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Abstract
This paper analyzes the cyclical properties of a generalized version of

Uzawa-Lucas endogenous growth model. We study the dynamic features
of different cyclical components of this model characterized by a variety
of decomposition methods. The decomposition methods considered can
be classified in two groups. On the one hand, we consider three statistical
filters: the Hodrick-Prescott filter, the Baxter-King filter and Gonzalo-
Granger decomposition. On the other hand, we use four model-based
decomposition methods. The latter decomposition procedures share the
property that the cyclical components obtained by these methods preserve
the log-linear approximation of the Euler-equation restrictions imposed by
the agent’s intertemporal optimization problem. The paper shows that
both model dynamics and model performance substantially vary across
decomposition methods. A parallel exercise is carried out with a standard
real business cycle model. The results should help researchers to better
understand the performance of Uzawa-Lucas model in relation to standard
business cycle models under alternative definitions of the business cycle.
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1 INTRODUCTION
Since Kydland and Prescott’s (1982) influential paper, many articles in the
real business cycle (RBC) literature tend to quantitatively evaluate model per-
formance by comparing some relevant second moment statistics obtained from
actual time series and synthetic data (that is, the data generated by the model).
Since an aggregate time series typically involves both trend and cyclical compo-
nents (usually, the seasonal components have been previously removed), RBC
researchers firstly remove the trend component from the actual and synthetic
data, using a decomposition method in order to carry out model evaluation.
RBC researchers can be classified in two groups by the type of decomposition
method they use. On the one hand, there is an important group of researchers
that apply a statistical filter to extract the cyclical component from the time
series data. This group consider model and filter as two basic pieces of the same
measurement instrument used to analyze RBC issues (other important pieces
of this instrument are the numerical algorithm used to solve the model and
the selection of parameter values). On the other hand, some researchers (for
instance, King, Plosser and Rebelo (1988 a,b), and King, Plosser, Stock and
Watson (1991) ) use model-based decompositions to study the cyclical features
characterized by the model. This group of authors argues that the economic
theory should specify what (it is that) constitutes a trend path, and hence a
business cycle and, as a consequence, the detrended method used must be con-
sistent with the growth theory proposed by the model studied. A model-based
decomposition is therefore defined as a decomposition method having the prop-
erty that, when applied to the synthetic time series obtained from a model, the
cyclical components satisfy the rational expectations restrictions imposed by
the agents’ intertemporal optimization problem.1 ,2

1Model-based decompositions are motivated by Koopmans (1947) and Singleton (1988)
critique of prefiltering synthetic data when analyzing business cycles. In particular, Singleton
(1988) argues that the common practice of prefiltering synthetic data will result, in general,
in the violation of the rational expectations restrictions imposed by the agents’ intertemporal
optimization problem. This caveat might be quite disturbing, since RBC are usually viewed
as the optimal responses of rational agents to stochastic shocks. In Gary Hansen’s (1997,
p.1005) words, “(RBC research program) has been devoted to modeling the business cycle as
an equilibrium outcome of optimizing agents responding to random changes in technology”.
Of course, the reader will notice that there are also problems associated with model-based
decompositions related to theoretical assumptions on the model and empirical information
required to calibrate the model. Moreover, model-based decompositions are also subject to
specification errors. Furthermore, certain model-based decompositions are model-dependent.
Therefore, the use of these decompositions is, at least problematic, in a context where the
researcher is interested in analyzing whether a particular model is better than other model
in reproducing certain dynamic features observed in the data, since the different models’
performance may be due to the different model-based decomposition considered in evaluating
each model.

2Model-based decompositions are also of interest when applying GMM (Hansen (1982))
procedures to estimate aggregate models since the parameter estimates are found by minimiz-
ing a (usually quadratic) function of the orthogonality restrictions imposed by the rational
expectations hypothesis. As has been emphasized by Singleton (1988), the common practice of
using statistical methods to decompose time series prior to estimate leads to a violation of the
moment restrictions implied by theory resulting in inconsistent estimates of the parameters.
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This paper analyzes the dynamic features of an Uzawa-Lucas endogenous
growth model (EG model) with human capital by using alternative decompo-
sition methods. These dynamic features are compared with those displayed by
the standard neoclassical growth model studied by King, Plosser and Rebelo
(1988 a) (KPR model) under alternative decomposition methods. Uzawa-Lucas
model is one of the most popular endogenous growth models. Versions of the
Uzawa-Lucas framework have been adopted by many researchers aiming to ex-
plain business cycle features (Bean (1990)), long-term growth (Lucas (1988),
Ladrón-de-Guevara, Ortigueira and Santos (1997)) and the money-growth rela-
tionship (Gomme (1993)). Our purpose is to provide a systematic account of the
cyclical features exhibited by the EG model across several decomposition meth-
ods and examine quantitatively how model performance may vary depending
on the cyclical component extracted by alternative decomposition procedures.
Moreover, we want to analyze how good is the EG model in relation to the
KPR model in characterizing cyclical patterns under alternative decomposition
methods. As shown by Canova (1998), alternative detrending methods may
provide quite different dynamic properties of macroeconomic variables, so a
characterization of the different dynamic features of the EG model in relation
to those exhibited by the KPR model under alternative decomposition methods
will allow researchers to better understand the relative performance of these two
models under alternative definitions of the business cycle.
In analyzing the EG model, we consider, on the one hand, three statisti-

cal filters: the filter suggested by Hodrick and Prescott (1980) (HP filter),3

the Band-Pass (BP) filter proposed by Baxter and King (1995, 1999), and the
multivariate decomposition suggested by Gonzalo and Granger (1995) (GG fil-
ter).4 On the other hand, we use four model-based decomposition methods to
study the EG model. Two of these model-based decompositions use a synthetic
measure of human capital trend. The other two model-based decompositions
consist, on the one hand, in the analysis of the great ratios and, on the other
hand, in the analysis of the growth rates of non-stationary variables such as
output, consumption and investment.
The analysis of the KPR model is based on three model-based decomposition

methods and two statistical filters: the HP and BP filters.5 A model-based
decomposition consists in removing the linear deterministic trend postulated by
the KPRmodel. As in the EGmodel, the other two model-based decompositions
are based on the analyses of the great ratios and the growth rates of non-
stationary variables, respectively.

3See Kydland and Prescott (1990, p.8) for an exposition of HP filter properties.
4The GG decomposition is a reasonable filter to analyze the cyclical features of the EG

model studied since the GG filter requires that the time series be difference stationary (that is,
I(1) processes) and it imposes the existence of a common trend for all non-stationary variables.
As shown below these two properties are consistent with the EG model: all non-stationary
synthetic time series exhibit a unit root and a single common trend represented by human
capital.

5As was pointed out above, the GG filter requires that the time series be difference sta-
tionary. Therefore, we do not use the GG filter when evaluating the KPR model since non-
stationary synthetic time series obtained from this model are trend stationary.
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The RBC literature implicitly assumes that the researcher does not have to
worry about the specification of the trend when he is only interested in ana-
lyzing the component of the time series associated with certain business cycles
frequencies. The EG model studied in this paper posits that human capital
accumulation is the engine of growth and then it postulates a very different rea-
son for non-stationarity that the standard neoclassical growth models studied in
the RBC literature. The question that arises is whether including this reason
is important for the features displayed by the model at alternative frequencies
isolated by different decomposition methods.
The KPR model is an exogenous growth model. In the context of an ex-

ogenous growth model obtaining a model-based decomposition of observed time
series data is quite simple, since it typically requires to compute the deviation
from a common estimated linear trend of the log levels of all non-stationary
variables of the model. However, in the context of an EG model deriving some
model-based decompositions may be trickier; especially, if the engine of growth
is a variable which is hard to observe, like, for example, human capital accumu-
lation through non-market activities or learning-by-doing.
By using US post-war data, this paper shows that alternative decomposition

methods lead to quite different model evaluation results either in the context
of the EG model as in the KPR model. Moreover, the assessment of whether
the EG model is closer to reproduce a particular cyclical feature than the KPR
model many times depends on the decomposition considered. For instance, when
using the BP filter one may conclude that the EG model is closer to reproduce
the relative volatility between investment and output and the contemporaneus
correlation between consumption and output than the KPR model. The oppo-
site is true for the relative volatility between consumption and output, whereas
the capability of the two models in reproducing the contemporaneus correla-
tion between investment and output is similar. However, when using the HP
filter the KPR model is much closer to reproduce the contemporaneus corre-
lation between investment and output than the EG model. Other examples
appears when one compares the results obtained from the great ratios and the
growth rates. The analysis of the cyclical features of the consumption-output
and investment-output great ratios and work effort shows that the EG model
provides a better characterization than the KPR model in terms of the auto-
correlation and cross-correlation structures of the two great ratios and hours
observed in US data. However, the analysis of the growth rates does not show
that the EG model always performs better than the KPR model. Thus, it is the
case that the EG model captures remarkably well the volatility of the growth
rates of output and investment whereas the KPR model is only close to cap-
ture the volatility of the output growth rate. The two models (KPR and EG
model) fall short of reproducing the observed volatilities of the growth rates of
consumption and work effort. Although the KPR model is closer to reproduce
the volatility of consumption growth rate observed in actual data than the EG
model. The opposite is true for the volatilities of the growth rates of work effort
and investment.
The rest of the paper is organized as follows. Section 2 introduces an EG
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model with human capital. Moreover, by using a standard calibration, the
model is solved. In section 3, we propose alternative model-based decomposi-
tions which preserve the log-linear approximation of the Euler-equation restric-
tions imposed by the model. Section 4 presents a brief description of the KPR
model. Section 5 compares model quantitative evaluation through alternative
decomposition methods in order to show how the performance of the two mod-
els may change depending on the descomposition used to isolate the cyclical
component. Moreover, the performance of the two models is compared under
alternative decomposition methods. Section 6 extends the analysis of previous
section to consider two other model-based decompositions. First, the analysis of
the consumption-output and investment-output great ratios. Second, the anal-
ysis of the growth rates of output, consumption, investment and work effort.
Finally, Section 7 concludes.

