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Abstract

In Bayesian nonparametric inference, random discrete probability measures are commonly

used as priors within hierarchical mixture models for density estimation and for inference

on the clustering of the data. Recently it has been shown that they can also be exploited

in species sampling problems: indeed they are natural tools for modeling the random pro-

portions of species within a population thus allowing for inference on various quantities

of statistical interest. For applications that involve large samples, the exact evaluation of

the corresponding estimators becomes impracticable and, therefore, asymptotic approxima-

tions are sought. In the present paper we study the limiting behaviour of the number of

new species to be observed from further sampling, conditional on observed data, assuming

the observations are exchangeable and directed by a normalized generalized gamma process

prior. Such an asymptotic study highlights a connection between the normalized generalized

gamma process and the two–parameter Poisson–Dirichlet process that was previously known

only in the unconditional case.

Key words and phrases: Bayesian Nonparametrics; Species sampling models; Asymptotics;

σ–diversity; Polynomially and exponentially tilted random variables; Completely random

measures; Normalized generalized gamma process; Two parameter Poisson–Dirichlet process.

1 Introduction

In species sampling problems one is interested in the species composition of a certain population

(of plants, animals, genes etc.) containing an unknown number of species and only a sample

drawn from it is available. The relevance of such problems in ecology, biology and, more recently,

in genomics and bioinformatics is not surprising. From an inferential perspective, one is willing
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to use available data in order to evaluate some quantities of practical interest. The available

data specifically consist of a so–called basic sample of size n, (X1, . . . , Xn), which exhibits

Kn ∈ {1, . . . , n} distinct species, (X∗1 , . . . , X
∗
Kn
), with respective frequencies (N1, . . . , NKn),

where clearly
∑Kn

i=1Ni = n. Given a basic sample, interest mainly lies in estimating the number

of new species, K
(n)
m := Km+n −Kn, to be observed in an additional sample (Xn+1. . . . , Xn+m)

of size m and not included among the X∗j ’s, j = 1, . . . ,Kn.

Most of the contributions in the literature that address this issue rely on a frequentist ap-

proach (see [4, 6] for reviews) and only recently an alternative Bayesian nonparametric approach

has been set forth (see, e.g., [10, 24, 26, 12]). The latter resorts to a general class of discrete

random probability measures, termed species sampling models and introduced by J. Pitman in

[32]. Given a non–atomic probability measure P0 on some complete and separable metric space

X, endowed with the Borel σ–field X , a (proper) species sampling model on (X,X ) is a random

probability measure

p̃ =
∑

i≥1

p̃i δYi ,

where (Yi)i≥1 is a sequence of independent and identically distributed (i.i.d.) random elements

taking values in X and with probability distribution P0, the non–negative random weights (p̃i)i≥1

are independent from (Yi)i≥1 and are such that
∑

i≥1 p̃i = 1, almost surely. In the species

sampling context, the Yi’s act as species tags and p̃i is the random proportion with which the

i–th species is present in the population. If (Xn)n≥1 is an exchangeable sequence directed by a

species sampling model p̃, i.e. for every n ≥ 1 and A1, . . . , An in X one has

P[X1 ∈ A1, . . . , Xn ∈ An | p̃] =

n
∏

i=1

p̃(Ai) (1)

almost surely, then (Xn)n≥1 is termed species sampling sequence. Besides being an effective

tool for statistical inference, species sampling models have an appealing structural property

established in [32]. Indeed, if (Xn)n≥1 is a species sampling sequence, then there exists a

collection of non–negative weights {pj,n(n1, . . . , nk) : 1 ≤ j ≤ k+1, 1 ≤ k ≤ n, n ≥ 1} such that
∑k+1

j=1 pj,n(n1, . . . , nk) = 1, for any vector of positive integers (n1, . . . , nk) with
∑k

j=1 nj = n,

and

P[Xn+1 ∈ · |X1, . . . , Xn] = pKn+1,n(n1, . . . , nKn)P0( · ) +

Kn
∑

j=1

pj,n(n1, . . . , nKn)δX∗j ( · )

where X1, . . . , Xn is a sample with Kn distinct values X∗1 , . . . , X
∗
Kn
. Statistical applications

involving species sampling models for different purposes than those of the present paper are

provided, e.g., in [29, 30, 23].
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The Bayesian nonparametric approach we undertake postulates that the data are exchange-

able and generated by a species sampling model. Then, conditionally on the basic sample of size

