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Abstract

A necessary condition for the validity of the present value model is that the
price-dividend ratio must be stationary. However, significant market episodes
in the late 20th century seem to provide evidence of nonstationarity. This pa-
per analyzes the stationarity of this ratio in the context of a Markov-switching
model à la Hamilton (1989) where an asymmetric speed of adjustment is in-
troduced. This particular specification robustly supports a nonlinear rever-
sion process and identifies two relevant episodes: the post-war period from the
mid-50’s to the mid-70’s and the so called “90’s boom” period. A three-regime
Markov-switching model displays the best regime identification and reveals that
only the first part of the 90’s boom (1985-1995) and the post-war period are
near-nonstationary states. Interestingly, the last part of the 90’s boom (1996-
2000), characterized by a growing price-dividend ratio, is entirely attributed to
a regime featuring a highly reverting process.
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1 Introduction

Around 1985 the U.S. stock market started its last remarkable episode of apparent
divergence between prices and dividends. The stock market has undergone major
changes in recent years that could partially explain the sustained increase in the
price-dividend (PD) ratio. Dividends seem to have become less important, at least
in the U.S. Fama and French (2001) show that, regardless of their characteristics,
firms have become less likely to pay dividends. Some changes in the law have also had
an important effect on the market, especially the enactment of the U.S. Securities
and Exchange Commission (SEC) rule 10b-18 in 1982.1 The so-called run-up in
stock prices or “90’s boom” has reopened the debate about whether dividends can
no longer explain stock prices.

Since the seminal paper by Shiller (1981), many authors have tried to explain the
dynamic features of the relationship between stock prices and dividends. The related
papers belong to two strands of literature: the first considers that the reversion
process of the PD ratio exhibits linear dynamics. However, these studies have found
nonconclusive empirical evidence for the cointegration relation linking stock prices
and dividends as shown in Cochrane (1992, 2001) and Lettau and Ludvigson (2005),
among others. In particular, the evidence on cointegration is highly sensitive to the
sample considered. The second strand allows for the possibility of an asymmetric
reverting process. Even though in the long-run the stable relationship implied by
the present value (PV) model holds, the existence of transaction costs, noise traders
and changing features such as swings in market sentiment may play an important
role in the reversion process of the PD ratio. Moreover, the different characteristics
exhibited by alternative stock market episodes suggest the presence of asymmetric
behavior, which implies that the reversion process may not be linear. Then, any
inference based on a linear framework might be at least misleading.

The main contribution of this paper is to identify different episodes in the re-
version process of the PD ratio and analyze whether they present different charac-
teristics in the reversion process to a possible long-run equilibrium or attractor. We
estimate a Markov-switching (MS) model à la Hamilton (1989). By following this
econometric approach we do not impose any given characteristics on the regimes
that may have been present during the sample period. In contrast, previous studies
that consider non-linear dynamics in the PD ratio reversion process (such as Bohl
and Siklos, 2004; Coakley and Fuertes, 2006; and McMillan, 2006, 2007) assume

1SEC rule 10b-18 provided a legal safe harbor for firms repurchasing their shares. The repurchase
of stocks then became a very important form of payout, as mentioned by Boudoukh, Michaely,
Richardson and Roberts (2004), among others.
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that the asymmetric speed of adjustment to an attractor depends on a threshold
variable driving regime-switches. These papers propose different versions of thresh-
old autorregresive (TAR) family models. We argue that the MS approach is more
flexible since estimation results from TAR models may depend on the definition of
the threshold variable chosen by the researcher and that imposes a priori features
identifying the alternative regimes implied by the threshold. In contrast, the switch-
ing process characterized by an MS approach is governed by a latent variable that
is not predefined by the researcher (as the threshold variable is). In this sense, we
believe that the MS approach allows the data to speak more freely than a TAR ap-
proach because the variable governing regime-switches is not defined a priori under
the MS approach.

Empirical evidence is presented for the U.S. stock market using annual data from
1871 to 2006. We analyze the particular characteristics of some relevant historical
episodes, specially, the post-war period (up to 1975) and the 90’s boom. In particu-
lar, we want to test whether the last boom episode exhibits reversion features similar
to those associated with previous episodes showing an upward drift of the PD ratio.
We find that the post-war period is characterized by near-nonstationary behavior,
and two sub-periods can be identified in the 90’s boom. The post-war period and
first sub-period in the 90’s boom share similar features whereas the second sub-
period, characterized by a fast growing PD ratio, features a strong reversion regime.
Interestingly, this last result suggests that the period 1996-2000 is characterized by
a stationary regime, in sharp contrast to the conclusions reached by previous papers
which relied on a TAR approach.

Another important estimation result found is that the estimated values of the
attractor are larger than those found in previous related literature. The empirical
evidence on a high estimated attractor suggests that the apparent divergence be-
tween prices and dividends featured in the late 90’s reflects the transition process
to a long-run equilibrium that has never been reached in the past.

