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University of Pavia and IfW
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Abstract

We compare two widely used pricing assumptions in the New-Keynesian literature:

the Calvo and Rotemberg price-setting mechanisms. We show that, once trend in�ation is

taken into account, the two models are very di¤erent. i) The long-run relationship between

in�ation and output is positive in the Rotemberg model and negative in the Calvo model.

ii) The log-linearized NKPCs are very di¤erent and the dynamics of the two models di¤ers

even to a �rst order approximation. iii) Positive trend in�ation enlarges the determinacy

region in the Rotemberg model, while it shrinks the determinacy region in the Calvo model.

iv) The responses of output and in�ation to a positive technology shock are ampli�ed by

trend in�ation in Calvo, while they are damped in Rotemberg. v) The two models imply

a di¤erent non-linear adjustment after a disin�ation.
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1 Introduction

We consider the two most commonly used approaches to model �rms� price-setting behavior

within the standard New Keynesian framework of monopolistically competitive �rms: the

Rotemberg (1982) quadratic cost of price adjustment and the Calvo (1983) random price ad-

justment signal. The Calvo price-setting mechanism produces relative-price dispersion among

�rms, while the Rotemberg model is consistent with a symmetric equilibrium. Despite the eco-

nomic di¤erence between these two pricing speci�cations, the literature has pointed out that

to a �rst order approximation the implied dynamics are equivalent. As shown by Rotemberg

(1987) and Roberts (1995), both approaches imply the same reduced form New Keynesian

Phillips Curve (NKPC henceforth). They therefore lead to observationally equivalent dy-

namics for in�ation and output. In particular, both models deliver the well-known result of

immediate adjustment of the economy to the new steady state following a disin�ation, de-

spite nominal rigidities in price-setting (see, e.g., Ball, 1994 and Mankiw, 2001). Furthermore

Nisticò (2007), shows that up to a second order approximation, and provided that the steady

state is e¢cient, both models imply the same welfare costs of in�ation. Thus, they imply

the same prescriptions for welfare-maximizing Central Banks. Therefore, to the best of our

knowledge, but for some exceptions, there is widespread agreement in the literature that the

two models are almost equivalent and that up to a �rst order they imply the same dynamics.1

In this work, we show that once trend in�ation is taken into account the dynamics of the

Calvo and the Rotemberg model di¤ers both quantitatively and qualitatively.2 Hence, the

way in which trend in�ation a¤ects the dynamics of a log-linearized New Keynesian model is

particularly sensible to the choice of the price-setting mechanisms.

This discrepancy exactly derives from the di¤erent kind of nominal rigidities underlying

the two models. The Calvo mechanism creates a price dispersion term in the model. The

price dispersion term generates a wedge between output and hours and for its backward-

looking behavior introduces an inertial mechanism in the model. The Rotemberg model,

instead, assumes a quadratic cost of changing prices, that generates a wedge between output

and consumption without introducing any inertial mechanism. If trend in�ation is zero, these

two wedges vanishes and the two models are equivalent up to �rst-order. Both these wedges,

1The only two exceptions are Kahn (2005) and Lombardo and Vestin (2008). Kahn (2005) shows that even

if the reduced form New Keynesian Phillips curve is the same, the impact of competition on the slope of the

NKPC di¤ers between the two approaches. Lombardo and Vestin (2008) and Damjanovic and Nolan (2009)

show that the two models might imply di¤erent welfare costs at a second order of approximation.
2We use trend in�ation and steady state in�ation as synonymous.
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however, are quite sensitive to in�ation, and then they induce a di¤erence in the two models

whenever trend in�ation is positive. Trend in�ation, hence, brings naturally to light the

di¤erent implications of the two types of nominal rigidities. Five main results follow.

First, trend in�ation has an opposite e¤ect on the long-run relationship between in�ation

and output in the two models. While the long-run NKPC is negatively sloped in the Calvo

model, it is positively sloped in the Rotemberg model.

Second, the log-linear NKPCs implied by the two models are radically di¤erent once the

model is log-linearized around a generic steady state in�ation level. On the one hand, the

price dispersion term in the Calvo model generates a backward-looking variable that is absent

in the Rotemberg model. On the other hand, the price adjustment term in the Rotemberg

model makes in�ation to enter the marginal costs.

Third, trend in�ation has opposite e¤ects on the determinacy conditions of the two models.

Contrary to the Calvo model, where an increase in trend in�ation shrinks the determinacy

region,3 positive trend in�ation enlarges the determinacy area in the Rotemberg model. This

means that when we look for the optimal and implementable rules, e.g., Schmitt-Grohé and

Uribe (2007b), the set of the possible rules is going to depend on the pricing assumption.

Rules that can be optimal and implementable under Rotemberg pricing, thus, could be not

implementable under Calvo.

Fourth, trend in�ation has opposite e¤ects on the responses of output and in�ation to a

positive technology shock. In the Calvo model, the higher is trend in�ation the higher are both

the decrease in in�ation and the increase in output following a positive technology shocks. In

the Rotemberg model, the higher is trend in�ation the lower are both the decrease in in�ation

and the increase in output.

Fifth, the two pricing assumptions imply also a di¤erent dynamics after a disin�ation.

As some papers have recently shown (e.g. Ascari 2004, Yun 2005, Ascari and Merkl 2009)

non-linear simulations are important because the interplay between long-run e¤ects and short-

run dynamics is crucial in the adjustment path after a disin�ation. Contrary to the common

view, this interaction leads to di¤erent results between the implied non-linear dynamics of

the Rotemberg and the Calvo model in response to a Central Bank disin�ation experiment.

Ascari and Merkl (2009) show that in the Calvo model a credible disin�ation implies an inertial

adjustment (due to the backward-looking price dispersion term) and leads to a permanently

higher level of output in the non-linear model. The non-linear dynamics of the Rotemberg

3Ascari and Ropele (2009) show that, under the Calvo model, trend in�ation has substantial e¤ects on the

well know Taylor principle for determinacy of the rational expectation equilibrium.
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model implies that output immediately adjusts to a permanently lower level.

Price indexation may play an important role in the model, above all when trend in�ation is

high. For this reason, in section �ve, we consider the e¤ects of price indexation on the long-run

properties and on the dynamics of the two pricing models. We show that price indexation

dampens the e¤ects of trend in�ation in both models and therefore reduces the di¤erences

between the two pricing mechanisms. In the particular case of full price indexation the two

models are again equivalent as in the case of zero trend in�ation. Therefore, the two models

imply the same dynamics under two extreme cases: i) the steady state in�ation level is zero; ii)

prices are fully indexed. Both these two assumptions seems to be against the recent empirical

evidence.4

The literature on trend in�ation, both the theoretical and the empirical one, so far concen-

trates on NK model with Calvo pricing. Ascari (2004) shows that both the long-run and the

short-run properties of DSGE-NK models based on the Calvo staggered price model change

dramatically in presence of a trend in�ation term. Yun (2005) shows that optimal in�ation

targets respond to changes in the level of relative price distortion in the presence of initial price

dispersion due to trend in�ation. Schmitt-Grohé and Uribe (2007a) �nd a positive relation-

ship between trend in�ation and price dispersion. Amano et al. (2007) numerically study the

macroeconomic e¤ects of trend in�ation and compare three common time-dependent pricing

schemes: Calvo, truncated-Calvo, and Taylor. They show that, regardless the price setting

mechanism, as trend in�ation increases the stochastic means of output, consumption and

employment decreases, while the mean of in�ation increases. Moreover, they show that the

variability of most aggregate variables increases with trend in�ation. Damjanovic and Nolan

(2010) show that a contractionary monetary shock has a persistent, negative hump-shaped

impact on in�ation and a positive hump-shaped impact on output. They quantify the utility

cost of price dispersion and its impact on optimal monetary policy. Overall, the theoretical

literature shows the importance of trend in�ation, demonstrating that the results obtained

when the model is log-linearized around a zero in�ation steady state can be quite misleading.

Moreover, the assumption of nonzero trend in�ation is supported by the empirical evidence.

First, a low and positive trend in�ation seems to be much more realistic, as the post-war

economic history of industrialized countries shows. Furthermore, the practice of many central

banks suggests that a zero in�ation steady state is not an actual target (see for example Sargent

et al. 2006 and Primiceri 2006). Cogley and Sbordone (2008) estimates a purely forward-

looking Phillips Curve, allowing for shifts in trend in�ation. They �nd that it successfully

4See Sargent et al. (2006), Primiceri (2006), Cogley and Sbordone (2008), Benati (2008) and Benati (2009).
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describes US in�ation dynamics. Hence, backward-looking price indexation is not necessary

to �t the data once trend in�ation is taken into account. Benati (2009) �nds similar results for

other industrialized countries. Benati (2008) �nds empirical evidence about the relationship

between in�ation persistence and trend in�ation. Using international data, Benati (2008)

shows that persistence has fallen, whenever countries have adopted an explicit in�ation target,

thereby reducing the average level of in�ation. Thus the empirical evidence suggests that the

in�ation gap is a purely forward looking variable, while the main source of in�ation persistence

is related to trend in�ation.

Therefore, the NK literature cannot disregard the role of trend in�ation. The literature

on trend in�ation, however, so far focuses only on staggered price models (Calvo or Taylor).

Despite the Rotemberg (1982) model of price rigidity is widely employed in the NK literature,

no work has been done on the e¤ects of trend in�ation in such a framework. This is what we

do in this paper.

