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Abstract 
This paper presents a comparison of alternative option pricing models based neither on 
jump-diffusion nor stochastic volatility data generating processes. We assume either a 
smooth volatility function of some previously defined explanatory variables or a model 
in which discrete-based observations can be employed to estimate both path-dependence 
volatility and the negative correlation between volatility and underlying returns. 
Moreover, we also allow for liquidity frictions to recognize that underlying markets 
may not be fully integrated. The simplest models tend to present a superior out-of 
sample performance and a better hedging ability, although the model with liquidity 
costs seems to display better in-sample behavior. However, none of the models seems to 
be able to capture the rapidly changing distribution of the underlying index return or the 
net buying pressure characterizing option markets. 

 
Keywords: option pricing, conditional volatility, hedging, liquidity, net buying pressure 
JEL classification: G12, G13, C14 
 
 
Corresponding author: Gonzalo Rubio, Departamento de Fundamentos del Análisis Económico II, 
Facultad de Ciencias Económicas, Universidad del País Vasco, Avda. del L. Aguirre 83, 48015 Bilbao, 
Spain; e-mail: jepruirg@bs.ehu.es 
 
Eva Ferreira and Gonzalo Rubio acknowledge the financial support provided by Ministerio de Ciencia y 
Tecnología grant BEC2001-0636. We appreciate the helpful comments of Alejandro Balbás, José Luis 
Fernández, José Garrido and Andreu Sansó, and seminar participants at the Universidad de las Islas 
Baleares. The comments of two anonymous referees substantially improved the contents of the paper. All 
errors are the sole responsibility of the authors. 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6440767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

1. Introduction 

It is well known that subsequent to the crash of October 1987, implied volatilities of 

European index options have exhibited a pronounced smile or smirk with a slope 

that is higher the shorter the life of the option is. These empirical regularities have 

generally been interpreted as reflecting heavily left-skewed risk-neutral index 

distributions with excess kurtosis.  

 

A double-jump stock price model as per Duffie, Pan, and Singleton (2000) is 

designed to capture these demanding regularities simultaneously. This model 

accommodates stochastic volatility, return-jumps, and volatility jumps. A key 

characteristic of the model is that it allows for a flexible correlation between return-

jumps and volatility-jumps where upward volatility-jumps may provoke downward 

return-jumps. This is interesting because it may capture high kurtosis without 

imposing more negative skewness. Moreover, it nests the stochastic volatility model 

of Heston (1993), the stochastic volatility with return-jumps model of Bates (1996), 

the volatility-jump model of Duffie, Pan, and Singleton (2000), and the double-jump 

with independent arrival rate model of Duffie, Pan, and Singleton (2000) and 

Eraker, Johannes and Polson (2003). Finally, it is easily extended to include the 

random-intensity or state-dependent model of Bates (2000) and Pan (2002) 1. 

 

Unfortunately, even the papers with both diffusive stochastic volatility and 

independent return and volatility jumps are not able to fully explain the smirkness 

and excess kurtosis found in the cross-section of index options2. In other words, the 

parameter values necessary to match the smile in index options appear inconsistent 

                                                 
1 See also the alternative routes recently proposed by Huang and Wu (2004) and Santa-Clara and Yan 
(2004). Huang and Wu suggest a time-changed Lévy processes allowing an infinite number of jumps 
within any finite interval to be able to capture highly frequent discontinuous movements in the index 
return.  By contrast, the typical compound Poisson jump model generates a finite number of jumps within 
a finite time interval. The authors show that this new specification is well suited to the behavior of short-
term options, while long-term options are better priced allowing randomness in the arrival rate of jumps. 
Santa-Clara and Yan propose a linear-quadratic jump-diffusion model in which the jump intensity follows 
explicitly its own stochastic process to allow the jump intensity to have its own separate source of 
uncertainty. They employ this model to estimate the ex-ante equity premium. 
2 See the evidence reported by Bakshi, Cao and Chen (1997), Bates (2000), Chernov and Ghysels (2000), 
Anderson, Benzoni and Lund (2002), Eraker, Johannes and Polson (2003), Bakshi and Cao (2003) and 
Fiorentini, León and Rubio (2002) using Spanish data. In any event, it seems also to be the case that there 
are prices for volatility and jump risk. The above models are well posited for allowing estimation of these 
risk premia by using both the time series data on stock returns and the panel data on option prices. See the 
papers by Pan (2002) and Garcia, Ghysels and Renault (2004). 
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with the time series properties of the stock index returns. On the other hand, Bakshi 

and Cao (2003), using individual option data, conclude that return-jumps are of a 

higher-order of importance than volatility-jumps, and that incorporating correlated 

volatility-jumps offers the further potential to reconcile option prices especially 

deep-out-of-the-money puts. It should be recognized that this flexibility has not 

been yet allowed for index options; however, individual risk-neutral return 

distributions are far-less negatively-skewed and more peaked than the index 

counterpart. For this reason, this does not seem to be a helpful extension when 

testing models with index option data. In other words, characterizing high kurtosis 

without strong negative skewness does not seem to be as crucial with index return 

data as with individual data3. 

 

Interestingly, there is an alternative point of view on the issues involved to explain 

option pricing data anomalies known as the net buying pressure hypothesis. As 

recently pointed out by Bates (2003), Whaley (2003), and Bollen and Whaley 

(2004) a more promising avenue of research than developing more elaborate 

theoretical models is the study of the option market participants´ supply and demand 

for different option series. The limited capitalization of the market makers implies a 

limited supply of options. On the other hand, dynamic replication, implicitly 

assumed by previous models, ensures that the supply curve for all options is a 

horizontal line. Independently of how large demand is for buying options, price and 

implied volatility are unaffected. However, it is clear that market makers are not 

willing to sell an unlimited number of contracts of a given option. The larger their 

positions, the larger the expected hedging costs are in both the bid-ask spreads of 

other options and in the availability of other series needed to hedge positions.  

Hence, the current literature debate seeks to distinguish between the stochastic 

process and the net buying pressure explanations of the available empirical evidence 

regarding option pricing.4. 

 

Models in the Duffie, Pan, and Singleton (2000) family assume that volatility may 

be inferred when it is in fact impossible exactly to filter a volatility variable from 

                                                 
3 See the evidence reported by Bakshi, Kapadia and Madan (2003). 
4 As an example, Bollen and Whaley (2004) find that changes in implied volatility of index option and 
stock option series are directly related to net buying pressure from public order flow. 
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discrete observations of the continuous-time data generating process of the 

underlying asset. Moreover, the estimation risk associated with the relevant 

parameters is clearly substantial, and the potential for overparametrization as we 

move toward more complicated models becomes a crucial issue in empirical 

evidence. Finally, stochastic models with jumps in both returns and volatility are 

difficult to estimate, and closed-form affine expressions become increasingly 

difficult to obtain. 

 

This paper reports alternative and more easily applicable empirical evidence on 

option pricing. We argue that before we further investigate more sophisticated 

models we should perform a comprehensive analysis of time-varying discrete 

volatility. In particular, we ask whether the volatility function is a smooth function 

of some underlying variables and check the daily predictive power of the estimated 

coefficients. At the same time, we incorporate the potential impact of transaction 

costs by recognizing that the underlying asset market and the option market are not 

integrated. In this sense, our paper adds new evidence associated with the current 

debate by noting that net buying pressure is related to the impact of transaction 

costs. Thus, discrepancies between the properties associated with prices in the two 

markets may be explained by liquidity costs that are idiosyncratic to the options 

market, and not to the underlying distribution process.  

 

Along these lines, we compare five option pricing models, avoiding the stochastic 

framework but allowing for the potential impact of skewness, excess kurtosis, time-

varying volatility and liquidity frictions5. The models are the traditional Black-

Scholes (1973) method (BS hereafter), an ad-hoc BS method where the implied 

volatility is assumed to be a (parametric) quadratic function of the exercise price as 

suggested by Dumas, Fleming and Whaley (1998), a similar semiparametric model 

also extended by the explicit recognition of liquidity costs, and the Heston and 

Nandi (2000) (HN hereafter) GARCH option pricing model where volatility is 

readily predictable from the history of the underlying asset prices6. The comparison 

                                                 
5 See Garcia, Ghysels and Renault (2004) for an excellent presentation of option pricing under a discrete 
time setting using the stochastic discount factor paradigm. 
6 As far as we know, this is the first evidence available on the HN model besides the results provided by 
the authors for the US market. 
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is made in terms of daily in-sample and out-of-sample pricing performance and 

hedging behavior of the models. To the best of our knowledge this is the first 

empirical evidence available that simultaneously analyzes, at least indirectly, the 

two current approaches to empirical option pricing. 

 

Generally speaking, our out-of-sample empirical results tend to support the simplest 

models since the ad-hoc BS, and the univariate semiparametric models lead to the 

smallest errors in terms of both pricing and hedging. On the hand, liquidity costs are 

clearly relevant when pricing is analyzed in-sample. 

 

The rest of the paper is organized as follows. Section 2 contains a brief discussion of 

the five competing models used in the research and Section 3 describes the option 

data employed in the paper. The results regarding the pricing performance of all 

models are shown in Section 4, while Section 5 contains the hedging evidence. 

Section 6 analyzes the structure of pricing errors, while Section 7 provides some 

final remarks and concludes. Technical details on several of the models are 

relegated to Appendices A.1 and A.2.  