The rest of the paper is organized as follows. Section 2 summarizes the related
literature on the analysis of PD ratio stationarity within the PV framework. Section
3 presents the MS framework considered in this paper. Section 4 describes the data
and presents a preliminary analysis of the stability of the reversion process to a
possible attractor. Section 5 discusses the empirical results found using a three-
state MS model and the robustness analysis for different samples and different MS
model specifications. Section 6 concludes.
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2 Related literature

Campbell and Shiller (1988a, 1988b) develop a log-linear approximation to the PV
framework that can be used to study stock price behavior under any model of
expected returns. Their approach leads to the following PV equation:

pt =
kd

(1− ρd)
+Et

⎧⎨⎩
∞X
j=0

ρjd[(1− ρd)dt+j+1 − rt+1+j ]

⎫⎬⎭+ lim
j→∞

Et(ρ
j
dpt+j), (1)

where pt is the logged value of the stock price at the beginning of period t, dt is the
logged value of the dividend accruing to the stock paid out throughout period t and
rt is the log return associated with stocks at time t (i.e. rt = ln(1+Rt+1)). Finally,
kd and ρd are constants obtained from the log-linear approximation. Equation (1)
can be written in terms of the PD ratio as follows:

pt−dt−1 =
kd

(1− ρd)
+Et

⎧⎨⎩
∞X
j=0

ρjd[∆dt+j − rt+1+j ]

⎫⎬⎭+ limj→∞
Et[ρ

j
d(pt+j−dt−1+j)]. (2)

The last term on the RHS of equation (2) drops out under the transversality con-
dition.2 In addition, if the dividends are assumed to be I(1) and the returns are
stationary, equation (2) can be written as

pt − dt−1 =
kd

(1− ρd)
+Et

⎧⎨⎩
∞X
j=0

ρjd[∆dt+j − rt+1+j ]

⎫⎬⎭ . (3)

Equation (3) then implies that the stationarity of the PD ratio can be viewed as a
necessary condition for the validity of the PV model, and the logged values of prices
and dividends are then cointegrated, with a cointegration vector given by (1,−1).
To understand this cointegration relation, one may intuitively think that if current
stock prices are high in relation to current dividends (i.e. investors are willing to pay
more or the stock is overpriced), dividends are expected to grow. If agents are fully
rational under this model, prices and dividends cannot drift apart forever and the
ratio will show a reverting behavior towards an attractor. From the point of view of
rational agents assigning unique prices to stocks in relation to dividend payments,
the stationarity of the PD ratio is a necessary condition for the PV model.

Previous studies (Cochrane, 1992, 2001; and Lettau and Ludvigson, 2005, among
others) that consider linear dynamics for the analysis of the PD ratio reversion

2 Imposing the transversality condition ensures the uniqueness solution for stock prices obtained
from the PV model.
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process have considered different samples and alternative model specifications. These
studies have found nonconclusive evidence for the cointegration relationship. The
evidence on cointegration reported in these studies depends highly on the sample
period considered.

The different characteristics of the stock market episodes suggest that the re-
version process may not be linear, so inference based on a linear framework might
be at least misleading. The main difference between papers following a nonlinear
approach comes from the alternative driving forces assumed for the asymmetric re-
version process. There is a branch of literature in which the PV model is analyzed as
a whole and non-linearity features come from stock price fundamentals (for instance,
dividends). In Shiller (1989) for example, there are different types of agent who react
differently to historical events, macroeconomic news or just fads. Long-run investors
show more stable behavior, whereas noise traders tend to react to fads or overreact
to news. Alternatively, Froot and Obstfeld (1991) introduce the possibility of an
“intrinsic bubble” which depends exclusively on dividends. Drifill and Sola (1998)
further extended the intrinsic bubble specification by including a regime-switching
dividend process. The possibility of having structural breaks in the dividends series
is motivated by the empirical evidence on unstable dividend processes, which made
way for other regime-switching specifications as in Evans (1998) and Gutiérrez and
Vázquez (2004).3

Another branch of literature focuses entirely on the stationarity of the PD ra-
tio implied by the PV model and considers that stock prices are driven by non-
fundamental components. In particular, Bohl and Siklos (2004), Coakley and Fuertes
(2006), Kapetanios et al.(2006) andMcMillan (2006, 2007), introduce a non-fundamental
term ut in equation (3)

pt − dt−1 =
kd

(1− ρd)
+Et

⎧⎨⎩
∞X
j=0

ρjd[∆dt+j − rt+1+j ]

⎫⎬⎭+ ut.

As mentioned above, there are different interpretations of this error term ut. For
example, Bohl and Siklos (2004) argue that ut is a bubble term that captures run-
ups in stock prices before a crash, suggesting the presence of asymmetries in the PD
ratio reverting process. Kapetanios et al.(2006) interpret this term as capturing the
presence of transaction costs such that small uncorrected deviations may arise, but
larger deviations would be arbitraged away. McMillan (2006, 2007) and Coakley
and Fuertes (2006) link this misspricing term to market sentiment as in behavioral

3Related literature considering alternative specifications including regime changes not directly
linked with the dividend process can be found in Cecchetti, Lang and Mark (1990), Veronessi
(1999), Timmermann (2001), and Bonomo and Garcia (1994), among others.
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finance models. The existence of noise traders in the market who react differently
to the arrival of good or bad fundamental news explains the possible source of
asymmetries. Thus, the trend-chasing behavior of such traders after the arrival of
positive news will lead to a market over-reaction such that the change in price will
be greater than required by the news. On the other hand, noise traders would be
more conservative in bear markets, thus anchoring prices to dividends. Therefore,
the reversion process of the PD ratio could be more persistent in bull markets and
more rapidly reverting in bear markets.

The evidence found by Bohl and Siklos (2004), Coakley and Fuertes (2006) and
McMillan (2007) is based on a two-regime framework. In general, these articles
consider alternative TAR specifications for the dynamics of the PD ratio that build
on the model of Enders and Granger (1998), i.e. using a model similar to the
augmented Dickey-Fuller (ADF) regression specification:

∆pdt = Itρ1(pdt−1 − μ) + (1− It)ρ2(pdt−1 − μ) +
lX

j=1

βj(∆pdt−j) + εt, (4)

where pdt denotes the price-dividend ratio at time t; ρj (j = 1, 2) is the speed of
adjustment in each regime to the long-run equilibrium or attractor, μ; εt is an i.i.d.
shock; and It is an indicator function that takes the value of one if qt ≥ 0, and zero
otherwise, where qt is the threshold variable that predetermines the regimes.