2 AGROWTHMODELWITHHUMANCAP-
ITAL

We consider an EG model because in this type of models growth and cycles
are determined endogenously. As pointed out by Singleton (1988), growth and
cyclical components in the data may both be determined endogenously by opti-
mal economic decision making. Therefore, the presumption underlying standard
RBC models that trend components are determined by different factors from
those causing business cycles may be misleading.
In particular, this paper analyzes a stochastic discrete time version of the

generalized Uzawa-Lucas framework. One of the modifications, used by King,
Plosser and Rebelo (1988b), Bean (1990) and Gomme (1993), is that physical
capital is included as an input of the human capital sector. The second modifi-
cation is that leisure is assumed to have a positive effect in the agents’ welfare.
The economy is inhabited by a large number of identical households. The size
of the population is assumed to be constant.
The representative household maximizes

E0

∞X
t=0

βtU(ct, lth
λ
t ), (1)

where E0 denotes the conditional expectation operator, 0 < β < 1 is the dis-
count factor, ct is consumption, and ltht is qualified leisure, and this captures
Becker(1965)’s idea that the utility of a given amount of leisure increases with
the stock of human capital. In particular, we assume that the preferences of the
representative household are described by the following utility function:

U(ct, lth
λ
t ) =

[cωt (lth
λ
t )
1−ω]1−γ − 1
1− γ

, (2)

where 0 ≤ ω ≤ 1, γ > 0 and 0 ≤ λ ≤ 1. This type of utility function guarantees
the existence of a balanced growth path for the economy, where the fraction
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of time allocated to each activity remains constant and all per-capita variables
grow at the same rate.6

There are two productive activities in this economy: the production of the
final good (market sector) and the accumulation of human capital (human cap-
ital sector). At any point in time, a household has to decide what portion of
its time is allocated to each of these activities, apart from the time allocated to
leisure. The production function of the representative household is a neoclassical
production function with constant returns to scale. Formally,

yt = F
m(φtkt, ntht, zt) = Ame

zt(φtkt)
α(ntht)

1−α, (3)

where Am is a technology parameter, φt is the fraction of physical capital stock
allocated to the market sector, nt is the fraction of time allocated to the market
sector, ht denotes the stock of human capital at the beginning of time t, α is
the share of physical capital in final good production and zt is a technology
shock which follows a first-order autoregressive process zt = ρzt−1 + ²t, where
0 ≤ ρ ≤ 1 and ²t is a white noise with standard deviation σ². The law of motion
for physical capital is

kt+1 + ct = Ame
zt(φtkt)

α(ntht)
1−α + (1− δk)kt, (4)

where δk is the depreciation rate of physical capital.
The human capital sector is characterized as follows:

ht+1 = F
h[(1− φt)kt, (1− lt − nt)ht] + (1− δh)ht =

Ah[(1− φt)kt]
θ[(1− lt − nt)ht]1−θ + (1− δh)ht, (5)

where Ah is a technology parameter, θ is the share of physical capital stock in
human capital production and δh is the rate of depreciation of human capital.
As is well known, the competitive equilibrium can alternatively be character-

ized through the first-order conditions derived from a benevolent social planner’s
problem in the absence of externalities and public goods. The social planner
maximizes (1) subject to (4)-(5) with k0 > 0 and h0 > 0 given. The necessary
and sufficient first-order conditions for an (interior) optimum are (for simplicity
we drop all the time subscripts and a prime (’) is used to denote next period
values):

U1 =
U2h

λ−1
t

Fm2
,

U2h
λ−1
t

Fm2
= βEt{

U 02h
λ−1
t+1

Fm
0

2

[Fm
0

1 + 1− δk]},

6 See KPR (1988b, p.324) for an exposition of the restrictions one should impose on pref-
erences in order to guarantee a constant growth rate in a steady state.
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U2h
λ−1
t

Fh2
= βEt{

U 02h
λ−1
t+1

Fh
0

2

[Fh
0

2 (1− lt+1) + 1− δh] + U
0
2λlt+1h

λ−1
t+1 },

Fm1
Fm2

=
Fh1
Fh2
,

ht+1 = Ah[(1− φt)kt]
θ[(1− lt − nt)ht]1−θ + (1− δh)ht,

kt+1 + ct = Ame
zt(φtkt)

α(ntht)
1−α + (1− δk)kt,

lim
t→∞Etβ

tU1kt+1 = 0,

lim
t→∞Etβ

tU2
hλ−1t

Fh2
ht+1 = 0.

In the steady state, the variables ct, kt and yt grow at a constant rate which
is equal to the rate of accumulation of human capital, and nt, lt and φt are
constants. Therefore, the time series ct, kt and yt obtained from these first-order
conditions are non-stationary. In order to facilitate the use of computational
techniques, it is convenient to rewrite the first-order conditions in terms of the
ratios ĉt = ct/ht, k̂t = kt/ht, thus reducing the number of state variables:

U1(ĉt, lt) = β(
ht+1
ht

)τEt{U1(ĉt+1, lt+1)[Fm1 (φt+1k̂t+1, nt+1) + 1− δk]}, (6)

U1(ĉt, lt) =
U2(ĉt, lt)

Fm2 (φtk̂t, nt)
, (7)

U2(ĉt, lt)

Fh2 [(1− φt)k̂t, 1− lt − nt]
= β(

ht+1
ht

)τEt{ U2(ĉt+1, lt+1)

Fh2 [(1− φt+1)k̂t+1, 1− lt+1 − nt+1]

[Fh
0

2 (1− lt+1) + 1− δh + λFh
0

2 lt+1]}, (8)

Fm1
Fm2

=
Fh1
Fh2
, (9)

ht+1
ht

= Ah[(1− φt)k̂t]
θ(1− lt − nt)1−θ + 1− δh, (10)

ĉt + k̂t+1
ht+1
ht

= Ame
zt(φtk̂t)

αn1−αt + (1− δk)k̂t, (11)

where τ = [ω + λ(1− ω)](1− γ)− 1.
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2.1 Uzawa-Lucas Model Calibration

Model calibration requires that values be assigned to the parameters in the
model. Following Kydland and Prescott’s (1982) seminal paper, we choose, on
the one hand, the structural parameter values based on the existing empirical
evidence obtained from micro data sets. On the other hand, we approach the
steady state values of the variables by averaging the corresponding US time
series. US time series are quarterly data for the period from the third quarter
of 1955 to the first quarter of 1984. All series are per-capita and are described
in detail in Christiano (1988).7

The derivation of reasonable values for the parameters describing household
preferences follows standard procedures. The discount factor, β, is chosen so
that the annual real interest rate is equal to 4%. The value for β is obtained
from the following equation, which characterizes the steady state given the ho-
mogeneity properties of the utility function:

1.01 β(
ht+1
ht

)τ = 1.

Mehra and Prescott (1985) establish that a reasonable value for the relative risk
aversion parameter, σ, lies in the interval [1, 2]. We consider σ = 1.3. As shown
by Barañano, Iza and Vázquez (2002), the numerical solutions obtained with
σ = 1.3 are similar to those found when σ = 2 in a model which exhibits a
weak propagation mechanism of the technology shocks (that is, when θ is close
to zero). Since the utility function is multiplicatively separable we have that
U(c, lhλ) = u(c)v(lhλ), where u(c) is homogeneous of degree 1 − σ. Moreover,
we follow the suggestion made by Gomme (1993) and Greenwood and Hercowitz
(1991) that a reasonable value for the fraction of time allocated to the market
sector is 0.24, and from this value we can derive reasonable parameter values
for ω and γ using the homogeneity properties of the utility function. Finally,
the choice of a parameter value for λ is not straightforward, because there is no
empirical evidence. This paper considers λ = 1 (qualified leisure).8 Looking at
the market sector, the value of α is chosen so that it equals the average share
of physical capital in the US GNP over the period (α = 0.36). Since we are
using quarterly data, the rate of depreciation for physical capital, δk, has been
fixed at 0.025, which is equivalent to the 10% annual rate used by Kydland and
Prescott (1982). The value for Am is normalized to unity.
Based on first moments from the Solow residual, we follow Prescott’s (1986)

suggestion for ρ: ρ = 0.95. Moreover, the standard deviation of the innovation in
the first-order autoregressive process for the technology shock, ²t, is adjusted; in
order that the standard deviation of per-capita US GNP be close to the standard

7We restrict our sample to this period because as pointed out by McConnell and Perez-
Quiros (2000) US business cycle has smoothed substantially since 1984. For instance, the
standard deviation of quarterly US real GDP growth over the last seventeen years is less than
half that of the rest of the post-war period. Moreover, the sample period considered allows
us to compare the results found in this paper with those found in the RBC literature.