 

 

2. Competing Option Pricing Models and Estimation Details 

3.1 The Traditional Black-Scholes Method 

Under the BS assumptions, the well known option pricing formula for European 

calls on futures of Black (1976) is given by 

 

                                       )d(XN)d(FNec 21
r −= − τ                                              [1] 

where 

τσ
τσ )2()XFln(d

2
1

+
=  

and 

τσ−= 12 dd  

 

As usual, c denotes the price of a given call option with exercise price X and time to 

maturityτ . F is the future price of the underlying asset, r the riskless asset return 
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and σ  the volatility in the diffusion of the underlying asset. In a pure BS 

framework, the volatility is constant and the only parameter that must be estimated 

for option pricing. In the empirical application the implied volatility for each date t 

is obtained by minimizing the sum of squared pricing errors over all options 

available on that particular day. This volatility is employed to price all options over 

the next date t+1 when our main out-of-sample tests are run, and the 

contemporaneous day t when in-sample analysis is performed. 

 

3.2 The ad-hoc Black-Scholes Method 

This is the model inspired by the deterministic framework suggested by Dumas, 

Fleming and Whaley (1998), in which each option has its own implied volatility 

depending on the exercise price (and time to maturity when applicable). Thus, the 

spot volatility of the underlying asset is a parametric quadratic function of the 

exercise price X,  

                                           2
210 XaXaa)X(ˆ ++=σ                                             [2] 

 

where the coefficients are estimated every day by OLS, minimizing the sum of 

squared errors between the BS implied volatilities across different exercise prices 

and the model functional form of the implied volatility. When testing out-of-sample, 

these estimates are employed to obtain the volatility for each exercise price at day 

t+1, whereas day t is used for the in-sample analysis. In the out-of-sample context, 

this has been shown to be a very useful approach since, in fact, it prices options with 

the smile observed on the previous day. It turns out that the idea may be rationalized 

by recalling the expression proposed by Backus, Foresi, Li and Wu (1997) who 

adopt a Gram-Charlier series expansion of the normal density function to obtain 

skewness and kurtosis adjustment terms for the BS formula on the basis of the 

insight due to Jarrow and Rudd (1982). It can be shown that, 

 

                               










 −
+−≅ ku

!4
1dsk

!3
d1)XF(

2
11τσσ                                   [3] 
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where )XF(σ  is the implied volatility smile, σ  is the (annualized) BS volatility, 

sk is the unconditional skewness under the risk neutral measure of returns, and ku is 

the corresponding unconditional excess kurtosis7. Expression [3] can be written as 

 

                                       2
12110 dd)XF( βββσ ++≅                                          [4] 

 

where 10 ,ββ  and 2β  are 
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and therefore the quadratic effects of the exercise price of equation [2] may be 

associated with the underlying skewness and kurtosis of the underlying asset 

distribution function. This is probably the simplest way, although not used 

previously in literature, to relate smile patterns with the distribution of the 

underlying asset. 

 

Dumas, Fleming and Whaley (1998) also consider time to maturity as an 

explanatory variable. In our available dataset, time to maturity is not a relevant 

variable since, for each fixed day, all options used trade for the nearest expiration 

date. Therefore, in the empirical application only the exercise price appears in this 

ad-hoc BS version of the model. 

 

3.3 A Univariate Nonparametric Method 

Here a more flexible estimation of the implied volatility pattern is allowed. Instead 

of estimating a quadratic or any other parametric specification of volatility in terms 

of exercise price, a nonparametric estimator will be used that only assumes volatility 
                                                 
7 We write the volatility function given by [3] in the traditional way as a function of the moneyness 
degree, while expression [2] is written in terms of the exercise price. It should be noted that both 
expressions reflect exactly the same idea, given that the level of the future price for equation [3] to make 
sense must remain constant. 
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to be a smooth function of exercise price. A similar approach is considered by Aït-

Sahalia and Lo (1998). However, we propose a different nonparametric technique 

that, as we argue below, is especially appropriate for option pricing data. In 

particular, the Symmetrized Nearest Neighbor (SNN) estimator is selected, since it 

presents better properties when the explanatory variable does not present a uniform 

design. In our case, the explanatory variable is the exercise price, which is far from 

being uniform, and the SNN estimation procedure rather than the traditional kernel 

estimator is the natural choice. This point has not been recognized by previous 

empirical applications of nonparametric methods to option data. 

 

Let us briefly describe both kernel and SNN nonparametric regressions. Given the 

options available on a particular day t, the dataset tΩ  will contain the information 

{ } tiii X, ∈σ where iσ  denotes the implied volatility for the ith option, and iX  its 

exercise price. Consider now an option to be priced at t+1 with exercise price X. 

Given the information set tΩ , the kernel estimator for the implied volatility is 
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where K denotes a second order kernel (a function that basically behaves as a 

density) that assigns the weight to each value in the dataset. The value h is the 

bandwidth or smoothing parameter that, in general, is selected using a data-driven 

method. If h is too small, the estimator picks up the cyclical nature of the data but 

also random variations due to noise. In this case, the bias is reduced whereas the 

variance increases. By contrast, if h is too large, the genuine variation of the 

function along with the noise is eliminated, and the variance is reduced but the bias 

increases. A proper selection of h seeks to minimize the mean square error (MSE), 

providing a compromise between bias and variance. Looking at the expression for 

the MSE, given in Appendix A.1, it can be seen that the optimal value for h should 

depend on the density of the explanatory variable. In fact, a higher value of h will be 

desirable for those zones where the density is low and a lower value where the 
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density is high. To deal with this fact a kernel with a variable smoothing parameter 

might be a solution, although it turns out to be difficult to implement and its 

performance in practice is not satisfactory8. 

 

Alternatively, an SNN estimator that plays the role of a variable kernel presents 

theoretical and practical advantages. This estimator was proposed by Yang (1981) 

and studied in detail by Stute (1984). When estimating at one point ( iX ) we 

calculate the weight for the rest of observations by looking at the distance between 

the values of the empirical distribution at each point ( )X(F in ) rather than the 

distance between the points themselves. Hence, the estimator is defined as 
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∈
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where (.)Fn  denotes the empirical distribution of the exercise price X. It turns out 

that, as opposed to the usual kernel estimator, the variance in the MSE does not 

depend on density and, under very general conditions, if an SNN estimator is 

employed, the MSE is smaller on the tails of the design. This is illustrated in 

Appendix A.1. Typically, these are the most interesting zones when working with 

option data since they correspond to in-the-money and out-of-the-money options. In 

addition, the SNN method is very easy to compute since the expression can be 

computed as a usual kernel estimator once the empirical distribution is obtained. 

 

3.4 A Bivariate Nonparametric Method 

Longstaff (1995), Peña, Rubio and Serna (1999) and Ferreira, Gago and Rubio 

(2003) report evidence relating the smile and the liquidity costs as proxied by the 

bid-ask spread. Motivated by these results, the bid-ask spread (SP) is added as 

another explanatory variable in a nonparametric framework. To remain consistent 

with the univariate estimator described above, we use the extension of the univariate 

SNN estimator to the bivariate case. The bivariate estimator is then defined as 

                                                 
8 See Härdle (1990) for a general review of nonparametric methods. 
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where the information set for each day will also include the bid-ask spread of the 

options; that is, { } tiiiit SP,X, ∈= σΩ . The statistical properties from the univariate 

estimator do not translate straightforwardly to the multivariate setting. However, the 

main result remains true and, under very general conditions, the performance of the 

bivariate SNN estimator is better in the tails of the marginal distributions for the 

covariates. Some theoretical results are also provided in Appendix A.1 and a more 

detailed study can be found in Ferreira and Gago (2002), where a simulation study is 

carried out that supports the theoretical results. 

 

In the implementation of our two nonparametric regressions discussed above, a 

Gaussian kernel has been selected, although any other second order kernel would 

lead to similar results. Several methods for selecting smoothing parameters can be 

considered for the univariate case. As a general classification, we have the so called 

plug-in approach, leave-one-out methods and methods based on penalizing the sum 

of residuals9. The resulting estimator depends crucially on the parameter choice and 

therefore, the selection procedures matters. Since different methods may end up 

with different estimations, we have computed the estimators using three different 

alternatives. The first is the univariate plug-in method of Gasser, Kneip and Köhler 

(1991). The second and third are the natural extensions of the Generalized Cross 

Validation (GCV) and Rice criteria to the bivariate case. As it turns out, the results 

are very similar for all of them and the main conclusions remain the same 

independently of the method used in practice. In the empirical results below we 

report only the estimations obtained with the Rice method. 

 

Let us describe the steps involved in the empirical application. For each option 

traded on day t, the procedure to estimate the implied volatility goes as follows: (i) 

                                                 
9 See Härdle (1990). 
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the smoothing parameters are computed each month with all data available and 

remain fixed until the next month; (ii) the bid-ask spread is estimated as the average 

of the relative bid-ask of all options of the same class, with the same time to 

maturity and exercise price, traded on t and t+1 until just before the corresponding 

option is observed; (iii) given the smoothing parameters and the bid-ask spread 

estimate, the implied volatility is estimated using the information set tΩ  and 

applying the formula for )X(ˆ SNNσ  in the univariate case and )SP,X(ˆ SNNσ  in the 

bivariate case; (iv) the estimated volatility is then plugged in the BS formula to price 

all options at t+110. This implies that under the SNN nonparametric volatity 

functions both with and without liquidity costs we obtain semiparametric theoretical 

option prices11. 

 

Some remarks are in order. The univariate nonparametric method is similar in spirit 

to the ad-hoc volatility estimation procedure. The difference relies on the flexibility 

of the implied volatility function allowed by the SNN procedure. The price for 

flexibility is a slower rate of convergence to the true function. This means that if the 

function is indeed quadratic, as considered in the ad-hoc BS model, this method 

should better capture this pattern. However, if the function presents a different 

pattern, the ad-hoc BS method leads to wrong estimates while the nonparametric 

estimator is still consistent, due to its independence of the particular specification 

for the volatility function. 

