

Quaderni di Dipartimento

A Skorohod Representation Theorem for Uniform Distance

Patrizia Berti
(Università di Modena e Reggio Emilia)
Luca Pratelli
(Accademia Navale di Livorno)
Pietro Rigo
(Università di Pavia)

\# 109 (01-10)

Dipartimento di economia politica e metodi quantitativi Università degli studi di Pavia

Via San Felice, 5
I-27100 Pavia
Gennaio 2010

A SKOROHOD REPRESENTATION THEOREM

 FOR UNIFORM DISTANCEPATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Abstract

Let μ_{n} be a probability measure on the Borel σ-field on $D[0,1]$ with respect to Skorohod distance, $n \geq 0$. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are $D[0,1]$-valued random variables X_{n} such that $X_{n} \sim \mu_{n}$ for all $n \geq 0$ and $\left\|X_{n}-X_{0}\right\| \rightarrow 0$ in probability, where $\|\cdot\|$ is the sup-norm. Such conditions do not require μ_{0} separable under $\|\cdot\|$. Applications to exchangeable empirical processes and to pure jump processes are given as well.

1. Introduction

Let D be the set of real cadlag functions on $[0,1]$ and

$$
\|x\|=\sup _{t}|x(t)|, \quad u(x, y)=\|x-y\|, \quad x, y \in D
$$

Also, let d be Skorohod distance and $\mathcal{B}_{d}, \mathcal{B}_{u}$ the Borel σ-fields on D with respect to (w.r.t.) d and u, respectively.

In real problems, one usually starts with a sequence ($\mu_{n}: n \geq 0$) of probabilities on \mathcal{B}_{d}. If $\mu_{n} \rightarrow \mu_{0}$ weakly (under d), Skorohod representation theorem yields $d\left(X_{n}, X_{0}\right) \xrightarrow{\text { a.s. }} 0$ for some D-valued random variables X_{n} such that $X_{n} \sim \mu_{n}$ for all $n \geq 0$. However, X_{n} can fail to approximate X_{0} uniformly. A trivial example is $\mu_{n}=\delta_{x_{n}}$, where $\left(x_{n}\right) \subset D$ is any sequence such that $x_{n} \rightarrow x_{0}$ according to d but not according to u.

Lack of uniform convergence is sometimes a trouble. Thus, given a sequence ($\mu_{n}: n \geq 0$) of laws on \mathcal{B}_{d}, it is useful to have conditions for:

On some probability space (Ω, \mathcal{A}, P), there are random variables

$$
\begin{equation*}
X_{n}: \Omega \rightarrow D \text { such that } X_{n} \sim \mu_{n} \text { for all } n \geq 0 \text { and }\left\|X_{n}-X_{0}\right\| \xrightarrow{P} 0 . \tag{1}
\end{equation*}
$$

Convergence in probability cannot be strengthened into a.s. convergence in condition (1). In fact, it may be that (1) holds, and yet there are not D-valued random variables Y_{n} such that $Y_{n} \sim \mu_{n}$ for all n and $\left\|Y_{n}-Y_{0}\right\| \xrightarrow{\text { a.s. }} 0$; see Example 7 .

This paper is concerned with (1). The main result is Theorem 4, which states that (1) holds if and only if

$$
\begin{equation*}
\lim _{n} \sup _{f \in L}\left|\mu_{n}(f)-\mu_{0}(f)\right|=0, \tag{2}
\end{equation*}
$$

[^0]where L is the set of functions $f: D \rightarrow \mathbb{R}$ satisfying
$$
\sigma(f) \subset \mathcal{B}_{d}, \quad-1 \leq f \leq 1, \quad|f(x)-f(y)| \leq\|x-y\| \text { for all } x, y \in D
$$

Theorem 4 can be commented as follows. Say that a probability μ, defined on \mathcal{B}_{d} or \mathcal{B}_{u}, is u-separable in case $\mu(A)=1$ for some u-separable $A \in \mathcal{B}_{d}$. Suppose μ_{0} is u-separable and define $\mu_{0}^{*}(H)=\mu_{0}(A \cap H)$ for $H \in \mathcal{B}_{u}$, where $A \in \mathcal{B}_{d}$ is u-separable and $\mu_{0}(A)=1$. Since μ_{n} is defined only on \mathcal{B}_{d} for $n \geq 1$, we adopt Hoffmann-Jørgensen's definition of convergence in distribution for non measurable random elements; see e.g. [7] and [9]. Let I_{0} be the identity map on ($D, \mathcal{B}_{u}, \mu_{0}^{*}$) and I_{n} the identity map on $\left(D, \mathcal{B}_{d}, \mu_{n}\right), n \geq 1$. Further, let D be regarded as a metric space under u. Then, since μ_{0}^{*} is u-separable, one obtains:
(i) Condition (1) holds (with $\left\|X_{n}-X_{0}\right\| \xrightarrow{\text { a.s. }} 0$) provided $I_{n} \rightarrow I_{0}$ in distribution;
(ii) $I_{n} \rightarrow I_{0}$ in distribution if and only if $\lim _{n} \sup _{f \in L}\left|\mu_{n}(f)-\mu_{0}(f)\right|=0$.

Both (i) and (ii) are known facts; see Theorems 1.7.2, 1.10.3 and 1.12.1 of [9].
The spirit of Theorem 4, thus, is that one can dispense with u-separability of μ_{0} to get (1). This can look surprising, as separability of the limit law is crucial in Skorohod representation theorem; see [5]. However, $X_{n} \sim \mu_{n}$ is asked only on \mathcal{B}_{d} and not on \mathcal{B}_{u}. Indeed, X_{n} can even fail to be measurable w.r.t. \mathcal{B}_{u}.

Non u-separable laws on \mathcal{B}_{d} are quite usual. A cadlag process Z, with jumps at random time points, has typically a non u-separable distribution on \mathcal{B}_{d}. One example is $Z(t)=B_{M(t)}$, where B is a standard Brownian bridge, M an independent random distribution function and the jump-points of M have a non discrete distribution. Such a Z is the limit in distribution, under d, of certain exchangeable empirical processes; see [1] and [3].

In applications, unless μ_{0} is u-separable, checking condition (2) is usually difficult. In this sense, Theorem 4 can be viewed as a "negative" result, as it states that condition (1) is quite hard to reach. This is partly true. However, there are also meaningful situations where (2) can be proved with a reasonable effort. Two examples are exchangeable empirical processes, which motivated Theorem 4, and a certain class of jump processes. Both are discussed in Section 4.

Our proof of Theorem 4 is admittedly long and it is confined in a final appendix. Some preliminary results, of possible independent interest, are needed. We mention Proposition 2 and Lemma 13 in particular.

A last remark is that Theorem 4 is still valid if D is replaced by $D([0,1], \mathcal{X})$, the space of cadlag functions from $[0,1]$ into a separable Banach space \mathcal{X}.

2. A preliminary Result

Let (Ω, \mathcal{A}, P) be a probability space. The outer and inner measures are

$$
P^{*}(H)=\inf \{P(A): H \subset A \in \mathcal{A}\}, \quad P_{*}(H)=1-P^{*}\left(H^{c}\right), \quad H \subset \Omega
$$

Given a metric space (S, ρ) and maps $X_{n}: \Omega \rightarrow S, n \geq 0$, say that X_{n} converges to X_{0} in (outer) probability, written $X_{n} \xrightarrow{P} X_{0}$, in case

$$
\lim _{n} P^{*}\left(\rho\left(X_{n}, X_{0}\right)>\epsilon\right)=0 \quad \text { for all } \epsilon>0
$$

In the sequel, $d_{T V}$ denotes total variation distance between two probabilities defined on the same σ-field.

