 of the game in period t. That is, a Markov strategy is a function

si on X such that si(x) ∈ A(x) if A(x) is nonempty. (One may wonder if the

perfect information assumption is in contradiction with the Markov property

since action for both players is defined on states where actions are available.

It is demonstrated in Section 5 that this is not the case.)

Given a strategy profile s = (s1, s2), let h(s) be the path or play generated

by it, i.e., either h(s) = ht = (x0, . . . , xt−1) for some t, or else h(s) = {xt}
∞
t=0

is an infinite sequence of elements xt ∈ X . In the former case, let T (s) = t−1,

so T (s) is the time index of the terminal state. In the latter case A(xt) 6= ∅

for all t, and then we define T (s) = ∞. If T (s) < ∞, the last action taken is

h(s)T (s) and this is also the terminal state xt−1 of the game.

Let ui : X −→ R be a utility function of player i ∈ {1, 2}. We study

the game with two different specifications of payoffs over strategies. In the

first specification, the payoff of i ∈ {1, 2} is the discounted sum of his future
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payoffs:

Ui(s) =

T (s)
∑

t=0

δtui(ht(s)), (1)

where δ is the discount factor, 0 < δ < 1.

In the second specification, the payoff of i ∈ {1, 2} is

Ui(s) =

{

ui(hT (s)(s)) if T (s) < ∞

0 if T (s) = ∞
(2)

So in this case players get zero if s generates an infinite history, and otherwise

they get the payoff of the terminal state hT (s)(s) = xT (s). In (1), if the game

ends in finite time, the path that leads to a terminal state also affects payoffs.

We denote by Γ(x0, i0) = (X,A, x0, i0, u1, u2), x0 ∈ X, i0 ∈ {1, 2}, any

game such that a) the initial state is x0; b) player i0 makes the first move;

and c) payoffs over strategies are given either by equation (1) or by equation

(2). The assumption that X is nonempty compact Hausdorff is maintained

throughout the paper. We denote by Γ the set of all such games when x0 ∈ X

and i0 ∈ {1, 2}: Γ = {Γ(x0, i0) | x0 ∈ X, i0 ∈ {1, 2}}. The sets X,A and

functions ui are the same for all games in Γ.

A strategy profile s̄ = (s̄1, s̄2) is a subgame perfect equilibrium for the

set Γ of games, if for any initial state x0 ∈ X , s̄1 maximizes u1(s1, s̄2) and

s̄2 maximizes u2(s̄1, s2), no matter which player starts the game. A sub-

game perfect equilibrium s̄ is called Markov perfect if the strategies s̄i are

Markovian, i = 1, 2.

4 Results

We make the following assumptions.

Assumption 1 The graph of A is acyclic and irreflexive.

We saw in Examples 1 and 2 that cycles may cause the nonexistence of an

MPE. Livshits (2002) has an example with three players and finitely many

states such that the action correspondence is acyclic but not irreflexive and

there are no pure MPE.
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Our first result deals with a special case when a) payoffs are calculated

as in equation (1), and (ii) the state space is a compact metric space.

Proposition 1 Suppose X is compact metric, the set Γ of games Γ(x0, i0)

satisfies Assumption 1, the functions ui are continuous, and that A(x) is

finite for each x ∈ X. Then there exists a Markov perfect equilibrium s, if

payoffs are calculated as in equation (1).

Proof. See Appendix.

REMARK 1. Note that closedness of the action correspondence A was

not needed.

Assumption 2 Every uncountable closed Y ⊂ X contains an element y

such that Y ∩A(y) = ∅.

Note that Y ∩A(y) = ∅ is satisfied in particular when A(y) = ∅. So if X

is uncountable, Assumption 2 implies that some action sets A(x) are empty.

Lemma 1 Suppose A is a closed relation on a compact Hausdorff space X

satisfying Assumptions 1 and 2. Then there is K > 0 such that all histories

ht have lenght t ≤ K.

Proof. If there is a nonempty closed Y ⊂ X such that A(y) ∩ Y 6= ∅ for

all y ∈ Y , then there is a nonempty perfect Z ⊂ Y such that A(z) ∩ Z 6= ∅.