 

3.5 The HN GARCH Method 

All the above methods are useful for practical purposes although they do not 

explicitly explain the reasons for the underlying path that determines the volatility 

pattern; they just take this pattern as given and try to estimate it by the most 

reasonable procedure. They are based merely on the simple idea that an adaptive 

estimation of the implied volatility should improve the BS pricing formula. 

 

As a final competing model, we consider the HN (2000) GARCH(1,1) option 

pricing formula as particularly appealing because it permits us to capture the path 

                                                 
10 In the in-sample analysis only information up to date t is employed. 
11 This is like Aït-Sahalia and Lo (1998). See their discussion on the dimensionality problem. 



 12

dependence in volatility as well as the negative correlation of volatility with index 

returns. Moreover, a closed-form pricing formula is obtained. From a practical point 

of view, the HN model presents an advantage with respect to Heston´s (1993) 

continuous-time approach. The model is discrete and the parameters can be 

estimated using maximum likelihood. Moreover, the asymmetric GARCH(1,1) 

version has a continuous limit that is identified as Heston´s model with perfect 

correlation between the underlying asset and the volatility. This implies that neither 

the volatility risk premium nor the jump-risk premium exist in this framework. Also, 

for the purpose of comparing pricing methods, the HN model can be considered as a 

model with predictable volatility, since volatility can be estimated from the past 

information of the underlying return path. Therefore, a good empirical performance 

would provide evidence in favour of deterministic volatility models, frequently 

updated, rather than models considering new risk factors. Once again, the idea is to 

check whether this simple discrete-time model is rich enough to incorporate the 

peculiarities of option prices. 

 

The HN model considers that the log-spot asset price, lnS(t), is characterized by the 

following GARCH(1,1) process: 

 

                            )t(z)t(h)t(h r)t(Sln)t(Sln +++−= λ∆                              [8] 

 

                          ( )2)t(h)t(z)t(h)t(h ∆γ∆α∆βω −−−+−+=                         [9] 

 

where h(t) is the conditional variance of the log return between ∆−t  and t and is 

predictable from the information set at time ∆−t ; λ  is the risk premium embedded 

in returns; z(t) is a standard normal disturbance, and the parameter γ  controls the 

skewness of the distribution. 

 

The model allows for the prediction of )t(h ∆+  at time t from the spot price as 

 

        ( )
)t(h

)t(h )t(h r)t(Sln)t(Sln)t(h)t(h
2γλ∆αβω∆ −−−−−

++=+          [10] 
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where α  determines the kurtosis of the distribution, and because of the asymmetric 

parameter, γ , a large negative shock, )t(z , raises the variance more than a large 

positive shock. This model enables us to capture the observed negative correlation 

between returns and variance. In particular, 

 

                                     [ ] )t(h   2)t(Sln),t(hcovt γα∆∆ −=+−                              [11] 

 

where, given a positive α , positive values for γ  result in negative correlation 

between returns and variance. 

 

To obtain the pricing formula, the process is written in terms of the risk-neutral 

measure and it can be shown that the value of a call option is given by 

 

                                           [ ]21
r XPP)t(Fec −= − τ                                               [12] 

 

where, as in the BS formula, 2P  is the risk neutral probability of the asset being 

greater than X at maturity and 1P  corresponds to the delta of the call value. Of 

course, the computation of 1P  and 2P  in this case requires estimates of the risk-

neutral parameters in the GARCH model. A more detailed description of the pricing 

procedure is given in Appendix A.2. 

 

For empirical analysis the model is estimated daily and for the out-of-sample tests 

the parameters obtained with data up to day t are used to price the options traded at 

t+1. As with other models, for the in-sample case, only information available up to 

date t is employed to price options traded at t. Thus, the parameters are estimated 

daily and recursively with two years and one month of past data, or 522 daily 

observations of the index return12. The only parameter that needs to be changed in 

                                                 
12 We have both closing price daily returns for the IBEX-35 from January 1994 to November 1998, and 
15-minute returns from 1996 to 1998. The daily returns are used in the estimation of the NH GARCH 
model, and it is therefore the basic data to estimate the conditional daily volatility during our sample 
period. The rationality of using two years of daily past data to estimate parameters comes from the 
experience of León and Mora (1999) when estimating several models of the GARCH family with Spanish 
data. The additional month is due to the maximum length period of the nearest expiration contracts of the 
options in our dataset. 
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the option pricing formula is the skewness parameter γ  which, under the risk 

neutral process, turns out to be equal to 21* ++= λγγ . Proceeding in this way, 

the model does not really need data from option prices. However, in order to 

incorporate simultaneously information from the option and common stock markets, 

the risk neutral skewness parameter *γ  is implicitly computed from the cross-

section of option prices. The implicit estimator is defined as the minimizer of the 

pricing errors in the options traded at time t; that is,  

{ }
( )∑ −=

∈ti

2
ii,HN

*
t c)(cminarg γγ

γ
, where ic  is the price observed in the market, and 

)(c i,HN γ  denotes the price resulting from the HN formula, where the rest of 

parameters are those estimated from the underlying asset return time series. Given 

all parameter estimates available at data t, the HN formula is applied to obtain the 

out-of-sample price of each option at t+1, and the in-sample price at day t. 

 

As discussed above, and unlike the continuous-time stochastic volatility version of 

the model, all the parameters may be estimated directly from the daily closing 

returns of the IBEX-35 index using the well known maximum likelihood estimation 

proposed by Bollerslev (1986). To illustrate the behavior of the GARCH model, 

Table 1 shows the maximum likelihood estimates of the model on the daily IBEX-

35 data from January 1996 to November 1998. The skewness parameter,γ , is 

positive and significantly different from zero, indicating that shocks to returns and 

volatility covary negatively. The parameter that measures the degree of mean 

reversion, given by 2αγβ +  and equal to 0.944, is higher than the estimate reported 

by HN for the US market. The volatility of volatility, α , is small but also 

statistically significant, and the annualized long-run mean of volatility, as given by 

)1()(252 2αγβαω −−+  (assuming 252 trading days), is 21.7%. Although not 

reported, the restricted version of the model with 0=γ  is rejected using both the 

log-likelihood ratio test and the SIC statistic. 

 

[Table 1 around here] 
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3. Option Data Description 

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most 

liquid Spanish stocks traded in the continuous auction market system. The official 

derivative market for risky assets, which is known as MEFF, trades a futures 

contract on the IBEX-35, the corresponding option on the IBEX-35 futures contracts 

for calls and puts, and individual option contracts for blue-chip stocks.  

 

The Spanish option contract on the IBEX-35 futures is a cash settled European 

option with trading over the three nearest consecutive months and the other three 

months of the March-June-September-December cycle. The expiration day is the 

third Friday of the contract month. Prices are quoted in full points, with a minimum 

price change of one index point. The exercise prices are given by 50 index point 

intervals. 

 

Our database comprises of all call and put options on the IBEX-35 index futures 

traded daily on MEFF during the period January 1996 through November 199813. 

Liquidity is concentrated on the nearest expiration contract. In fact, during the 

sample period almost 90% of trades occurred in this type of contract. Given the 

concentration in liquidity, our daily set of observations includes only calls and puts 

with the nearest expiration date.  

 

For each option traded we have the transaction price, the relative bid-ask spread, the 

exercise price, the expiration date, the simultaneous future price as measured by its 

bid-ask spread average, and the annualized repo T-bill rates with approximately the 

same maturity as the option. 

 

 We restrict our attention to options transacted from 11:00 to 16:45. Every trade 

recorded during this window is used in the estimation. Note that care has also been 

taken to eliminate the artificial trading potential problems associated with market 

makers margin requirements, and also with the well known intraday seasonalities on 

                                                 
13 It may seem appropriate to extend the sample period. However, the structural organization of the 
Spanish market and its liquidity has changed importantly over time. We argue that our sample period may 
be characterized as a very homogeneous time period and, in this sense, it is quite useful for our objectives.  
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the underlying index behavior. Finally, we eliminate all call and put prices that 

violate the well known arbitrage bounds given by14, 
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These exclusionary criteria yield a final daily sample of 30542 observations (18656 

calls and 11886 puts). Table 2 describes the sample properties of the call and put 

option prices employed in this work. Average prices, average relative bid-ask 

spread, average number of contracts per day and the number of options are reported 

for each moneyness category. Moneyness is defined as the ratio of the exercise price 

to futures price. A call (put) option is said to be deep out-of-the-money (deep in-the-

money) if the ratio X/F is greater than 1.03; out-of-the-money (in-the-money) if 1.03 

≥ X/F > 1.01; at-the-money when 1.01 ≥ X/F > 0.99; in-the-money (out-of-the-

money) when 0.99 ≥ X/F > 0.97; and deep-in-the-money (deep out-of-the-money) if  

0.97 > X/F. The average option price ranges from 60.7 pesetas for deep out-of-the-

money calls (deep in-the-money puts) to 110.2 pesetas for at-the-money options. As 

expected, the extreme options (in terms of moneyness) have the highest bid-ask 

spreads. In other words, deep out-of-the-money (in-the-money) options have the 

highest liquidity cost, while at-the-money options have the lowest. 

  

[Table 2 around here] 

 

4. Pricing Performance 

4.1 Testing the Statistical Performance of Competing Models 

This section reports both in-sample and out-of-sample daily pricing performance of 

the five competing models analyzed by our paper. The statistical significance of 

performance for in-sample and out-of-sample pricing errors is assessed first by 

analyzing the proportions of theoretical prices lying outside their corresponding bid-

ask boundaries. Then we test whether or not the differences between proportions of 

                                                 
14 Approximately 1.1% of all options in the dataset violated these arbitrage bounds. 
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any two competing models are statistically different from zero, taking into account 

that any two competing models are not independent.  