The identification of different episodes, their individual characteristics and their
relationship with reversion analysis are particularly interesting in Coakley and Fuertes
(2006). They propose a priori a two-regime framework (called bull and bear regimes)
that may show an asymmetric speed of adjustment around the same long-run equi-
librium. The threshold variable is highly persistent with respect to dividend growth
and is defined as qt(w, d) = w1∆pdt−1 + ...wd∆pdt−d, where w0 = (w1, ...wd) > 0
is a vector of predefined weights and d is the number of lags to be selected from
the data. If qt > 0, the stock market is in a bull episode with speed of adjustment
ρ1, and if qt < 0 the market is in a bear episode with ρ2. In contrast, Bohl and
Siklos (2004) assume a threshold variable showing lower persistence simply defined
as qt = ∆pdt−1 − τ , where τ is a threshold parameter to be estimated.

McMillan (2006, 2007) considers an exponential smooth transition model spec-
ification for the dividend-price ratio. His model implies that the dynamics of the
middle ground differ from the dynamics associated with large deviations. He also
introduces asymmetries between regimes of rising and falling prices. This model
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falls into the STAR family of models, where a continuous transition function G(qt)
between 0 and 1 is used instead of the indicator function It.4

In general, the empirical evidence found in the latter branch of literature sug-
gests that there is an asymmetric reversion process when considering two different
regimes. Nevertheless, the evidence found is sometimes mixed depending on the
periods considered. Bohl and Siklos (2004) analyze the (demeaned and detrended)
U.S. log dividend-price ratio from 1871:1 to 2001:9. They find evidence of a station-
ary ratio and bubble-like asymmetric short-run adjustments such that stock prices
increase relative to fundamentals followed by a crash. The exception is the period
1947-1982. They suggest that the different pattern observed for this period is due
to the absence of bull market periods followed by crashes, so it is an atypical period
relative to all the other sample periods considered. They also find a strong difference
between two non-overlapping periods: 1871-1936 and 1937-2001. In the first period
they find no evidence of a unit root in the log dividend-price ratio or of asymmetric
effects, whereas the opposite is true of the second period.

The analysis by Coakley and Fuertes (2006) is based on monthly data from
1871:1 to 2001:9 for the Standard and Poors PD ratio. Based on their two-regime
TAR framework, they find support for the hypothesis that the PD ratio regularly
behaves as a random walk with an upward drift where stock prices drift away from
fundamentals during bull market episodes. In particular, they find that the 90’s fall
into this category. In bear markets, however, the adjustment of the ratio towards the
equilibrium level is reinstated. Their conclusion remains the same if observations
from 1993:01 onwards are excluded. This result could be interpreted either as quite
robust or as driven by the small weight of the observations corresponding to the
last eight years relative to the whole sample. Moreover, Coakley and Fuertes (2006)
report an estimate of the attractor smaller than the historical mean, but they do
not show any measure of precision associated with their estimated value, so its
significance cannot be assessed.

Finally, McMillan (2006) finds that for the period 1980-1995 the strength of the
cointegrating relationship between stock prices and dividends gets stronger. From
the beginning of 1995 there is an increase in real dividends that is followed by an
increase in real prices. The strength of the stationary relation falls quite significantly
for the period 1995-1999, entering a slow transition from a reverting regime to a
random walk regime. For 2000 to 2004, however, McMillan (2006) finds that the
adjustment becomes stronger again, even though the transition from the random

4For a generalization of TAR models and their reversion analysis see, for instance, Tong (1993)
and Enders and Granger (1998).
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walk regime to a reverting one is not so significant. McMillan (2007) analyzes data
from the U.S. and other countries. The results support the presence of a stationary
PD ratio for U.S. data in the period 1965:2-2004:5 as a whole, when an asymmetric
adjustment is allowed for in the reversion process. The speed of transition is lower
when stock prices rise relative to dividends than when prices are below the level
supported by dividends. He also finds that the recent dynamics of the PD ratio fall
into a random walk regime where stock prices seem to diverge from fundamentals.
McMillan (2006, 2007) considers demeaned time series, so the historical mean is
taken as the long-run attractor.

3 An MS model for adjusting the PD ratio

In the family of TAR models reviewed in the previous section, the characterization of
the alternative regimes is driven by the choice of a particular threshold variable and
the transition function between regimes. Thus, the characterization of each regime
in Coakley and Fuertes (2006) is directly linked with particular market episodes,
such as persistent growth of the PD ratio (bull market) or persistent reduction of
the PD ratio (bear market). However, on one hand, the definition of the threshold
variable chosen by the researcher clearly determines the features and the asymmetric
behavior of the PD ratio associated with each regime. On the other hand, the
number of regimes considered is limited by the features assumed by the researcher
a priori, such as growing and decreasing markets, run-ups in prices and crashes, or
bubble episodes, etc.

In this paper we propose a more flexible nonlinear framework for the dynamics
of the PD ratio based on the MS approach proposed by Hamilton (1989). This
framework can be seen as a generalization of equation (4) given by the following
model:

∆pdt = α+ ρst(pdt−1 − μ) +
lX

j=1

βj(∆pdt−j) + εt. (5)

In this framework, the variable characterizing the transition between regimes is
not defined by the researcher. Instead, it is driven by an unobserved variable st
that describes the state or regime of the process at time t. The latent variable st
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is the outcome of a k-regime Markov chain with st being independent of εt. The
MS methodology is briefly described in Appendix 1. The basic difference between
imposing a threshold variable as in TARmodels and the k-state MS model is that the
latter does not impose any particular characteristic on each regime. In this paper,
we only impose the possibility of having three states and estimate the parameters
in equation (5) by allowing for a different speed of adjustment to the long-run
equilibrium or attractor μ in each regime. Moreover, the MS approach allows us
(i) to identify which episodes belong to each regime; (ii) to assess which episodes
exhibit a reverting behavior; and (iii) to link those regimes to particular stock market
episodes previously discussed in the relevant literature.