The paper is organized as follows. Section 2 describes the basic New Keynesian model

under the two-pricing assumptions. Section 3 presents the log-linear approximation of the

models around the very particular case of a zero in�ation steady state. Section 4 compare the

long-run properties and the dynamics of the two pricing-models under a generic value of trend

in�ation. Section 5 discusses the role of price indexation. Section 6 discusses an alternative

way to introduce the adjustment costs in the Rotemberg model. A �nal Section concludes.

2 A basic model

In this section we brie�y present a very simple and standard cashless New Keynesian model

in the two versions of Rotemberg and the Calvo price setting scheme. The model economy

is composed of a continuum of in�nitely-lived consumers, producers of �nal and intermediate

goods.

2.1 Households and Technology

Consider an economy with a representative household which maximizes the following intertem-

poral separable utility function

Et

1X

j=0

�j

"
C1��t+j

1� �
� dn

N1+�
t+j

1 + �

#
(1)

subject to the period-by-period budget constraint
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PtCt + (1 + it)
�1Bt =WtNt � Tt +�t +Bt�1, (2)

where Ct is consumption, it is the nominal interest rate, Bt are one-period bond holdings, Wt

is the nominal wage rate, Nt is the labor input, Tt are lump sum taxes, and �t is the pro�t

income. The following �rst order conditions hold

Euler equation :
1

C�t
= �Et

��
Pt
Pt+1

�
(1 + it)

�
1

C�t+1

��
, (3)

Labor supply equation
Wt

Pt
= �

UN
UC

=
dnN

�
t

1=C�t
= dnN

�
t C

�
t . (4)

Final good market is competitive and the production function is given by

Yt =

�Z 1

0
Y

"�1
"

i;t di

� "
"�1

: (5)

Final good producers demand for intermediate inputs is therefore equal to Yi;t+j =
�
Pi;t
Pt+j

��"
Yt+j .

Intermediate inputs Yi;t are produced by a continuum of �rms indexed by i 2 [0; 1] with

the following simple linear technology

Yi;t = AtNi;t (6)

where labor is the only input and lnAt = at is an exogenous productivity shock, which follows

an AR(1) process

at = �aat�1 + va;t (7)

va;t �WN
�
0; �2v

�
. The labor demand and the real marginal cost of �rm i are therefore

Nd
i;t =

Yi;t
At
, (8)

and

MCrt =
Wt

PtAt
: (9)

Given our simple linear production function the marginal cost is the same across �rms and

simply equal to the productivity-adjusted real wage.

2.2 Price Setting: Rotemberg (1982) and Calvo (1983)

The intermediate good sector is monopolistically competitive and therefore the intermediate-

good producer enjoy market power. In what follows we present the Rotemberg (1982) and the

Calvo (1983) price-setting mechanisms.
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The Rotemberg model

The Rotemberg model assumes that a monopolistic �rm faces a quadratic cost of adjusting

nominal prices, that can be measured in terms of the �nal-good and given by

'

2

�
Pi;t
Pi;t�1

� 1

�2
Yt; (10)

where ' > 0 determines the degree of nominal price rigidity. As stressed in Rotemberg (1982),

the adjustment cost accounts for the negative e¤ects of price changes on the customer-�rm

relationship. These negative e¤ects increase in magnitude with the size of the price change

and with the overall scale of economic activity, Yt. The problem for the �rm is then

max
fPi;tg1t=0

Et

1X

j=0

Dt;t+j

(�
Pi;t+j
Pt+j

�MCrt+j

�
Yi;t+j �

'

2

�
Pi;t+j
Pi;t+j�1

� 1

�2
Yt+j

)
; (11)

s.t. Yi;t+j =

�
Pi;t+j
Pt+j

��"
Yt+j : (12)

where Dt;t+j � �j Uc(t+j)Uc(t)
is the stochastic discount factor, MCrt+j =

Wt+j

Pt+jAt+j
is the real

marginal cost function.

Firms can change their price in each period, subject to the payment of the adjustment cost.

Hence, all the �rms face the same problem, and thus will choose the same price, producing

the same quantity. In other words: Pi;t = Pt; Yi;t = Yt and 8i: Therefore, from the �rst order

condition, after imposing the symmetric equilibrium, we get

1� ' (�t � 1)�t + '�Et

�
Ct+1
Ct

��� �
(�t+1 � 1)�t+1

Yt+1
Yt

�
= (1�MCrt ) ": (13)

where �t = Pt
Pt�1

: Since all the �rms will employ the same amount of labor, the aggregate

production function is simply given by

Yt = AtNt: (14)

The aggregate resource constraint should take the adjustment cost into account, that is

Yt = Ct +
'

2
(�t � 1)

2 Yt: (15)

For what follows, it is important to note that the Rotemberg adjustment cost model creates

an ine¢ciency wedge, 	t; between output and consumption5

Yt =

"
1

1� '
2 (�t � 1)

2

#
Ct = 	tCt: (16)

5Note that this expression implicitly de�nes the condition 1 >
'p
2
(�t � 1)

2 for the model to be well-de�ned,

that is: �t 2
�

1�
q

2
'p
; 1 +

q

2
'p

�

:
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The Calvo model

The Calvo model assumes that each period there is a �xed probability 1 � � that a �rm

can re-optimize its nominal price, i.e., P �i;t: The price setting problem becomes

max
fPi;tg1t=0

Et

1X

j=0

Dt;t+j�
j

�
P �i;t
Pt+j

�MCrt+j

�
Yi;t+j , (17)

s.t. Yi;t+j =

�
P �i;t
Pt+j

��"
Yt+j : (18)

The equation for the optimal price is

P �i;t =
"

"� 1

Et
P1
j=0 �

jDt;t+jP
"
t+jYt+jMCrt+j

Et
P1
j=0 �

jDt;t+jP
"�1
t+j Yt+j

, (19)

while the aggregate price dynamics is given by

Pt =
h
�P 1�"t�1 + (1� �)

�
P �i;t
�1�"i 1

1�"
. (20)

In the Calvo price setting framework, �rms charging prices in di¤erent periods will generally

have di¤erent prices. Thus, the model features a distribution of di¤erent prices, that is, there

will be price dispersion. Price dispersion results in an ine¢ciency loss in aggregate production.

In fact

Nd
t =

Z 1

0
Nd
i;tdi =

Z 1

0

Yi;t
At

di =
Yt
At

Z 1

0

"�
Pi;t
Pt

��"
di

#

| {z }
st

= st
Yt
At
. (21)

Schmitt-Grohé and Uribe (2007a) show that st is bounded below at one, so that st represents

the resource costs due to relative price dispersion under the Calvo mechanism. Indeed, the

higher st, the more labor is needed to produce a given level of output. Moreover, remember

that price dispersion is a backward-looking variable, and therefore it introduces an inertial

component in the model.

To close the model, the aggregate resource constraint is simply given by

Yt = Ct: (22)

In the Rotemberg model, the cost of nominal rigidities, i.e., the adjustment cost, creates a

wedge between aggregate consumption and aggregate output, because part of the output goes

in the price adjustment cost. In the Calvo model, instead, the cost of nominal rigidities,

i.e., price dispersion, creates a wedge between aggregate hours and aggregate output, making

aggregate production less e¢cient and introducing an inertial component in the model.
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Note that both of these wedges in equations (16) and (21) are non-linear functions of

in�ation. Moreover, they behave very similarly in steady state. Both wedges are minimized

at one when steady state in�ation equals zero, and both wedges increase as trend in�ation

moves away from zero.

It is very important to stress that these wedges can vanish in particular cases. In the

Rotemberg model, the wedge 	t in (16) equals one when in�ation is zero, because �rms are

not changing their prices and thus there is no adjustment cost to pay. In the Calvo model,

the wedge st in (21) equals one, when there is no price dispersion, that is, when all the �rms

have the same price. There is one special case in which both these conditions hold: the zero

in�ation steady state case.

3 A very particular case: zero steady state in�ation

It is well known6 that the two models deliver equivalent dynamics when log-linearized around

a zero in�ation steady state. In fact, in this case Calvo-pricing yields the following New

Keynesian Phillips curve (NKPC henceforth)

�̂t = �Et�̂t+1 +
(1� �) (1� ��)

�
cmct; (23)

where lower case hatted letters denote log-deviations of the variable with respect to its steady

state value. Similarly, under Rotemberg-pricing to a �rst order approximation the NKPC is

�̂t = �Et�̂t+1 +
"� 1

'
cmct: (24)

Therefore, up to a �rst order approximation the two models are identical, apart the coe¢cient

of the slope of the NKPC. Note that, by imposing

"� 1

'
=
(1� �) (1� ��)

�
(25)

and therefore by setting ' = ("�1)�
(1��)(1���) ; the two models imply the same �rst-order dynamics.

The zero trend in�ation, however, is a very peculiar case. In fact, when the steady state

level of in�ation is equal to zero, the di¤erence between the two models cancels out. The reason

why it happens is that, in this case, the two wedges in equations (16) and (21) disappear,

because in steady state � = s = 1: This is not very surprising, since the zero in�ation steady

state of both models is equivalent to the steady state of the �exible price version of the model.

In all the other, more interesting and realistic, cases the two models entail a di¤erent dynamics.