 

Specifically, we take any pair of two models. Let 1p  be the proportion of calls 

(puts) whose theoretical price lies outside the bid-ask spread when we price with 

model 1, and let 2p  be the corresponding proportion when we price with model 2. 

Also, let 1Z  be 1 if the theoretical price (for model 1) is outside the spread and 0 

otherwise. Finally, 2Z  is 1 if the theoretical price (for model 2) is outside the spread 

and 0 otherwise. Then, 21 ZZ − equals -1 with probability 1π , 0 with probability 

2π , and 1 with probability 211 ππ −− . Under the null hypothesis of equal 

proportions, 
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Consider the statistic defined as, 
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by the Central Limit Theorem, 
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where 1π  can be estimated as 
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Since the differences in proportions coincide with the Z-statistic, then the final 

statistic employed to compare the models is given by  
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We also compare the performance of all models by analyzing prices inferred from 

each theoretical model against the observed market prices. In particular, we compute 

for each model the absolute pricing error as given by the square root of the squared 

differences between the theoretical price and the market price of each option i:  

 

                                ( )∑ −=
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2
mket,ielmod,i PPn1APE                                 [15] 

 

where n is the number of options, and elmod,iP  and mket,iP  are the theoretical price 

for either a call or a put for each of the five models, and the observed market price 

respectively. 

 

To test statistically whether the average absolute pricing errors of two competing 

models are significantly different from zero, we perform a GMM overidentifying 

restriction test, with the Newey-West weighting covariance matrix. We consider the 

following set of moment conditions for any two competing models 
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where 2,1
iAPE  is the absolute pricing error for option i and either model 1 or 2, and 

m is the common mean pricing error under the null hypothesis that both models 
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have the same pricing error. The test statistic is distributed as a 2χ with one degree 

of freedom. 

 

4.2 In-Sample Pricing Performance 

The statistical in-sample performance of all models using the proportion that the 

theoretical price is outside the bid-ask spread is contained in Table 3 for both calls 

and puts. The figures in each panel are the proportions of theoretical prices lying 

outside the spread for options within a moneyness category15, and below the 

identifying number of the competing model that has a significantly lower proportion 

than the model being analyzed according to our Z-statistic in equation [14]. As an 

example, and in order to facilitate the reading of the following tables, note that the 

semiparametric model with liquidity costs has 16.4% of all call prices outside the 

observed bid-ask spread. Moreover, analyzing the statistical significance of that 

proportion relative to the proportion associated with any other model by Z-statistic, 

we conclude that this proportion is statistically different (lower) than the proportions 

given by BS (model 1), the semiparametric model with the nonparametric volatility 

function depending only on the exercise price (model 2), the ad-hoc BS (model 4), 

and HN (model 5). Therefore, for call options the flexible semiparametric model 

with liquidity costs presents a statistically better performance than the rest of 

models. Interestingly, however, ATM calls are better priced in the sense defined 

above by the the ad-hoc BS. As expected, under the net buying pressure hypothesis 

and for calls, liquidity costs are more relevant for options with extreme moneyness 

degrees. At the same time, theoretical put prices always present statistically lower 

proportions outside the bid-ask boundary when liquidity costs are included. The 

flexibility of the nonparametric estimation of the volatility function together with 

liquidity costs seems to be a key consideration when pricing options in-sample. It is 

important to note, however, that the key in understanding the results lies in the 

impact of liquidity costs rather than in the flexible functional form of the volatility 

function. The ad-hoc BS has lower proportions of theoretical prices outside the 

spread when compared to the semiparametric model with the exercise price as the 

only explanatory variable. Indeed, the quadratic parametric representation of the 

                                                 
15 In Tables 3 to 7, deep in-the-money (out-of-the-money) calls (puts), and deep out-of-the-money (in-the-
money) calls (puts), as reported in Table 1, are now included in the corresponding out-of-the-money and 
in-the-money categories. 
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volatility function seems to be, on average, a good representation of the volatility 

smile.  

[Table 3 around here] 

 

When performance is analyzed in terms of pricing differences by the APE statistic 

given by equation [15] and the 2χ GMM test in [16], we find very similar results. 

The results are reported in Table 4. Again, liquidity costs seem to be a key 

consideration when pricing options in-sample. Note that even ATM calls have less 

pricing differences. Given that these options have lower proportions outside the 

spread when pricing by ad-hoc BS, we may conclude that options which belong to 

the 16.9% outside the boundaries, as reported in Table 3, must have quite large 

pricing differences to justify the worse performance found under the APE statistic in 

Table 4.  

[Table 4 around here] 

 

Finally, both the traditional BS model and the HN GARCH(1,1) present a very poor 

performance both in terms of proportions outside the bid-ask spread and in terms of 

pricing differences. We will come back to these results when analyzing out-of-

sample performance.  

 

4.3 Out-of-Sample Pricing Performance  

Of course, from the practitioner’s point of view, it is more relevant to know how 

option pricing models value derivatives out-of-sample. This has always been the 

important perspective in option modeling. The results using proportions off the 

spread are contained in Table 5. As before, they are the frequencies of theoretical 

prices lying outside the bid-ask spread, and below the identifying number of the 

competing model that has a significantly lower proportion than the model being 

analyzed according to our Z-statistic. In this case, and contrary to the in-sample 

evidence, the ad-hoc BS dominates all models with 41.0% (39.6%) of all call (put) 

prices outside the observed bid-ask spread. Moreover, the proportions observed in 

the ad-hoc BS case are statistically lower for all moneyness categories except for in-
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the-money options. Therefore, the ad-hoc BS presents a statistically superior out-of-

sample performance than the rest of option pricing models considered in the paper16. 

 

[Table 5 around here] 

 

Surprisingly, the out-of-sample results show that the univariate nonparametric 

pricing method obtains significantly lower proportions outside the spread than the 

model with liquidity costs. First, the fact that a parametric model outperforms the 

more flexible approach indicates that again, on average, the symmetric smile rather 

than the downward sloping smirk captures the behavior of the distribution of the 

underlying asset during this sample period. Note that this ad-hoc parametric model 

is consistent with pricing by market makers in actual trading. Secondly, the impact 

of moving from in-sample to out-of-sample is quite dramatic. The proportions 

outside the spread increase by 100% for the best models, while the frequencies 

under BS and HN go up by approximately 14%. Of course, these models present 

very high proportions outside the spread for both the in-sample and out-of-sample 

cases. It seems therefore that daily market conditions change considerably either 

because of variations of moments in the underlying distribution of returns or 

because demand conditions vary sufficiently to move prices quite a lot given the 

limited supply of contracts provided by market makers. It is probably a combination 

of the two factors that plays the key role in explaining out-of-sample performance. 

Both rapidly changing market conditions which affect the distribution of returns of 

the underlying asset and a limited supply of options having a strong impact on 

hedging (and trading) costs lead towards instability of parameters in option pricing 

models. Thus, our traditional theoretical framework fails in the out-of-sample 

context. Along this line of reasoning, it should be pointed out that recent papers 

using Spanish data and variants of an approximation of the risk-neutral density of 

terminal underlying prices by the lognormal Gram-Charlier series expansion also 

obtain poor out-of-sample performance. Serna (2004) employs this method to 

implicitly estimate the risk-neutral skewness and kurtosis of the underlying asset. 
                                                 
16 Using quarterly data, as in Ferreira, Gago and Rubio (2003), the results employing the exercise price or 
the moneyness degree, as measured by X/F, in the estimation of the volatility function are the same. Note 
that when using moneyness the issue is to decide the appropriate underlying price. In principle, it should 
be the same for different exercise prices. In the application with quarterly data, the average of the 
underlying price during each sample period is taken as a proxy for the denominator. However, to employ 
this ratio with daily data is more problematic and it is discarded from the estimation. 
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Although a more consistent performance than BS is reported, pricing errors remain 

quite substantial. Prado (2004) argues that under this expansion one may obtain a 

negative risk-neutral density for some values of skewness and excess kurtosis. He 

incorporates the adjustment suggested by Jondeau and Rockinger (2001) to 

guarantee the positivity of the Gram-Charlier risk-neutral density and, as before, 

out-of-sample performance is quite disappointing. Similar results are obtained by 

León, Mencía and Sentana (2004) using semi-nonparametric densities of Gallant 

and Nychka (1987) which are always positive and more general than the truncated 

Gram-Charlier expansions. Hence, relaxing the assumption of lognormality does not 

seem to be sufficient to adequately price options out-of-sample.  

 

It is also the case that liquidity costs, as proxied by the past bid-ask spreads, do not 

improve option pricing performance. This is consistent with the evidence reported 

by Peña, Rubio and Serna (2001) using a parametric approach within an out-of-

sample context, and it suggests that past spreads are not useful in characterizing 

current market conditions. Again, it is difficult to rationalize this evidence without 

recurring to limited supply arguments in the option market.  

 

To conclude, models based on smooth functions of volatility do not capture the 

underlying behavior of the underlying asset or of its volatility, and they seem to be 

useless in explaining the idiosyncratic characteristics of the internal organization of 

option markets.  

 

The extremely poor performance of the HN model is also striking but, at the same 

time, very informative on what is missing from GARCH option pricing. Figure 1 

contains the daily implied BS volatility and the daily conditional volatility estimated 

by expression [10]. During most of the sample period, the volatility estimated by the 

HN GARCH model undervalues the implied volatility from the cross-section of 

available options. This is a very important point. The implicit estimation of the 

skewness parameter is not sufficient to introduce the information contained in the 

cross-section of option prices17. It should be noted that the HN model is the only one 

                                                 
17 Despite the fact that Christoffersen and Jacobs (2003) argue that GARCH models with volatility 
clustering and standard asymmetric effects like the one suggested by HN perform well compared to less 
parsimonious alternative models. 
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in which the estimate of volatility does not employ option data. In our case, this 

makes its pricing performance to be very poor relative to all other models, including 

the traditional BS method18. Given the lack of integration between the underlying 

and option markets, employing parameters estimated directly from the underlying 

return process does not seem to help out-of-sample pricing19.  