Proposition 1. Let (F, \mathcal{F}) be a measurable space and μ_{n} a probability on (F, \mathcal{F}), $n \geq 0$. Then, on some probability space (Ω, \mathcal{A}, P), there are measurable maps $X_{n}:(\Omega, \mathcal{A}) \rightarrow(F, \mathcal{F})$ such that

$$
P_{*}\left(X_{n} \neq X_{0}\right)=P^{*}\left(X_{n} \neq X_{0}\right)=d_{T V}\left(\mu_{n}, \mu_{0}\right) \text { and } X_{n} \sim \mu_{n} \text { for all } n \geq 0
$$

Proposition 1 is well known, even if in a slightly different form; see Theorem 2.1 of [8]. A proof of the present version is in Section 3 of [5].

Next proposition is fundamental for proving our main result. Among other things, it can be viewed as an improvement of Proposition 1.

Proposition 2. Let λ_{n} be a probability on $(F \times G, \mathcal{F} \otimes \mathcal{G})$, $n \geq 0$, where (F, \mathcal{F}) is a measurable space and (G, \mathcal{G}) a Polish space equipped with its Borel σ-field. The following conditions are equivalent:
(a) There are a probability space (Ω, \mathcal{A}, P) and measurable maps $\left(Y_{n}, Z_{n}\right):(\Omega, \mathcal{A}) \longrightarrow(F \times G, \mathcal{F} \otimes \mathcal{G})$ such that

$$
\left(Y_{n}, Z_{n}\right) \sim \lambda_{n} \text { for all } n \geq 0, \quad P^{*}\left(Y_{n} \neq Y_{0}\right) \longrightarrow 0, \quad Z_{n} \xrightarrow{P} Z_{0}
$$

(b) For each bounded Lipschitz function $f: G \rightarrow \mathbb{R}$,

$$
\lim _{n} \sup _{A \in \mathcal{F}}\left|\int I_{A}(y) f(z) \lambda_{n}(d y, d z)-\int I_{A}(y) f(z) \lambda_{0}(d y, d z)\right|=0
$$

To prove Proposition 2, we first recall a result of Blackwell and Dubins [6].
Theorem 3. Let G be a Polish space, \mathcal{M} the collection of Borel probabilities on G, and m the Lebesgue measure on $(0,1)$. There is a Borel measurable map

$$
\Phi: \mathcal{M} \times(0,1) \longrightarrow G
$$

such that, for every $\nu \in \mathcal{M}$,
(i) $\Phi(\nu, \cdot) \sim \nu$ under m;
(ii) There is a Borel set $A_{\nu} \subset(0,1)$ such that $m\left(A_{\nu}\right)=1$ and

$$
\Phi\left(\nu_{n}, t\right) \longrightarrow \Phi(\nu, t) \quad \text { whenever } t \in A_{\nu}, \nu_{n} \in \mathcal{M} \text { and } \nu_{n} \rightarrow \nu \text { weakly. }
$$

We also need to recall disintegrations. Let λ be a probability on $(F \times G, \mathcal{F} \otimes \mathcal{G})$, where (F, \mathcal{F}) and (G, \mathcal{G}) are arbitrary measurable spaces. In this paper, λ is said to be disintegrable if there is a collection $\alpha=\{\alpha(y): y \in F\}$ such that:
$-\alpha(y)$ is a probability on \mathcal{G} for $y \in F$;
$-y \mapsto \alpha(y)(C)$ is \mathcal{F}-measurable for $C \in \mathcal{G}$;
$-\lambda(A \times C)=\int_{A} \alpha(y)(C) \mu(d y)$ for $A \in \mathcal{F}$ and $C \in \mathcal{G}$, where $\mu(\cdot)=\lambda(\cdot \times G)$.
Such an α is called a disintegration for λ. For λ to admit a disintegration, it suffices that G is a Borel subset of a Polish space and \mathcal{G} the Borel σ-field on G.

Proof of Proposition 2. $"(\mathbf{a}) \Rightarrow(\mathbf{b}) "$. Under (a), for each $A \in \mathcal{F}$ and bounded Lipschitz $f: G \rightarrow \mathbb{R}$, one obtains

$$
\begin{gathered}
\left|\int I_{A}(y) f(z) \lambda_{n}(d y, d z)-\int I_{A}(y) f(z) \lambda_{0}(d y, d z)\right|=\left|E_{P}\left\{I_{A}\left(Y_{n}\right) f\left(Z_{n}\right)-I_{A}\left(Y_{0}\right) f\left(Z_{0}\right)\right\}\right| \\
\leq E_{P}\left|f\left(Z_{n}\right)\left(I_{A}\left(Y_{n}\right)-I_{A}\left(Y_{0}\right)\right)\right|+E_{P}\left|I_{A}\left(Y_{0}\right)\left(f\left(Z_{n}\right)-f\left(Z_{0}\right)\right)\right| \\
\leq \sup |f| P^{*}\left(Y_{n} \neq Y_{0}\right)+E_{P}\left|f\left(Z_{n}\right)-f\left(Z_{0}\right)\right| \longrightarrow 0 .
\end{gathered}
$$

$"(\mathbf{b}) \Rightarrow \mathbf{(a)} "$. Let $\mu_{n}(A)=\lambda_{n}(A \times G), A \in \mathcal{F}$. By $(\mathrm{b}), d_{T V}\left(\mu_{n}, \mu_{0}\right) \rightarrow 0$. Hence, by Proposition 1, on a probability space (Θ, \mathcal{E}, Q) there are measurable maps $h_{n}:(\Theta, \mathcal{E}) \rightarrow(F, \mathcal{F})$ satisfying $h_{n} \sim \mu_{n}$ for all n and $Q^{*}\left(h_{n} \neq h_{0}\right) \rightarrow 0$. Let

$$
\Omega=\Theta \times(0,1), \quad \mathcal{A}=\mathcal{E} \otimes \mathcal{B}_{(0,1)}, \quad P=Q \times m
$$

where $\mathcal{B}_{(0,1)}$ is the Borel σ-field on $(0,1)$ and m the Lebesgue measure.
Since G is Polish, each λ_{n} admits a disintegration $\alpha_{n}=\left\{\alpha_{n}(y): y \in F\right\}$. By Theorem 3, there is a map $\Phi: \mathcal{M} \times(0,1) \longrightarrow G$ satisfying conditions (i)-(ii). Let

$$
Y_{n}(\theta, t)=h_{n}(\theta) \quad \text { and } \quad Z_{n}(\theta, t)=\Phi\left\{\alpha_{n}\left(h_{n}(\theta)\right), t\right\}, \quad(\theta, t) \in \Theta \times(0,1)
$$