The next section will thoroughly investigate these di¤erences.
6See for example Rotemberg (1987), Roberts (1995) and more recently Nisticò (2007) and Lombardo and

Vestin (2008).
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4 Rotemberg and Calvo under Trend In�ation

In this section, we investigate how the two models di¤er regarding: (i) the long-run relationship

between output and in�ation; (ii) the New Keynesian Phillips Curve; (iii) the dynamic response

to shocks; (iv) the determinacy properties; (v) the dynamic response to a disin�ation. Many

results will be analytical, while some will be visualized through numerical simulations.

Calibration In the Figures below in this section, the calibration considers the following

rather standard parameters speci�cation: � = 1; � = 0:99; " = 10; � = 1; � = 0:75; ' =
("�1)�

(1��)(1���) , unless explicitly stated: However, none of the Figures qualitatively depends

on the parameters values.

4.1 The long-run Phillips Curve

This section investigates the non-linear long-run Phillips curve implied by the two price-setting

mechanisms. To understand the di¤erences in the dynamics of the two models, it is necessary

to �rst analyze their steady state properties. In fact, at the root of the di¤erent e¤ects of

trend in�ation on the dynamics of the two price-setting models, lies the fact that trend in�ation

a¤ects the steady state properties of the two models in two di¤erent ways. As we will see,

in the Rotemberg model the higher is trend in�ation the higher is the steady state level of

output, while in the Calvo model the opposite holds.

The Rotemberg model

The Appendix A.2 shows that the long-run Phillips Curve in the Rotemberg model is equal

to

Y =

2
4
"�1
" + (1��)

" '
�
��1�

�
� 1
�
��1�

�

dn

�
1� '

2 (��
1�� � 1)2

��

3
5

1
�+�

: (26)

Appendix A.2 proves that (if � < 1)

9��� < 1 s:t:

8
>><
>>:

�� > ��� =) dY
d�� > 0

�� = ��� =) dY
d�� = 0

�� < ��� =) dY
d�� < 0

:

Note that this implies that for �� = 1 =) dY
d�� > 0; i.e., the higher is trend in�ation the more

output is produced. The minimum of output occurs at negative rate of steady state in�ation,

unless � = 1, in which case dY
d�� = 0 for �� = 1.

The intuition is straightforward by rewriting the steady state output level as

9



Y =

 
	�

dn
P
MC

! 1
�+�

; (27)

where P
MC is the average markup. Equation (27) shows that there are two e¤ects at works: 1)

the "average markup e¤ect", due to time discounting and 2) the "wedge e¤ect". Both e¤ects go

in the same direction of increasing the steady state output. First of all, consider the "average

markup e¤ect": in changing their price, �rms weight today adjustment cost of moving away

from yesterday price, relatively more than the tomorrow adjustment cost of �xing a new price

away from the today�s one, because of discounting. Trend in�ation thus reduces the average

mark-up. Indeed, the steady state mark-up is given by

P

MC
=

�
"� 1

"
+
(1� �)

"
' (�� � 1) ��

��1
(28)

which is monotonically decreasing in �� (for economically relevant values of ��): The fact that

the mark-up decreases with trend in�ation makes output to increase with trend in�ation.

Secondly, regarding the "wedge e¤ect", note that the price adjustment cost increases with

trend in�ation and so does the wedge 	; therefore, given (27), the wedge has a positive

e¤ect on output. However, a fraction of output is not consumed, but it is eaten up by the

adjustment cost. Given that the wedge between output and consumption, (16), increases with

trend in�ation, consumption decreases with trend in�ation in steady state. Thus, output and

hours are increasing with trend in�ation, but consumption and welfare are decreasing with

trend in�ation.

- Figure 1 about here -

The Calvo model

Figure 2 shows the long-run relationship between in�ation and output in the standard

Calvo model.

- Figure 2 about here -

As well-known (e.g., Ascari 2004, Yun 2005), the long-run Phillips Curve is negatively

sloped: positive long-run in�ation reduces output, because it increases price dispersion, s.

Higher price dispersion acts as a negative productivity shift, because Y = AN
s . Thus, the
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steady state real wage lowers with trend in�ation, and so does consumption, while hours

increase. As a consequence, steady state welfare decreases.

To grasp the intuition, it is useful to rewrite steady state output level as7

Y =

 
1

dn
P
MC s

�

! 1
�+�

. (29)

The symmetry between (29) and (27) in the two models makes the comparison clear. Also

in the Calvo model, thus, there are two e¤ects at works: 1) the "average markup e¤ect" due

to time discounting and 2) the "wedge e¤ect". In this case however the two e¤ects go in the

opposite direction. The positive slope is due to an "average markup e¤ect" similar to the one

described above: in setting the new price, �rms discount the future, where nominal prices are

higher because of trend in�ation. Hence, the average mark-up decreases with trend in�ation.

However, the relationship between steady state output and in�ation is non-linear, through the

"wedge e¤ect" due to price dispersion, s. The e¤ects of non-linearities due to price dispersion

are quite powerful and turn up very quickly as trend in�ation increases from zero, inverting

the relationship from positive to negative.8 Therefore, while in the Rotemberg model there is

no price dispersion that interacts with trend in�ation, and both the "average markup e¤ect"

and the "wedge e¤ect" a¤ect the steady state output in the same way, in the Calvo model the

price dispersion term inverts very quickly the slope of the long-run Phillips Curve. Thus, for

positive trend in�ation, this slope is positive in the Rotemberg model, and (mostly) negative

in the Calvo model.

The next sections show how the opposite slope of the long-run Phillips Curve between the

two models determines their di¤erent dynamic properties.

4.2 The generalized NKPC

As we saw above, the relation between trend in�ation and the steady state values of the

variables is generally non-linear. Therefore, the steady state around which to log-linearize

matters for the dynamics of the model. Indeed, we now show that the way in which trend

in�ation a¤ects the coe¢cients of the log-linearized equations depends on the speci�c pricing

7See Ascari and Merkl (2009) for a derivation.
8To be more precise, the derivative of the long-run Phillips Curve evaluated at zero in�ation, i.e., the tangent

at zero in�ation of the curve depicted in Figure 1, is positive. Only the "average markup e¤ect" is present

in this case. Indeed, this positive slope equals the positive long-run relationship between in�ation and output

implied by the standard log-linear New Keynesian Phillips Curve (23) popularized by Woodford (2003) among

others. See also King and Wolman (1996) and Graham and Snower (2004) .

11



assumption.

The Rotemberg model

The log-linearization of equation (13) yields the following generalized NKPC under Rotem-

berg pricing

�̂t = 
f��̂t+1 + 
dy� (1� �)�ŷt+1 + 
mccmct (30)

and

cmct = (� + �) ŷt � &c��̂t � (1 + �) at: (31)

are the log-linearized real marginal costs. Moreover, log-linearizing equations (3), (4), (14),

(16) and combining them together delivers the following log-linearized IS curve,

ŷt = Etŷt+1 � &c�Et�̂t+1 �
1

�
Et (̂{t � �̂t+1) (32)


f ; 
dy; 
mc and &c are complicated convolution parameters that depend on trend in�ation,

&c =
' (�� � 1) ��h
1� '

2 (�� � 1)
2
i ;

C

Y
=

�
1�

'

2
(�� � 1)2

�

% �
�
2��2 � ��

� C
Y
+ � [(�� � 1) ��]2 �';


p =

�
2��2 � ��

�
C
Y + � [(�� � 1) ��]

2 �'

%
;


f =

�
2��2 � ��

�
C
Y + [(�� � 1) ��]

2 �'

%


dy =

�
��2 � ��

�
C
Y

%
;


mc =

�
"� 1 + '

�
��2 � ��

�
(1� �)

�
C
Y

'%
:

Equation (30) encompasses the standard NKPC, because, under a zero steady state in�ation

(i.e., �� = 1); &c = 
dy = 0, 
f = 1; and 
mc =
"�1
' ; so that equation (30) boils down to (24).

The Calvo model

As shown by Ascari and Ropele (2009) the log-linearization of the Calvo model is described

by the following �rst-order di¤erence equations: 9

9For a detailed derivation and description of the reduced form solution of the Calvo model under trend

in�ation see Ascari and Ropele (2009). See also Cogley and Sbordone (2008).
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�t =
�
���1�� + � (� � 1)

�
Et�t+1 + �ŷt � ��at + ��ŝt + �Et ̂t+1; (33)

 ̂t = (1� �)
�
1� ����("�1)(1��)

�
ŷt + ����

("�1)(1��)
h
("� 1)Et�t+1 + Et ̂t+1

i
; (34)

ŝt = ��t + ���
"(1��)ŝt�1; (35)

ŷt = Etŷt+1 + ŷt�1 � �
�1 (̂{t � Et�̂t+1) ; (36)

where �t � �̂t � ���̂t�1, and  ̂t is an auxiliary forward-looking variable, �; �; �; and � are

complicated convolution parameters that depend on trend in�ation,

� �

�
1� ���("�1)(1��)

� �
1� ����"(1��)

�

���("�1)(1��)
;

� � �
�
��1�� � 1

� h
1� ���("�1)(1��)

i
;

� � �(��;") (� + ') + �(��;") (1� �) ;

� �
"���("�1)(1��)

�
��1�� � 1

�

1� ���("�1)(1��)
:

Notice that, trend in�ation alters the in�ation dynamics compared to the usual Calvo

model in three ways. Firstly, trend in�ation enriches the dynamic structure by adding two

new endogenous variables: a forward looking auxiliary variable, i.e.,  ̂t; and a predetermined

variable, i.e., ŝt; which represents price dispersion. Secondly, trend in�ation directly a¤ects the

NKPC coe¢cients. Higher trend in�ation makes the NKPC more �forward-looking�, leading

to a smaller coe¢cient on current output and a larger coe¢cient on future expected in�ation.