8As shown by Ladrón-de-Guevara, Ortigueira and Santos (1997), a value of λ = 1 guar-
antees the existence of a unique balanced growth path.
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deviation of the synthetic output times series according to the decomposition
procedures studied.
Since there is not enough empirical evidence to establish the parameter val-

ues characterizing the human capital sector, we have decided to choose param-
eter values in such a way that they guarantee reasonable values for steady state
variables. In particular, Ah is chosen so that the growth rate of output in
the steady state match the average annual growth rate of per capita US GNP,
1.4%. Moreover, we choose θ = 0.05, which implies a weak internal propaga-
tion mechanism. A small value of θ is needed to mimic the cyclical features
(characterized by the HP filter) displayed by standard RBC models. We focus
our attention on an EG model exhibiting a weak propagation mechanism, since
this is the basic assumption needed in this type of models to reproduce similar
cyclical features as those implied by standard RBC models at the frequencies
isolated by the HP filter. We impose this restriction in order to convince the
reader that the different model evaluation results obtained in this paper using
alternative decomposition methods are not driven by a model which exhibits
unusual cyclical dynamics at the frequencies extracted by the HP filter. More-
over, as pointed out by Barañano, Iza and Vázquez (2002), the analysis of the
EG model with a stronger propagation mechanism (induced by higher values of
θ and σ) requires the use of alternative solution methods, such as parameterized
expectations methods. The reason is that a log-linear solution method, as the
one implemented in this paper, removes most of the nonlinearities induced by
a stronger propagation mechanism. Therefore, the study of an EG model with
a stronger propagation mechanism than the EG model studied in this paper
would introduce an additional relevant element in the discussion (namely, the
choice of the numerical solution method), but then it would be more difficult
to obtain a clear cut of how sensitive are the cyclical patterns to alternative
decomposition methods.9

2.2 Uhlig’s Log-Linear Method (LLM)

In a recent paper, Uhlig (1999) proposes a simple log-linear method to solve
for the dynamics of nonlinear stochastic dynamic general equilibrium models.
Uhlig’s method follows directly from King, Plosser and Rebelo (1988a,b) and
Campbell (1994) among others. This method is used to derive the numerical
solutions of the model considered in this paper.10 Uhlig’s solution method can
easily be summarized in the following four steps:
Step 1: Obtain the necessary conditions that characterize the equilibrium.
Step 2: Choose the parameter values of the model and find steady state values.

9Barañano, Iza and Vázquez (2002) provide an analysis of how sensitive are the cyclical
patterns displayed by the EG model to some calibrated key parameters such as θ and σ.
10 In a recent paper Barañano, Iza and Vázquez (2001) show that the second moment statis-

tics used to evaluate model performance of the Uzawa-Lucas model that exhibits a weak
internal propagation mechanism are very similar when either PEA method (den Haan and
Marcet (1990)) or Uhlig’s log-linear method are implemented. We carry out Uhlig’s method
because is much simpler than PEA method.
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Step 3: Log-linearize the first-order conditions, which characterize the equilib-
rium of the model, in order to make all the equations approximately linear in
the log-deviations from the steady state.
Step 4: Solve for the recursive equilibrium law of motion by using the method
of undetermined coefficients suggested by Uhlig (1999) which is simple and of
general applicability (that is, it can be implemented in models where there are
more endogenous state variables than expectational equations).
Steps 1-3 involve many tedious, though simple, computations, as shown in

the Appendix 1. After Step 3, it is convenient to rewrite the system of log-
linearized first-order conditions in matrix form. Then, using Uhlig’s notation,
we have a matrix system where there is one vector of endogenous state variables
xt (size mx1), another vector containing other endogenous variables yt (size
nx1) and a third vector of exogenous stochastic variables zt (size kx1):

Axt +Bxt−1 + Cyt +Dzt = 0, (12)

Et[Fxt+1 +Gxt +Hxt−1 + Jyt+1 +Kyt + Lzt+1 +Mzt] = 0, (13)

zt+1 = Nzt + ²t+1, (14)

where Et(²t+1) = 0. It is assumed that C is of size lxn, l ≥ n and of rank n, l
is the number of deterministic equations (i.e., the number of equations involved
in (12)), F is of size (m+ n− l)xm, and N has only stable eigenvalues. In the
EG model, we have two endogenous state variables: the log-deviations from the
steady-state values of k̂t and

ht+1
ht
, respectively;11 one exogenous variable zt and

four other (non-state) endogenous variables: the log-deviations from the steady-
state values of consumption-human capital ratio, ĉt, the fraction of capital stock
allocated to the market sector, φt, the fraction of time allocated to the market
sector production, nt, and leisure, lt, respectively.
The log-linear solution method seeks a recursive equilibrium law of motion

of the following form:

xt = Pxt−1 +Qzt, (15)

yt = Rxt−1 + Szt, (16)

that is, finding P , Q, R and S so that the equilibrium described by these rules
is stable. In our case, l = n, then (see Corollary 1 of Uhlig (1999))
(i) P satisfies the following quadratic equation:

(F − JC−1A)P 2 − (JC−1B −G+KC−1A)P −KC−1B +H = 0.

11ht+1/ht is considered as a state variable in order to satisfy the requirement that l ≥ n
imposed by the log-linear approximation, although it is not a state variable in the proper
sense because it does not appear in the policy rules (see matrices P and R below).
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Solving for P in this equation requires the use of Theorem 2 in Uhlig (1999).
(ii) R is given by

R = −C−1(AP +B).
(iii) Q satisfies

vec(Q) = (N 0 ⊗ (F − JC−1A) + Ik ⊗ (JR+ FP +G−KC−1A))−1

vec((JC−1D − L)N +KC−1D −M),
where vec(.) denotes columnwise vectorization.
(iv) S is given by

S = −C−1(AQ+D).
The matrices P , R, Q and S for the model considered and the value parameters
chosen are given by

P =

µ
0.92993734 0
0.00592555 0

¶
,

R =


0.43732421 0
−0.21876559 0
−0.74325643 0
−0.11149249 0

 ,

Q0 = (0.18186498,−0.01323460),

S0 = (0.43001337, 0.58667992, 2.00752300,−0.05848311).

3 ACHARACTERIZATIONOFTRENDAND
CYCLICAL COMPONENTS

In this subsection, we characterize the trend and cyclical components of the time
series generated by the log-linear approximation of the EG model. This charac-
terization allows us to decompose the synthetic time series in two components;
trend and cycle, where the cycle component satisfies the log-linear approxima-
tion of the Euler-equation restrictions imposed by the agent’s intertemporal
optimization problem.
Let wt denote a non-stationary variable of the model (for instance, output,

consumption and investment).12 We have derived above the laws of motion

12From now on we shall mainly focus on these three variables as it is a common belief among
RBC theorists that standard RBC models do a good job in characterizing the dynamics of
these variables.
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of the log-deviation from the steady-state values of output-human capital ra-
tio, consumption-human capital ratio and investment-human capital ratio, re-
spectively. It is therefore straightforward to obtain the log levels of output,
consumption and investment since

log wt = log ŵt + log ht, (17)

where ŵt = wt/ht. Notice that

ht+1
ht

= H̄Hehht ≈ H̄H(1 + hht), (18)

where H̄H is the steady state value of ht+1/ht and

hht = log
ht+1
ht
− log H̄H.

From Uhlig’s log-linear solution (equation (15)), we have obtained the laws of
motion of the log-deviations from the steady-state values of k̂t+1 and ht+1/ht
(denoted by ˆkkt+1 and hht, respectively)

hht = p21 ˆkkt + q21zt, (19)

ˆkkt+1 = p11 ˆkkt + q11zt, (20)

where pij and qij denote the generic elements of matrices P and Q, respectively.
As mentioned above, the log-linear solution of this model imposes that p12 =
p22 = 0. Taking the (natural) logs in equation (18) we have that

log ht+1 = log ht + log H̄H + hht. (21)

Using equations (19), (20) and as zt follows a first-order autoregressive process,
equation (21) can be written as

log ht+1 = log ht + log H̄H + p21p11k̂kt−1 + (p21q11 + q21ρ)zt−1 + q21²t. (22)

Equation (22) clearly shows that the synthetic time series of the log level of
human capital has a unit root with drift. Therefore, from equation (17), the
synthetic time series of the logs of output, consumption and investment have
also a unit root. This feature of the model is consistent with the overwhelm-
ing evidence (stimulated by Nelson and Plosser (1982)) of the presence of unit
roots in aggregate time series. Moreover, the synthetic time series of output,
consumption and investment have a single common trend (namely, the log of
human capital) and are cointegrated. Given these properties of the synthetic
non-stationary variables, wt, a model-based decomposition is obtained by elim-
inating the unit-root and the deterministic trend component, log H̄H, from the
synthetic non-stationary variables. The cyclical component of wt obtained from
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this model-based decomposition (denoted by w̃) is then given by the following
expression:

log w̃t = log wt − log ht−1 − log H̄H. (23)

Notice that this model-based decomposition eliminates the unit-root and the
deterministic trend component from the synthetic time series, but leaves un-
touched, according to equation (21), the cyclical behavior of a non-stationary
time series induced by the cyclical component of human capital defined by hht.
Other model-based decomposition of any non-stationary variable ωt is the

one given by equation (17). One difference between these two model-based
decompositions is that the cyclical component of any non-stationary time series
obtained from the former decomposition (given by (23)) includes the cyclical
component of human capital whereas the later decomposition (given by (17))
removes the cyclical component of human capital. Formally, log w̃t = log ŵt +
hht−1. Another difference is that decomposition (23) implies that the trend
component is predetermined which results in that current shocks do not affect
the current trend component. In spite of these qualitative differences, the two
decompositions quantitatively provide, as shown below, almost identical cyclical
properties.
Implementing any of these two model-based decompositions to removing

the trend component from synthetic data is straightforward since a synthetic
time series of ht is obtained from the model. However, applying these model-
based decompositions to actual data requires using some of additional model’s
structure. First, we need to obtain the time series of the technology shock zt
consistent with model’s structure and the actual data set considered. Second,
by using model’s structure and the time series of zt obtained in the previous
step, we generate the corresponding time series for human capital that will be
used in the model-based decomposition methods described above. In order to
carry out the first step, we rewrite equation (20) as follows

ˆkkt =
q11

1− p11Lzt−1, (24)

where L is the lag operator. From equations (15), (16) and (24), we obtain
the following expressions for consumption-human capital ratio and some other
variables included in the production function (3)

log ĉt = log ĉt +
r11q11
1− p11Lzt−1 + s11zt, (25)

logφt = logφ+
r21q11
1− p11Lzt−1 + s21zt, (26)

lognt = logn+
r31q11
1− p11Lzt−1 + s31zt, (27)
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log k̂t = log k̂ +
q11

1− p11Lzt−1, (28)

where the upper bar denotes steady state values and pij , qij , rij and sij are
generic elements of matrices P , Q, R and S, respectively. Note that all these
matrices are known since they are defined by the parameter values of the model
chosen in the calibration step.
Next we consider the following identity

log

µ
yt
ct

¶
= log ŷt − log ĉt. (29)