For fixed θ, condition (i) yields $Z_{n}(\theta, \cdot)=\Phi\left\{\alpha_{n}\left(h_{n}(\theta)\right), \cdot\right\} \sim \alpha_{n}\left(h_{n}(\theta)\right)$ under m. Since α_{n} is a disintegration for λ_{n}, for all $A \in \mathcal{F}$ and $C \in \mathcal{G}$ one has

$$
\begin{gathered}
P\left(Y_{n} \in A, Z_{n} \in C\right)=\int_{\Theta} I_{A}\left(h_{n}(\theta)\right) m\left\{t: Z_{n}(\theta, t) \in C\right\} Q(d \theta) \\
=\int_{\left\{h_{n} \in A\right\}} \alpha_{n}\left(h_{n}(\theta)\right)(C) Q(d \theta)=\int_{A} \alpha_{n}(y)(C) \mu_{n}(d y)=\lambda_{n}(A \times C) .
\end{gathered}
$$

Also, $P^{*}\left(Y_{n} \neq Y_{0}\right)=Q^{*}\left(h_{n} \neq h_{0}\right) \longrightarrow 0$ by Lemma 1.2.5 of [9].
Finally, we prove $Z_{n} \xrightarrow{P} Z_{0}$. Write $\alpha_{n}(y)(f)=\int f(z) \alpha_{n}(y)(d z)$ for all $y \in F$ and $f \in L_{G}$, where L_{G} is the set of Lipschitz functions $f: G \rightarrow[-1,1]$. Since $Q^{*}\left(h_{n} \neq h_{0}\right) \rightarrow 0$, there are $A_{n} \in \mathcal{F}$ such that $Q\left(A_{n}^{c}\right) \rightarrow 0$ and $h_{n}=h_{0}$ on A_{n}. Given $f \in L_{G}$,

$$
\begin{gathered}
E_{Q}\left|\alpha_{n}\left(h_{n}\right)(f)-\alpha_{0}\left(h_{0}\right)(f)\right|-2 Q\left(A_{n}^{c}\right) \leq E_{Q}\left\{I_{A_{n}}\left|\alpha_{n}\left(h_{0}\right)(f)-\alpha_{0}\left(h_{0}\right)(f)\right|\right\} \\
\leq E_{Q}\left|\alpha_{n}\left(h_{0}\right)(f)-\alpha_{0}\left(h_{0}\right)(f)\right|=\int\left|\alpha_{n}(y)(f)-\alpha_{0}(y)(f)\right| \mu_{0}(d y)
\end{gathered}
$$

Using condition (b), it is not hard to see that $\int\left|\alpha_{n}(y)(f)-\alpha_{0}(y)(f)\right| \mu_{0}(d y) \longrightarrow 0$. Therefore, $\alpha_{n}\left(h_{n}\right)(f) \xrightarrow{Q} \alpha_{0}\left(h_{0}\right)(f)$ for each $f \in L_{G}$, and this is equivalent to each subsequence (n^{\prime}) contains a further subsequence ($n^{\prime \prime}$)
such that $\alpha_{n^{\prime \prime}}\left(h_{n^{\prime \prime}}(\theta)\right) \longrightarrow \alpha_{0}\left(h_{0}(\theta)\right) \quad$ weakly for Q-almost all θ;
see Remark 2.3 and Corollary 2.4 of [2]. Thus, by property (ii) of Φ, each subsequence $\left(n^{\prime}\right)$ contains a further subsequence $\left(n^{\prime \prime}\right)$ such that $Z_{n^{\prime \prime}} \xrightarrow{\text { a.s. }} Z_{0}$. That is, $Z_{n} \xrightarrow{P} Z_{0}$ and this concludes the proof.
3. Existence of cadlag processes, with given distributions on the

Skorohod Borel σ-FIELD, CONVERging Uniformly in Probability
As in Section $1, \mathcal{B}_{d}$ and \mathcal{B}_{u} are the Borel σ-fields on D w.r.t. d and u. Also, L is the class of functions $f: D \rightarrow[-1,1]$ which are measurable w.r.t. \mathcal{B}_{d} and Lipschitz w.r.t. u with Lipschitz constant 1. We recall that, for $x, y \in D$, the Skorohod distance $d(x, y)$ is the infimum of those $\epsilon>0$ such that

$$
\|x-y \circ \gamma\| \leq \epsilon \quad \text { and } \quad \sup _{s \neq t}\left|\log \frac{\gamma(s)-\gamma(t)}{s-t}\right| \leq \epsilon
$$

for some strictly increasing homeomorphism $\gamma:[0,1] \rightarrow[0,1]$. The metric space (D, d) is separable and complete.

We write $\mu(f)=\int f d \mu$ whenever μ is a probability on a σ-field and f a real bounded function, measurable w.r.t. such a σ-field.

Motivations for the next result have been given in Section 1.
Theorem 4. Let μ_{n} be a probability measure on $\mathcal{B}_{d}, n \geq 0$. Then, conditions (1) and (2) are equivalent, that is,

$$
\limsup _{n} \sup _{f \in L}\left|\mu_{n}(f)-\mu_{0}(f)\right|=0
$$

if and only if there are a probability space (Ω, \mathcal{A}, P) and measurable maps $X_{n}:(\Omega, \mathcal{A}) \rightarrow\left(D, \mathcal{B}_{d}\right)$ such that $X_{n} \sim \mu_{n}$ for each $n \geq 0$ and $\left\|X_{n}-X_{0}\right\| \xrightarrow{P} 0$.

The proof of Theorem 4 is given in the Appendix. Here, we state a corollary and an open problem and we make two examples.

In applications, the μ_{n} are often probability distributions of random variables, all defined on some probability space $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$. In the spirit of [4], a (minor) question is whether condition (1) holds with the X_{n} defined on $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ as well.
Corollary 5. Let $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ be a probability space and $Z_{n}:\left(\Omega_{0}, \mathcal{A}_{0}\right) \rightarrow\left(D, \mathcal{B}_{d}\right)$ a measurable map, $n \geq 1$. Suppose $\lim _{n} \sup _{f \in L}\left|E_{P_{0}}\left\{f\left(Z_{n}\right)\right\}-\mu_{0}(f)\right|=0$ for some probability measure μ_{0} on \mathcal{B}_{d}. If P_{0} is nonatomic, there are measurable maps $X_{n}:\left(\Omega_{0}, \mathcal{A}_{0}\right) \rightarrow\left(D, \mathcal{B}_{d}\right), n \geq 0$, such that

$$
X_{0} \sim \mu_{0}, \quad X_{n} \sim Z_{n} \text { for each } n \geq 1, \quad\left\|X_{n}-X_{0}\right\| \xrightarrow{P_{0}} 0
$$

Also, P_{0} is nonatomic if $\mu_{0}\{x\}=0$ for all $x \in D$, or if $P_{0}\left(Z_{n}=x\right)=0$ for some $n \geq 1$ and all $x \in D$.
Proof. Since (D, d) is separable, P_{0} is nonatomic if $P_{0}\left(Z_{n}=x\right)=0$ for some $n \geq 1$ and all $x \in D$. By Corollary 5.4 of [4], $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ supports a D-valued random variable Z_{0} with $Z_{0} \sim \mu_{0}$. Hence, P_{0} is nonatomic even if $\mu_{0}\{x\}=0$ for all $x \in D$. Next, by Theorem 4 , on a probability space (Ω, \mathcal{A}, P) there are D-valued random variables Y_{n} such that $Y_{0} \sim \mu_{0}, Y_{n} \sim Z_{n}$ for $n \geq 1$ and $\left\|Y_{n}-Y_{0}\right\| \xrightarrow{P} 0$. Let $\left(D^{\infty}, \mathcal{B}_{d}^{\infty}\right)$ be the countable product of $\left(D, \mathcal{B}_{d}\right)$ and

$$
\nu(A)=P\left(\left(Y_{0}, Y_{1}, \ldots\right) \in A\right), \quad A \in \mathcal{B}_{d}^{\infty}
$$

Then, ν is a Borel probability on a Polish space. Thus, if P_{0} is nonatomic, $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ supports a D^{∞}-valued random variable $X=\left(X_{0}, X_{1}, \ldots\right)$ with $X \sim \nu$; see e.g. Theorem 3.1 of [4]. Since $\left(X_{0}, X_{1}, \ldots\right) \sim\left(Y_{0}, Y_{1}, \ldots\right)$, this concludes the proof.