The short-run NKPC, hence, �attens when drawn in the plane (ŷt; �̂t). Thirdly, trend in�ation

increases the inertia of the equation of the relative price dispersion ŝt: This means that, ceteris

paribus, higher trend in�ation yields a more persistent adjustment of in�ation rate.

The two log-linearized systems present three main di¤erences. First of all, in the Calvo

model the presence of a price dispersion wedge creates an endogenous predetermined variable

in the NKPC, which is absent in the Rotemberg model. Secondly, in the Rotemberg model,

the presence of price adjustment costs causes the real marginal cost to depend also on actual

in�ation (see the additional term &c��̂t in (31)). Finally, the price adjustment cost generates

a wedge between output and consumption in the resource constraint, that appears in the IS

curve as the additional term &c�Et�̂t+1 (see (32)).

Not surprisingly these di¤erences in the log-linear model will deliver di¤erent dynamic

responses and determinacy properties.
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4.3 The Dynamics

In this section we compare the dynamics of the two price setting models. We assume that

the central bank follows a Taylor-type feedback rule and we study the responses of output

and in�ation to a technology shock. It is well-known that the dynamics of the two model will

be equivalent under zero trend in�ation. We investigate to what extent the dynamics will,

instead, di¤er between the two models as trend in�ation varies.

We simply assume that the central bank sets the short run nominal interest rate according

to the following standard Taylor-type rule

{̂t = ���̂t + �yŷt: (37)

and we set �� = 1:5 and �y = 0:5=4; in the simulation.

The Rotemberg model

Figure 3 shows the impulse response functions (IRFs henceforth) of output and in�ation

to a positive technology shock, for di¤erent values of trend in�ation, when prices are set à la

Rotemberg.

- Figures 3 about here -

As expected, in response to a positive technology shock output increases on impact while

in�ation decreases. Then, after some periods they return to their initial level. Note that, the

higher trend in�ation, the lower are both the decrease in in�ation and the increase in output.

The e¤ects of varying trend in�ation, however, are quantitatively minor. Moreover, also the

persistence of output and in�ation is substantially una¤ected by the level of trend in�ation.

The Calvo model

Figures 4 shows the IRF of output and in�ation to a positive technology shock for di¤erent

levels of trend in�ation, in the Calvo model.

- Figures 4 about here -

As in the Rotemberg model, in response to a positive productivity shock output increases

and in�ation decreases. Then, after some periods they return to their initial level. Actually, the

IRF coincides when the model is log-linearized around zero in�ation. Unlike the Rotemberg

model, however, the IRF are very sensitive to varying trend in�ation in the Calvo model.
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As trend in�ation increases, the responses of output and in�ation amplify and become more

persistent. As shown in Ascari (2004), this happens because of the strong e¤ects that trend

in�ation has on the coe¢cient of the NKPC in the Calvo model. Moreover, trend in�ation

increases the inertia in the dynamic equation of the relative price dispersion ŝt; which is

a predetermined variable.10This means that, ceteris paribus, higher trend in�ation yields a

more persistent adjustment of the in�ation rate. As a consequence also the response of output

becomes more persistent. In the Rotemberg model, instead, there is no price dispersion and

the model is completely forward looking.

Overall these results show that, if moderate levels of trend in�ation are considered, the two

models exhibit di¤erent dynamics in response to a productivity shock, even to a �rst order

approximation. Trend in�ation has opposite e¤ects on the adjustment dynamics of output

and in�ation in the two models.

4.4 Determinacy and the Taylor Principle

To assess the determinacy of the rational expectations equilibrium (REE henceforth), we �rst

substitute the Taylor rule (37) into the IS curve and then we write the structural equations

in the following matrix format

xt = AEtxt+1 +Bat, (38)

where vector xt includes the endogenous variables of the model while at is the technology

shock. Determinacy of REE obtains if the standard Blanchard and Kahn (1980) conditions

are satis�ed. Next, we analyze how trend in�ation a¤ects the determinacy of REE.

The Rotemberg model

We �rst present the analytical derivation of our main results under Rotemberg pricing.

Then, we compare our results with those obtained by Ascari and Ropele (2009) for the Calvo

model. In order to derive simple analytical results, in this section we will assume that: � = 0,

� = 1; �� 2 [0;1), �Y 2 [0;1): In particular, we are able to state the following proposition11

Proposition 1. Necessary and su¢cient conditions for determinacy of REE. Let

� = 0, � = 1, �� 2 [0;1), �y 2 [0;1) and at least one di¤erent from zero. Determinacy

10 In a recent paper, Damjanovic and Nolan (2010) show that, in a model with low trend in�ation, a negative

monetary shock can have a persistent and hump-shaped impact on output and a positive impact on in�ation.
11 In the Rotemberg model vector xt in the representation (38) includes two non-predetermined variables, i.e.,

xt � [ŷt; �̂t; ]
0. Hence, determinacy of REE obtains if and only if all eigenvalues of A lie inside the unit circle.
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of REE under positive trend in�ation obtains if and only if

�� +

�
1 + &c
mc � �
f

�


mc
�y > 1; (39)

where
(1+&c
cm��
f)


cm
is the long-run elasticity of output to in�ation (see Appendix A.4).

With zero steady state in�ation, i.e. with �� = 1; condition (39), becomes:

�� +
1� �

�
�y > 1, (40)

where � = "�1
' is the slope of the NKPC. We also know that in this particular case, by

imposing condition (25), i.e., by imposing that the Rotemberg and the Calvo model coincides

up to �rst order, then the conditions to ensure determinacy of REE are identical under the

two pricing models. As stressed by Woodford (2001, 2003, see chp. 4.2.2) among others,

condition (40) is a generalization of the standard Taylor principle: to ensure determinacy of

REE the nominal interest rate should rise by more than the increase of in�ation in the long

run. Indeed, the coe¢cient (1� �) =� represents the long run multiplier of the in�ation rate

on output in a standard NKPC log-linearized around the zero-in�ation steady state (see (24)).

In other words, the Taylor principle has to be intended as,

@{̂

@�̂

����
LR

= �� +
@ŷ

@�̂

����
LR

�y > 1. (41)

The generalized Taylor principle in its formulation (41) is still a crucial condition for

determinacy of REE in the Rotemberg model with trend in�ation. Indeed, the coe¢cient
(1+&c
cm��
for)


cm
in (39) represents the long-run elasticity of output to in�ation of the general-

ized model with trend in�ation (see Appendix A.4). Hence Proposition 1 corresponds exactly

to (41) in the general case of trend in�ation.

What are then the e¤ects of trend in�ation on the determinacy region in the Rotemberg

model?

Proposition 2. The e¤ects of trend in�ation on the determinacy region. Let � = 0,

� = 1, �� 2 [0;1), �y 2 [0;1) and at least one di¤erent from zero. Then

d

�
(1+&c
cm��
f)


cm

�

d��

��������
��=1

= '+
'(1� �)

"� 1

�
3�

' (1� �)

"� 1

�
(42)

which is positive for � su¢ciently close to 1. (see Appendix A.4.3)
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Corollary. Let � = 0, � = 1, �� 2 [0;1), �y 2 [0;1) with at least one di¤erent from zero,

and � su¢ciently close to 1. Then, the determinacy region widens in the parameter

space (��; �y) :

The derivative in (42) reveals the e¤ects of trend in�ation on the condition (39). Recall

that (39) is equivalent to (41) in the case of the Rotemberg model. Hence (42) demonstrates

that @ŷ
@�̂

���
LR

increases with trend in�ation around the point �� = 1.12 As from the corollary, if

@ŷ
@�̂

���
LR
increases, then the region in the parameter space (��; �y) that guarantees determinacy

of the REE enlarges. In fact, for a given �y the condition (39) is satis�ed for lower values of

��:

Figures 5a and 5b visualizes the content of Proposition 2. Figure 5a shows the usual graph

of the Taylor principle in the space (��; �y) in the case �� = 1 which is identical to the one

we get under Calvo pricing with zero trend in�ation. In the case �� = 1 in fact, condition (41)

implies �y > (1� ��) =
@ŷ
@�̂

���
LR
, where @ŷ

@�̂

���
LR;��=1

= 1��
� = '1��"�1 : As trend in�ation increases,

Proposition 2 shows that @ŷ
@�̂

���
LR
increases, and the line rotates anti-clockwise (see �gure 5b).

- Figures 5 about here -

Moreover, from a quantitative perspective, Figures 6 depicts the determinacy regions for

di¤erent levels of trend in�ation, i.e. from 0 to 4%, resulting from simulating the model for

the values �� 2 [0; 5] and �Y 2 [�1; 5] (for the calibration see the beginning of Section 4). The

determinacy frontier rotates anti-clockwise enlarging the determinacy region and remaining

negatively sloped, as suggested by Proposition 2.