By no means are we arguing that an MS approach is always better than a TAR
approach under all circumstances. The MS approach followed in this paper should
be viewed rather as a way of assessing, and perhaps challenging, some of the results
and interpretations obtained in the related literature by following alternative TAR
approaches.

4 Data and preliminary stability analysis

This paper considers annual data for the Standard and Poor’s index price (January
data) and annual data for the dividends accruing to this index in each year, available
at Robert Shiller’s web site. The (log of the) PD ratio is calculated as pdt = pt−dt−1.
We use data for the period 1871-2006.5

Table 1 shows a summary of descriptive statistics for the PD ratio for the two
samples considered. It includes the two most commonly used tests for cointegration
in a nonstate-dependant context: the ADF test and the Phillips-Perron (PP) test.
Figure 1 shows the annual demeaned PD ratio for the full sample. From this figure
at least three different periods can be preliminarily identified. From 1871 to 1950 the
PD ratio shows a sequence of run-ups (or bull market episodes) followed by crashes.
The second period is the post-war period (up to the mid 1970’s) characterized by

5Even though data for dividends are related to payouts during each year considered, some papers
in the related literature use monthly frequency data, as in Coakley and Fuertes (2006) and McMillan
(2007), although monthly data from Shiller’s web page are actually a linear interpolation of annual
data. Moreover, we are interested in relating switching regimes to business cycles of length between
2 and 8 years and this relationship is in principle well captured by using annual data that ignores
the noise associated with higher frequency data.
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a moderate but sustained increase in the PD ratio value starting around 1950 and
lasting until around 1975. Finally, the third period coincides with the 90’s boom,
which is clearly characterized by a considerable increase in the ratio starting around
1985 and lasting until the end of the millennium. Indeed, the PD ratio reaches
a maximum value of 4.44 in the year 2000, almost twice its minimum value. This
maximum value is also much larger than the sample mean (3.17). There is a sudden
swing in the PD ratio dynamics from 2000 on, where it seems to revert to an attractor
higher than the historical mean.

The unit-root tests values shown in Table 1 suggests that only for the whole sam-
ple can the null hypothesis of overall nonstationarity of the PD ratio not be rejected.
If one does not consider the possibility of nonlinear reversion, the previous result
implies that the hypothesis of the PD ratio being stationary is rejected only when
the last part of the sample (1993-2006) is included in the analysis. Put differently,
the stationarity of the PD ratio implied by the PV model is not supported by the
data if the whole sample is considered.

The information in Table 1 and Figure 1 basically summarizes the evidence al-
ready found in the relevant literature considering a linear framework for the analysis
of PD ratio stationarity. In sum, the previous evidence has been nonconclusive when
trying to test the stationarity implications of the PV model. It basically suggests
how difficult it may prove to reach a conclusion about the stationarity of the PD
ratio in a non state-dependant context, especially after the significant increase in
the PD ratio that took place by the end of the millennium.

Figure 2 provides a highly intuitive, but preliminary analysis, for considering the
possibility of an asymmetric speed of adjustment around a constant attractor. More
precisely, this figure shows the rolling estimates for the parameters α and the speed
of adjustment ρ in a non state-dependant framework based on a Dickey-Fuller-type
equation for the PD ratio such as

∆xt = α+ ρx(dmd)t−1 + ut, (6)

where x(dmd)t = (xt − x) is the demeaned value of the PD ratio using the sample
mean for the whole sample.6 To interpret Figure 2, it is useful to consider first the
following equation

xt = ηt + γtxt−1 + ut. (7)

6 In the rolling-regression analysis carried out, we use a constant data size of 57 observations for
each window. The choice of this number is determined by the number of observations available until
the 1929 crash. The first window corresponds to an episode where the PD ratio seems to follow a
stationary process fluctuating around the sample mean associated with this pre-crash period.
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If we subtract xt−1 from both sides of the equation, we can write (7) as follows,

∆xt = ρt(xt−1 − μt) + ut. (8)

where ρt = (γt − 1) and μt = ηt/(1− γt) is the attractor whenever | γt| < 1. If we
assume that the attractor μ is constant, we can write that

μ = x+ a,

substituting this expression into (8) we obtain a time-varying parameter version of
(6):

∆xt = αt + ρt(xt−1 − x) + ut, (9)

where αt = −ρta. A non-zero parameter αt, as Coakley and Fuertes (2006) point
out, implies that the long-run equilibrium level μt is not necessarily well proxied by
the historical mean of xt. More importantly, αt goes to zero whenever ρt goes to zero
no matter what the sign of a is. Figure 2 reveals at least two remarkable episodes
of sustained decrease, in absolute terms, in the estimated speed of adjustment. One
episode starts around 1955 and lasts until around 1975. The other starts around
1990 and lasts until the end of the sample. In both periods, the rolling-estimate
of ρt is getting closer to zero so, as a result, the parameter αt also tends to zero.
But this result is still consistent with a positive value of a, which implies that the
attractor could be still above the historical sample mean and that the PD ratio is
moving very slowly towards it.

5 Evidence from a three-regime MS model

The MS methodology provides an interesting framework for analyzing the dynamics
of the PD ratio in two ways. First, the smoothed probabilities are estimated, and
the relevant episodes are identified. Second, the characteristics of each state can
be analyzed. In particular, we analyze the possibility of an asymmetric speed of
adjustment around a constant attractor.