 

[Figure 1 around here] 

 

Independently of the above arguments, the GARCH methodology is not clearly 

appropriate for inferring future volatility in the option pricing context. It should be 

recalled that we are dealing with short-term option data. In fact, HN report that their 

model does not improve on the ad-hoc BS model when they price the shortest to 

maturity options in their US database. Their GARCH modeling of variance is not 

able to reproduce the rapidly increasing behavior of conditional volatility needed to 

price short-term options, despite the fact that the model adapts to changes in 

volatility associated with changes in market levels. Note that jumps in returns can 

generate large movements, but the impact of a jump is transitory and consequently 

does not affect future prices. On the other hand, conditional volatility is persistent 

but it may only increase via small gradual normally distributed steps. In order to 

allow conditional volatility of returns to increase quickly, it becomes necessary to 

permit jumps in volatility on the underlying data generating process of equity 

returns. This is the point raised by Eraker, Johannes and Polson (2003) and Eraker 

(2004) who model jumps in volatility with constant arrival intensity and constant 

amplitude. However, as mentioned in our introductory comments, this approach is 

not flexible enough to explain the cross-section of option prices. Moreover, GARCH 

option modeling with jumps in volatility has not yet been developed, even under the 

simplest specification. 

 

Finally, it has been recently argued by Ghysels, Santa-Clara and Valkanov (2004) 

that the so called mixed data sampling regression (MIDAS) framework is more 

appropriate than GARCH modeling when predicting volatility. Its success is based 

on the additional power of using more data, estimating less parameters and, 

                                                 
18 Similar results are found when the sample is divided into three independent years. 
19 Not even in-sample performance. 
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especially, because of the more flexible (and optimum) weighting scheme employed 

when incorporating past volatility. In particular, the asymmetry in the response of 

the conditional volatility to positive and negative returns is more complex than 

previously recognized by the GARCH family. According to their evidence, negative 

shocks have a higher immediate effect but are ultimately dominated by positive 

innovations. Simultaneously, there is a strong asymmetry in the persistence of 

positive and negative shocks, with positive shocks being responsible for the 

persistence of the conditional volatility for horizons beyond two or three weeks of 

trading20. By construction, these effects are not captured by any GARCH model. 

This recent evidence casts doubts on the validity of GARCH option modeling and it 

may also be responsible in part for the extremely poor performance of the HN 

model. 

 

The out-of-sample performance of pricing errors using the APE statistic tends to 

give similar results. They are reported in Table 6. The ad-hoc BS pricing model and 

the flexible univariate semiparametric option model are the best performing models. 

As before, there is a slight advantage for the ad-hoc BS, but the differences between 

the two models are less pronounced than when using proportions lying outside the 

bid-ask spread.  

[Table 6 around here] 

 

5. Hedging Performance 

The analysis of hedging performance follows Bakshi, Cao and Chen (1997), in 

which a single instrument is employed. The objective is to hedge a short position for 

a call option with τ  periods to expiration and exercise price X. Let F∆  be the 

number of shares in the underlying asset to be purchased and let FcB F∆−=0  be 

the residual position, so that the value of a replicating portfolio at t is )t(FB F∆+0 . 

Solving the standard minimum variance hedging problem, the option delta, F∆ , has 

the expression 

 

                                                 
20 These results have been confirmed by León, Nave and Rubio (2004) using European equity indices 
including the IBEX-35 index. 
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where we recall that the term 1d  is given in equation [1]. 

  

Therefore, the different methods proposed in Section 2 for estimating volatility lead 

to different deltas. If the HN formula is used, the delta of the option has also the 

form 1Pe r
F

τ∆ −= , where 1P  is different from the normal distribution, and it depends 

on the parameters in the GARCH model, as described in Appendix A.2. 

 

For all models, we assume that portfolio rebalancing takes place at intervals of 

length t δ  (either a day or a week)21. Once the delta is estimated for each option in 

the sample, we obtain the resulting cash position as FˆcB F∆−=0  which we invest 

in the equivalent maturity risk free bond. At time t t δ+  we calculate the hedging 

error for each model as 

 

                   )t ,t t(ceB)t t(Fˆ)t t(H t r
F δτδδ∆δ δ −+−++=+ 0                       [18] 

 

For computation of the hedging errors, we employ the first option in each class 

(same time to maturity and exercise price) that appears in the 45-minute window 

between 16:00 and16:45 for both t and t t δ+ 22. 

 

To analyze the differences in hedging behavior between our competing models, we 

calculate the average absolute hedging error for each model as 
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where n is the number of options over the complete sample period. 

                                                 
21 Although the hedging errors become larger when one week is employed, qualitative conclusions are the 
same, and the results reported below only contain portfolio rebalancing taking place at intervals of one 
day. 
22 As an alternative, the hedging performance for the last option traded in each class during each day has 
been analyzed and the results remain the same. 
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To test statistically whether the mean errors of two competing models are 

significantly different from zero, we again perform the GMM overidentifying 

restriction test, with the Newey-West weighting covariance matrix, given in 

equation [16]. We now have the following set of moment conditions for hedging 

errors and for any two competing models, 
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where 2,1
iH is the hedging error for option i and either model 1 or 2, and m is the 

common mean hedging error under the null hypothesis that both models have the 

same hedging error. As in our previous test, this statistic is distributed as a 2χ with 

one degree of freedom. 

 

Table 7 contains the daily hedging results. Slightly less clear conclusions may be 

drawn in regard to pricing performance. For puts, both the semiparametric NP(X) 

model and the ad hoc BS have lower mean hedging errors. However, for calls, both 

semiparametric models are superior to the ad hoc BS. In fact, the model with 

liquidity costs has the lowest mean hedging error for ATM calls. Finally, on pricing 

performance the HN method provides the worst results, with a surprisingly high 

hedging error size. Apart from the problems of historical estimation of conditional 

variance, another reason behind its poor behavior may be the high variability of the 

daily estimate of the skewness parameter. This suggests that, although this 

parameter is clearly important in the pricing formula, the daily variation is so high 

that it disturbs the estimation one day ahead rather than improving it.  

 

[Table 7 around here] 

 

In any case, as before, the overall results are quite disappointing. High performance 

and hedging errors are found independently of the model analyzed. The next section 

investigates possible biases behind these results. 
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6. The Structure of Pricing Errors 

A further analysis trying to understand the structure of the out-of-sample pricing 

errors of these models would seem to be called for. We now use a simple regression 

framework to study the relationship between percentage pricing errors and factors 

that are either option-specific or market dependent. We first take as given an option 

pricing model, and let ite  be the ith option’s percentage pricing error on day t 

defined as the theoretical price minus the market price, divided by the market price. 

Finally, we run the following regression for the whole sample period and for calls 

and puts separately: 

 

            ititittttitit SPbXlnbKUbSKbbbae εστ +++++++= 654321                 [21]       
 

where itτ  is the annualized time to maturity of the ith option at day t, tσ  is the 

annualized daily standard deviation of the IBEX-35 index returns computed from 

15-minute intradaily returns, and similarly tSK  and tKU  are the daily skewness 

and the (excess) kurtosis at day t respectively;  itX  is the exercise price and itSP  is 

the relative bid-ask spread of the ith option.  The results are reported in Table 8, 

where the results for calls and puts are reported separately. As can be observed, the 

explanatory variables are significantly different from zero in almost all cases. These 

results provide evidence against models trying to explain the time-varying behavior 

of the volatility function as a smooth function of previously defined variables, be it 

in an ad hoc way, in a GARCH parametric framework or in our nonparametric 

context. The results are consistent with the need to simultaneously incorporate a 

more complex behavior in the process of returns and volatility with (probably) 

correlated jumps and the effects of organizational characteristics of the option 

market. 

[Table 8 around here] 

 

It is interesting to notice the large biases associated with the HN model. The 

(negative) magnitude of the 2b  coefficient related to the model is very high and 

significant. It is the largest coefficient (in absolute value) of all the models, and it 
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reflects that the conditional variance estimated with historical return data 

undervalues the variance reflected in option prices, particularly when there is a lot of 

variability in the market. This is clearly consistent with Figure 1. As expected, the 

second largest coefficient (in absolute value) comes from the BS model, where 

constant volatility across options is imposed. Moreover, again for these two models, 

the 1b  coefficients are also large. Thus, they reflect a large time to maturity bias for 

both calls and puts. As reflected in the magnitude of the coefficients, the most 

problematic pricing performance of the two models tends to be associated with 

options with the longest time to expiration. Hence, the deficiencies discussed for 

these models become more pronounced with options that have more days to 

maturity. In any case, it should be recognized that, at least for puts, all pricing 

models except the univariate semiparametric case have more difficulties in pricing 

options as time to expiration becomes longer. 

 

Finally, the coefficient associated with the bid-ask spread is again large in the HN 

case. If the underlying asset and the option market are not fully integrated, any 

model estimating most relevant parameters only from the stock market will be 

unable to capture idiosyncratic characteristics of option prices. 

 

In short, neither model seems to reflect appropriately the underlying distribution 

characteristics of the IBEX-35 and/or the idiosyncratic characteristics of the option 

market microstructure.  