- Figure 6 about here -

The Calvo model

In a recent paper Ascari and Ropele (2009) show that trend in�ation shrinks the determi-

nacy region in the Calvo model. This means that in the Calvo model trend in�ation a¤ects

12 In general, the derivative in (42) yields a very cumbersome expression that would not allow to derive any

analitycal insights. We were able, however, to derive the condition in (42) evaluating the derivative at �� = 1;

to understand how trend in�ation a¤ects the Taylor principle when �� slightly moves from one. By continuity

argument, one may argue that the result holds for the values of �� very close to one, such as the ones we consider

(recall that �� is the gross quarterly in�ation rate). The simulations below, indeed, con�rm such conjecture.
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the determinacy region in the opposite way with respect to the one described above for the

Rotemberg model. In particular, Ascari and Ropele (2009) show that the generalized Taylor

principle, (41), is still a necessary condition in the Calvo model. However, as trend in�ation

increases, @ŷ@�̂

���
LR
decreases, and then very rapidly switches sign from positive to negative, such

that the determinacy frontier rotates clockwise (�gure 5c shows the equivalent of preposition

2 in the Calvo model). So trend in�ation strongly shrinks the determinacy region in the space

(��; �y) in the Calvo model, while it does the opposite in the Rotemberg model.

Moreover, the two authors, show that the generalized Taylor principle is a necessary,

but not su¢cient condition for local determinacy of the REE in the positive orthant of the

parameter space (��; �y). This is because, generally, there is a second determinacy frontier

that needs to be satis�ed. This frontier lies entirely below the positive orthant when �� = 1;

such that it is usually disregarded in the literature (see Figure 5a). Trend in�ation, however,

moves this second determinacy frontier upwards, making it crossing the positive orthant for

moderate rate of trend in�ation. Hence, this condition becomes necessary, even if it looks

only at positive values of �� and �y. Figure 6 above shows that, also in the Rotemberg

model, this second determinacy frontier is relevant and it lies entirely below the positive

orthant when �� = 1 (being the Rotemberg model equivalent to the Calvo model in this case).

However, the simulation shows that trend in�ation shifts this frontier upwards as in the Calvo

model, but the e¤ects are very minor and the frontier never crosses the positive orthant,

given our calibration. Therefore, contrary to the Calvo model, in the Rotemberg model the

generalized Taylor principle remains not only a necessary, but also a su¢cient condition for

the determinacy of the REE in the positive orthant of the space (��; �y).

To sum up, the determinacy conditions in the two models are equivalent when the model

is log-linearized around zero trend in�ation, i.e., �� = 1; but they are di¤erent in presence of

moderate level of in�ation: In particular, trend in�ation has opposite e¤ects on the condition

de�ning the generalized Taylor principle in the two models. Moderate in�ation enlarges the

determinacy region in the Rotemberg model, while it shrinks it in the Calvo model. Moreover,

form a quantitative perspective, these e¤ects are small in the former case, and large in the

latter.

4.5 Disin�ation Dynamics

In this section we look at an unanticipated and permanent reduction in the in�ation target of

the Central Bank. The Central Bank follows the standard Taylor rule (37). In particular, we
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employ a non-linear simulation method by using the package DYNARE.13 We plot the path

for output, in�ation, nominal interest rate, real wages, consumption and hours in response to

such a change in the Central Bank policy regime. We consider three cases: a disin�ation from

4%, 6% and 8% trend in�ation to zero.

The Rotemberg model

When prices are set à la Rotemberg, the economy would immediately adjust to the new

steady state without any transitional dynamics (see Figure 7). Thus, the non-linear version of

the simple New Keynesian model above with Rotemberg pricing is completely forward-looking.

Note that this is the same results that would be obtained in the log-linear model.

Taking into account the role of trend in�ation, however, reveals the long-run e¤ects of

such a policy. A disin�ation policy permanently decreases output and hours (together with

the real wage), but it increases consumption. As explained in Section 4.1, a disin�ation

causes an increase in �rms� markup, and a fall in output (and hence in hours). Moreover, a

disin�ation reduces the size of the adjustment costs, so it reduces the wedge between output

and consumption, as shown by (16). Consumption increases because the decrease in the

fraction of output wasted for adjusting prices more than compensates the decrease in output.

Thus, a disin�ation would cause output and consumption to move in opposite directions.

So two main results stem from this analysis of the e¤ects of a disin�ation policy in the

Rotemberg model. First, there is no transitional dynamics and the economy immediately

adjusts to the new steady state level, because the non-linear model is completely forward-

looking. Second, there are, however, long-run e¤ects of such a policy: output and hours

decrease, while consumption increases.

- Figure 7 about here -

The Calvo model

As Figure 7 above, Figure 8 plots the responses of the main economic variables to disin-

�ation policies from 4%, 6% and 8% trend in�ation to zero in the case of the Calvo model.

13Figures 7 and 8 are obtained using the software DYNARE developed by Michel Juillard and others at

CEPREMAP, see http://www.cepremap.cnrs.fr/dynare/. The paths in the Figures display the movement from

a deterministic steady state to another one. DYNARE solves for these paths by stacking up all the equations of

the model for all the periods in the simulation (which we set equal to 100). Then the resulting system is solved

en bloc by using the Newton-Raphson algorithm, by exploiting the special sparse structure of the Jacobian

blocks. The non-linear model thus is solved in its full-linear form, without any approximation.
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As shown by Ascari and Merkl (2009), when nonlinear simulations are employed, the adjust-

ment path of the Calvo model is completely di¤erent from the one described above for the

Rotemberg model. Indeed, the two main results above are turned around.

First, the dynamic adjustment of the non-linear Calvo model after a disin�ation is inertial.

The Calvo model implies price dispersion, i.e., st; that is a backward-looking variable that

adjusts sluggishly after a disin�ation. Thus, the non-linear solution of the model features a

new endogenous state variable, and the model dynamics is inertial. The Rotemberg model,

instead, does not feature any price dispersion.

Second, output and consumption increase, while hours decreases. Output increases slug-

gishly to the new higher steady state level (see Section 4.1). Since output is entirely consumed,

consumption and output show the same adjustment path. The adjustment dynamics in hours

worked is, instead, di¤erent. Hours jump up on impact, because output increases, but then

they decrease. As explained in Section 2.2, in�ation in the Calvo model creates a wedge be-

tween aggregate hours and aggregate output, through price dispersion in (21). The lower price

dispersion, the less the hours that are needed for a given output. For all the cases considered,

price dispersion decreases monotonically to the new lower steady state level. This is why

hours thus peak on impact, and then start decreasing. Indeed, along the adjustment, output

is increasing, while price dispersion is decreasing. From period 2 onwards, the latter e¤ect

then dominates, making aggregate production more e¢cient and thus saving hours worked,

despite the rise in output.

- Figure 8 about here -

We therefore show that, when the economy is hit by a permanent and unanticipated

in�ation target shock, the two nonlinear models, based on the two di¤erent price setting

mechanisms, show very di¤erent and opposite dynamics. The Calvo model implies that output

and consumption closely move together, while output and hours move in opposite directions

during the adjustment, after the impact period. The opposite is true for the Rotemberg

model. Moreover, while in the non-linear Calvo model the adjustment is inertial, in the non-

linear Rotemberg model the adjustment is immediate. The intuition for these di¤erences

is straightforward, and lies in the two di¤erent wedges that nominal rigidities create in the

two models. Both wedges decrease after a disin�ation. In the Rotemberg model, however, a

disin�ation reduces the wedge between output and consumption, so that they move in opposite
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directions, while in the Calvo model a disin�ation reduce the wedge between output and hours,

so that they move in opposite directions.

Finally, the results in the Rotemberg model are qualitatively similar to the ones of the

standard linear model. The version of the New Keynesian model (e.g., Woodford, 2003)

log-linearized around zero steady state in�ation would imply an immediate adjustment after a

disin�ation. Indeed, if log-linearized around a zero in�ation steady state, then price dispersion

would not matter for the model dynamics up to �rst-order. So nothing prevents the model

to jump to the new steady state.14 In other words, the results in the Rotemberg model are

qualitatively robust to trend in�ation and non-linear analysis, why this is not the case for the

Calvo model.

5 Indexation

Our results show that, with non zero trend in�ation, even to a �rst order approximation the

two models are quite di¤erent models. In fact, they imply the same dynamics only under a

very particular assumptions: a zero steady state in�ation. For all the other cases, the long-run

properties and the implied dynamics of the two models are very di¤erent.

The next section investigates what is the e¤ect of indexation on the di¤erence between

the two models. Not surprisingly, it shows that partial indexation tends to mitigate this

di¤erence, that however, qualitatively is very robust, because it vanishes only in the case of

full indexation. We now assume that �rms have the possibility to index their price. We look

at two types of indexation: to long-run in�ation �� and to past in�ation �t�1. In particular,

we consider the e¤ects of price indexation on the long-run properties and on the dynamics of

the two pricing models. We show that in both models, price indexation is able to dampen

the e¤ects of trend in�ation and therefore to reduce the di¤erences between the two pricing

mechanism. In the very particular case of full price indexation the two models are again

equivalent as in the case of zero trend in�ation.