Taking into account the production function (3), equation (29) can be written
as follows

log

µ
yt
ct

¶
= log[Ame

zt(φtk̂t)
αn1−αt ]− log ĉt. (30)

Substituting equations (25)-(28) in (30) and after some algebra we obtain that

(1− p11L) log
µ
yt
ct

¶
= (1− p11)[logAm + α logφ+ α log k̂ + (1− α) logn− logbc]

+[1 + αs21 + (1− α)s31 − s11](1− p11L)zt

+q11[α(1 + r21) + (1− α)r31 − r11]zt−1. (31)

Taking into account the actual time series and the parameter values from the
calibration step we have that in equation (31) all the variables and parameters
are known except zt and zt−1. In order to obtain the time series of the tech-
nology shock zt we use model’s assumption that the technology shock follows
the process zt = 0.95zt−1 + ²t. In addition, we impose an initial condition. In
particular, we assume that ²2 = 0, which implies that

z2 = 0.95z1. (32)

Equation (32) and equation (31) evaluated at t = 2, form a pair of linear
equations with two unknowns, z1 and z2. Solving this system for z1 and z2, we
can then recursively obtain the time series of zt from equation (31). Next, by
using the time series of the technology shock zt and the model we can obtain
the time series for human capital to implement the model-based decompositions
outlined above.
Figures 1-3 show (unfiltered) real and synthetic time series for output, in-

vestment and consumption, respectively. These figures show that the EG model
captures to certain extent the timing and size of the cyclical fluctuations of
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output and investment. However, this model generates a smoother pattern for
consumption than the one observed in the data.13 Figure 4 shows the time series
for human capital used to detrend both the syntehtic and observed data. We
observe that the cyclical component of human capital is relatively small (that is,
human capital dynamics are dominated by its trend component) and this result
explains why the two model-based decompositions((17) and (23)) provide, as
shown below, almost identical cyclical properties.
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Figure 1: Log of real (LNYTR) and synthetic (LNYTE) output

13The gap between observed and synthetic data in Figures 1-3 is due to the choice of initial
stock values of physical and human capital used to generate synthetic data. Since this choice
only affects the level of the variables and has no effect on the cyclical patterns, we maintain
this gap for illustration purposes; in this way, the evolution of the two time series (actual and
synthetic) can be clearly distinguished in each of the three figures.
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Figure 2: Log of real (LNITR) and synthetic (LNITE) investment
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Figure 3: Log of real (LNCTR) and synthetic (LNCTE) consumption
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Figure 4: Synthetic Human Capital Time Series

There are other types of model-based decompositions considered in the lit-
erature. One of these (for instance, King, Plosser, Stock and Watson (1991))
consists in studying the (logs of) consumption-output and investment-output
great ratios. As was made clear above, these ratios satisfy the log-linear ap-
proximation of the Euler-restrictions imposed by the agent’s intertemporal op-
timization program. On the one hand, the analysis of the great ratios has the
advantage that the implicit model-based decomposition is simpler to implement
than the model-based decompositions considered above. On the other hand, the
previous model decompositions have the advantage that it allows us to analyze
separately the cyclical features of output, consumption and investment. Another
model based-decomposition suggested by King, Plosser and Rebelo (1988b) con-
sists in analyzing the growth rates of output, consumption and investment. This
model-based decomposition, as the one based on the analysis of the great ratios,
is easy to implement and it allows to study separately the cyclical components
of output, consumption and investment. As pointed out by King, Plosser and
Rebelo (1988b), an inconvenient of the model-based decomposition implied by
the growth rates is that mainly isolates cyclical components associated with high
frequencies. An advantage of the analyses of the great ratios and the growth
rates is that they can be implemented in the two growth models considered.
Therefore, these two model-based decompositions can be used to compare the
performance of the two models in order to reproduce the dynamic features of
the great ratios and work effort and the dynamic properties of the growth rates
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of output, consumption and investment, respectively.

4 THE KING-PLOSSER-REBELO MODEL
The KPR model is a one-sector model of physical capital accumulation and labor
input is a choice variable. As is well known, the competitive equilibrium of this
model can be characterized by solving the following intertemporal optimization
problem faced by a benevolent social planner:

Max
ct,kt,nt,it,yt

Et

( ∞X
t=0

βt [log(ct) +A log(lt)] ,

)
(33)

subject to the following constraints

ct + it = yt,
kt+1 = (1− δ)kt + it,
yt = Ztk

α
t (Xtnt)

1−α,
log(Zt

Z
) = ρ log(Zt−1

Z
) + εt,

(34)

where k0, Z0 and X0 are given. The notation is standard. ct, nt, it, yt, kt,
and Zt denote consumption, labor input, investment, output, capital stock and
technological shock at time t, respectively. β and δ are the discount factor
and the depreciation rate, respectively. A, α, ρ and Z are parameters. The
variable Xt is exogenously determined and it captures the growth process of the
economy. It is assumed that Xt follows the process Xt = ϕXt−1. Therefore, the
growth process is deterministic. The parameter ϕ determines the steady-state
rate of growth.
In the steady state, the variables yt, ct, it, and kt grow at rate ϕ whereas

nt and the gross real return of capital, denoted by Rt, are constants. In order
to facilitate the use of computational techniques, it is convenient to rewrite
the model in terms of stationary variables by dividing all steady-state growing
variables by Xt. Then, the model can be written in terms of the variables
cxt = ct/Xt, kxt = kt/Xt, ixt = it/Xt, and yxt = yt/Xt that are stationary.
The necessary and sufficient first-order conditions for an (interior) optimum are
then given by

Acxtnt = (1− α)(yxt − yxtnt), (35)

1 =
β

ϕ
Et(

cxt
cxt+1

Rt+1), (36)

Rt = α
yxt
kxt

+ (1− δ), (37)
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cxt + ixt = yxt, (38)

yxt = Ztkx
α
t n

1−α
t , (39)

ϕkxt+1 = (1− δ)kxt + ixt, (40)

lim
t→∞Etβ

t kxt+1
cxt

= 0,

zt = ρzt−1 + εt,

where zt = log(ZtZ ).
In order to facilitate the comparison between the two growth models, the

same parameter values considered in the EG model are used in the KPR model
with small differences.14

By using the log-linear method suggested by Uhlig (1999), the following laws
of motion for the stationary variables of the model are obtained

fkxt+1 = 0.950920fkxt + 0.123720zt,fcxt = 0.551419fkxt + 0.406145zt,fyxt = 0.178718fkxt + 1.562405zt,ent = −0.283253fkxt + 0.878757zt,eRt = −0.028460fkxt + 0.0541430zt,eixt = −0.694592fkxt + 4.271741zt.
(41)

Moreover, it is assumed that

zt = 0.95zt−1 + εt, (42)

where εt ∼ iid(0,σ2²). A tilde (e) on a variable denotes its log-deviation from
the steady-state value.
Using the system of equations (41) and initial values for fkxt and zt, we can

obtain synthetic time series for the log-deviations from the steady-state values
of the ratios kxt = kt

Xt
, cxt =

ct
Xt
, yxt =

yt
Xt
, and ixt = it

Xt
, and the levels

of nt and Rt. Using the initial value X0 and the law of motion Xt = ϕXt−1
the time series Xt are obtained. Next, the levels of all variables displaying a
deterministic trend (yt, ct, it, and kt) can be easily obtained usingXt. Following
these procedures we have the synthetic time series of kt, ct, yt and it in levels
and the same time series filtered according to a model-based decomposition that
removes the linear trend component Xt, that is, kxt, cxt, yxt and ixt.

14More precisely, the parameter values chosen are α = 0.36, δ = 0.025, σ = 1, ρ = 0.95,
β = 0.99414 and ϕ = 1.00408067.
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The KPR model assumes a linear deterministic trend. Therefore, a model-
based decomposition in this context consists in removing a linear trend from non-
stationary time series (for instance, output, consumption and investment). From
now on, we refer to this model-based decomposition as LT. As in the Uzawa-
Lucas model, the great ratios and the growth rates of output, consumption and
investment are model-based decompositions in the KPR model since these two
transformations also remove the linear deterministic trend followed by Xt.

5 MODEL EVALUATION USING ALTERNA-
TIVE DECOMPOSITION METHODS

Following the way in which the RBC literature evaluates models, we now analyze
whether different cyclical features, characterized through some selected second
moment statistics of the (log) levels of output, consumption and investment,
change depending on the alternative decomposition methods used to obtain
the cyclical components of the time series. Six decomposition procedures are
considered in this section: the two model-based decompositions associated with
the EG model suggested in Section 3, the model-based decomposition associated
with the KPR model proposed in Section 4, the HP filter, the BP filter and the
GG decomposition. As pointed above, the evaluation exercise uses quarterly US
data for the period 1955:3-1984:1.
The presentation of the results has the following structure. First, we show

the US cyclical features extracted from alternative decomposition methods. Sec-
ond, we show the cyclical features of the KPR model and the EG model obtained
from the alternative decomposition procedures. Finally, the performance of the
two alternative growth models to reproduce the cyclical features observed in US
data is compared across alternative decomposition methods.

5.1 US cyclical features

Table 1 shows some second moment statistics for actual US data and synthetic
data (obtained from the two alternative growth models) derived from the de-
composition methods considered in this paper. Before the trend component was
removed from the time series and second moment statistics were calculated, time
series were logged.
The top panel in Table 1 displays the cyclical properties revealed by US data.