Let (S, ρ) be a metric space such that $(x, y) \mapsto \rho(x, y)$ is measurable w.r.t. $\mathcal{E} \otimes \mathcal{E}$, where \mathcal{E} is the ball σ-field on S. This is actually true in case $(S, \rho)=(D, u)$ and it is very useful to prove Theorem 4. Thus, a question is whether (D, u) can be replaced by (S, ρ) in Theorem 4. Precisely, let $\left(\mu_{n}: n \geq 0\right)$ be a sequence of laws on \mathcal{E} and L_{S} the class of functions $f: S \rightarrow[-1,1]$ such that $\sigma(f) \subset \mathcal{E}$ and $|f(x)-f(y)| \leq \rho(x, y)$ for all $x, y \in S$. Then,
Conjecture: $\lim _{n} \sup _{f \in L_{S}}\left|\mu_{n}(f)-\mu_{0}(f)\right|=0$ if and only if $\rho\left(X_{n}, X_{0}\right) \longrightarrow 0$ in probability for some S-valued random variables X_{n} such that $X_{n} \sim \mu_{n}$ for all n.

We finally give two examples. The first shows that condition (2) cannot be weakened into $\mu_{n}(f) \rightarrow \mu_{0}(f)$ for each fixed $f \in L$.

Example 6. For each $n \geq 0$, let $h_{n}:(0,1) \rightarrow[0, \infty)$ be a Borel function such that $\int_{0}^{1} h_{n}(t) d t=1$. Suppose that $h_{n} \rightarrow h_{0}$ in $\sigma\left(L_{1}, L_{\infty}\right)$ but not in L_{1} under Lebesgue measure m on $(0,1)$, that is,

$$
\lim \sup _{n} \int_{0}^{1}\left|h_{n}(t)-h_{0}(t)\right| d t>0
$$

$$
\begin{equation*}
\lim _{n} \int_{0}^{1} h_{n}(t) g(t) d t=\int_{0}^{1} h_{0}(t) g(t) d t \quad \text { for all bounded Borel functions } g . \tag{3}
\end{equation*}
$$

Take a sequence $\left(T_{n}: n \geq 0\right)$ of $(0,1)$-valued random variables, on a probability space (Θ, \mathcal{E}, Q), such that each T_{n} has density h_{n} w.r.t. m. Define

$$
Z_{n}=I_{\left[T_{n}, 1\right]} \quad \text { and } \quad \mu_{n}(A)=Q\left(Z_{n} \in A\right) \text { for } A \in \mathcal{B}_{d}
$$

Then $Z_{n}=\phi\left(T_{n}\right)$, with $\phi:(0,1) \rightarrow D$ given by $\phi(t)=I_{[t, 1]}, t \in(0,1)$. Hence, for fixed $f \in L$, one obtains

$$
\mu_{n}(f)=E_{Q}\left\{f \circ \phi\left(T_{n}\right)\right\}=\int_{0}^{1} h_{n}(t) f \circ \phi(t) d t \longrightarrow \int_{0}^{1} h_{0}(t) f \circ \phi(t) d t=\mu_{0}(f)
$$

Suppose now that $X_{n} \sim \mu_{n}$ for all $n \geq 0$, where the X_{n} are D-valued random variables on some probability space (Ω, \mathcal{A}, P). Since

$$
P\left\{\omega: X_{n}(\omega)(t) \in\{0,1\} \text { for all } t\right\}=Q\left\{\theta: Z_{n}(\theta)(t) \in\{0,1\} \text { for all } t\right\}=1
$$

it follows that

$$
P\left(\left\|X_{n}-X_{0}\right\|>\frac{1}{2}\right)=P\left(X_{n} \neq X_{0}\right) \geq d_{T V}\left(\mu_{n}, \mu_{0}\right)=\frac{1}{2} \int_{0}^{1}\left|h_{n}(t)-h_{0}(t)\right| d t
$$

Therefore, X_{n} fails to converge to X_{0} in probability.
A slight change in Example 6 shows that convergence in probability cannot be strengthened into a.s. convergence in condition (1). Precisely, it may be that (1) holds, and yet there are not D-valued random variables Y_{n} satisfying $Y_{n} \sim \mu_{n}$ for all n and $\left\|Y_{n}-Y_{0}\right\| \xrightarrow{\text { a.s. }} 0$.

Example 7. In the notation of Example 6, instead of (3) assume

$$
\lim _{n} \int_{0}^{1}\left|h_{n}(t)-h_{0}(t)\right| d t=0 \quad \text { and } \quad m\left(\liminf _{n} h_{n}<h_{0}\right)>0
$$

where m is Lebesgue measure on $(0,1)$. Since

$$
d_{T V}\left(\mu_{n}, \mu_{0}\right)=\frac{1}{2} \int_{0}^{1}\left|h_{n}(t)-h_{0}(t)\right| d t \longrightarrow 0
$$

condition (1) trivially holds by Proposition 1. Suppose now that $Y_{n} \sim \mu_{n}$ for all $n \geq 0$, where the Y_{n} are D-valued random variables on a probability space (Ω, \mathcal{A}, P). As $m\left(\liminf _{n} h_{n}<h_{0}\right)>0$, Theorem 3.1 of [8] yields $P\left(Y_{n}=Y_{0}\right.$ ultimately $)<1$. On the other hand, since $P\left(Y_{n}(t) \in\{0,1\}\right.$ for all $\left.t\right)=1$, one obtains

$$
P\left(\left\|Y_{n}-Y_{0}\right\| \longrightarrow 0\right)=P\left(Y_{n}=Y_{0} \text { ultimately }\right)<1
$$

4. Applications

Condition (2) is not always hard to be checked, even if μ_{0} is not u-separable. We illustrate this fact by two examples. To this end, we first note that conditions (1)-(2) are preserved under certain mixtures.