This follows since A is a closed asymmetric and acyclic relation (Salonen and

Vartiainen 2010, Lemma 2). Since perfect subsets are uncountable, it follows

that every (uncountable or countable) closed Y ⊂ X contains y ∈ Y such

that A(y) ∩ Y = ∅.

Define A−1[Z] = {x ∈ X | z ∈ A(x) for some z ∈ Z}, for all nonempty

Z ⊂ X . Let X0 = X , and Xn+1 = A−1[Xn] for n = {0, 1, . . .}. Since A is a

closed relation, each A−1[Xn] is closed. We show that for some n > 0, Xn is

empty.

If Xn 6= ∅ for all n, then Y = ∩nA
−1[Xn] is a nonempty closed subset,

since X is compact Hausdorff and Xn+1 ⊂ Xn. Hence there exists y ∈ Y

such that A(y) ∩ Y = ∅. Since A is a closed relation, A(y) is closed. Since

y ∈ A−1[Xn] for every n, it follows that A(y)∩Xn 6= ∅. But then A(y)∩Y =
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∩n(A(y) ∩ A−1[Xn]) 6= ∅, a contradiction. Hence there exists a least integer

K such that XK 6= ∅ and Xn = ∅ for all n > K.

Let An = Xn \ Xn+1 for n < K, and AK = XK . Then each An is

nonempty, and A(x) ∩Xn = ∅ for each x ∈ An. So for example, A0 contains

all states x such that A(x) = ∅, that is, A0 is the set of all end states of Γ.

The set A1 contains all states x such that A(x) 6= ∅ and A(x) ⊂ A0. So A1

contains all states such that there is exactly one move left before the game

ends. By the same reasoning, Ak contains all states x such that A(x) 6= ∅

and k is the maximum number of moves that are needed to end the game,

k ≤ K. Note that less than k moves may suffice to end the game when

k > 1, but the longest path to the end state has k moves.

By using Lemma 1 we can prove the existence of a Markov perfect equi-

librium in games with finite action sets A(x).

Theorem 1 Suppose that the games Γ(x0, i1) = (X,A, x0, i0, u1, u2) in the

set Γ have finite action sets A(x), x ∈ X. If the closure clA of the relation A

satisfies Assumptions 1 and 2, then there exists a Markov perfect equilibrium

s, if payoffs are computed either by equation (1) or by equation (2).

Proof. If the action sets were clA(x) instead of A(x) in the games in Γ, then

the lengths of all histories would have a common upper bound by Lemma 1.

Since A(x) ⊂ clA(x), all histories ht in games in Γ must satisfy t ≤ K, for

some K > 0. We may assume that some history has lenght K.

Like in the proof of Lemma 1, X is partitioned into nonempty sets

A0, . . . , AK such that (1) A(x) = ∅ iff x ∈ A0, and (2) A(x) ∩ At = ∅

for all t ≥ k if x ∈ Ak. Given any x ∈ Ak, it takes at most k steps to reach a

terminal state x ∈ A0, and there is some x ∈ Ak and some choices such that

it takes k steps to reach a terminal state x ∈ A0.

We can solve a Markov perfect equilibrium by applying backwards induc-

tion.

Step 1. Given x ∈ A1, solve to each player i ∈ {1, 2} a utility maximizing

choice si(x) ∈ A(x). Since A(x) is nonempty and finite, these maximizers

exist. After that choice has been made, the game is over.
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Step n. Suppose that a Markov perfect equilibrium in continuous strate-

gies s = (s1, s2) has been solved for initial states in x ∈ A1 ∪ · · · ∪ An−1,

n > 1, no matter who makes the first move.

Given x ∈ An, solve to each player i ∈ {1, 2} a utility maximizing initial

choice si(x) ∈ A(x), given that equilibrium strategies are followed in the

future. Since A(x) is nonempty and finite, these maximizers exist.

Continue backwards until si(x) is solved for each x ∈ Ak, 0 < k ≤ K. By

construction, the profile s = (s1, s2) is a Markov perfect equilibrium.

REMARK 2. Note that Theorem 1 would hold if payoffs over strategies

were given by functions Ui(s) = Vi(y0, . . . , yn), where yk = ui(h(s)k), given

some functions Vi over vectors (y0, . . . , yn) ∈ R
n+1, n ≥ 0.