We observe that two cyclical features are qualitatively similar for all decompo-
sitions considered. First, output volatility is higher than consumption volatility
and much lower than investment volatility. Second, the correlation between
consumption and output is lower than the correlation between investment and
output.
When comparing quantitatively the cyclical features across decomposition

methods, we observe some important differences and similarities . These similar-
ities and differences can be summarized as follows. First, the two model-based
decompositions characterized by (23) (MBD1) and (17) (MBD2) provide two
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cyclical components that share almost identical cyclical features. This result is
not surprising at all since these two model-based decompositions differ only by
whether or not the cyclical component of human capital, which is very small
as shown above in Figure 4, is included in the cyclical component of nonsta-
tionary variables. The linear trend (LT) decomposition reveals similar cyclical
features than those obtained through MBD1 and MBD2 except the volatilities
of consumption and output. Moreover, these three model-based decompositions
imply more volatile cyclical components than the other three detrending meth-
ods, where the volatility is measured by the standard deviation of the time series
of output, consumption and investment, respectively.
Second, the relative volatilities of consumption and output and investment

and output (measured by σc/σy and σi/σy) obtained from the HP and BP
filters are quite similar. However, these statistics are different when the other
decomposition methods are considered. On the one hand, the GG filter provides
cyclical components characterized by a higher volatility of investment relative
to output volatility and a lower volatility of consumption relative to output
volatility. On the other hand, the cyclical components obtained from the two
model-based decompositions associated with the EG model are characterized
by a lower σi/σy and a higher σc/σy whereas the cyclical components obtained
from the model-based decomposition associated with the KPRmodel also results
in a lower σi/σy, but a similar value for σc/σy, than those obtained for the HP
and BP filters.
Third, the cyclical components obtained from the HP and BP filters share

similar contemporaneous correlations between consumption and output ρcy and
between investment and output ρiy. In relation to the correlations found with
the HP and BP filters, the cyclical components obtained from the three model-
based decompositions imply a higher value for ρcy and slightly lower value for
ρiy. Moreover, by using Johansen’s (1988) procedure, the cointegration results
obtained from actual US data show the presence of a single cointegration re-
lationship between output, consumption and investment, and this implies the
existence of two common trends.15 This result, on the one hand, explains the
perfect contemporaneous correlation between output and investment and be-
tween output and consumption when the time series are filtered using the GG
filter, since this filter, by construction, imposes this cointegration restriction.
On the other hand, the existence of two common trends challenges most RBC
models because they typically assume the existence of a single trend. In par-
ticular, the EG model considered in this paper exhibits a single trend which is
characterized by human capital accumulation.

15 It should be noticed that King, Plosser, Stock and Watson (1991) find, studying a similar
data set, the existence of a single common trend for the same set of variables. The different
results may be due to the different econometric procedures implemented to detect the coin-
tegration relationships. We think that further research in this topic is important since the
number of common trends detected in actual data may influence the evaluation results of the
cyclical features of a particular model.
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5.2 Cyclical features of the two growth models

The second panel in Table 1 summarizes the cyclical features exhibited by the
EG model. It shows that the cyclical components extracted with the HP, BP
and GG filters produce very similar volatilities for the synthetic time series of
output, consumption and investment. Since the standard deviation of the tech-
nology shock process σ² is calibrated in such way that the synthetic output time
series obtained from any decomposition is closer to mimicking the observed σy
in actual US data, the standard deviations of the cyclical components of output,
consumption and investment associated with the model-based decompositions
are obviously higher than those associated with the HP, BP and GG filters.
As for actual US data, the relative volatility between consumption and output
obtained from synthetic data is higher for the cyclical components character-
ized by the two model-based decompositions than for the cyclical components
associated with the HP, BP and GG filters. The reverse is true for the relative
volatility between investment and output, but the statistics are much closer.
The contemporaneous correlations between consumption and output (ρcy) and
between investment and output (ρiy) change with the decomposition chosen. On
the one hand, the two model-based decompositions and the BP filter provide
cyclical components with similar correlation statistics and these three decom-
positions share the property observed in actual US data that the correlation
between consumption and output is lower than the correlation between invest-
ment and output. On the other hand, the HP and GG filters result in that ρcy
is higher than ρiy. Moreover, the HP filter reduces the size of the statistic ρiy in
relation to the one obtained from the other decomposition methods16 whereas
the GG filter implies a larger value of ρcy than the one obtained from the other
decomposition methods.
As shown by the bottom row of the second panel in Table 1, another differ-

ence arises when comparing the effects of alternative decomposition methods:
σ² is different depending on the decomposition method considered. Thus, σ² has
to be twice (thrice) greater when the cyclical component is characterized by the
HP and BP filters (the two model-based decompositions), in order to mimick-
ing US output volatility, than when the cyclical component is characterized by
the GG filter. Computing the ratios σy/σ² for each alternative decomposition
method provides a rough idea of how alternative decomposition methods af-
fect the propagation mechanism of technology shocks implied by the EG model.
Thus, one can easily check that the HP and BP filters induced a much weaker
propagation mechanism than the other decomposition methods.
The third panel in Table 1 summarizes the cyclical features exhibited by

the KPR model. As in the EG model, the standard deviation of the cyclical
components of output, consumption and investment associated with the model-
based decomposition LT are obviously higher than those associated with the HP

16As discussed below, the fact that this model produces a low correlation between investment
and output ρiy under the HP filter is quite surprising since other scenarios, such as standard
RBC models filtering with the HP and the EG model considered filtering with the other
decompositions, provide higher values for ρiy .
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and BP filters because the standard deviation of the technology shock process
σ² is calibrated in such way that the synthetic output time series obtained from
any decomposition is closer to mimicking the observed σy in actual US data.
Again, as in the EG model, the relative volatility between consumption and
output is twice larger for the cyclical component associated with the model-
based decomposition LT than for the cyclical components associated with the
HP and BP filters. As in the EG model, the reverse is true for the relative
volatility between investment and output. Contrary to the results found in
the EG model, the cyclical components of the KPR model obtained from the
three alternative decompositions (LT, HP and BP) share the feature observed
in actual US data that the correlation between consumption and output is lower
than the correlation between investment and output.
As shown by the bottom row of the third panel in Table 1 and contrary to

the EG model, the parameter value of σ² barely changes with the decomposition
method used.
Next, we carry out the following exercise, which is simple, in order to see

whether a model-based decomposition provides a cyclical component of the syn-
thetic time series from the EG model that is substantially different from the
cyclical components obtained from alternative filters.17 This exercise is also
useful to analyze whether the EG model provides different dynamic features de-
pending on the cyclical components obtained from alternative detrending meth-
ods. This exercise can be outlined as follows:

Step 1. We have previously solved the EG model obtaining the logarithms of
the cyclical components of the following variables: output (ỹt), consumption
(c̃) and investment (̃ıt). These are the cyclical components characterized by
model-based decomposition (23).
Step 2. The logarithms of the non-stationary synthetic time series for output
(yt), consumption (ct) and investment (it) are filtered using alternative filtering
techniques. As pointed out above, this paper considers two well known filters
in the RBC literature, the HP and BP filters, together with the GG filter.
Step 3. We regress the logarithm of the cyclical component of output (ỹt) on
the logs of output time series obtained by using the three alternative filters. We
do the same for the logs of c̃t and ı̃t.
Step 4. We repeat many times (say 500 times) Steps 1-3 for different realizations
of the technology shock zt.
Table 2 shows the average results of these regressions. On the one hand,

we observe that the cyclical behavior of the output and investment associated
with the model-based decomposition studied (measured by the logs of ỹt and
ı̃t, respectively) is captured to a great extent by the GG filter. We view the
R2 coefficient obtained from any of these regressions as a rough measure of
the capability of a particular filter to capture the cyclical component dynamics
of the corresponding (dependent) variable characterized by the model-based

17 In this exercise we use the model-based decomposition characterized by (23). The results
are similar when implemeting model-based decomposition (17).
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decomposition considered.18 Looking at the R2 coefficients, we observe that 79%
of the variance of output and 92% of the variance of investment are explained
by the synthetic time series filtered using GG. However, when the HP and the
BP filters are used the R2 coefficients are much smaller. These results show
that the explanatory power of the output and investment filtered through HP is
very small compared to the explanatory power of these variables filtered using
GG. The reason why the cyclical components obtained from the model-based
decomposition and the GG filter are similar is that this filter requires that the
time series considered be I(1) (that is, they are difference stationary) and it
imposes the existence of a common trend for all non-stationary variables of the
model. These two features imposed by this filter are consistent with the EG
model. First, as shown above, the synthetic time series for output, consumption
and investment have a unit root. Second, the EG model postulates a single
source of growth represented by human capital (that is, a single common trend)
for all non-stationary variables.
On the other hand, we see looking at Table 2 that the cyclical features of

consumption associated with the model-based decomposition (measured by c̃t)
are not well captured by any of the three filters considered (the highest R2

value is obtained for the BP filter, R2 = 0.35). This result is due to the fact
that the cyclical component of consumption characterized by the model-based
decomposition exhibits a great deal of persistence which does not appear when
the synthetic time series in levels go through the alternative filters.

5.3 A comparison of models’ performance

Comparing the statistics from actual US data with the corresponding statistics
from synthetic data in Table 1, we see that a model quantitative evaluation
depends, to some extent, on the decomposition method considered to extract
the cyclical component. Some examples are the following. First, we will say
that the EG model matches the relative volatility of investment with respect to
output, σi/σy, when analyzing the cyclical components characterized by the HP
and BP filters. However, for the cyclical components characterized by the GG
filter and the model-based decompositions associated with the EGmodel (MBD1
and MBD2), the match will not be so good.19 Analyzing the same statistic in
the KPR model, any decomposition considered (LT, HP and BP) suggests that
the KPR model induces a much larger relative volatility of investment with
respect to output than the one observed in US data.
Second, one may conclude that the EG model is close to match the relative

volatility of consumption with respect to output, σc/σy, when analyzing the
cyclical components characterized by the GG. However, this conclusion is not
reached when using the other decomposition procedures since the EG model falls
short of replicating the value of this statistic obtain from actual data. When

18Watson (1993) also uses R2 related measures to quantitatively evaluate model perfor-
mance.
19 Since σ² is calibrated in such way that the model is closer to mimicking the observed σy

in actual US data, the same conclusion for σi can be reached.