 

 

7. Conclusions 

In this paper, we employ intraday option data from the Spanish market to test both 

the pricing and hedging performance of the five option pricing models. The results 

show that, from the out-of-sample point of view, simplicity is an important 

characteristic in the option pricing framework used. The ad-hoc BS and the simplest 

univariate semiparametric models are the best performing models. In fact, the 

overall picture suggests that the ad-hoc BS is slightly superior despite the flexibility 

added by the nonparametric estimation of the volatility function. However, the 

overall out-of-sample performance of all models is quite poor. On the other hand, 

in-sample pricing performance shows that liquidity cost is a key issue in option 
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pricing. If our liquidity costs reflect the net buying pressure from public orders, our 

evidence may indicate that there exists a strong daily changing behavior in the 

demand for options at different exercise prices with an upward sloping supply curve, 

given the quite different performance of the model with liquidity costs when we 

move from in-sample to out-of-sample tests.  

 

Simultaneously, the overall poor performance of the models may also suggest that 

(probably) correlated jumps in returns and volatility are a key feature to be adopted 

for any competitive option pricing model. It seems that the volatility function is not 

a smooth function of the underlying variables used in the estimation. Also, and 

somewhat surprisingly, the HN specification presents a very poor pricing and 

hedging performance. The GARCH framework cannot generate (time-varying) 

skewness and kurtosis in the degree needed to price options. In other words, 

GARCH volatility does not incorporate the rich information contained in the cross-

section of option prices, in spite of the fact that the asymmetric GARCH parameter 

is estimated implicitly from option data. The volatility inferred from the history of 

the index returns is not high enough to obtain reasonable option prices.  

 

Our results, together with the evidence currently available from stochastic models 

with volatility and jump risk factors, suggest that an integrated approach of both 

options and stock markets that also incorporates correlated jumps in volatility may 

be a promising area of research. Simultaneously, explicit analysis of financial 

intermediation of the underlying risks by option market makers and the effects of 

time-varying net buying pressure along with upward sloping supply curves in option 

prices is probably more effective. Given our experience with option data, we support 

microstructure explanations rather than more elaborate (and difficult to estimate) 

models23. In any case, further research is clearly justified with a view to 

understanding the seemingly rapidly changing behavior of the underlying equity 

asset return distribution and net buying pressure conditions as described by Bollen 

and Whaley (2004).  

 
                                                 
23 It must be recognized that we are dealing with options characterized by very short-term to expiration 
traded in a rather thin option trading market. The results should be taken under this perspective. For 
example, Huang and Wu (2004) show that the factors dominating short-term and long-term options are 
substantially different when pricing options within large markets. 
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Appendix A1. The Procedure in the Nonparametric Estimation 

We summarize the main results that have motivated the nonparametric estimation 

process employed in this work. Proofs and specific details can be found in Ferreira 

and Gago (2002).  

 

A1.1 Kernel and SNN Properties 

A second order kernel is a function (.)K  such that ∫ =1du)u(K ; 

∫ = 0udu)u(K ; ∫ ∞<= Kdduu)u(K 2  and ∫ ∞<= Kcdu)u(K 2 . The Gaussian 

kernel is used in our empirical analysis. It is defined as 
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K
K

KKK c
)x(nhf)x(f

)x()fmfm(hd)x(VAR)x(BIAS)x(MSE
2

2

242
2 2

4
σ

+
′′+′′

=+=  

 

K
K

SNNSNNSNN c
nh)x(f

)x()fmfm(hd)x(VAR)x(BIAS)x(MSE
2

6

242
2

4
σ

+
′′−′′

=+=  

 

where the first term in the sum corresponds to the squared bias ( 2BIAS ), and the 

second to the variance term (VAR ). Moreover, )x(f  is the density function of the 

explanatory variable X and 2σ  the variance of xXY = . 

 

A common global error measure is the mean integrated squared error, 

∫= dx)x(MSEMISE . The minimum value for MISE are attainable by selecting the 

optimal smoothing parameter MISEminargh
h

= . By substituting the optimal 

smoothing parameter in the MISE, its minimum value is obtained. It can be shown 
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that, under very general situations, the SNNMISE  is smaller than the KMISE  in the 

tails of the distribution; that is, in those zones where the data density is low. 

 

In a multivariate setting, the expressions for the MISE are more complicated due to 

the bias term. However, the variance term is easier to compute and the expressions 

of a d-dimensional kernel and a SNN estimator are respectively, 
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Thus, in the multivariate setting, the variance term corresponding to the SNN 

estimator now depends on the joint density, unless the covariates are independent. 

However, it can be shown that for a wide class of densities, a global bandwidth in 

the SNN estimator still leads to a more stable variance than the kernel estimator. In 

fact, the variance of the kernel estimator can increase drastically in the tails, while 

the variance of the SNN estimator remains bounded. This fact explains the superior 

behavior of the SNN estimator method even when a multivariate setting is 

employed. 

 

A1.2 Smoothing Parameter Selection 

The plug-in criteria are based on the expression for the optimal h that minimizes the 

MISE. The objective is to directly compute the value for h where the unknown 

quantities are substituted by their estimators. In the univariate case, only the second 

derivative of m(.) is unknown. Gasser, Kneip and Köhler (1991) propose an 

algorithm that uses the following basic steps: (i) compute nh 10 = ; (ii) given 1−jh , 

estimate the second derivative of m(.) using 101
1nh j− ; (iii) compute jh  in the 

expression for the optimal bandwidth with the estimation of  (.)m ′′ ; (iv) stop when 

1−jh  is close to jh . This algorithm is very easy to implement and the empirical 

results are satisfactory. However, when a bivariate estimator is computed, the 

selection procedure must take into account the presence of additional variables. 
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Furthermore, it is desirable to apply alternative nonparametric estimators with 

different smoothing parameters to check the robustness of the results in the selection 

process. 

 

In our case, and in order to take these ideas into account, the univariate criterion has 

been employed in our bivariate framework as a way to obtain pilot parameters. 

Then, as a multivariate criterion, the natural extensions of the Generalized Cross 

Validation (GCV) and Rice methods are employed. Both belong to the class of 

criteria based on the minimization of a penalized version of the residual sum of 

squares (RSS) of the form: 

 

)hn()h(RSS)h(G 11 −−= φ  

where 

( )∑
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n

i
ii )x(m̂y
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)h(RSS

1

21  

 

where φ  is the penalizing function. Any of the nonparametric estimators employed 

can be written in a vector form as y)h(Km̂ = , where m̂  is the vector containing all 

estimators at the design points, y is the vector of observations for the dependent 

variable, and )h(K  is the projection matrix containing the proper weights for each 

estimator considered. For the GCV criterion, 
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 −=

n
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and for Rice´s, 
1

11 21
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 −=

n
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All three selection methods are implemented in the empirical analysis, leading to 

similar estimators, but only the results based on Rice´s criterion are reported in the 

tables. 
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Appendix A2. The Heston and Nandi (HN) Option Pricing Formula 

In the computations, daily returns are considered and therefore ∆  is set equal to 1 in 

the HN formula. In this setting, the HN risk-neutral process is given by 
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The option pricing formula is then given by 
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The function )(*f φ  corresponds to the conditional generating function of the risk-

neutral process of the asset price. In this case, it takes the log-linear form 

 

[ ] )t(h),T;t(B),T;t(A*
t e)t(S)T(SE)(*f 1++== φφφφφ  

 

The terms A(.) and B(.) depend on the set of parameters *),,,( γβαω  and the 

estimation procedure is performed in a recursive form as 



 34

 

[ ]

),T;t(B  
*)(),T;t(B ** ),T;t(B

),T;t(B  ln),T;t(B),T;t(A),T;t(A

φα
γφφβγγφφ

φαωφφφ

121
211

2
1

2
1

121
2
111

2
2

+−
−

+++−





 −=

+−−+++=

 

 

with the initial conditions 0== ),T;T(B),T;T(A φφ  

 

As described in the text, all parameters are computed from the GARCH 

specification and they are used to estimate h(t+1). The options pricing formula is 

then used to estimate the implicit *γ  as 

 

( )∑ −=
∈ ti

2
i,HN c)(cminarg*

  
i γγ

γ
 

where ic  is the price observed in the market, and )(c i,HN γ  denotes the price 

resulting from the HN expression. 
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Una Comparación Empírica sobre la Evaluación de Modelos Alternativos de 

Valoración de Opciones 

 

Resumen 

 

Este trabajo presenta una comparación de modelos alternativos de valoración de 

opciones que no utilizan procesos generadores de datos basados en difusión con saltos o 

volatilidad estocástica. Suponemos una función de volatilidad suave de variables 

explicativas definidas previamente o un modelo en el cual, usando directamente 

observaciones discretas, podemos estimar volatilidades dependientes y una correlación 

negativa entre volatilidad y los rendimientos subyacentes. También admitimos 

fricciones de liquidez para reconocer que los mercados subyacentes pudieran no estar 

integrados. Los modelos más sencillos tienden a presentar resultados superiores fuera de 

muestra y  una mejor capacidad de cobertura, aunque el modelo con costes de liquidez 

parece tener un mejor comportamiento dentro de la muestra. Sin embargo, ninguno de 

los modelos es capaz de capturar los rápidos cambios en la distribución de los 

rendimientos del índice subyacente, ni la presión neta de compra que caracteriza a los 

mercados de opciones. 

 
Palabras clave: valoración de opciones, volatilidad condicional, cobertura, liquidez, presión neta de 
compra  
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TABLE 1 
The Heston-Nandi GARCH Estimators 

The parameters are estimated with daily spot index returns from February 1, 1996 to November 10, 
1998 using the following model1/: 

2))1t(h)1t(z()1t(h)t(h

)t(z)t(h)t(h r)1t(Sln)t(Sln

−−−+−+=

+++−=

γαβω

λ
 

where h(t) is the conditional variance of the long run between t-1 and t and is predictable from the 
information set at time t-1; z(t) is a standard normal disturbance, and the parameter γ controls the 
skewness of the distribution. 