REMARK 3. Continuity of ui on X was no need in Theorem 1.

If action sets A(x) are not necessarily finite, Theorem 1 fails even when

the action correspondence A and utility functions ui are continuous. This

was demonstrated in Example 3 in Section 2.

The problem in Example 3 is that the set of terminal histories that last

two periods is not closed. There was a sequence of two-period long termi-

nal histories whose limit was not a terminal history. This non-closedness

caused that there was a jump in the payoff function at this limit. The next

assumption takes care of such anomalies.

Assumption 3 For any t > 0, the set of feasible terminal histories (x0, . . . , xt)

is a closed subset of X t+1.

The subset of those states y that can be reached from x0 by t steps but

not by t+ 1 steps is closed (possibly empty).

Our second main result gives sufficient conditions for the existence of a

Markov perfect equilibrium for games where players utilities are dependent

in the following way.

Assumption 4 For all x, y ∈ X, u1(x) = u1(y) iff u2(x) = u2(y), .

Let Yi = ui[X ], i = 1, 2. We leave the proof of the following Lemma to

the reader.
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Lemma 2 If utility functions u1 and u2 are continuous, then Assumption 3

holds iff there exists a continuous bijection f : Y1 −→ Y2.

We can now prove our second main result.

Theorem 2 Suppose that the set Γ of games Γ(x0, i0) satisfies Assumptions

1, 2, 3 and 4, and that the correspondence A and functions ui are continuous.

Then there exists a Markov perfect equilibrium s, if payoffs are calculated as

in equation (1).

Proof. Lemma 1 implies that that all histories ht have length t ≤ K, for

some K > 0, and we assume that K is the least such integer. Like in the

proof of Lemma 1, X is partitioned into nonempty sets A0, . . . , AK such that

(1) A(x) = ∅ iff x ∈ A0, and (2) A(x) ∩At = ∅ for all t ≥ k if x ∈ Ak. Given

any x ∈ Ak, it takes at most k steps to reach a terminal state x ∈ A0, and

there is some x ∈ Ak and some choices such that it takes k steps to reach a

terminal state x ∈ A0.

We apply the backward induction principle to solve for a Markov perfect

equilibrium.

Step 1. Given x ∈ A1, solve to each player i ∈ {1, 2} a utility maximizing

last choice si(x) ∈ A(x). Since ui is continuous and A(x) is nonempty and

closed, these maximizers exist. Since A is continuous, the maximized utility

ui(si(x)) is a continuous function of x by the Berge’s maximum theorem. [To

see that Berge’s theorem applies here, note that since A is closed, the subset

A0 is open. Hence X \ A0 is closed and compact, and a choice yi(x) maxi-

mizing ui would exists for every x ∈ X \A0. By Berge’s theorem, ui(yi(x)) is

continuous. Since yi = si on the subset A1, ui(si(x)) is a continuous function

of x.] Then also uj(si(x)) = g(ui(si(x))) is a continuous function of x, j 6= i,

where g is either the continuous bijection f of Lemma 2 or its inverse f−1.

Step 2. Given x ∈ A2 and player i ∈ {1, 2}, let Ai
20(x) = A(x) ∩ A0 and

Ai
21(x) = A(x) ∩A1. So Ai

20(x) contains those choices for i that will end the

game, and Ai
21(x) contains those choices that will give the player j 6= i one

more opportunity to choose. By Assumption 2, these subsets are closed.

If Ai
20(x) is nonempty, it contains a nonempty closed subset of elements

y that maximize ui(y). If Ai
21(x) is nonempty, it contains a nonempty
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closed subset of elements z that maximize ui(z) + δui(sj(z)) since ui(sj(z))

is continuous in z by Step 1. If both Ai
20(x) and Ai

21(x) are nonempty,

we find a nonempty closed set of maximizers of the continuous function

max{ui(y), ui(z) + δui(sj(z))}.

Note that the correspondence A restricted to domain A2 is continuous,

and hence correspondences Ai
20 and Ai

21 are continuous on A2 as well. By the

Berge’s maximum theorem, player i’s maximized utility depends continuously

on x ∈ A2. Since ui = f ◦ uj (or ui = f−1 ◦ uj) for the continuous bijection

f of Lemma 2, player j’s utility depends continuously on x ∈ A2 as well, via

the equilibrium strategy si(x) of i.