24



evaluating the KPR model a conflicting result also appears: the actual value
of σc/σy found in US data is larger (smaller) than the one reproduced by the
KPR model using the HP and BP (LT decomposition) filters.
Third, one may conclude that the correlation between consumption and out-

put, ρcy, is reproduced by the KPR model when the model-based decomposition
LT is considered. However, by using HP and BP filters, one concludes that the
KPR model induces a larger ρcy than the one observed in US data. In the
EG model, on the one hand, the two model-based decompositions (MBD1 and
MBD2) induce a smaller ρcy than the one observed in US data, whereas the
opposite is true for the HP filter. On the other hand, by using the BP or GG
filters one may conclude that the EG model is closer to reproduce the statistic
ρcy observed in actual data than when using the other decomposition methods.
Finally, according to the two model based decompositions (MBD1 andMBD2),

one may conclude that the correlation between investment and output, ρiy, is
replicated to certain extent by the EG model. However, this conclusion is not
reached using either the HP or GG filters. The KPR induces a larger ρiy than
the one observed in US data independently of the decomposition considered,
although the model is closer to reproduce this feature when the model-based
decomposition LT is used.
In short, this section has stressed that alternative decomposition methods

lead to quite different model evaluation results either in the EG model as in
the KPR model. Moreover, the assessment of whether a model is closer to
reproduce a particular cyclical feature than the other model in certain cases
depends on the decomposition considered.20 Thus, when using the BP filter
one may conclude that the EG model is closer to reproduce the statistics σi/σy
and ρcy than the KPR model. The opposite is true for σc/σy whereas for the
statistic ρiy the performance of the two models is rather similar. When the HP
filter is considered the comparison results between the two growth models point
to the same direction as the BP filter with the exception that the KPR model
is much closer to reproduce ρiy than the EG model.

6 MODEL EVALUATIONBASEDONTHEANAL-
YSIS OFTHEGREATRATIOSANDGROWTH
RATES

6.1 Analysis of the great ratios

Table 3 shows some selected second moment statistics of the great ratios and
the work effort for US data (upper panel) and synthetic data (bottom panel,
columns 2-4 and columns 4-6 in this panel show the corresponding statistics from

20Furthermore, as pointed above in the Introduction, this type of assessments make more
sense when the same filter can be applied to the alternative models considered as is the case
of the HP and BP filters since otherwise the different evaluation results may be due to the
different decompositions used to evaluate each model.
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the EG model and the KPR model, respectively). The parameter σ² has been
set equal to 0.0438 (0.0058) in the EG model (KPR model) and this results in
that the standard deviation of log(i/y) is roughly the same for synthetic and US
data. Comparing the statistics from both panels we observe that the EG model
qualitatively displays the same features as those present in actual data. First,
the standard deviation of log(c/y) is smaller and closer to the standard devia-
tion of the work effort, log(n), than the standard deviation of log(i/y). Second,
log(c/y) is negatively correlated with log(i/y) and log(n). Third, the autocor-
relation functions show a slow decay. Moreover, the EG model provides some
well behaved quantitative approximations of some moments observed in actual
data. For instance, the autocorrelation function of log(n) is quite well character-
ized by the model dynamics. Another example is the cross-correlation structure
between log(i/y) and log(n). However, we also observe some important quan-
titative departures. First, the model shows a lower volatility for log(c/y) and
log(n). Second, the negative contemporaneous correlation between the two ra-
tios is almost three times larger in the EG model than the one observed in
actual data. An even worse result is found for the contemporaneous correlation
between log(c/y) and log(n). Finally, the autocorrelation functions of log(c/y)
and log(i/y) for actual data show more persistence than those obtained from
the model.
Comparing upper panel of Table 3 with the columns 4-6 in the bottom panel

of Table 3, we observe that the KPR model performs much worst than the EG
model when reproducing the cyclical features of the great ratios. The reason is
simple. In the KPR model, the two great ratios and work effort are perfectly
correlated contemporaneously and share the same autocorrelation and cross-
correlation structures, since there is a stochastic singularity in the expressions
that relate the two great ratios and work effort with the two state variables of the
model fkxt and zt. As shown by equation (41), the companion matrix associated
with the bivariate system that relates the two great ratios (or alternatively, one
of the great ratios and the work effort) with the two states variables is singular.
This stochastic singularity implies that the two great ratios and the work effort
are linear functions of the state variables where the only difference among these
linear functions is a scale factor.21 This stochastic singularity does not hold in
the EG model. This less restrictive property of the EG model provides a closer
match to the observed autocorrelation and cross-correlation structures of the
two great ratios and work effort than those provided by the KPR model.

21A similar analysis of these ratios is carried out in King, Plosser and Rebelo (1988b) in
the context of an exogenous growth model in which the logarithm of total factor productivity
follows a random walk. In their model the stochastic singularity occurs because the great ratios
and the work effort are linear functions of only the contemporaneous deviation of the capital
stock from its steady state value. The cyclical features displayed by the KPR model considered
in this paper are to certain extent different from those obtained by King, Plosser and Rebelo
(1988b) since certain parameter values are different. Notice that we also depart from King et
al. (1988b) in that the dynamic properties of the model are analyzed by calculating the sample
moments (as we have done with the actual US data) instead of the population moments as in
King et al. (1988b). We proceed in this way because sample moments can substantially differ
from population moments in the context of stationary, but persistent, processes.
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6.2 Analysis of the growth rates

Table 4 displays some selected second moment statistics of the growth rates of
output, consumption, investment and work effort. As in the analysis of the
great ratios, the parameter σ² has been set equal to 0.0438 (0.0055) in the EG
model (KPR model). The EG model captures remarkably well the volatility of
the growth rates of output and investment whereas the KPR model is only close
to capture the volatility of the output growth rate. The two models (KPR and
EG models) fall short of replicating the observed volatility of the growth rates
of consumption and hours. Although the KPR model is closer to reproduce
the volatility of consumption growth rate observed in actual data than the EG
model. The opposite is true for the volatilities of the growth rates of work effort
and investment. Moreover, the two models fail in two important dimensions.
First, due to the presence of a single common shock the two models imply a
contemporaneous cross-correlation near unity between the growth rate of output
and the growth rates of consumption, investment and work effort, respectively.
Second, the two models fail to reproduce the positive serial correlation at lags
one and two quarters in growth rates of output and investment present in actual
data.

7 CONCLUSIONS
This paper analyzes and compares the cyclical properties of an Uzawa-Lucas en-
dogenous growth model with those exhibited by a standard neoclassical (exoge-
nous) growth model. We study the dynamic features of different cyclical compo-
nents of these two models characterized by a variety of decomposition methods.
The decomposition methods considered can be classified in two groups. On the
one hand, we consider three statistical filters: the Hodrick-Prescott filter, the
Baxter-King filter and the multivariate decomposition suggested by Gonzalo
and Granger. On the other hand, we use a set of model-based decomposition
methods. All model-based decomposition methods share the property that the
cyclical components extracted by these methods preserve the log-linear approx-
imation of the Euler-equation restrictions imposed by the agent’s intertemporal
optimization problem.
The quantitative evaluation of the Uzawa-Lucas model across the alternative

cyclical components considered can be summarized as follows. First, the model
reproduce quite well the second moments characterized by the first two model-
based decompositions relatively to the other detrending methods, except the
relative volatility of investment and output. Second, the model does a reasonable
job in reproducing the second moments of the cyclical component characterized
by the Baxter-King filter, but the relative volatility of consumption and output.
The same conclusion can be reached for the Hodrick-Prescott filter except for
the correlation between investment and output that it is also poorly reproduced
by the model. Third, the model has some difficulties in order to mimicking the
cyclical features observed in the US data through the Gonzalo-Granger filter. A
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possible explanation for the poor performance of the Uzawa-Lucas model when
quantitative evaluation of the cyclical component characterized by the GG filter
is carried out may be due to the fact that actual US data exhibit two common
trends, whereas the model only displays a single common trend (the stock of
human capital). This fact shows that endogenous growth models that introduce
a second source of growth can be good candidates for future research in exploring
the implications of growth on cycles, and vice versa, since growth and cyclical
components are likely to be linked by optimal economic decision making.
A parallel exercise is also carried out in the context of a standard neoclassical

exogenous growth model. In this model, a model-based decomposition consists
in removing a linear deterministic trend. The quantitative evaluation results of
the exogenous growth model show that the capability of the model in charac-
terizing certain cyclical features studied depends on the decomposition method
used to isolate the cyclical component.
As pointed out above, in order to analyze whether or not the EG model is

better than the KPR model in reproducing certain cyclical properties observed
in actual data one should focus on decompositions that can be applied to the two
models as the HP and BP filters and the model-based decompositions implied
by the great ratios and the growth rates. When using the BP filter we conclude
that the EG model is closer to reproduce the relative volatility between invest-
ment and output and the contemporaneous correlation between consumption
and output than the KPR model. The opposite is true for the relative volatility
between consumption and output whereas the performance of the two models is
similar for reproducing the correlation between investment and output. When
the HP filter is considered the comparison results between the two growth mod-
els point to the same direction as the BP filter with the exception that the
KPR model is much closer to reproduce the correlation between investment and
output than the EG model.
The analysis of the cyclical features of the consumption-output and investment-

output great ratios and work effort shows that the generalized Uzawa-Lucas
model provides a better characterization than the exogenous growth models
analyzed by King, Plosser and Rebelo (1988a,b) in terms of the autocorrela-
tion and cross-correlation structures of the two great ratios and hours observed
in US data. Finally, the analysis of the growth rates shows that the general-
ized Uzawa-Lucas model provides no improvement in relation to the exogenous
growth models studied by King, Plosser and Rebelo (1988a,b) in reproducing the
observed autocorrelation functions of the rates of growth of output and invest-
ment. Collard (1999) has proved that a learning-by-doing endogenous growth
model account much better for the dynamics of the output growth rate.
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APPENDIX 1
In this appendix we derive Uhlig’s log-linear solution of the EG model.22