Table 2 shows the estimation results of the three-regime MS model (5) for the
full and pre-1993 samples. Before discussing the estimation results, we focus our
attention on Figure 3 that shows the estimated smoothed probabilities of being in
each regime for the MS model. We find that the regimes are clearly identified by
the three-state MS model (that is, at least one of the smoothed probabilities in
each period is close to 1). Regime 1 is a state that occurs occasionally in very short
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episodes which never last more than 3 years, most of them before 1950. This regime
is associated with a few relevant market episodes, such as the 1929 crash and the
subsequence crises (1929-1932) and the first oil crisis (1974-1975). These are short
episodes involving large drops in the PD ratio that took place just after a strong
run-up in stock prices relative to dividends.

Regime 2 clearly identifies two key historical episodes, the post-war period up
to the mid 70’s and the first part of the 90’s boom from 1980 to 1995, including the
so-called second oil crisis and the enactment of SEC rule 10b-18 in 1982. Finally,
regime 3 occurs only in the second part of the 90’s boom from 1996 to 2000, so
it can only be detected when the whole sample is considered. As in Coakley and
Fuertes (2006), we also consider the pre-1993 sample. The fact that the regime
classification during the pre-1993 period is robust to the inclusion of the last part of
the sample (1993-2006) gives further support for the regime classification provided
by the three-regime MS model and, more importantly, the presence of a third regime
that only shows up when the whole sample is studied.7

The estimation results reported in Table 2 show that the reversion process of the
PD ratio exhibits a nonlinear behavior, as found in Bohl and Siklos (2004), Coakley
and Fuertes (2006) and McMillan(2006, 2007). More precisely, the hypothesis of
a symmetric speed of adjustment in the dynamics of the PD ratio can clearly be
rejected. That is, ρi (i = 1, 2, 3) is significantly different across regimes. However,
our estimation results differ from those reported in previous papers on the reversion
features displayed by the alternative regimes. Thus, state 1 is clearly nonstationary
state. The estimated speed of adjustment for this state is statistically non-significant
no matter what specification and sample are used. At this point, it is worth remark-
ing that a nonstationary episode in the dynamics of the PD ratio provides evidence
that the PV model is not supported by the data. State 2 is a near-nonstationary
state. The speed of adjustment corresponding to state 2 is close to 0 and depending
on the model specification and the confidence level chosen, one might conclude that
it is statistically non-significant.

Finally, state 3 is a very particular state. Before 1993, it only occurs occasionally
in very short episodes that never last more than 2 years. Interestingly, it is clearly
the most likely regime in the second part of the 90’s boom, from 1996 to 2000. This
state almost exclusively identifies the episode with the highest slope of the PD ratio
during the 90’s boom. Intuitively, we would think that if the estimated attractor

7We have also estimated a two-regime MS model considering the sample 1950-2006. The esti-
mation results show that the second regime is associated with the period 1996-2000 and the regime
features captured by the two-state model are similar to those displayed by the additional (third)
regime under the three-regime MS specification.
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is higher than the maximum value, as the upward drift of the PD ratio suggests,
episodes of large and persistent growth of the PD ratio are related to a large speed
of adjustment consistent with a highly reverting process to a high attractor.

Table 2 also shows the estimated value of the attractor. For every case consid-
ered, a large estimated value for this parameter is obtained, but the estimate always
suffers from a lack of precision. More precisely, we obtain a very poor estimation of
the attractor (i.e. a point estimate of 6.28 with a standard deviation of 1.13 for the
full sample) and an even less efficient estimate for the pre-1993 sample (6.17 with a
standard deviation of 2.61). To interpret these estimation results, it is useful to note
that the estimated value is larger than the maximum value for the PD ratio (4.44)
and its sample mean (3.17) for the whole sample period. As we illustrate above,
the attractor might not be directly linked to the historical mean when the PD ratio
starts from a low level and the transition to the long-run equilibrium or attractor
is not symmetric. As shown in Figure 1, the long-run upward drift followed by the
PD ratio seems to support this hypothesis. This upward drift in the PD ratio may
be the outcome of several forces such as the fact that the firms have become less
likely to pay dividends, as reported by Fama and French (2001), the legal changes
introduced, such as the enactment of new SEC rules, and more favorable treatment
for corporate taxes than for personal income tax. Under the view that the PD ratio
is reverting to a high level of the attractor, it is reasonable to obtain an imprecise
estimation of an attractor that has not yet been reached.

Once the attractor is allowed to be different from the sample mean, parameter
αt is somehow redundant as discussed above. Indeed, parameters μ and α are highly
correlated (the correlation coefficient is -0.89 for the full sample). Then we can gain
some efficiency by analyzing the speed of adjustment in a restricted three-regime
MS model with α = 0. The estimation results are reported in columns 3 and 5 of
Table 2. In this case, the estimated values of the attractor for both samples are
much closer to the maximum value of the PD ratio. This robustness test and others
carried out are discussed in the following sub-section.

5.1 Robustness analysis

This sub-section starts with a study of the robustness of the estimated features as-
sociated with each state by considering a two-regime MS model and compares the
estimation results with those obtained with the three-regime model analyzed above.
Previous related literature has only considered two alternative regimes for the asym-
metric analysis of the PD ratio reversion process due to the link established by the
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researcher between regime identification and the specific characteristics attributed
to each regime (for instance, the market episodes defined as bull and bear markets
in Coakley and Fuertes, 2006; and the outer -reverting- and inner -random walk-
regimes defined by McMillan, 2006). In contrast, by following an MS approach we
are not assigning a priori features either to the states identified or to the transi-
tion mechanism from one state to another. In other words, our approach does not
impose, prior to estimating, any of the alternative definitions of states and market
episodes proposed in the related literature.