Under the Rotemberg model, the equivalent of indexation would be a cost adjustment

rule that decreases the cost of automatically adjusting prices either to trend and/or to past

in�ation. The cost of adjusting prices can be rewritten in the more general speci�cation

14Moreover, output would decrease, as implied by the non-linear Rotemberg model. The NKPC, in fact, is

positively sloped when the Calvo or Rotemberg model are log-linearized around zero in�ation steady state.
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considered by Ireland (2007) among others, i.e.,

'

2

 
Pi;t�

��t�1
��
(���)1�� Pi;t�1

� 1

!2
Yt; (43)

where, as before, ' > 0 determines the degree of nominal price rigidity. This de�nition is

the correspondent of the general speci�cation of the Calvo price setting scheme (adopted by

Smets and Wouters, 2003 among others), within the Rotemberg one. Notice that: (i) � 2 [0; 1]

allows for any degree of price indexation; (ii) � 2 [0; 1] allows for any degree of (geometric)

combination of the two types of indexation usually employed in the Calvo pricing literature,

i.e., to steady state in�ation (e.g., Yun, 1996) and to past in�ation rates (e.g., Christiano et

al., 2005). In particular, when � = 0 (� = 1) �rms �nd it costless to adjust their prices in line

with the central bank in�ation target (the previous period�s in�ation rate).

For a given price in�ation, the adjustment cost (43) decreases with price indexation to a

degree given by �. In fact, the higher �; the lower, ceteris paribus, is Pi;t

(��t�1)
�
(���)1��Pi;t�1

and

the lower is the cost of adjusting prices. Since trend in�ation increases the cost of adjusting

prices (thus increasing the wedge between consumption and output), by allowing for price

indexation the e¤ects of trend in�ation would be damped. Thus, price indexation o¤sets the

e¤ects of trend in�ation both in the long-run and in the short-run.

The long-run

The Appendix A.2 shows that, assuming the adjustment cost (43), the long-run Phillips

curve in the Rotemberg model is equal to

Y =

2
4
"�1
" + (1��)

" '
�
��1�

�
� 1
�
��1�

�

dn

�
1� '

2 (��
1�� � 1)2

��

3
5

1
�+�

: (44)

The long run Phillips curve is still positive sloped, i.e., the higher is trend in�ation �� the higher

is the amount of output produced in the long run. However, the higher is the parameter �

the lower is the increase in output following an increase in ��: The �rms steady state cost of

adjusting prices is equal to '
2

�
��1�� � 1

�2
Y; where it is evident that indexation counteracts

the e¤ect of trend in�ation. At the limit, when price are fully indexed, i.e. � = 1; the economy

steady state is the same as in �exible price economy. Indeed, in the case of full indexation,

the steady state wedge 	 = 1
1�'

2
(��1���1)2

is no more a function of trend in�ation and it is

minimized at one: In this case the equality between consumption and output is restored, i.e.,

C = Y:

The dynamics
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Considering the adjustment cost in (43), then the log-linear approximations of the gener-

alized NKPC (30), the real marginal costs (31) and the log-linearized IS curve (32) become

�̂t = 
p�̂t�1 + 
f��̂t+1 + 
dy� (1� �)�ŷt+1 + 
mccmct (45)

cmct = (� + �) ŷt � &c��̂t + &c����̂t�1 � (1 + �) at (46)

ŷt = Etŷt+1 � &c��̂t+1 + &c����̂t �
1

�
Et (̂{t � �̂t+1) (47)

where, 
p;
f ; 
dy; 
mc and &c are complicated convolution parameters that depend both on

trend in�ation and indexation (see Appendix A.3). Again the degree of indexation counteracts

the e¤ects of trend in�ation on the log-linearized coe¢cients of the model equations. For a

given value of trend in�ation, as the degree of price indexation increases the dynamics of the

Rotemberg model converges to the dynamics of a standard New Keynesian model.15

As shown in Ascari and Ropele (2009), also in the Calvo model, price indexation counter-

acts the e¤ect of trend in�ation, because it reduces price dispersion by allowing also the non

price-resetting �rms to keep up with the pace of in�ation. By dampening the e¤ects of trend

in�ation, indexation diminishes the di¤erence between the two pricing models.

Regarding the determinacy of the model, Figure 9 and 10 compares the e¤ects of price

indexation to trend in�ation, i.e., � = 0, versus past in�ation, i.e., � = 1 in the Rotemberg

model: In both cases we assume three di¤erent values for �: � = 0:5 (partial indexation),

� = 1 (full indexation) and � = 0 (no indexation). Notice in the case of indexation to past

in�ation (i.e. with � = 1) the model is further complicated by the presence of an endogenous

predetermined variable, namely �̂t�1. As before, we numerically analyze the determinacy of

REE in the region of the plane de�ned by �� 2 [0; 5] and �Y 2 [�1; 5]. We consider a constant

value of annual trend in�ation equal to 4%.

- Figure 9 and 10 about here -

Figure 9 and 10 show that partial indexation shrinks the determinacy region. In the

Rotemberg model, hence, the higher is the degree of price indexation (both to trend and to past

in�ation), the smaller is the determinacy region. This result stands in sharp contrast to what

happen in the Calvo model, where price indexation enlarges the determinacy region. While

15 In particular, as shown in the Appendix A.3.3, under full indexation to trend in�ation, i.e., � = 1 and

� = 0, the dynamic system collapses to the standard New Keynesian model log-linearized around a zero in�ation

steady state. Under full indexation to past in�ation, i.e., � = 1 and � = 1, the dynamic system is equivalent

to the hybrid Phillips curve in Christiano et al (2005).

23



under Rotemberg price indexation shrinks the determinacy region, thus, under Calvo pricing

the opposite holds. This is just the mirror image of the fact that the e¤ect of trend in�ation

on the determinacy region is the opposite in the two pricing models. While under Rotemberg

trend in�ation enlarges the determinacy region, under Calvo pricing trend in�ation shrinks

the determinacy region. Since indexation counteracts the e¤ects of trend in�ation in both

models, then, indexation will have opposite e¤ects in the two models.

Moreover, with full indexation (both to trend and to past in�ation) the two models converge

to the same area of determinacy. In fact, with full indexation, the two models are again

equivalent as in the case of no trend in�ation (zero steady state in�ation), because the two

wedges in equations (16) and (21) disappear. This is not very surprising, since with full

indexation the steady state of both models is equivalent to the steady state of the �exible

price version of the model. This is exactly the reason why the dynamics of Rotemberg and

Calvo models are identical under full indexation.

Finally, comparing the two types of indexation in the Rotemberg model, it turns out that,

for any given level of trend in�ation, price indexation to past in�ation yields a smaller number

of determinate interest rate rules than under price indexation to trend in�ation.

6 Conclusion

This paper analyzes the dynamics of a New Keynesian model with two �rms� price-setting

mechanisms: the Rotemberg (1982) quadratic cost of price adjustment and the staggered

price setting introduced by Calvo (1983). Despite assuming two quite di¤erent forms of nom-

inal rigidities, the conventional wisdoms is to consider these two models as observationally

equivalent, because they deliver the same log-linear NKPC.

Contrary to the conventional wisdom, we show that the two models are quite di¤erent

models, once trend in�ation is considered. Indeed, the two di¤erent nominal rigidities as-

sumptions generates two di¤erent wedges in the two models. Price dispersion in the Calvo

model generates a wedge between output and hours and introduces an inertial component in

the model, while the adjustment cost in the Rotemberg model generates a wedge between

output and consumption and the model remains a pure forward looking model. These two

di¤erent wedges makes the Calvo and Rotemberg models di¤erent. However, these two wedges

vanish under the particular case of zero steady state in�ation, simply because there is no cost

of price rigidities in steady state in this peculiar case. On the contrary, trend in�ation alters

the cost of the nominal rigidities in the two models. It thus a¤ects the magnitude of these
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wedges, revealing the di¤erence between the two pricing rigidities assumptions.

In particular: (i) the long-run NKPC is negatively sloped in the Calvo model and positively

sloped in the Rotemberg model; (ii) the log-linear NKPC in the two models is qualitatively

very di¤erent, implying two di¤erent dynamic systems; (iii) positive trend in�ation shrinks

the determinacy region in the Calvo model, while it enlarges the determinacy region in the

Rotemberg model; (iv) positive trend in�ation ampli�es the impulse response functions to a

technology shock in the Calvo model, while it dampens them in the Rotemberg model; (v) a

permanent and credible disin�ation implies inertial adjustment and output gains in the Calvo

model, while it implies immediate adjustment and output losses in the Rotemberg model.

Throughout the paper we assume that the Rotemberg adjustment cost represents a pure

waste for the economy and therefore it goes in the resource constraint. This is the most

common assumption in the NK literature. Nevertheless, to understand the robustness of our

results on the di¤erence between the Rotemberg and the Calvo model we also considered the

case in which the adjustment costs are rebated to consumers.16 In this case, what we have

de�ned as the "wedge e¤ect" is shut down and the aggregate resource constraint becomes Ct =

Yt: The results, however, remain qualitatively una¤ected, even if quantitatively mitigated.17

Moreover, consumption and output move in the same direction after a disin�ation in this case.

Summing up, as a general point, this paper stresses the importance of the interplay between

long-run e¤ects and short-run dynamics. The two models are non-linear in trend in�ation.

Therefore, the two price-setting mechanisms imply a very di¤erent dynamics even to a �rst

order approximation, once the non-linearities due to trend in�ation are considered. Log-

linearizing the model around a zero in�ation steady state, instead, removes these interesting

and intrinsic di¤erences between the two models.