This approach log-linearizes the necessary first-order conditions that character-
ize the equilibrium of the model. In our model we have six first-order conditions,

U1(ĉt, lt) =
U2(ĉt, lt)

Fm2 (φtk̂t, nt)
, (A.1)

Fh2 [(1− φt)k̂t, 1− lt − nt]
Fm2 (φtk̂t, nt)

=
Fh1 [(1− φt)k̂t, 1− lt − nt]

Fm1 (φtk̂t, nt)
, (A.2)

ht+1
ht

= Fh[(1− φt)k̂t, 1− lt − nt] + 1− δh, (A.3)

ht+1
ht

k̂t+1 = F
h(φtk̂t, nt) + (1− δk)k̂t − ĉt, (A.4)

U1(ĉt, lt) = β(
ht+1
ht

)−γEt{U 01(ĉt, lt)[Fm1 (φt+1k̂t+1, nt+1) + 1− δk]}, (A.5)

U2(ĉt, lt)

Fh2 [(1− φt)k̂t, 1− lt − nt]
= β(

ht+1
ht

)−γEt{ U 02(ĉt, lt)
Fh2 [(1− φt+1)k̂t+1, 1− lt+1 − nt+1]

[Fh2 ((1− φt+1)k̂t+1, 1− lt+1 − nt+1) + 1− δh]}, (A.6)

Substituting the functional forms chosen for the utility and production func-
tions, we have the following expressions for the first-order conditions,

ĉt(1− w)nαt = wAm(1− α)(φtk̂t)
αltZt, (A.7)

φt
nt
=
(1− θ)α

θ(1− α)

(1− φt)

(1− lt − nt) ,

or equivalently,

22Similar steps have been carried out to solve the KPR model.
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φt =
ant

1− lt − nt + ant , (A.8)

where a = (1−θ)α
θ(1−α) ,

ht+1
ht

= Ah[(1− φt)k̂t]
θ(1− lt − nt)1−θ + 1− δh, (A.9)

ht+1
ht

k̂t+1 = Am(φtk̂t)
αn1−αt Zt + (1− δk)k̂t − ĉt, (A.10)

ĉ
ω(1−γ)−1
t l

(1−ω)(1−γ)
t = β(

ht+1
ht

)−γEt[ĉ
ω(1−γ)−1
t+1 l

(1−ω)(1−γ)
t+1

[AmαZt+1(φt+1k̂
α−1
t+1 )n

1−α
t+1 + 1− δk], (A.11)

ĉ
ω(1−γ)
t l

(1−ω)(1−γ)−1
t

[(1− φt)k̂t]
θ(1− lt − nt)−θ

= β(
ht+1
ht

)−γ

Et{
ĉ
ω(1−γ)
t+1 l

(1−ω)(1−γ)−1
t+1

[(1− φt+1)k̂t+1]
θ(1− lt+1 − nt+1)−θ

[Ah(1− θ)((1− φt+1)k̂t+1)
θ(1− lt+1 − nt+1)−θ + 1− δh]}. (A.12)

Making the equations approximately linear in the log-deviations from the
steady state as shown by Uhlig, and rearranging, we have that

0 = ¯̂c(1− w)n̄α(ĉct + αnnt)− wAm(1− α)φ̄
α¯̂
k
α
Z̄l̄[αφφt + α ˆkkt + zt + llt],

(A.13)

where ĉct = log( ĉt¯̂c ), nnt = log(ntn̄ ), φφt = log(φt
φ̄
), ˆkkt = log( k̂t¯̂

k
), and llt =

log( lt
l̄
);

0 = [an̄− (a− 1)φ̄n̄]nnt + φ̄l̄llt − φ̄[1− l̄ + (a− 1)n̄]φφt, (A.14)
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0 = −H̄Hhht+1 +Ah( φ̄
¯̂
k

n̄
)θ[

θ(1− α)

α(1− θ)
]
θ

(1− l̄ − n̄)θ[φφt + ˆkkt]

−Ah( φ̄
¯̂
k

n̄
)θ[

θ(1− α)

α(1− θ)
]θ l̄llt −Ah( φ̄

¯̂
k

n̄
)θ[

θ(1− α)

α(1− θ)
]θ[(1− l̄ − n̄)θ + n̄]nnt, (A.15)

0 = −¯̂kH̄H[ ˆkkt+1 + hht+1] +AmZ̄(φ̄
¯̂
k)αn̄1−α[αφφt + (1− α)nnt + zt]

+[AmZ̄(φ̄
¯̂
k)αn̄1−αα+ (1− δk)

¯̂
k] ˆkkt − ¯̂cĉct, (A.16)

0 = Et{−(w(1− γ)− 1)ĉct − (1− w)(1− γ)llt

+βH̄H
−γ
AmαZ̄(φ̄

¯̂
k)α−1n̄1−α[(α− 1)φφt+1 + (α− 1)kkt+1 + (1− α)nnt+1 + zt+1]

+βH̄H
−γ
(w(1− γ)− 1)[Amα( φ̄

¯̂
k

n̂
)α−1Z̄ + (1− δk)] ˆcct+1

+βH̄H
−γ
[(1− w)(1− γ)][Amα(

φ̄
¯̂
k

n̂
)α−1Z̄ + (1− δk)]llt+1

−βH̄H−γγ[Amα( φ̄
¯̂
k
¯̂n
)α−1Z̄ + (1− δk)]hht+1}, (A.17)

0 = Et{−w(1− γ)ĉct − ((1− w)(1− γ)− 1)llt + θφφt + θ ˆkkt − θnnt +

βH̄H
−γ
w(1− γ)[Ah(1− θ)(

φ̄
¯̂
k

n̄
)θ(

θ(1− α)

α(1− θ)
)
θ

+ (1− δh)] ˆcct+1 +

βH̄H
−γ
[(1− w)(1− γ)− 1][Ah(1− θ)(

φ̄
¯̂
k

n̄
)θ(

θ(1− α)

α(1− θ)
)
θ

+ (1− δh)]llt+1

−βH̄H−γθ(1− δh)[φφt+1 +
ˆkkt+1 − nnt+1]
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−βH̄H−γγ[Ah(1− θ)(
φ̄
¯̂
k

n̄
)θ(

θ(1− α)

α(1− θ)
)θ + (1− δh)]hht+1}. (A.18)

The steady-state values are denoted with an upper bar, e.g., H̄H is the
steady state value for ht+1ht

, i.e. the endogenous growth rate.
Using Uhlig’s terminology, there is an endogenous state vector xt, size 2x1, a

list of other endogenous variables yt, size 4x1, and a list of exogenous stochastic
processes zt, size 1x1. The equilibrium relationships between these variables
can be expressed as follows

0 = Axt +Bxt−1 + Cyt +Dzt, (A.19)

0 = Et[Fxt+1 +Gxt +Hxt−1 + Jyt+1 +Kyt + Lzt+1 +Mzt], (A.20)

zt+1 = Nzt + ²t+1, (A.21)

where Et(²t+1) = 0, x0t = ( ˆkkt+1, hht+1), y0t = (ĉct,φφt, nnt, llt), zt = zt, and
matrices:

A =


0 0
0 0
0 −HH

−¯̂kHH −¯̂kHH

 ,

B =


−αωAm(1− α)(φ̄

¯̂
k)αZl 0

0 0

Ah(φ̄
¯̂
k)θn−θ[ θ(1−α)α(1−θ) ]

θ(1− l̄ − n̄)θ 0

AmZ̄(φ̄
¯̂
k)αn̄1−αα+ (1− δk)

¯̂
k 0

 .

Denoting the generic element of C by Cij we have that

C11 = bc(1− ω)nα

C12 = −αωAm(1− α)(φ̄
¯̂
k)αZl,
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C13 = αbc(1− ω)nα

C14 = −ωAm(1− α)(φ̄
¯̂
k)αZl,

C21 = 0

C22 = −φ[1− l + (a− 1)n],

C23 = an− φ(a− 1)n,

C24 = φl,

C31 = 0,

C32 = Ah(φ̄
¯̂
k)θn−θ[

θ(1− α)

α(1− θ)
]θ(1− l̄ − n̄)θ,

C33 = −Ah(φ̄¯̂k)θn−θ[θ(1− α)

α(1− θ)
]θ[(1− l̄ − n̄)θ + n̄],

C34 = −Ah(φ̄¯̂k)θn−θl[θ(1− α)

α(1− θ)
]θ,

C41 = −¯̂c,

C42 = αAm(φ̄
¯̂
k)αn1−αZ,

C43 = (1− α)Am(φ̄
¯̂
k)αn1−αZ,

C44 = 0,

D =


−ωAm(1− α)(φ̄

¯̂
k)αZl

0
0

Am(φ̄
¯̂
k)αn1−αZ

 ,
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F =

µ
0 0
0 0

¶
,

G =

Ã
(α− 1)βHH−γ(I51) −γβHH−γ(I51 + I52)
−θβHH−γ(I62) −γβHH−γ(I61 + I62)

!
,

where

I51 = αAm(φ̄
¯̂
k)α−1n1−αZ,

I52 = (1− δk),

I61 = Ah(1− θ)(φ̄
¯̂
k)θn−θ[

θ(1− α)

α(1− θ)
]θ,

I62 = (1− δh),

H =

µ
0 0
θ 0

¶
.

Denoting the generic element of J by Jij we have that

J11 = βHH
−γ
[ω(1− γ)− 1](I51 + I52),

J12 = βHH
−γ
(α− 1)I51,

J13 = βHH
−γ
(1− α)I51,

J14 = βHH
−γ
(1− ω)(1− γ)(I51 + I52),

J21 = βHH
−γ

ω(1− γ)(I61 + I62),

J22 = −θβHH−γ(I62),

J23 = θβHH
−γ
(I62),

J24 = βHH
−γ
[(1− ω)(1− γ)− 1](I61 + I62),

K =

µ
1− ω(1− γ) 0 0 −(1− ω)(1− γ)
−ω(1− γ) θ −θ 1− (1− ω)(1− γ)

¶
.