Corollary 8. Let G be the set of distribution functions on $[0,1]$ and \mathcal{G} the σ-field on G generated by the maps $g \mapsto g(t), 0 \leq t \leq 1$. Let π be a probability on \mathcal{G} and μ_{n} and λ_{n} probabilities on \mathcal{B}_{d}. Then, condition (1) holds provided

$$
\begin{gathered}
\sup _{f \in L}\left|\lambda_{n}(f)-\lambda_{0}(f)\right| \longrightarrow 0 \quad \text { and } \\
\mu_{n}(A)=\int \lambda_{n}\{x: x \circ g \in A\} \pi(d g) \quad \text { for all } n \geq 0 \text { and } A \in \mathcal{B}_{d} .
\end{gathered}
$$

Proof. By Theorem 4, there are a probability space (Θ, \mathcal{E}, Q) and measurable maps $Z_{n}:(\Theta, \mathcal{E}) \longrightarrow\left(D, \mathcal{B}_{d}\right)$ such that $Z_{n} \sim \lambda_{n}$ for all n and $\left\|Z_{n}-Z_{0}\right\| \xrightarrow{Q} 0$. Define $\Omega=\Theta \times G, \mathcal{A}=\mathcal{E} \otimes \mathcal{G}, P=Q \times \pi$, and $X_{n}(\theta, g)=Z_{n}(\theta) \circ g$ for all $(\theta, g) \in \Theta \times G$. It is routine to check that $X_{n} \sim \mu_{n}$ for all n and $\left\|X_{n}-X_{0}\right\| \xrightarrow{P} 0$.

Example 9. (Exchangeable empirical processes). Let $\left(\xi_{n}: n \geq 1\right)$ be a sequence of $[0,1]$-valued random variables on the probability space $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$. Suppose $\left(\xi_{n}\right)$ exchangeable and define

$$
F(t)=E_{P_{0}}\left(I_{\left\{\xi_{1} \leq t\right\}} \mid \tau\right)
$$

where τ is the tail σ-field of $\left(\xi_{n}\right)$. Take F to be regular, i.e., each F-path is a distribution function. Then, the n-th empirical process can be defined as

$$
Z_{n}(t)=\frac{\sum_{i=1}^{n}\left\{I_{\left\{\xi_{i} \leq t\right\}}-F(t)\right\}}{\sqrt{n}}, \quad 0 \leq t \leq 1, n \geq 1
$$

Since $Z_{n}:\left(\Omega_{0}, \mathcal{A}_{0}\right) \rightarrow\left(D, \mathcal{B}_{d}\right)$ is measurable, one can define $\mu_{n}(\cdot)=P_{0}\left(Z_{n} \in \cdot\right)$. Also, let μ_{0} be the probability distribution of

$$
Z_{0}(t)=B_{M(t)}
$$

where B is a standard Brownian bridge on $[0,1]$ and M an independent copy of F (with B and M defined on some probability space). Then, $\mu_{n} \rightarrow \mu_{0}$ weakly (under d) but μ_{0} can fail to admit any extension to \mathcal{B}_{u}; see [3] and Example 11 of [1]. Thus, Z_{n} can fail to converge in distribution, under u, according to Hoffmann-Jørgensen's definition. However, Corollaries 5 and 8 grant that:

On $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$, there are measurable maps $X_{n}:\left(\Omega_{0}, \mathcal{A}_{0}\right) \rightarrow\left(D, \mathcal{B}_{d}\right)$ such that $X_{n} \sim Z_{n}$ for each $n \geq 0$ and $\left\|X_{n}-X_{0}\right\| \xrightarrow{P_{0}} 0$.

Define in fact $B_{n}(t)=n^{-1 / 2} \sum_{i=1}^{n}\left\{I_{\left\{u_{i} \leq t\right\}}-t\right\}$, where u_{1}, u_{2}, \ldots are i.i.d. random variables (on some probability space) with uniform distribution on $[0,1]$. Then, $B_{n} \rightarrow B$ in distribution, under u, according to Hoffmann-Jørgensen's definition. Let λ_{n} and λ_{0} be the probability distributions of B_{n} and B, respectively. Since λ_{0} is u-separable, $\sup _{f \in L}\left|\lambda_{n}(f)-\lambda_{0}(f)\right| \longrightarrow 0$ (see Section 1). Thus, the first condition of Corollary 8 holds. The second condition follows from de Finetti's representation theorem, by letting $\pi(A)=P_{0}(F \in A)$ for $A \in \mathcal{G}$. Hence, condition (1) holds.

It remains to see that the X_{n} can be defined on $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$. To this end, it can be assumed $\mathcal{A}_{0}=\sigma\left(\xi_{1}, \xi_{2}, \ldots\right)$. If P_{0} is nonatomic, it suffices to apply Corollary 5 . Suppose P_{0} has an atom A. Since $\mathcal{A}_{0}=\sigma\left(\xi_{1}, \xi_{2}, \ldots\right)$, up to P_{0}-null sets, A is of the
form $A=\left\{\xi_{n}=t_{n}\right.$ for all $\left.n \geq 1\right\}$ for some constants t_{n}. Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a permutation of $1,2, \ldots$ and $A_{\sigma}=\left\{\xi_{n}=t_{\sigma_{n}}\right.$ for all $\left.n \geq 1\right\}$. By exchangeability,

$$
P_{0}\left(A_{\sigma}\right)=P_{0}(A)>0 \quad \text { for all permutations } \sigma
$$

and this implies $t_{n}=t_{1}$ for all $n \geq 1$. Let H be the union of all P_{0}-atoms. Up to P_{0}-null sets, one obtains

$$
H \subset\left\{\xi_{n}=\xi_{1} \text { for all } n \geq 1\right\} \subset\left\{Z_{n}=0 \text { for all } n \geq 1\right\}
$$

If $P_{0}(H)=1$, thus, it suffices to let $X_{n}=0$ for all $n \geq 0$. If $0<P_{0}(H)<1$, since $P_{0}\left(\cdot \mid H^{c}\right)$ is nonatomic and $\left(\xi_{n}\right)$ is still exchangeable under $P_{0}\left(\cdot \mid H^{c}\right)$, it is not hard to define the X_{n} on $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ in such a way that $X_{n} \sim Z_{n}$ for all $n \geq 0$ and $\left\|X_{n}-X_{0}\right\| \xrightarrow{P_{0}} 0$.

Example 10. (Pure jump processes). For each $n \geq 0$, let

$$
C_{n}=\left(C_{n, j}: j \geq 1\right) \quad \text { and } \quad Y_{n}=\left(Y_{n, j}: j \geq 1\right)
$$

be sequences of real random variables, defined on the probability space $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$, such that

$$
0 \leq Y_{n, j} \leq 1 \quad \text { and } \quad \sum_{j=1}^{\infty}\left|C_{n, j}\right|<\infty
$$

Define

$$
Z_{n}(t)=\sum_{j=1}^{\infty} C_{n, j} I_{\left\{Y_{n, j} \leq t\right\}}, \quad 0 \leq t \leq 1, n \geq 0
$$

Since $Z_{n}:\left(\Omega_{0}, \mathcal{A}_{0}\right) \longrightarrow\left(D, \mathcal{B}_{d}\right)$ is measurable, one can define $\mu_{n}(\cdot)=P_{0}\left(Z_{n} \in \cdot\right)$. Then, condition (1) holds provided

$$
\begin{array}{r}
C_{n} \text { is independent of } Y_{n} \text { for every } n \geq 0 \\
\sum_{j=1}^{\infty}\left|C_{n, j}-C_{0, j}\right| \xrightarrow{P_{0}} 0 \quad \text { and } \quad d_{T V}\left(\nu_{n, k}, \nu_{0, k}\right) \longrightarrow 0 \text { for all } k \geq 1,
\end{array}
$$

where $\nu_{n, k}$ denotes the probability distribution of $\left(Y_{n, 1}, \ldots, Y_{n, k}\right)$.
For instance, $\nu_{n, k}=\nu_{0, k}$ for all n and k in case $Y_{n, j}=V_{n+j}$ with V_{1}, V_{2}, \ldots a stationary sequence. Also, independence between C_{n} and Y_{n} can be replaced by

$$
\sigma\left(C_{n, j}\right) \subset \sigma\left(Y_{n, 1}, \ldots, Y_{n, j}\right) \quad \text { for all } n \geq 0 \text { and } j \geq 1
$$