Table 3 shows the estimation results for the two-state MS model. Those results
are clearly not so robust as the ones obtained in the three-state MS model. As in
the three-regime specification, we obtain again a high, poorly estimated attractor,
especially if the full sample is considered. The estimated attractor is systematically
lower if the pre-1993 sample is considered. The restricted model (α = 0) provides
again a more efficient estimation of the parameter. In this case, state 1 is a clearly
nonstationary state for the two samples and the alternative specifications studied.
State 2 characterizes a stationary PD ratio if we consider the unrestricted form of
the model. By contrast, it is nonstationary if the restricted model is considered.
Figure 6 shows that state 2 is more likely during the post-war period up to 1975 and
the entire 90’s boom period (1983-2006). This figure also shows important episodes
of poor state identification, especially before 1950 and in the period between the
post-war (up to mid 70’s) and 90’s boom episodes. Tables 2 and 3 also show regime
classification measures (RCM) that build on the RCM suggested by Ang and Bekaert
(2002).8 The two RCMs considered are systematically higher for the two-regime
model than for the three-state model. The nonrobust regime classification across
samples and the high values of the RCM statistics associated with the two-state
MS model clearly support the three-state model specification. Moreover, we clearly
obtain a less satisfactory regime classification with the three-state MS model for
the pre-1993 sample than for the whole sample because the third state is mainly
identified with the 90’s boom. In sum, the comparison of the estimation results from
the two- and three-regime MS models clearly favours the three-regime specification
where the additional third regime considered mainly captures the dynamics of the
PD ratio during the last boom episode (1996-2000).

The highest log-likelihood function value obtained under the unrestricted speci-
fication of the three-regime MS model for the whole sample provides extra support
for this model. Moreover, the RCM values are very similar if we consider a re-
stricted (α = 0) or an unrestricted model for the full sample. This result holds
when considering the restricted form for the pre-1993 sample.

8Appendix 2 provides a brief description of these alternative RCMs.
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By comparing Figures 3-5, we can conclude that the state identification remains
robust if we compare the full sample and the pre-1993 sample as well as different
model specifications as we can see in Figures 4 and 5. These two figures show the
smoothed probabilities comparing the restricted (α = 0) and unrestricted specifica-
tions of the model for the full sample and the restricted specification of the model
for both samples, respectively.

As a final robustness and diagnostic test, we carried out Hansen’s (1982) pro-
cedure to jointly test the orthogonality conditions for the mean, variance, skewness
and kurtosis of the model residuals. For every model specification and sample stud-
ied, the residual test statistics reported in Tables 2 and 3 support the hypothesis
that the residuals are properly distributed.9

6 Conclusions

Previous research related to the present value model and its implications for the
stationarity of the price-dividend (PD) ratio has been nonconclusive to say the least
when analyzing the reversion process of the PD ratio in a linear framework. We find
strong empirical evidence that the speed of adjustment of the PD ratio has not been
constant over time. Moreover, our empirical results show major changing episodes
closely related to historical events in the U.S. stock market. The nonlinear analysis
of the reversion process of the PD ratio based on a three-regime Markov-switching
(MS) model à la Hamilton (1989) carried out in this paper shows robust evidence of
switching regimes in the parameters characterizing the speed of adjustment of the
PD ratio around a constant long-run equilibrium.

For a two-regime MS model, a poor and nonrobust state identification is ob-
tained. For this model we also observe a lack of robustness in the estimated
characteristics of each state when we consider different samples and model spec-
ifications. We find evidence of an asymmetric speed of adjustment identifying at
least two relevant market episodes: the post-war period (up to 1975) and the so
called “90’s boom”. A three-regime MS model shows a sharp regime classification.

9We also estimated a two-state MS model where the standard deviation of the innovations, σ,
is state-dependant. The empirical evidence in this case suggests that the hypothesis that σ1 = σ2
cannot be rejected. Moreover, we have estimated MS models where μ is also state-dependant, but
the regime classification was really poor in those cases. Estimation results for these alternative
model specifications (where ρ and/or σ and/or μ are state-dependant) are available upon request
from the authors.
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Moreover, the three-regime model suggests that the post-war period (up to 1975)
and the 90’s boom episodes do not share the same characteristics and that the ad-
ditional third state is needed to properly model the PD ratio dynamics. In this
context, the post-war period is characterized by a near-nonstationary regime, and
the 90’s boom is divided in two parts. The first part exhibits features similar to
the post-war period, whereas the second part, when the PD ratio grows faster and
the apparent divergence between prices and dividends becomes higher, is charac-
terized by a new regime with a stronger reversion to the attractor. This implies
that the period 1996-2000 is most likely characterized by a stationary regime with
respect to the high estimated attractor. Even when the attractor is poorly iden-
tified, by using alternative samples and MS specifications we robustly find higher
estimated values for this parameter than those estimated in the previous related
literature. The empirical evidence of a high estimated attractor then suggests that
the apparent divergence between prices and dividends reflects the transition to a
long-run equilibrium (attractor) that has not yet been reached. The evidence then
suggests that the high increase of the PD ratio during the 90’s boom is consistent
with a higher speed of adjustment to the long-run equilibrium. This interpretation
stands in sharp contrast to alternative interpretations of this episode suggested in
the previous literature. For instance, Coakley and Fuertes (2006) view it as a bull
market episode.

The evidence found for the three-state MS model supports the stationarity hy-
pothesis implied by the present value model. While there are occasional episodes
of nonstationary behavior of the PD ratio (as in state 1), these episodes are fol-
lowed with higher probability by stationary regimes (state 2 in almost the entire
sample and state 3 in the last part of it). Nonstationarity episodes can therefore be
understood as only temporary episodes.
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APPENDIX 1

State-dependant models: the Markov-switching approach

This appendix briefly describes the MS framework for estimating nonlinear models.
Following Hamilton (1989, 1990), in a 2-state MS model, for estimating an equation
such as (5), a transition matrix for st (the latent variable governing the switching-
regime process) has to be defined as:

P =

∙
p11 1− p22

1− p11 p22

¸
,

where pij = P (st = i | st−1 = j, xt−1) , and xt−1 is a vector containing all obser-
vations for the PD ratio obtained through date t − 1. If at time t, st = j, the
conditional density of ∆xt will be given by:

f(∆xt | xt−1, st = j, st−1 = i, st−2 = k, ...;Θ),

where Θ is a vector containing the estimated parameters (depending on each case
considered). It is assumed that the conditional density depends only on the current
regime st, so the conditional density is given by:

f(∆xt | xt−1, st = j;Θ).