L =

µ
βHH

−γ
(I51)

0

¶
.

M 0 = (0, 0).
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TABLE 1. Some relevant second moment statistics

US DATA MBD1 MBD2 LT HP BP GG
σy 5.56 5.56 5.12 1.98 1.82 1.74
σc 4.15 4.16 3.77 0.85 0.80 0.21
σi 7.66 7.67 7.32 4.34 4.14 5.20
σc/σy 0.75 0.75 0.43 0.43 0.44 0.12
σi/σy 1.38 1.38 1.43 2.19 2.27 2.99
ρcy 0.88 0.88 0.85 0.79 0.82 1.0
ρiy 0.91 0.91 0.90 0.93 0.94 1.0

SYNTHETIC MBD1 MBD2 HP BP GG MBD3
EG model
σy 5.56 5.59 1.94 1.76 1.74 1.96
σc 2.48 2.48 0.382 0.36 0.31 0.87
σi 11.59 11.59 4.45 4.02 3.99 4.01
σc/σy 0.45 0.45 0.20 0.21 0.18 0.44
σi/σy 2.09 2.07 2.29 2.28 2.30 2.05
ρcy 0.81 0.76 0.87 0.84 0.996 0.76
ρiy 0.87 0.85 0.66 0.87 0.87 0.85
σ² 0.009 0.009 0.006 0.006 0.003 0.003

SYNTHETIC LT HP BP
KPR model
σy 5.15 1.97 1.80
σc 3.18 0.60 0.57
σi 11.51 5.39 4.90
σc/σy 0.62 0.30 0.32
σi/σy 2.24 2.73 2.71
ρcy 0.84 0.89 0.88
ρiy 0.94 0.99 0.99
σ² 0.01 0.01 0.01

Notes: MBD1 and MBD2 denote the model-based decompositions charac-
terized by equations (23) and (17), respectively. LT stands for the model-based
decomposition associated with the KPR model, that is, the model-based decom-
position obtained from removing a linear trend component from the original time
series. MBD3 denotes the model-based decomposition MBD1 with σ² = 0.003.
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TABLE 2 Regressions results

Synthetic Constant GG R2

ỹt -0.1161 1.0181 0.7869
(100) (100)

c̃t -0.6079 1.1096 0.1813
(100) (90)

ĩt -1.0692 0.9918 0.9210
(100) (100)

Synthetic Constant BP R2

ỹt -0.1116 1.4315 0.5068
(100) (100)

c̃t -0.6048 2.3884 0.3549
(100) (99)

ĩt -1.0643 1.3794 0.5543
(100) (100)

Synthetic Constant HP R2

ỹt -0.1162 1.2400 0.4558
(100) (100)

c̃t -0.6078 1.6864 0.1993
(100) (90)

ĩt -1.0714 1.2179 0.5258
(100) (100)

Notes: The numbers in parentheses represent the percentage of significance
of the corresponding regression parameter for different realizations of the tech-
nology shock. A 0.05 percent significance level is considered.
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TABLE 3. Sample moments for the great ratios and the work
effort

Actual US data log(c/y) log(i/y) log(n)
Standard deviation 2.743 3.517 2.379
correl. with log(c/y) 1.0 -0.232 -0.261
first-order autocorr. 0.936 0.912 0.805
second-order autocorr. 0.851 0.785 0.682
third-order autocorr. 0.760 0.630 0.611
cross-correl. with log(n−12) 0.303 -0.152 -0.061
cross-correl. with log(n−8) 0.227 -0.101 0.137
cross-correl. with log(n−4) 0.013 0.219 0.539
cross-correl. with log(n−2) -0.143 0.477 0.682
cross-correl. with log(n−1) -0.225 0.611 0.805
cross-correl. with log(n) -0.261 0.673 1.0
cross-correl. with log(n+1) -0.234 0.692 0.805
cross-correl. with log(n+2) -0.188 0.666 0.682
cross-correl. with log(n+4) -0.087 0.532 0.539
cross-correl. with log(n+8) 0.201 0.059 0.137
cross-correl. with log(n+12) 0.368 -0.189 -0.061

Synthetic data EG model KPR
log(c/y) log(i/y) log(n) log(c/y) log(i/y) log(n)

Standard deviat. 1.904 3.455 1.809 1.430 3.352 1.087
correl. with log(c/y) 1.0 -0.669 -0.991 1.0 -1.0 -1.0
first-order autocorr. 0.867 0.642 0.863 0.881 0.881 0.881
second-order autocorr. 0.866 0.558 0.741 0.773 0.773 0.773
third-order autocorr. 0.718 0.474 0.630 0.674 0.674 0.674
cross-correl. with log(n−12) -0.122 0.062 0.064 -0.130 0.130 0.130
cross-correl. with log(n−8) -0.295 0.183 0.245 -0.316 0.316 0.316
cross-correl. with log(n−4) -0.564 0.378 0.533 -0.586 0.586 0.586
cross-correl. with log(n−2) -0.755 0.506 0.741 -0.773 0.773 0.773
cross-correl. with log(n−1) -0.866 0.587 0.863 -0.881 0.881 0.881
cross-correl. with log(n) -0.991 0.674 1.0 -1.0 1.0 1.0
cross-correl. with log(n+1) -0.846 0.949 0.863 -0.881 0.881 0.881
cross-correl. with log(n+2) -0.716 0.815 0.741 -0.773 0.773 0.773
cross-correl. with log(n+4) -0.497 0.585 0.533 -0.586 0.586 0.586
cross-correl. with log(n+8) -0.195 0.266 0.245 -0.316 0.316 0.316
cross-correl. with log(n+12) -0.009 0.067 0.064 -0.130 0.130 0.130
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TABLE 4. Sample moments for the growth rates

Actual US data ∆log(yt) ∆log(ct) ∆log(it) ∆log(nt)
Standard deviation 1.144 0.534 2.206 1.487
correl. with ∆log(yt) 1.0 0.517 0.792 0.353
first-order autocorr. 0.364 0.286 0.463 -0.183
second-order autocorr. 0.226 0.130 0.250 -0.139
third-order autocorr. 0.049 0.287 0.073 0.031
cross-correl. with ∆log(yt−12) -0.074 -0.069 -0.113 -0.087
cross-correl. with ∆log(yt−8) -0.209 -0.086 -0.174 -0.202
cross-correl. with ∆log(yt−4) -0.015 0.012 -0.093 0.040
cross-correl. with ∆log(yt−2) 0.226 0.240 0.229 0.092
cross-correl. with ∆log(yt−1) 0.364 0.216 0.439 0.188
cross-correl. with ∆log(yt) 1.0 0.517 0.792 0.353
cross-correl. with ∆log(yt+1) 0.364 0.405 0.471 0.232
cross-correl. with ∆log(yt+2) 0.226 0.190 0.219 -0.022
cross-correl. with ∆log(yt+4) -0.015 0.168 0.046 -0.017
cross-correl. with ∆log(yt+8) -0.209 -0.138 -0.247 -0.130
cross-correl. with ∆log(yt+12) -0.074 0.033 -0.166 -0.049

Synthetic data (EG model) ∆log(yt) ∆log(ct) ∆log(it) ∆log(nt)
Standard deviation 1.155 0.197 2.652 0.927
correl. with ∆log(yt) 1.0 0.937 0.998 0.996
first-order autocorr. -0.036 0.141 -0.042 -0.045
second-order autocorr. -0.027 0.127 -0.032 -0.035
third-order autocorr. -0.041 0.095 -0.046 -0.048
cross-correl. with ∆log(yt−12) -0.018 0.015 -0.015 -0.026
cross-correl. with ∆log(yt−8) -0.020 0.034 -0.032 -0.035
cross-correl. with ∆log(yt−4) -0.036 0.051 -0.030 -0.058
cross-correl. with ∆log(yt−2) -0.027 0.082 -0.052 -0.055
cross-correl. with ∆log(yt−1) -0.036 0.085 -0.039 -0.067
cross-correl. with ∆log(yt) 1.0 0.937 0.998 0.996
cross-correl. with ∆log(yt+1) -0.036 -0.088 -0.048 -0.021
cross-correl. with ∆log(yt+2) -0.027 -0.077 -0.030 -0.013
cross-correl. with ∆log(yt+4) -0.036 -0.076 -0.035 -0.024
cross-correl. with ∆log(yt+8) -0.020 -0.051 -0.018 -0.012
cross-correl. with ∆log(yt+12) -0.018 -0.040 -0.012 -0.011
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TABLE 4 (Continued)

Synthetic data (KPR) ∆log(yt) ∆log(ct) ∆log(it) ∆log(nt)
Standard deviation 1.142 0.305 3.152 0.654
correl. with ∆log(yt) 1.0 0.944 0.997 0.993
first-order autocorr. -0.017 0.167 -0.032 -0.035
second-order autocorr. -0.018 0.146 -0.032 -0.035
third-order autocorr. -0.021 0.125 -0.033 -0.035
cross-correl. with ∆log(yt−12) -0.012 0.028 -0.021 -0.026
cross-correl. with ∆log(yt−8) -0.010 0.049 -0.024 -0.031
cross-correl. with ∆log(yt−4) -0.019 0.071 -0.040 -0.051
cross-correl. with ∆log(yt−2) -0.018 0.091 -0.043 -0.057
cross-correl. with ∆log(yt−1) -0.017 0.103 -0.044 -0.060
cross-correl. with ∆log(yt) 1.0 0.944 0.997 0.993
cross-correl. with ∆log(yt+1) -0.017 -0.048 -0.010 -0.006
cross-correl. with ∆log(yt+2) -0.018 -0.048 -0.012 -0.008
cross-correl. with ∆log(yt+4) -0.019 -0.046 -0.013 -0.010
cross-correl. with ∆log(yt+8) -0.010 -0.033 -0.005 -0.002
cross-correl. with ∆log(yt+12) -0.012 -0.033 -0.006 -0.004
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