α β γ ω λ 

0.0000104 
(1.877) 

0.9226 
(29.701) 

45.718 
(2.159) 

1.00e-20 
(0.000) 

4.264 
(1.339) 

1/ The long term variance is 2170.0)1/()(252 2 =−−+= αγβαωθ , and the persistence 

parameter is 944.02 =+αγβ . 
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TABLE 2 
Sample Characteristics of IBEX-35 Futures Options 

Average prices, average relative bid-ask spread and the average number of contracts per day are 
reported for each moneyness category. All call and put options transacted over the interval from 
11:00 to 16:45 are employed from January 2, 1996 to November 10, 1998. Moneyness is defined as 
the ratio of the exercise price to the futures prices. DOTM, OTM, ATM, ITM and DITM are deep-
out-of-the money, out-of-the-money, at-the-money, in-the-money, and deep-in-the-money options 
respectively. C or P indicates call or put. 

 
Options 

 
Moneyness 

 
Average  

Price 

Average 
Relative Bid-
Ask Spread 

Average 
Number of 
Contracts 

 
Number of 

Options 
DOTMC 
(DITMP) 
OTMC 
(ITMP) 
ATMC 

(ATMP) 
ITMC 

(OTMP) 
DITMC 

(DOTMP) 
ALL 

OPTIONS 

 
> 1.03 

 
1.01-1.03 

 
0.99-1.01 

 
0.97-0.99 

 
< 0.97 

 
- 

 
60.74 

 
82.57 

 
110.18 

 
100.78 

 
78.82 

 
89.71 

 
0.3173 

 
0.1969 

 
0.1343 

 
0.1606 

 
0.2563 

 
0.2009 

 
45.7 

 
75.9 

 
76.9 

 
89.5 

 
66.0 

 
71.9 

 
5198 

 
6613 

 
9157 

 
5218 

 
4356 

 
30542 
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TABLE 3  
Daily In-Sample Pricing Performance of Alternative Option Pricing Models for 

Calls and Puts 
BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the contemporaneous (nonparametrically) estimated volatility; NP(X, SP) is a similar 
price except that the nonparametric estimated volatility includes not only the exercise price but also 
the bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model 
with exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston 
and Nandi (2000) estimated with an updated asymmetric GARCH. The statistical performance for the 
pricing errors is assessed by analyzing the proportion of theoretical prices lying outside their bid-ask 
spread boundaries; that is, Prob [Price model ∉ (Bid, Ask)]. In each case we report the corresponding 
proportion for a given model and, in parentheses, the identifying number of the competing model that 
has a significantly higher proportion than the model being analyzed according to our Z-statistics at 
the 5% level. OTM, ATM, ITM are out-of-the-money, at-the-money, in-the-money options 
respectively. X is the exercise price, and SP is the relative bid-ask spread.  

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 0.470 
Z(5) 

0.205 
Z(1,5) 

0.164 
Z(1,2,4,5) 

0.180 
Z(1,2,5) 

0.579 
Z(-) 

OTM 0.455 
Z(5) 

0.211 
Z(1,5) 

0.160 
Z(1,2,4,5) 

0.190 
Z(1,2,5) 

0.631 
Z(-) 

ATM 0.456 
Z(5) 

0.195 
Z(1,5) 

0.180 
Z(1,2,5) 

0.169 
Z(1,2,3,5) 

0.528 
Z(-) 

ITM 0.470 
Z(-) 

0.200 
Z(1,5) 

0.137 
Z(1,2,4,5) 

0.157 
Z(1,2,5) 

0.428 
Z(1) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 0.471 
Z(5) 

0.252 
Z(1,5) 

0.181 
Z(1,2,4,5) 

0.200 
Z(1,2,5) 

0.555 
Z(-) 

OTM 0.499 
Z(5) 

0.271 
Z(1,5) 

0.186 
Z(1,2,4,5) 

0.208 
Z(1,2,5) 

0.541 
Z(-) 

ATM 0.394 
Z(5) 

0.217 
Z(1,5) 

0.164 
Z(1,2,4,5) 

0.190 
Z(1,2,5) 

0.579 
Z(-) 

ITM 0.517 
Z(5) 

0.213 
Z(1,5) 

0.158 
Z(1,2,4,5) 

0.197 
Z(1,5) 

0.595 
Z(-) 
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TABLE 4 
Daily In-Sample Absolute Mean Pricing Errors of Alternative Option Pricing 

Models for Calls and Puts 
BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the contemporanous (nonparametrically) estimated volatility; NP(X, SP) is a similar 
price except that the nonparametric estimated volatility includes not only the exercise price but also 
the bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model 
with exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston 
and Nandi (2000) estimated with an updated asymmetric GARCH. The pricing error is computed as 
the square root of the average of the squared difference between the theoretical price and the market 
price for each model:  

( )∑ −=
=

n

1i

2
mket,ielmod,i PPn1APE  

 The statistical performance for the pricing errors is assessed by a GMM overidentifying test with the 
Newey-West weighting covariance matrix. The test statistic is distributed as a χ2 with one degree of 
freedom. In each case we report the corresponding absolute value pricing error for a given model 
and, in parentheses, the identifying number of the competing model that has a significantly different 
(higher) pricing error than the model being analyzed according to our χ2-statistics at the 5% level. 
OTM, ATM, ITM are out-of-the-money, at-the-money, in-the-money options respectively. X is the 
exercise price, and SP is the relative bid-ask spread.  

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 6.417 
χ2 (5) 

3.016 
χ2 (1,5) 

1.677 
χ2 (1,2,4,5) 

2.843 
χ2 (1,2,5) 

8.422 
χ2 (-) 

OTM 5.585 
χ2 (5) 

2.793 
χ2 (1,5) 

1.639 
χ2 (1,2,4,5) 

2.690 
χ2 (1,2,5) 

9.144 
χ2 (-) 

ATM 6.423 
χ2 (5) 

3.253 
χ2 (1,5) 

1.839 
χ2 (1,2,4,5) 

3.037 
χ2 (1,2,5) 

7.469 
χ2 (-) 

ITM 6.749 
χ2 (5) 

3.590 
χ2 (1,5) 

1.390 
χ2 (1,2,4,5) 

3.136 
χ2 (1,2,5) 

7.152 
χ2 (-) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 5.531 
χ2 (5) 

3.504 
χ2 (1,5) 

2.124 
χ2 (1,2,4,5) 

2.684 
χ2 (1,2,5) 

6..975 
χ2 (-) 

OTM 5.501 
χ2 (5) 

3.724 
χ2 (1,5) 

2.439 
χ2 (1,2,5) 

2.558 
χ2 (1,2,5) 

6.488 
χ2 (-) 

ATM 4.903 
χ2 (5) 

2.894 
χ2 (1,5) 

1.508 
χ2 (1,2,4,5) 

2.675 
χ2 (1,2,5) 

7.581 
χ2 (-) 

ITM 7.325 
χ2 (5) 

3.870 
χ2 (1,5) 

1.606 
χ2 (1,2,4,5) 

3.916 
χ2 (1,5) 

8.154 
χ2 (-) 
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TABLE 5 
Daily Out-of-Sample Pricing Performance of Alternative Option Pricing 

Models for Calls and Puts 
BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the previously (nonparametrically) estimated volatility; NP(X, SP) is a similar price 
except that the nonparametric estimated volatility includes not only the exercise price but also the 
bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model with 
exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston and 
Nandi (2000) estimated with an updated asymmetric GARCH. The statistical performance for the 
pricing errors is assessed by analyzing the proportion of theoretical prices lying outside their bid-ask 
spread boundaries; that is, Prob [Price model ∉ (Bid, Ask)]. In each case we report the corresponding 
proportion for a given model and, in parentheses, the identifying number of the competing model that 
has a significantly higher proportion than the model being analyzed according to our Z-statistics at 
the 5% level. OTM, ATM, ITM are out-of-the-money, at-the-money, in-the-money options 
respectively. X is the exercise price, and SP is the relative bid-ask spread.  

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 0.516 
Z(5) 

0.418 
Z(1,3,5) 

0.447 
Z(1,5) 

0.410 
Z(1,2,3,5) 

0.657 
Z(-) 

OTM 0.579 
Z(5) 

0.461 
Z(1,3,5) 

0.479 
Z(1,5) 

0.456 
Z(1,2*,3,5) 

0.709 
Z(-) 

ATM 0.419 
Z(5) 

0.375 
Z(1,3,5) 

0.406 
Z(1,5) 

0.356 
Z(1,2,3,5) 

0.618 
Z(-) 

ITM 0.446 
Z(5*) 

0.302 
Z(1,3,5) 

0.383 
Z(1,5) 

0.304 
Z(1,3,5) 

0.469 
Z(-) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 0.565 
Z(5) 

0.424 
Z(1,3,5) 

0.504 
Z(1,5) 

0.396 
Z(1,2,3,5) 

0.614 
Z(-) 

OTM 0.588 
Z(-) 

0.446 
Z(1,3,5) 

0.520 
Z(1,5) 

0.412 
Z(1,2,3,5) 

0.594 
Z(-) 

ATM 0.520 
Z(5) 

0.372 
Z(1,3,5) 

0.476 
Z(1,5) 

0.358 
Z(1,2,3,5) 

0.651 
Z(-) 

ITM 0.527 
Z(5) 

0.422 
Z(1,3,5) 

0.461 
Z(1,5) 

0.405 
Z(1,3,5) 

0.655 
Z(-) 

* means significantly higher at the 10% rather than the otherwise reported  5% level 
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TABLE 6 
Daily Out-of-Sample Absolute Mean Pricing Errors of Alternative Option 

Pricing Models for Calls and Puts 
BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the previously (nonparametrically) estimated volatility; NP(X, SP) is a similar price 
except that the nonparametric estimated volatility includes not only the exercise price but also the 
bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model with 
exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston and 
Nandi (2000) estimated with an updated asymmetric GARCH. The pricing error is computed as the 
square root of the average of the squared difference between the theoretical price and the market 
price for each model:  

( )∑ −=
=

n

1i

2
mket,ielmod,i PPn1APE  

The statistical performance for the pricing errors is assessed by a GMM overidentifying test with the 
Newey-West weighting covariance matrix. The test statistic is distributed as a χ2 with one degree of 
freedom. In each case we report the corresponding absolute value pricing error for a given model 
and, in parentheses, the identifying number of the competing model that has a significantly different 
(higher) pricing error than the model being analyzed according to our χ2-statistics at the 5% level. 
OTM, ATM, ITM are out-of-the-money, at-the-money, in-the-money options respectively. X is the 
exercise price, and SP is the relative bid-ask spread.  