For instance, in the 2-state model, the conditional densities will be gathered
together on a vector denoted by ηt

ηt =

∙
f(∆xt | xt−1, st = 1;Θ)
f(∆xt | xt−1, st = 2;Θ)

¸
=

⎡⎣ 1√
2πσ2

exp
n
−(∆xt−α−ρ1(xt−1−μ)−β1(∆xt−1))2

2σ2

o
1√
2πσ2

exp
n
−(∆xt−α−ρ2(xt−1−μ)−β1(∆xt−1))2

2σ2

o⎤⎦ .

The maximum-likelihood algorithm seeks to find a vector Θ∗ that maximizes the
log-likelihood function L(Θ) for the observed data xt. L(Θ) is given by
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L(Θ) =
TX
t=1

log f(∆xt | xt−1;Θ), (10)

where

f(∆xt | xt−1;Θ) = 1́(bξt|t−1 ¯ ηt),

1 is a (2x1) vector of ones, and bξt|t−1 are the filtered probabilities defined as
bξt|t−1 = P · bξt−1|t−1, (11)

where

bξt−1|t−1 = (bξt−1|t−2 ¯ ηt−1)

1́(bξt−1|t−2 ¯ ηt−1)
. (12)

The optimization algorithm works as follows. Given an initial value bξ1|0, equa-
tions (12) and (11) can be used to calculate bξt|t−1 and bξt|t for any t. Following
Hamilton (1989), we choose set ξ1|0 equal to the vector of unconditional probabil-
ities, π, determined by π = (ÁA)−1Áe3, where A = [I3 − P , 10]0 and e3 denotes
the third column of I3 (i.e. the 3x3 identity matrix). The value of bξt|t−1 is intro-
duced in (10) and the procedure iterates until Θ∗ is found according to a predefined
convergence criterion.

In addition to the filtered probabilities previously obtained for each t, as a by
product the procedure also finds the probability of being in each state given the infor-
mation from the whole sample considered. These probabilities are called smoothed
probabilities

pi,t = P (st = i | xT ;Θ).

Kim and Nelson (1999) suggest the following algorithm to compute the smoothed
probabilities: bξt|T = bξt|t ¯ nP0 · [bξt+1|T (÷)bξt+1|t]o ,
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where (÷) denotes element-by-element division and from the filtered probabilities,
one can obtain the vector bξT |T and iterate backward to obtain the smoothed prob-
abilities for each t.

APPENDIX 2

Model diagnostics

Two tests are commonly used in the literature for evaluating performance when
estimating MS models. The first evaluates the correct specification of each model in
each sample considered. The specification tests evaluate whether the standardized
residuals are actually standard normally distributed. The second evaluates the
ability of the model to correctly identify states. An RCM evaluates whether the
model can clearly attribute a regime to each period of time.

• Standardized residual tests
For each specification considered we are interested in testing whether the model
adequately captures the data generating process. This can be done by testing
whether the standardized residuals, bzt, follow a standard normal distribution.
We follow a commonly accepted method for jointly testing the orthogonality
conditions for the mean, the variance, the skewness and the kurtosis of the
residuals. These moment restrictions can be estimated using the generalized
method of moments (GMM) as proposed by Hansen (1982). The statistic for
this test is asymptotically distributed as a χ2(n), where n is the number of
restrictions to be tested.10

• Regime classification measures
Ang and Bekaert (2002) suggest a summary statistic that evaluates the regime
classification quality provided by a k-state MS model. The RCM is defined
as

RCM = 100k2
1

T
(
TX
t=1

kY
i=1

pi,t),

10Bekaert and Harvey (1997) have shown that the small-sample distribution of this test statistic
is fairly close to a χ2 distribution.
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where pi,t is the smoothed probability of being in state i in period t as defined
in Appendix 1. This measure captures the fact that if at least one of the
smoothed probabilities in t is close to 0 for every t, the RCM will also be
close to 0. In this case, the states are properly identified and the model
provides a good regime classification. If the states are not well identified, the
probabilities of being in a particular state will be far from 1, and will be close
to 1/k in the worst possible scenario. Thus, the RCM will be close to 100
in this case. The RCM measure is not always useful. For instance, it is not
useful for comparing MS models with different numbers of states. Moreover,
for k > 2, the RCM does not punish the fact that as more states are included,
the probability of at least one of the states being close to zero is always higher,
but this does not necessarily mean that the model correctly identifies at least
one state. Baele (2002) proposes an RCM for k-state models that is equivalent
to Ang and Bekaert’s’ (2002) measure when k = 2. His measure allows for
a comparison between models with different numbers of states and correctly
captures the case where the model is clearly identifying at least one state in
each period. The RCM2 proposed by Baele (2002) is defined as:

RCM2 = 100(1− k

k − 1
1

T

TX
t=1

kX
i=1

(pi,t −
1

k
)2).

We propose a new classification measure also equivalent to RCM and RCM2
when k = 2. This new measure also shares with RCM2 two desired charac-
teristics for an RCM. First, it is useful for comparing models with different
numbers of regimes. Second, it provides a measure closer to 0 only when the
model correctly identifies at least one state in each period and a measure closer
to 100 when no information about the states identification is obtained. The
adjusted RCM is defined as:

Adj RCM = 100(
k

k − 1)
k 1

T
(
TX
t=1

kY
i=1

(1− pi,t)).
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Table 1. Summary Statistics and Unit-root tests.