To prove (1), define $Z_{n, k}(t)=\sum_{j=1}^{k} C_{n, j} I_{\left\{Y_{n, j} \leq t\right\}}$. For each $f \in L$,

$$
\begin{aligned}
& \left|\mu_{n}(f)-\mu_{0}(f)\right| \leq\left|E f\left(Z_{n}\right)-E f\left(Z_{n, k}\right)\right|+\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right|+\left|E f\left(Z_{0, k}\right)-E f\left(Z_{0}\right)\right| \\
& \leq E\left\{2 \wedge\left\|Z_{n}-Z_{n, k}\right\|\right\}+\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right|+E\left\{2 \wedge\left\|Z_{0}-Z_{0, k}\right\|\right\} \\
& \quad \leq E\left\{2 \wedge \sum_{j>k}\left|C_{n, j}\right|\right\}+\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right|+E\left\{2 \wedge \sum_{j>k}\left|C_{0, j}\right|\right\}
\end{aligned}
$$

where $E(\cdot)=E_{P_{0}}(\cdot)$. Given $\epsilon>0$, take $k \geq 1$ such that $E\left\{2 \wedge \sum_{j>k}\left|C_{0, j}\right|\right\}<\epsilon$. Then,

$$
\limsup _{n} \sup _{f \in L}\left|\mu_{n}(f)-\mu_{0}(f)\right|<2 \epsilon+\limsup _{n} \sup _{f \in L}\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right| .
$$

It remains to show that $\sup _{f \in L}\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right| \longrightarrow 0$. Since C_{n} is independent of Y_{n}, up to changing $\left(\Omega_{0}, \mathcal{A}_{0}, P_{0}\right)$ with some other probability space, it can be assumed

$$
P_{0}\left(Y_{n, j} \neq Y_{0, j} \text { for some } j \leq k\right)=d_{T V}\left(\nu_{n, k}, \nu_{0, k}\right) ;
$$

see Proposition 1. The same is true if $\sigma\left(C_{n, j}\right) \subset \sigma\left(Y_{n, 1}, \ldots, Y_{n, j}\right)$ for all n and j. Then, letting $A_{n, k}=\left\{Y_{n, j}=Y_{0, j}\right.$ for all $\left.j \leq k\right\}$, one obtains

$$
\begin{aligned}
& \sup _{f \in L}\left|E f\left(Z_{n, k}\right)-E f\left(Z_{0, k}\right)\right| \leq E\left\{I_{A_{n, k}} 2 \wedge\left\|Z_{n, k}-Z_{0, k}\right\|\right\}+2 P_{0}\left(A_{n, k}^{c}\right) \\
& \quad \leq E\left\{2 \wedge \sum_{j=1}^{\infty}\left|C_{n, j}-C_{0, j}\right|\right\}+2 d_{T V}\left(\nu_{n, k}, \nu_{0, k}\right) \longrightarrow 0
\end{aligned}
$$

Thus, condition (2) holds, and an application of Theorem 4 concludes the proof.

APPENDIX

Three preliminary lemmas are needed to prove Theorem 4. The first is part of the folklore about Skorohod distance, and we state it without a proof. Let $\Delta x(t)=x(t)-x(t-)$ denote the jump of $x \in D$ at $t \in(0,1]$.

Lemma 11. Fix $\epsilon>0$ and $x_{n} \in D, n \geq 0$. Then, $\lim \sup _{n}\left\|x_{n}-x_{0}\right\| \leq \epsilon$ whenever $d\left(x_{n}, x_{0}\right) \longrightarrow 0$ and

$$
\left|\Delta x_{n}(t)\right|>\epsilon \quad \text { for all large } n \text { and } t \in(0,1) \text { such that }\left|\Delta x_{0}(t)\right|>\epsilon
$$

The second lemma is a consequence of Remark 6 of [5], but we give a sketch of its proof as it is basic for Theorem 4. Let μ, ν be laws on \mathcal{B}_{d} and $\mathcal{F}(\mu, \nu)$ the class of probabilities λ on $\mathcal{B}_{d} \otimes \mathcal{B}_{d}$ such that $\lambda(\cdot \times D)=\mu(\cdot)$ and $\lambda(D \times \cdot)=\nu(\cdot)$. Since the map $(x, y) \mapsto\|x-y\|$ is measurable w.r.t. $\mathcal{B}_{d} \otimes \mathcal{B}_{d}$, one can define

$$
W_{u}(\mu, \nu)=\inf _{\lambda \in \mathcal{F}(\mu, \nu)} \int 1 \wedge\|x-y\| \lambda(d x, d y)
$$

Lemma 12. For a sequence ($\mu_{n}: n \geq 0$) of probabilities on \mathcal{B}_{d}, condition (1) holds if and only if $W_{u}\left(\mu_{0}, \mu_{n}\right) \longrightarrow 0$.
Proof. The "only if" part is trivial. Suppose $W_{u}\left(\mu_{0}, \mu_{n}\right) \rightarrow 0$. Let $\Omega=D^{\infty}, \mathcal{A}=$ \mathcal{B}_{d}^{∞} and $X_{n}: D^{\infty} \rightarrow D$ the n-th canonical projection, $n \geq 0$. Take $\lambda_{n} \in \mathcal{F}\left(\mu_{0}, \mu_{n}\right)$ such that $\int 1 \wedge\|x-y\| \lambda_{n}(d x, d y)<\frac{1}{n}+W_{u}\left(\mu_{0}, \mu_{n}\right)$. Since (D, d) is Polish, λ_{n} admits a disintegration $\alpha_{n}=\left\{\alpha_{n}(x): x \in D\right\}$ (see Section 2). By Ionescu-Tulcea theorem, there is a unique probability P on \mathcal{B}_{d}^{∞} such that $X_{0} \sim \mu_{0}$ and

$$
\beta_{n}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)(A)=\alpha_{n}\left(x_{0}\right)(A), \quad\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in D^{n}, A \in \mathcal{B}_{d}
$$

is a regular version of the conditional distribution of X_{n} given $\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)$ for all $n \geq 1$. Under such P, one obtains $\left(X_{0}, X_{n}\right) \sim \lambda_{n}$ (so that $\left.X_{n} \sim \mu_{n}\right)$ and $\epsilon P\left(\left\|X_{0}-X_{n}\right\|>\epsilon\right) \leq E_{P}\left\{1 \wedge\left\|X_{0}-X_{n}\right\|\right\}<\frac{1}{n}+W_{u}\left(\mu_{0}, \mu_{n}\right) \longrightarrow 0$ for all $\epsilon \in(0,1)$.