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 7.332 
χ2 (5) 

5.598 
χ2 (1,3,5) 

6.053 
χ2 (1,5) 

5.572 
χ2 (1,3,5) 

10.476 
χ2 (-) 

OTM 7.920 
χ2 (5) 

5.602 
χ2 (1,3,4*,5) 

5.995 
χ2 (1,5) 

5.691 
χ2 (1,3,5) 

11.318 
χ2 (-) 

ATM 5.981 
χ2 (5) 

5.471 
χ2 (1,3,5) 

5.914 
χ2 (5) 

5.242 
χ2 (1,2,3,5) 

9.396 
χ2 (-) 

ITM 8.135 
χ2 (5) 

5.985 
χ2 (1,3,5) 

6.844 
χ2 (1,5) 

5.916 
χ2 (1,3,5) 

8.889 
χ2 (-) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 7.852 
χ2 (5) 

5.724 
χ2 (1,3,5) 

7.247 
χ2 (1,5) 

5.688 
χ2 (1,3,5) 

9.299 
χ2 (-) 

OTM 7.699 
χ2 (5) 

5.530 
χ2 (1,3,5) 

7.164 
χ2 (1,5) 

5.396 
χ2 (1,2,3,5) 

8.531 
χ2 (-) 

ATM 7.328 
χ2 (5) 

5.329 
χ2 (1,3,5) 

6.925 
χ2 (1,5) 

5.319 
χ2 (1,3,5) 

9.888 
χ2 (-) 

ITM 11.395 
χ2 (5) 

9.136 
χ2 (1,4,5) 

9.326 
χ2 (1,4*,5) 

9.927 
χ2 (1,5) 

14.201 
χ2 (-) 

* means significantly higher at the 10% rather than the otherwise reported  5% level 
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TABLE 7 
Daily Hedging Errors of Alternative Option Pricing Models for Calls and Puts 

BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the previously (nonparametrically) estimated volatility; NP(X, SP) is a similar price 
except that the nonparametric estimated volatility includes not only the exercise price but also the 
bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model with 
exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston and 
Nandi (2000) estimated with an updated asymmetric GARCH. The statistical performance of the 
hedging errors is assessed by a GMM overidentifying test with the Newey-West weighting 
covariance matrix. The test statistic is distributed as a χ2 with one degree of freedom. In each case we 
report the corresponding mean hedging error for a given model and, in parentheses, the identifying 
number of the competing model that has a significantly different (higher) mean hedging error than 
the model being analyzed according to our χ2-statistics at the 5% level. OTM, ATM, ITM are out-of-
the-money, at-the-money, in-the-money options respectively. X is the exercise price, and SP is the 
relative bid-ask spread.  

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 11.694 
χ2 (5) 

10.038 
χ2 (1,3,4,5) 

10.170 
χ2 (1,5) 

10.122 
χ2 (1,3,5) 

24.549 
χ2 (-) 

OTM 14.101 
χ2 (5) 

11.516 
χ2 (1,3,4*,5) 

11.816 
χ2 (1,5) 

11.571 
χ2 (1,3,5) 

26.792 
χ2 (-) 

ATM 8.300 
χ2 (5) 

8.013 
χ2 (4*,5) 

7.951 
χ2 (1,2,4,5) 

8.089 
χ2 (5) 

24.333 
χ2 (-) 

ITM 7.302 
χ2 (4,5) 

7.123 
χ2 (1,4*,5) 

6.800 
χ2 (1,4,5) 

7.440 
χ2 (-) 

9.846 
χ2 (-) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

ALL 10.430 
χ2 (3,5) 

8.512 
χ2 (1,3,5) 

10.635 
χ2 (5) 

8.757 
χ2 (1,3,5) 

40.387 
χ2 (-) 

OTM 10.587 
χ2 (3,5) 

8.766 
χ2 (1,3,5) 

11.105 
χ2 (5) 

9.219 
χ2 (1,3,5) 

35.032 
χ2 (-) 

ATM 9.856 
χ2 (5) 

7.317 
χ2 (1,3,5) 

9.264 
χ2 (5) 

7.564 
χ2 (1,3,5) 

37.471 
χ2 (-) 

ITM 11.030 
χ2 (5) 

10.378 
χ2 (5) 

11.290 
χ2 (5) 

8.884 
χ2 (1,5) 

44.511 
χ2 (-) 

* means significantly higher at the 10% rather than the otherwise reported  5% level 
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TABLE 8 
Percentage Pricing Errors and Explanatory Variables 

BS is the Black-Scholes model; NP(X) is the semiparametric option model, where the volatility 
function is estimated nonparametrically for each day from January 2, 1996 to November 10, 1998 
using all available call/put options transacted from 11:00 to 16:45, and considering only the exercise 
price as an explanatory variable. The call/put price is calculated by using the BS pricing function 
evaluated at the previously (nonparametrically) estimated volatility; NP(X, SP) is a similar price 
except that the nonparametric estimated volatility includes not only the exercise price but also the 
bid-ask spread of each option as a proxy for liquidity; Ad-hoc BS is a version of the BS model with 
exercise specific implied volatility; HN is the closed-form GARCH model proposed by Heston and 
Nandi (2000) estimated with an updated asymmetric GARCH. X is the exercise price, and SP is the 
relative bid-ask spread. For a given option pricing model, the following regression is employed to 
explain the percentage pricing errors of all call/put options transacted in our sample: 

itit6it5t4t3t2it1it SPbXlnbKUbSKbbbae εστ +++++++=  
where for the ith option at date t, ite is the percentage pricing error defined as the difference between 
the theoretical price and the market price divided by the market price; itτ the time to maturity; 

itX the exercise price and itSP the bid-ask spread. tt SK,σ  and tKU  are respectively the daily 
volatility, skewness and (excess) kurtosis. P-values in parentheses. 

1996-1998 
CALLS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

Intercept -1.069 
(0.000) 

-0.173 
(0.000) 

-0.209 
(0.000) 

-0.049 
(0.268) 

-0.050 
(0.680) 

Time to 
maturity 

0.562 
(0.000) 

-0.031 
(0.586) 

-0.114 
(0.065) 

-0.082 
(0.187) 

3.420 
(0.000) 

Volatility -0.455 
(0.000) 

-0.163 
(0.000) 

-0.169 
(0.000) 

-0.115 
(0.000) 

-0.997 
(0.000) 

Skewness -0.041 
(0.000) 

-0.019 
(0.000) 

-0.019 
(0.000) 

-0.015 
(0.000) 

-0.008 
(0.000) 

Kurtosis -0.001 
(0.536) 

-0.000 
(0.705) 

0.001 
(0.291) 

0.003 
(0.002) 

0.004 
(0.157) 

Ln Exercise 0.124 
(0.000) 

0.020 
(0.000) 

0.024 
(0.000) 

0.005 
(0.323) 

-0.001 
(0.945) 

Spread 0.212 
(0.000) 

0.057 
(0.000) 

0.080 
(0.000) 

0.062 
(0.000) 

0.785 
(0.000) 

1996-1998 
PUTS 

BS 
(1) 

NP(X) 
(2) 

NP(X, SP) 
(3) 

Ad-hoc BS 
(4) 

HN 
(5) 

Intercept -0.279 
(0.000) 

-0.657 
(0.000) 

-0.886 
(0.000) 

-0.335 
(0.000) 

0.597 
(0.000) 

Time to 
maturity 

-0.496 
(0.000) 

-0.036 
(0.601) 

-0.294 
(0.000) 

0.183 
(0.016) 

1.737 
(0.000) 

Volatility -0.200 
(0.000) 

-0.119 
(0.000) 

-0.137 
(0.000) 

-0.064 
(0.007) 

-0.619 
(0.000) 

Skewness 0.021 
(0.000) 

0.032 
(0.000) 

0.035 
(0.000) 

0.049 
(0.000) 

0.045 
(0.000) 

Kurtosis -0.003 
(0.003) 

-0.004 
(0.000) 

-0.004 
(0.005) 

-0.001 
(0.248) 

-0.001 
(0.620) 

Ln Exercise 0.041 
(0.000) 

0.082 
(0.000) 

0.112 
(0.000) 

0.043 
(0.000) 

-0.065 
(0.000) 

Spread -0.299 
(0.000) 

-0.069 
(0.000) 

-0.072 
(0.000) 

-0.014 
(0.122) 

0.146 
(0.000) 
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FIGURE 1 

Daily Annualized Volatilities: 
Heston & Nandi vs. Implied Volatility 
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