16This means that, as in the standard model,
'p
2

�

Pt

(��t�1)


(���)1�
Pt�1

� 1

�2

Yt is a cost for the intermediate

good producing �rm and therefore it lowers �rms pro�ts �t. However, we now assume that the cost of

adjusting prices is paid to the representative consumer. Then,
'p
2

�

Pt

(��t�1)


(���)1�
Pt�1

� 1

�2

Yt enters the

household budget constraint increasing his revenues. When markets clear the household budget constraint

becomes: Ct =
WtN;t
Pt

+
'p
2

�

Pt

(��t�1)


(���)1�
Pt�1

� 1

�2

Yt +�t: Therefore, substituting for the representative

�rms pro�ts, �t; it straightforward to �nd that market clearing conditions imply that the entire output is

consumed.
17For a detailed description of these results we refer to a previous version of the paper (see Ascari and Rossi

2008).
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A Technical Appendix - The Rotemberg model with general

indexation

A.1 Firms Price-Setting Problem

The Rotemberg model assumes that a monopolistic �rm faces a quadratic cost of adjusting

nominal prices, that can be measured in terms of the �nal-good and given by

'

2

 
Pi;t�

��t�1
��
(���)1�� Pi;t�1

� 1

!2
Yt; (48)

where ' > 0 determines the degree of nominal price rigidity. Also (48) is a general speci�cation

for the adjustment cost used by, e.g., Ireland (2007), among others. The problem for the �rm

is then

max
fPi;tg1t=0

Et

1X

j=0

Dt;t+j

8
><
>:

Pi;t+j
Pt+j

Yi;t+j �MCri;tYi;t+j+

�
'
2

�
Pi;t+j

(��t+j�1)
�
(���)1��Pi;t+j�1

� 1

�2
Yt+j

9
>=
>;
; (49)

s.t. Yi;t+j =

�
Pi;t+j
Pt+j

��"
Yt+j : (50)

where Dt;t+j � �j Uc(t+j)Uc(t)
is the stochastic discount factor, MCrt+j =

Wt+j

Pt+jAt+j
is the real

marginal cost function. Firms can change their price in each period, subject to the payment

of the adjustment cost. Therefore, all the �rms face the same problem, and thus will choose

the same price, producing the same quantity. In other words: Pi;t = Pt; Yi;t = Yt; and

MCri;t = MCrt 8i: Therefore, from the �rst order condition, after imposing the symmetric

equilibrium, we get:

1� '

 
�t�

��t�1
��
(���)1��

� 1

!
�t�

��t�1
��
(���)1��

+

+'�Et

�
Ct+1
Ct

��� " �t+1�
��t�1

��
(���)1��

� 1

!
�t+1�

��t�1
��
(���)1��

Yt+1
Yt

#

= (1�MCrt ) ": (51)

In the Rotemberg model, the adjustment cost enters the aggregate resource constraint that is

given by

Yt = Ct +
'

2

 
Pt�

��t�1
��
(���)1�� Pt�1

� 1

!2
Yt; (52)
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A.2 The Steady State

The deterministic steady state is obtained by dropping the time indices. The steady state

in�ation is equal to the Central Bank in�ation target: � = ��:

The aggregate resource constraint implies

C =
�
1�

'

2

�
��1�

�

� 1
�2�

Y; (53)

from the aggregate production function

Y = N; (54)

where we put A = 1 in steady state without loss of generality. The real marginal costs are

MCr =
W

P
: (55)

Equation (51) becomes

�
1� '

�
��1�

�

� 1
�
��1�

��
+ '�

��
��1�

�

� 1
�
��1�

��
= (1�MCrt ) "; (56)

then solving for the steady state value of aggregate real marginal costs yields

MCr =
"� 1

"
+
(1� �)

"
'
�
��1�

�

� 1
�
��1�

�

: (57)

The markup, de�ned as 1
MCr ; is therefore

markup =

�
"� 1

"
+
(1� �)

"
'
�
��1�

�

� 1
�
�1�

�

��1
; (58)

and the labor supply equation is

W

P
= dnN

�C�: (59)

Euler Equation gives

1 +�{ =
1

�
: (60)

(54), (55) and (59) imply

MCr = dnY
�Y �; (61)

then, substituting the aggregate resource constraint, (53) and , and combining it with real

marginal costs in (57) yields the steady state level of output

Y =

2
4
"�1
" + (1��)

" '
�
��1�

�
� 1
�
��1�

�

dn

�
1� '

2 (��
1�� � 1)2

��

3
5

1
�+�

: (62)
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De�ne: a � "�1
" ; b � (1��)

" ', c � dn; d �
1

�+� , which are constants independent of the

steady state in�ation rate ��: Then

d
d��

0
@
"
a+b(��1�

�
�1)��1�

�

c
�

1�'
2 (��1�

�
�1)

2
��

#d1
A =

= d [Y (��)]d�1
b(1��)���

�
(2��1�

�
�1)+�

�

1�'
2 (��

1���1)
2
�

�1

('(��1�
�
�1)(1��)���

�
)[a+b(�1�

�
�1)�1�

�
]

c
�

1�'
2 (��1�

�
�1)

2
��

This expression implies:

- � = 1 =) dY
d�� = 0

- �� = 1 =) dY
d�� > 0; so that the minimum of output occurs at negative rate of steady state

in�ation, unless � = 1; that implies b = 0.

If � < 1; then

- 9�� < 1s:t:

8
>><
>>:

�� > ��� =) dY
d�� > 0

�� = ��� =) dY
d�� = 0

�� < ��� =) dY
d�� < 0

:

Finally, given (58) and the de�nition of 	 in the main text in (16), (62) can be written as

Y =

 
	�

dn
P
MC

! 1
�+�

(63)

which is (27) in the main text.

A.3 Derivation of the Log-Linear Model

A.3.1 The IS Curve and the Real Marginal Costs

By log-linearizing the household Euler equation (3) and the household labor supply (4) we get

ĉt = Etĉt+1 �
1

�
Et (̂{t � �̂t+1) (64)

ŵt = �n̂t + �ĉt (65)

where lower case hatted letters denote log-deviations of the variable with respect to its steady

state value.

Considering now the log-linearization of the economy resource constraint (16) and simpli-

fying we get:

ĉt = ŷt � '
�
��1�� � 1

�
��1��

Y

C
�̂t + '

�
��1�� � 1

�
��1����

Y

C
�̂t�1 (66)
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note that: YC =
h
1� '

2

�
��1�� � 1

�2i�1
; then

ĉt = ŷt �
'
�
��1�� � 1

�
��1��h

1� '
2 (��

1�� � 1)2
i �̂t +

'
�
��1�� � 1

�
��1����h

1� '
2 (��

1�� � 1)2
i �̂t�1 (67)

Given (67) and considering that the log-linearized production function implies that ŷt = at+n̂t,

we can now rewrite equation (64) and (65) as:

ŷt = Etŷt+1 �
'
�
��1�� � 1

�
��1��h

1� '
2 (��

1�� � 1)2
i��̂t+1 +

+
'
�
��1�� � 1

�
��1����h

1� '
2 (��

1�� � 1)2
i ��̂t �

1

�
Et (̂{t � �̂t+1) (68)

ŵt = (�+ �) ŷt � �at �
�'
�
��1�� � 1

�
��1��h

1� '
2 (��

1�� � 1)2
i �̂t +

+
�'
�
��1�� � 1

�
��1����h

1� '
2 (��

1�� � 1)2
i �̂t�1 (69)

Note that, equation (68) is the generalized IS curve of the Rotemberg model with trend

in�ation and price indexation

Labor demand implies wt =MCrtAt, can be rewritten in log-linear terms as follows:

ŵt = cmct + at (70)

Imposing the labor market equilibrium, i.e. (69) = (70) we get the log-linear real marginal

costs:

cmct = (� + �) ŷt � (1 + �) at �
�'
�
��1�� � 1

�
��1��h

1� '
2 (��

1�� � 1)2
i �̂t +

�'
�
��1�� � 1

�
��1����h

1� '
2 (��

1�� � 1)2
i �̂t�1 (71)

A.3.2 The Log-linearized NKPC

From �rms� optimal price setting problem we get equation (13). Log-linearizing equation (13)

and considering the log-linearization of the economy resource constraint, we get the following

NKPC:

�̂t = 
p�̂t�1 + 
f��̂t+1 + 
dy� (1� �)�ŷt+1 + 
mccmct (72)

where
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Under full indexation to trend in�ation, i.e., � = 1 and � = 0,

�̂t = ��̂t+1 +
"� 1

'
cmct (73)

the NKPC collapses to the standard NKPC log-linearized around a zero in�ation steady

state.

Under full indexation to past in�ation, i.e., � = 1 and � = 1,

�̂t =
1

(1 + �)
�̂t�1 +

�

(1 + �)
�̂t+1 +

"� 1

' (1 + �)
cmct (74)

the dynamic system is equivalent to the hybrid Phillips curve in Christiano et al (2005).

A.3.3 The Dynamic System

The reduced dynamic system of the model is given by �ve equations: 1) the IS curve; 2) The

NKPC; 3) the equation of the real marginal cost; 4) the Taylor rule adopted by the monetary

authority; 5) the AR (1) process of the technology shock.