The third lemma needs some more effort. Let $\phi_{0}(x, \epsilon)=0$ and

$$
\phi_{n+1}(x, \epsilon)=\inf \left\{t: \phi_{n}(x, \epsilon)<t \leq 1,|\Delta x(t)|>\epsilon\right\}
$$

where $n \geq 0, \epsilon>0, x \in D$ and $\inf \emptyset:=1$. The map $x \mapsto \phi_{n}(x, \epsilon)$ is universally measurable w.r.t. \mathcal{B}_{d} for all n and ϵ.
Lemma 13. Let \mathcal{F}_{k} be the Borel σ-field on \mathbb{R}^{k} and $I \subset(0,1)$ a dense subset. For a sequence ($\mu_{n}: n \geq 0$) of probabilities on \mathcal{B}_{d}, condition (1) holds provided
$\sup _{A \in \mathcal{F}_{k}}\left|\int f(x) I_{A}\left(\phi_{1}(x, \epsilon), \ldots, \phi_{k}(x, \epsilon)\right) \mu_{n}(d x)-\int f(x) I_{A}\left(\phi_{1}(x, \epsilon), \ldots, \phi_{k}(x, \epsilon)\right) \mu_{0}(d x)\right| \longrightarrow 0$
for each $k \geq 1, \epsilon \in I$ and function $f: D \rightarrow[-1,1]$ such that $|f(x)-f(y)| \leq d(x, y)$ for all $x, y \in D$.

Proof. Fix $\epsilon \in I$ and write $\phi_{n}(x)$ instead of $\phi_{n}(x, \epsilon)$. As each ϕ_{n} is universally measurable w.r.t. \mathcal{B}_{d}, there is a set $T \in \mathcal{B}_{d}$ such that

$$
\mu_{n}(T)=1 \quad \text { and } \quad I_{T} \phi_{n} \text { is } \mathcal{B}_{d} \text {-measurable for all } n \geq 0
$$

Thus, ϕ_{n} can be assumed \mathcal{B}_{d}-measurable for all n. Let k be such that

$$
\mu_{0}\left\{x: \phi_{r}(x) \neq 1 \text { for some } r>k\right\}<\epsilon .
$$

For such a k, define $\phi(x)=\left(\phi_{1}(x), \ldots, \phi_{k}(x)\right), x \in D$, and

$$
\lambda_{n}(A)=\mu_{n}\{x:(\phi(x), x) \in A\}, \quad A \in \mathcal{F}_{k} \otimes \mathcal{B}_{d}
$$

Since (D, d) is Polish, Proposition 2 applies to such λ_{n} with $(F, \mathcal{F})=\left(\mathbb{R}^{k}, \mathcal{F}_{k}\right)$ and $(G, \mathcal{G})=\left(D, \mathcal{B}_{d}\right)$. Condition (b) holds by the assumption of the Lemma. Thus, by Proposition 2, on a probability space (Ω, \mathcal{A}, P) there are measurable maps $\left(Y_{n}, Z_{n}\right):(\Omega, \mathcal{A}) \rightarrow\left(\mathbb{R}^{k} \times D, \mathcal{F}_{k} \otimes \mathcal{B}_{d}\right)$ satisfying

$$
\left(Y_{n}, Z_{n}\right) \sim \lambda_{n} \text { for all } n \geq 0, \quad P\left(Y_{n} \neq Y_{0}\right) \longrightarrow 0, \quad d\left(Z_{n}, Z_{0}\right) \xrightarrow{P} 0
$$

Since $P\left(Y_{n}=\phi\left(Z_{n}\right)\right)=\lambda_{n}\{(\phi(x), x): x \in D\}=1$, one also obtains

$$
\begin{equation*}
\lim _{n} P\left(\phi\left(Z_{n}\right)=\phi\left(Z_{0}\right)\right)=1 \tag{4}
\end{equation*}
$$

Next, by (4) and $d\left(Z_{n}, Z_{0}\right) \xrightarrow{P} 0$, there is a subsequence $\left(n_{j}\right)$ such that

$$
\begin{gathered}
\limsup _{n} P\left(\left\|Z_{n}-Z_{0}\right\|>\epsilon\right)=\lim _{j} P\left(\left\|Z_{n_{j}}-Z_{0}\right\|>\epsilon\right), \\
d\left(Z_{n_{j}}, Z_{0}\right) \xrightarrow{\text { a.s. }} 0, \quad P\left(\phi\left(Z_{n_{j}}\right)=\phi\left(Z_{0}\right) \text { for all } j\right)>1-\epsilon
\end{gathered}
$$

Define $U=\lim \sup _{j}\left\|Z_{n_{j}}-Z_{0}\right\|$ and
$H=\left\{\phi_{r}\left(Z_{0}\right)=1\right.$ for all $\left.r>k\right\} \cap\left\{\phi\left(Z_{n_{j}}\right)=\phi\left(Z_{0}\right)\right.$ for all $\left.j\right\} \cap\left\{d\left(Z_{n_{j}}, Z_{0}\right) \longrightarrow 0\right\}$.
For each $\omega \in H$, Lemma 11 applies to $Z_{0}(\omega)$ and $Z_{n_{j}}(\omega)$, so that $U(\omega) \leq \epsilon$. Further,

$$
\begin{gathered}
P\left(H^{c}\right) \leq P\left(\phi_{r}\left(Z_{0}\right) \neq 1 \text { for some } r>k\right)+P\left(\phi\left(Z_{n_{j}}\right) \neq \phi\left(Z_{0}\right) \text { for some } j\right) \\
<\mu_{0}\left\{x: \phi_{r}(x) \neq 1 \text { for some } r>k\right\}+\epsilon<2 \epsilon
\end{gathered}
$$

Since $U \leq \epsilon$ on H,

$$
\begin{gathered}
\limsup _{n} P\left(\left\|Z_{n}-Z_{0}\right\|>\epsilon\right)=\lim _{j} P\left(\left\|Z_{n_{j}}-Z_{0}\right\|>\epsilon\right) \leq P(U \geq \epsilon) \\
\leq P(U=\epsilon)+P\left(H^{c}\right)<P(U=\epsilon)+2 \epsilon
\end{gathered}
$$

On noting that $E_{P}\left\{1 \wedge\left\|Z_{0}-Z_{n}\right\|\right\} \leq \epsilon+P\left(\left\|Z_{n}-Z_{0}\right\|>\epsilon\right)$, one obtains

$$
\limsup _{n} W_{u}\left(\mu_{0}, \mu_{n}\right) \leq \limsup _{n} E_{P}\left\{1 \wedge\left\|Z_{0}-Z_{n}\right\|\right\}<P(U=\epsilon)+3 \epsilon
$$

Since I is dense in $(0,1)$, then $P(U=\epsilon)+3 \epsilon$ can be made arbitrarily small for a suitable $\epsilon \in I$. Thus, $\lim \sup _{n} W_{u}\left(\mu_{0}, \mu_{n}\right)=0$. An application of Lemma 12 concludes the proof.

We are now ready for the last attack to Theorem 4.
Proof of Theorem 4. " $11 \Rightarrow(2)$ ". Just note that

$$
\begin{gathered}
\left|\mu_{n}(f)-\mu_{0}(f)\right|=\left|E_{P}\left\{f\left(X_{n}\right)\right\}-E_{P}\left\{f\left(X_{0}\right)\right\}\right| \leq E_{P}\left|f\left(X_{n}\right)-f\left(X_{0}\right)\right| \\
\leq E_{P}\left\{2 \wedge\left\|X_{n}-X_{0}\right\|\right\} \longrightarrow 0, \quad \text { for each } f \in L, \text { under }(1)
\end{gathered}
$$

$"(2) \Rightarrow(1) "$. Let $B_{\epsilon}=\{x:|\Delta x(t)|=\epsilon$ for some $t \in(0,1]\}$. Then, B_{ϵ} is universally measurable w.r.t. \mathcal{B}_{d} and $\mu_{0}\left(B_{\epsilon}\right)>0$ for at most countably many $\epsilon>0$. Hence, $I=\left\{\epsilon \in(0,1): \mu_{0}\left(B_{\epsilon}\right)=0\right\}$ is dense in $(0,1)$.