Hence a Markov perfect equilibrium strategies s = (s1, s2) have been

solved for initial states in A1 ∪ A2, no matter who makes the first move.

In order to keep the notation as simple as possible, we do not index the

equilibria by the name of the player who starts the game. Notice however

that actually we have solved so far two equilibria: one if player 1 starts the

game and one if player 2 starts the game.

Step n. Suppose that a Markov perfect equilibrium strategies s = (s1, s2)

has been solved for initial states in x ∈ A1 ∪ · · · ∪ An−1, n > 1, no matter

who makes the first move.

Given x ∈ An and player i ∈ {1, 2}, let Ai
nm(x) = A(x) ∩ Am for m =

0, . . . , n− 1. So a choice y ∈ Ai
nm(x) means that after y, at most m choices

can be made before the game ends. The proof is exactly the same as in Step

2 except that there are more subsets Ai
nm(x).

We find that if Ai
nm(x) is nonempty, there exists a nonempty closed subset

of elements y ∈ Ai
nm(x) that maximize the function ui(y) + δui(y1) + · · · +

δmui(ym), where y1 = sj(y), y2 = si(y1), . . ., and ym is the state where the

game ends when the equilibrium strategies si, sj solved in steps n− 1, . . . , 1

are applied. Since there are only finitely many nonempty closed subsets

Ai
nm(x), a nonempty closed subset of maximizers of the discounted sum of

utilities can be found from A(x).

As in Step 2., the conditions of Berge’s Maximum Theorem are satisfied,

so we can find a maximizer si(x) ∈ A(x), i ∈ {1, 2}, and players’ maximized

payoffs depend continuously on x. So a Markov perfect equilibrium exists

when payoffs are calculated as in equation (1).
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A similar existence result holds also when payoffs are calculated according

to equation (2).

Theorem 3 Suppose that the set Γ of games Γ(x0, i0) satisfies Assumptions

1, 2, 3 and 4, and that the correspondence A and functions ui are continuous.

Then there exists a Markov perfect equilibrium s, if payoffs are calculated as

in equation (2).

Proof. The proof is the same as the proof of Theorem 2 up to Step 2.

Step 2. Given x ∈ A2 and player i ∈ {1, 2}, let Ai
20(x) = A(x) ∩ A0 and

Ai
21(x) = A(x) ∩A1. So Ai

20(x) contains those choices for i that will end the

game, and Ai
21(x) contains those choices that will give the player j 6= i one

more opportunity to choose. By Assumption 2, these subsets are closed.

If Ai
20(x) is nonempty, it contains a nonempty closed subset of elements

y that maximize ui(y). If A
i
21(x) is nonempty, it contains a nonempty closed

subset of elements z that maximize ui(sj(z)) since ui(sj(z)) depends contin-

uously on z. If both Ai
20(x) and Ai

21(x) are nonempty, we find a nonempty

closed set of maximizers of the continuous function max{ui(y), ui(sj(z))}.

Note that the correspondence A restricted to domain A2 is continuous, and

hence correspondences Ai
20 and Ai

21 are continuous on A2 as well. By the

Berge’s Maximum Theorem, player i ∈ {1, 2} has a maximizer si(x) ∈ A(x)

and his maximized payoff depends continuously on x ∈ A2. Since ui = f ◦uj

(or ui = f−1◦uj) for the continuous bijection f of Lemma 2, player j’s payoff

depends continuously on x as well.

Hence a Markov perfect equilibrium s = (s1, s2) has been solved for initial

states in A1 ∪ A2, no matter who makes the first move.

The rest of the proof is the same as Step n in the proof of Theorem 2,

except that now payoffs depend only on the states x ∈ A0 where the game

ends (in the same way as outlined in Step 2 above).

The following result follows immediately from Theorems 2 and 3.

Corollary 1 Suppose that the set Γ of games Γ(x0, i0) satisfies Assumptions

1 and 2 and that the correspondence A and functions ui are continuous.