ŷt = Etŷt+1 � &c��̂t+1 + &c����̂t �
1

�
Et (̂{t � �̂t+1) (75)

�̂t = 
p�̂t�1 + 
f��̂t+1 + 
dy� (1� �)�ŷt+1 + 
mccmct (76)

cmct = (� + �) ŷt � &c��̂t + &c����̂t�1 � (1 + �) at (77)

{̂t = �i{̂t + (1� �i) [���̂t + �yŷt] (78)

at = �aat�1 + �a;t (79)

where
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Note that for � = 0 and � = 0 the parameters become:

&c =
'(���1)��

[1�'
2
(���1)2]

;


p = 0;


f =

�
(2��2���)CY +[(���1)��]

2�'

(2��2���)C
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�
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;


mc =
("�1+'(��2���)(1��))CY
'[(2�����)CY +�[(���1)��]

2�']
:

and the system of equation coincides with the one considered in the main text.

Note that for � = 1 and � = 0; with full indexation to trend in�ation, the parameters

become:
&c = 0;


past = 1;


for = 1;


dy = 0;


mc =
"�1
' :

it is easy to see that the dynamic system collapses to the one obtained by log-linearizing

around a steady state in�ation equal to zero.

Finally note that, with full indexation to past in�ation, i.e. with � = 1 and � = 1 the
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parameters becomes:

&c = 0;


p =
1
1+� ;


f =
1
1+� ;


dy = 0;


mc =
"�1

'(1+�) :

so that the dynamic system becomes:

ŷt = Etŷt+1 �
1

�
Et (̂{t � �̂t+1) (80)

�̂t =
1

1 + �
�̂t�1 +

�

1 + �
�̂t+1 +

"� 1

' (1 + �)
cmct (81)

cmct = (� + �) ŷt � (1 + �) at (82)

{̂t = �i{̂t + (1� �i) [���̂t + �yŷt] (83)

at = �aat�1 + �a;t (84)

which coincides with the standard New Keynesian model where the Phillips curve is the hybrid

one well described in Christiano et al (2005).

A.4 Determinacy

In order to derive simple analytical results, in this section we set � = 0; � = 1; � = 0; and

�� 2 [0;1), �Y 2 [0;1):

Then, system of equation is:
8
>>>>><
>>>>>:

ŷt = Etŷt+1 � &c�̂t+1 + &c�̂t � {̂t + �̂t+1

�̂t = 
f��̂t+1 + 
mccmct
cmct = ŷt � &c�̂t

{̂t = ���̂t + �yŷt

(85)

where:

&c =
Y
C' (�� � 1) �� =

'(���1)��

[1�'
2
(���1)2]

;


p = 0;


f =
(2��2���)+[(���1)��]2'
(2��2���)+�[(���1)��]2'

;

and


mc =
"�1+'(��2���)(1��)

'[(2��2���)+�[(���1)��]2']
:

Substituting cmct in the NKPC and {̂t in the IS curve we get:8
<
:

ŷt = Etŷt+1 + (1� &c) �̂t+1 + (&c � ��) �̂t � �yŷt

�̂t = 
f��̂t+1 + 
mcŷt � 
mc&c�̂t
: (86)
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We consider two cases: 1) determinacy with zero in�ation steady state; 2) determinacy

with trend in�ation; 3) the e¤ects of trend in�ation on the determinacy region.

A.4.1 Determinacy with zero in�ation steady state

Note that in the case �� = 1; the system becomes:
8
<
:

ŷt = Etŷt+1 � ���̂t � �yŷt + Et�̂t+1

�̂t = ��̂t+1 + �ŷt
(87)

we call � = "�1
' :

The system can be rewritten in matrix form as follows
2
4 �̂t

ŷt

3
5 =

2
4

�
�y+���+1

+ �
�y+1

�y+���+1
�

�y+���+1

1
�y+���+1

� � ��
�y+���+1

1
�y+���+1

3
5
2
4 �̂t+1

ŷt+1

3
5 : (88)

Conditions for having two positive roots within the unit circle are

1) detB < 1

2) trB � detB < 1

3) trB + detB > �1

Condition (1) implies that

�y > � � 1� ��
"� 1

'
: (89)

Condition (2) implies that

�� + �y
(1� �)'

("� 1)
> 1: (90)

Notice that, given the long-run log-linearized Phillips curve, ŷ = (1��)'
"�1 �̂; condition (90) has

the following interpretation

�� + �y
@ŷ

@�̂

����
LR

=
@{̂

@�̂

����
LR

where @ŷ
@�̂

���
LR
is the multiplier of in�ation in the long-run log-linear NKPC.

Condition (3) requires
(�+ 2� + ��y + 1)

�y + ��� + 1
> �1 (91)

that is always satis�ed if �+��y+1
�y+���+1

and 2�
�y+���+1

are both positive and if condition 2 is

veri�ed.
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A.4.2 Determinacy with trend in�ation and no indexation

As before, we rewrite the system of equations in the matrix form
2
4 �̂t

ŷt

3
5 = B0

2
4 �̂t+1

ŷt+1

3
5 (92)

where

B0 =

2
4 � (�y + 1)


f
�y+��
cm+&c�y
cm+1

� (&c � 1)

cm

�y+��
cm+&c�y
cm+1

cm

�y+��
cm+&c�y
cm+1

� (&c � 1)
&c
cm+1

�y+��
cm+&c�y
cm+1
� �
for

���&c
�y+��
cm+&c�y
cm+1

&c
cm+1
�y+��
cm+&c�y
cm+1

3
5

Again, conditions for having two positive roots within the unit circle are

1) detB0 < 1

2) trB0 � detB0 < 1

3) trB0 + detB0 > �1

Since

detB0 =
�
f

�y + ��
cm + &c�y
cm + 1
(93)

and

trB0 =
�
f + 
cm + ��y
f + 1

�y + ��
cm + &c�y
cm + 1
(94)

then,

1) detB0 < 1 requires

�y > �
f � 1� ��
cm: (95)

2) trB � detB < 1 requires

�� +

�
1 + &c
cm � �
f

�


cm
�y > 1 (96)

that can also be rewritten as:

�� +

�
1 + &c
cm � �
f

�


cm
�y = �� + �y

@ŷ

@�̂

����
LR

=
@{̂

@�̂

����
LR

(97)

because the long-run log-linearized Phillips curve is

�̂ = 
f��̂ + 
mcŷ � 
mc&c�̂: (98)

3) trB + detB > �1 requires

2�
f + 
cm + ��y
f + 1

�y + ��
cm + &c�y
cm + 1
> �1; (99)

that is redundant provided that 
f ; 
cm; &c > 0, �� � 1 and condition (96) satis�ed:
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A.4.3 Trend in�ation and Determinacy

We now study the e¤ect of trend in�ation on the determinacy region. In order to obtain

analytical results we compute the value of the derivative of the coe¢cient
(1+&c
cm��
f)


cm
for

�� = 1: We study the derivative in three steps by splitting our coe¢cient in three parts, i.e.,
�
1 + &c
cm � �
f

�


cm
=

1


cm
+
&c
cm

cm

�
�
f

cm

=
1


cm
+ &c �

�
f

cm

(100)

1) d&cd�� =
'(2���1)+'2

2
(���1)2

[1�'
2
(���1)2]

2 :Evaluated at �� = 1 :

d&c
d�� ��=1

= ' > 0: (101)

2) d(1=
cm)d�� =
'(2��2���)

("�1+'(��2���)(1��))
+ '2�[(���1)��]2

("�1+'(��2���)(1��))(1�'
2
(���1)2)

: Evaluated at �� = 1

d (1=
cm)

d� ��=1
=
'3 ("� 1)� '2 (1� �)

("� 1)2
=

'

("� 1)

�
3�

' (1� �)

("� 1)

�
(102)

3)

d
�
�
f

cm

�

d� ��=1
=

'�

"� 1

�
3�

' (1� �)

"� 1

�
(103)

Therefore, the total derivative of
(1+&c
cm��
f)


cm
with respect to �� evaluated at �� = 1 is

d

�
(1+&c
cm��
f)


cm

�

d�� ��=1
= '+

' (1� �)

"� 1

�
3�

' (1� �)

"� 1

�
(104)

as in Proposition 2.
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Fig. 1 Steady state and the long-run Phillips curve in the Rotemberg model
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Fig. 2 Steady state and the long-run Phillips curve in the Calvo model
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Fig. 3 IRFs to a positive technology shock under Rotemberg model.
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Fig. 4 IRFs to a positive technology shock under Calvo model.

40



1

y ( )p
k

a a
b
1

1

y pa b ka1

ya

b 1
pa

(a)

y ( )p
k

a a
b
1

1

b 1 1 pa

p

ya

(b)

y ( )p
k

a a
b
1

1

p

ya

pa
b 1

1

(c)

1

y ( )p
k

a a
b
1

1

y pa b ka1

ya

b 1
pa

(a)

1

y ( )p
k

a a
b
1

1

y pa b ka1

ya

b 1
pa

(a)

y ( )p
k

a a
b
1

1

b 1 1 pa

p

ya

(b)

y ( )p
k

a a
b
1

1

b 1 1 pa

p

ya

(b)

y ( )p
k

a a
b
1

1

p

ya

pa
b 1

1

(c)

y ( )p
k

a a
b
1

1

p

ya

pa
b 1

1

(c)
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pricing.
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Fig. 6 The e¤ect of trend in�ation on the determinacy region in the Rotemberg model.
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Fig. 7 Disin�ation in the Rotemberg model.
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Fig. 8 Disin�ation in the Calvo model.
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Fig. 9 Price indexation to trend in�ation and determinacy in the Rotemberg model.
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Fig. 10 Price indexation to past in�ation and determinacy in the Rotemberg model.
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