Full Sample

Variable Mean Median Min. Max. St. Dev SK Exc. Ku ADF Test PP Test

PD 3.1717 3.1263 2.3147 4.4475 0.4070 0.1283 1.2332 -2.4118 -2.5558

Pre-1993 sample

Variable Mean Median Min. Max. St. Dev SK Exc. Ku ADF Test PP Test

PD 3.0721 3.0772 2.3147 3.6268 0.2806 -0.2587 -0.4407 -4.0340 -4.2498

Unit-root tests

Unit-root tests

NOTE: ADF and PP tests values are obtained for an equation with intercept and one
lag for the PD ratio. For the full sample, the 1, 5 and 10% critical values for the ADF and
PP tests are -3.49, -2.89 and -2.58 respectively. For the pre 1993 sample, the 1, 5 and 10%
critical values for the ADF and PP tests are -3.48, -2.88 and -2.58 respectively.
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Table 2. Estimated parameters and stationarity analysis results for the three-
state model.

  α=0  α=0

Log-likelihood 117.76227 114.30072 100.14991 99.595314

RCM2 10.8625 10.8560 12.6461 10.8187

Adj RCM 12.2190 12.1213 14.2205 12.1708

Hansen stat. 
 test joint dist. 5.6527 2.0706 4.2483 3.0242
    p-value 0.2266 0.7228 0.3734 0.5538

LR 3 or 1 state 182.06 175.14 148.35 147.24

LR 3 or 2 states 81.43 84.61 55.78 74.61

Param.

α
-0.2464 -0.3342

  st. dev 0.1708
 

0.2747

ρ1 0.0005 0.1240 -0.0263 0.1043
 0.0506 0.0411 0.0749 0.0644

ρ2 -0.0897 -0.0203 -0.1200 -0.0250
 0.0260 0.0219 0.0709 0.0095

ρ3 -0.1742 -0.1526 -0.2052 -0.1423
 0.0283 0.0292 0.1112 0.0600

μ 6.2833 5.1658 6.1769 5.3792
 1.1314 0.3405 2.6140 1.1482

β1 0.1289 0.1538 0.1476 0.1372
 0.0419 0.1515 0.0511 0.0701

σ1 0.0759 0.0763 0.0793 0.0783
 0.0059 0.0065 0.0060 0.0079

P11 0.9760 0.9825 0.9723 0.9808
 0.0136 0.0101 0.0154 0.0119

P12 0.0206 0.0104 0.0222 0.0177
 0.0123 0.0282 0.0142 0.0112

P21 0.0415 0.0590 0.0333 0.0637
 0.0249 0.0237 0.0201 0.0178

P22 0.9289 0.9108 0.9355 0.9050
 0.0291 0.0362 0.0262 0.0230

P31 0.0086 0.0210 0.0187 0.0032
 0.0162 0.0192 0.0362 0.0040

P33 0.9557 0.9484 0.9493 0.9712
 0.0188 0.0236 0.0420 0.0239

Pre 1993Full sample
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Table 3. Estimated parameters and stationarity analysis results for the two-
state model.

  α=0  α=0

Log-likelihood 77.047591 71.994383 72.260971 62.289404

RCM2 14.6083 23.2636 16.3206 23.4285

Adj RCM 14.6083 23.2636 16.3206 23.4285

Hansen stat.     
 test joint dist. 3.3061 3.0633 4.2005 3.2895
    p-value

0.5080 0.5473 0.3796 0.5106

LR 2 or 1 state 100.63 90.52 92.57 72.63
Param.

α
-0.4306 -0.4991

  st. dev 0.3430 0.3210

ρ1 -0.0667 0.0944 -0.1491 0.1417
 0.0550 0.0542 0.0883 0.0748

ρ2 -0.1563 -0.0755 -0.3078 -0.1128
 0.0345 0.0483 0.0580 0.0874

μ 6.8840 5.1301 5.1512 4.4281
 2.3844 0.7496 1.0242 0.5109

β1 -0.0043 -0.0505 0.0230 -0.0633
 0.0682 0.0816 0.0792 0.0822

σ1 0.1085 0.1145 0.1055 0.1155
 0.0090 0.0096 0.0101 0.0111

P1 0.9627 0.9629 0.9613 0.9661
 0.0130 0.0425 0.0167 0.0486

P2 0.9323 0.9301 0.9310 0.9250
 0.0150 0.0302 0.0182 0.0381

  

Full sample Pre 1993
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Figure 1. S&P Composite PD ratio. Full sample.

Note: Time series are demeaned and the value of 1970 normalized to one for illustrative
purposes.
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Figure 2. Rolling regression stability analysis for parameters α and ρ in equa-
tion ∆xt = α+ ρx(dmd)t−1 + ut, for the PD ratio and 95% confidence intervals.

Note: x(dmd)t is the demeaned value of the ratio in each twhen the average PD ratio is
considered as the attractor (constant attractor in the whole sample).
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ratio. Full and Pre-1993 sample. Unrestricted model.
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Figure 4. 3-state model. Smoothed probability of state 1, 2 and 3 for PD ratio.
Full sample for the unrestricted model and the restricted model with no constant
term.
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Figure 5. 3-state model. Smoothed probability of state 1, 2 and 3 for PD
ratio. Full and pre 1993 sample for the restricted model with no constant term.
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Figure 6. 2-state model. Smoothed probability of state 1 for PD ratio. (a) Full
and Pre-1993 sample, (b) Full sample for the unrestricted model and the restricted
model with no constant term, and (c) Full and pre 1993 sample for the restricted
model with no constant term.
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