Fix $\epsilon \in I, k \geq 1$, and a function $f: D \rightarrow[-1,1]$ such that $|f(x)-f(y)| \leq d(x, y)$ for all $x, y \in D$. By Lemma 13, for condition (1) to be true, it is enough that

$$
\begin{equation*}
\lim _{n} \sup _{A \in \mathcal{F}_{k}}\left|\mu_{n}\left\{f I_{A}(\phi)\right\}-\mu_{0}\left\{f I_{A}(\phi)\right\}\right|=0 \tag{5}
\end{equation*}
$$

where $\phi(x)=\left(\phi_{1}(x), \ldots, \phi_{k}(x)\right), x \in D$, and $\phi_{j}(x)=\phi_{j}(x, \epsilon)$ for all j.
In order to prove (5), given $b \in\left(0, \frac{\epsilon}{2}\right)$, define

$$
F_{b}=\{x:|\Delta x(t)| \notin(\epsilon-2 b, \epsilon+2 b) \text { for all } t \in(0,1]\}, \quad G_{b}=\left\{x: d\left(x, F_{b}\right) \geq \frac{b}{2}\right\} .
$$

Then,

$$
\text { (i) } G_{b}^{c} \subset F_{b / 2} ; \quad \text { (ii) } \phi(x)=\phi(y) \text { whenever } x, y \in F_{b} \text { and }\|x-y\|<b
$$

Statement (ii) is straightforward. To check (i), fix $x \notin G_{b}$ and take $y \in F_{b}$ with $d(x, y)<b / 2$. Let $\gamma:[0,1] \rightarrow[0,1]$ be a strictly increasing homeomorphism such that $\|x-y \circ \gamma\|<b / 2$. For all $t \in(0,1]$,

$$
|\Delta x(t)| \leq|\Delta y \circ \gamma(t)|+2\|x-y \circ \gamma\|<|\Delta y(\gamma(t))|+b .
$$

Similarly, $|\Delta x(t)|>|\Delta y(\gamma(t))|-b$. Since $y \in F_{b}$, it follows that $x \in F_{b / 2}$.
Next, define

$$
\psi_{b}(x)=\frac{d\left(x, G_{b}\right)}{d\left(x, F_{b}\right)+d\left(x, G_{b}\right)}, \quad x \in D
$$

Then, $\psi_{b}=0$ on G_{b} and ψ_{b} is Lipschitz w.r.t. d with Lipschitz constant $2 / b$. Hence, ψ_{b} is Lipschitz w.r.t. u with Lipschitz constant $2 / b$ (since $d \leq u$). Basing on (i)-(ii) and such properties of ψ_{b}, it is not hard to check that $\psi_{b} I_{A}(\phi)$ is Lipschitz w.r.t. u, with Lipschitz constant $2 / b$, for every $A \in \mathcal{F}_{k}$. In turn, since $d \leq u$ and f is Lipschitz w.r.t. d with Lipschitz constant 1,

$$
f_{A}=f \psi_{b} I_{A}(\phi), \quad A \in \mathcal{F}_{k}
$$

is Lipschitz w.r.t. u with Lipschitz constant $(1+2 / b)$. Moreover,

$$
\left|\mu_{n}\left\{f I_{A}(\phi)\right\}-\mu_{n}\left(f_{A}\right)\right| \leq \mu_{n}\left|f I_{A}(\phi)\left(1-\psi_{b}\right)\right| \leq \mu_{n}\left(1-\psi_{b}\right) .
$$

On noting that $(1+2 / b)^{-1} f_{A} \in L$ for every $A \in \mathcal{F}_{k}$, condition (2) yields

$$
\begin{gathered}
\limsup _{n} \sup _{A \in \mathcal{F}_{k}}\left|\mu_{n}\left\{f I_{A}(\phi)\right\}-\mu_{0}\left\{f I_{A}(\phi)\right\}\right| \\
\leq \underset{n}{\limsup }\left\{\mu_{n}\left(1-\psi_{b}\right)+\sup _{A \in \mathcal{F}_{k}}\left|\mu_{n}\left(f_{A}\right)-\mu_{0}\left(f_{A}\right)\right|+\mu_{0}\left(1-\psi_{b}\right)\right\} \\
=2 \mu_{0}\left(1-\psi_{b}\right) \leq 2 \mu_{0}\left(F_{b}^{c}\right) .
\end{gathered}
$$

Since $\epsilon \in I$ and $\bigcap_{b>0} F_{b}^{c}=\{x:|\Delta x(t)|=\epsilon$ for some $t\}=B_{\epsilon}$, one obtains

$$
\limsup _{n} \sup _{A \in \mathcal{F}_{k}}\left|\mu_{n}\left\{f I_{A}(\phi)\right\}-\mu_{0}\left\{f I_{A}(\phi)\right\}\right| \leq 2 \lim _{b \rightarrow 0} \mu_{0}\left(F_{b}^{c}\right)=2 \mu_{0}\left(B_{\epsilon}\right)=0 .
$$

Therefore, condition (5) holds and this concludes the proof.

References

[1] Berti P., Rigo P. (2004) Convergence in distribution of non measurable random elements, Ann. Probab., 32, 365-379.
[2] Berti P., Pratelli L., Rigo P. (2006) Almost sure weak convergence of random probability measures, Stochastics, 78, 91-97.
[3] Berti P., Pratelli L., Rigo P. (2006) Asymptotic behaviour of the empirical process for exchangeable data, Stoch. Proc. Appl., 116, 337-344.
[4] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given probability space, Prob. Theo. Rel. Fields, 137, 277-288.
[5] Berti P., Pratelli L., Rigo P. (2009) Skorohod representation theorem via disintegrations, Submitted, currently available at: http://economia.unipv.it/pagp/pagine_personali/prigo/skorsankhya.pdf
[6] Blackwell D., Dubins L.E. (1983) An extension of Skorohod's almost sure representation theorem, Proc. Amer. Math. Soc., 89, 691-692.
[7] Dudley R.M. (1999) Uniform central limit theorems, Cambridge University Press.
[8] Sethuraman J. (2002) Some extensions of the Skorohod representation theorem, Sankhya, 64, 884-893.
[9] van der Vaart A., Wellner J.A. (1996) Weak convergence and empirical processes, Springer.

Patrizia Berti, Dipartimento di Matematica Pura ed Applicata "G. Vitali", UniverSita' di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy

E-mail address: berti.patrizia@unimore.it
Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy
E-mail address: pratel@mail.dm.unipi.it
Pietro Rigo (corresponding author), Dipartimento di Economia Politica e Metodi Quantitativi, Universita' di Pavia, via S. Felice 5, 27100 Pavia, Italy

E-mail address: prigo@eco.unipv.it

[^0]: 2000 Mathematics Subject Classification. 60B10, 60A05, 60A10.
 Key words and phrases. Cadlag function - Exchangeable empirical process - Separable probability measure - Skorohod representation theorem- Uniform distance - Weak convergence of probability measures.