Then there exists a Markov perfect equilibrium s, if u1 = −u2 and payoffs

are calculated as in equation (1) or as in equation (2).
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5 Discussion

We assume that 1) actions are states: A(x) ⊂ X , and that 2) utility at the

current state depends on the current state u(x). None of our results would

change if we assume that

1. utility depends on the action taken at the current state: u(y), for y ∈

A(x);

2. utility depends on the current state and the action taken at this state:

u(x, y), for y ∈ A(x);

3. actions are not states: A(x) ⊂ A for each x ∈ X , where A is a compact

Hausdorff space, and given current state and action (x, a) the new state

is g(x, a) ∈ X where g is a continuos function. Take X ′ = X × A. At

each state x′ = (x, a) define action subset by A′(x′) = {g(x′)}×A(x) if

a ∈ A(x) and A′(x′) = ∅ if a /∈ A(x). So at each state x′ = (x, a) new

states (g(x′), b) ∈ {g(x′)} × A(x) may be chosen. It is easy to show

that if A is a closed correspondence, then A′ is a closed correspondence

on the compact Hausdorff space X ′.

One may wonder if the perfect information assumption is not in con-

tradiction with the Markov property of strategies. We may construct state

spaces in such a way that this is not the case. For example, given the original

state space X , form two identical copies of it by defining X1 = X × {1} and

X2 = X × {2}. Then X1 and X2 are disjoint compact Hausdorff spaces. Let

the new state space be X ′ = X1∪X2. Define a new action correspondence so

that A′(x1) ⊂ X2 for each x1 ∈ X1 and A′(x2) ∈ X1 for each x2 ∈ X2. The

new correspondence A′ differs from the original A only because it is defined

on tuples x′ = (x, i), and its values are of the form A(x, i) = A(x)×{j}, i 6= j.

13



APPENDIX

Proof of Proposition 1. Begin by indexing by ordinals α those states x

for which A(x) 6= ∅, and denote them by xα, α < κ where κ is the cardinality

of X . Apply transifinite induction as follows.

The initial step. Take the state x0 and nominate one of the players as

the first mover. Build a pseudo game to each T > 0 such that all feasible

histories from x0 are at most T periods long, and from that on the action is

always x and both players get payoff 0. This is done except in cases when

the terminal history already has length at most T , and these cases are left

as they are. This pseudo game has a pure MPE, sT , and it is the same as

in the extensive form game with at most T period histories that starts from

x0. This holds since nobody actually makes any moves after T periods.

Let T go to infinity (and keep x0 the same as above). Let Y T denote

the product of all nonempty action sets at nodes of this tree that have a

T ≥ 0 period history. This product set is finite, and we equip it with the

usual topology. Let Y =
∏∞

T=0 Y
T with the product topology. Then Y is a

compact metric space. Let xT ∈ Y be such that the choices are the same

as in the profile sT when the length of the history is t ≤ T periods. From

period T onwards the same constant x is always chosen independently of the

state.

Then the sequence {xT}∞T=0 has a convergent subsequence, and w.l.o.g.

we assume that the sequence itself converges to s ∈ Y . By continuity of

payoffs, s is an MPE. Solve similarly an MPE when i 6= i0 is the first

mover. Denote by N(x0) the (decision and terminal) nodes that can be

reached from x0, including x0. Then an MPE has been solved for the case

when N(x0) is the state space and A is the original action correspondence

restricted to N(x0).

The induction step. Let α be the least ordinal such that xα hasn’t yet been

given an action in any MPE. Denote by N(xα) the nodes (with A(x) 6= ∅)

that can be reached from xα, including xα, and denote by Nα the nodes that

have already been given an action in an MPE at an earlier stage β < α of

induction.
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Then, as above, solve an MPE (for both players being first movers) in

the extensive game starting from xα when the decision nodes in Nα ∩N(xα)

are given the actions that have already been assigned to these nodes. Then

an MPE has been solved in the case Nα ∪N(xα) is the state space and the

action correspondence is A restricted to this set.

Therefore an action si(x) is assigned to both players i = 1, 2 at every

decision node x ∈ ∪β≤αN(xβ) such that these actions form an MPE s when

the state space is ∪β≤αN(xβ).
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