n, inference is to be made on the number K
(n)
m of new distinct species that will be observed in

the additional sample of size m. Interest lies in providing both a point estimate and a measure

of uncertainty, in the form of a credible interval, for K
(n)
m given (X1, . . . , Xn). Since the condi-

tional distribution of K
(n)
m becomes intractable for large sizes m of the additional sample, one

is led to studying its limiting behaviour as m increases. Such asymptotic results, in addition to

providing useful approximations to the required estimators, are also of independent theoretical

interest since they provide useful insight on the behaviour of the models we focus on. The

only discrete random probability measure for which a conditional asymptotic result, similar to

the one investigated in this paper, is known, is the two–parameter Poisson–Dirichlet process,

shortly denoted as PD(σ, θ). According to [32], a PD (σ, θ) process is a species sampling model

characterized by

pKn+1,i(n1, . . . , nKn) =
θ +Knσ

θ + n
, pj,n(n1, . . . , nKn) =

nj − σ

θ + n
(2)

with j = 1, . . . ,Kn, σ ∈ (0, 1) and θ > −σ. In this case, [10] provide a result describing the

conditional limiting behaviour of K
(n)
m . In the present paper we focus on an alternative species

sampling model, termed normalized generalized gamma process in [23]. As we shall see in the

next section, it depends on two parameters σ ∈ (0, 1) and β > 0 and, for the sake of brevity, is

denoted by NGG(σ, β). Moreover, it is characterized by

pKn+1,n(n1, . . . , nKn) =
σ

n

∑n
l=0

(

n
l

)

(−1)l βl/σΓ
(

Kn + 1− l
σ ; β

)

∑n−1
l=0

(

n−1
l

)

(−1)l βl/σ Γ
(

Kn −
l
σ ; β

) (3)

pj,n(n1, . . . , nKn) = (nj − σ)

∑n
l=0

(

n
l

)

(−1)l βl/σ Γ
(

Kn −
l
σ ; β

)

n
∑n−1

l=0

(

n−1
l

)

(−1)lβl/σ Γ
(

Kn −
l
σ ; β

) (4)

for any j ∈ {1, . . . ,Kn}, where Γ(a;x) is the incomplete gamma function.The NGG(σ, β) process

prior has gained some attention in the Bayesian literature and it has proved to be useful for

various applications such as those considered, e.g., in [23, 1, 2, 14, 15, 16]. It is to be noted that

the NGG(σ, θ) does not feature a posterior structure that is as tractable as the one associated to

the PD(σ, θ) process (see, e.g., [32, 5, 26, 20]). Nonetheless, in terms of practical implementation,

it is possible to devise efficient simulation algorithms that allow for a full Bayesian analysis within

models based on a NGG(σ, β) prior. See [25] for a review of such algorithms.

In the present manuscript we will specify the asymptotic behaviour of K
(n)
m , given the basic

sample, as m diverges and highlight the interplay between the conditional distributions of the

PD(σ, θ) and the NGG(σ, β) processes. Since the posterior characterization of a NGG(σ, β)

process is far more involved than the one associated to the PD(σ, θ) process, the derivation of the
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conditional asymptotic results considered in this paper is technically more challenging. This is

quite interesting since it suggests that it is possibile to study the limiting conditional behaviour

of K
(n)
m even beyond species sampling models sharing some sort of conjugacy property. For

example, one might conjecture that the same asymptotic regime, up to certain transformations

of the limiting random variable, should hold also for the wide class of Gibbs–type priors, to be

recalled in Section 2. An up to date account of Bayesian Nonparametrics can be found in the

monograph [18] and, in particular for asymptotic studies, [11] provides a review of asymptotics

of nonparametric models in terms of “frequentist consistency”. Yet another type of asymptotic

results are obtained in [9, 31].

The outline of the paper is as follows. In Section 2 one can find a basic introduction to species

sampling models and a recollection of some results in the literature concerning the asymptotic

behaviour of the number Kn of distinct species in the basic sample, as n increases. Section 3

displays the main results, whereas the last section contains some concluding remarks.

2 Species sampling models and Gibbs–type priors

Let us start by providing a succinct description of completely random measures (CRM) before

defining the specific models we will consider and which can be derived as suitable transformations

of CRMs. See [25] for an overview of discrete nonparametric models defined in terms of CRMs.

Suppose µ̃ is a random element defined on some probability space (Ω,F ,P) and taking values

on the spaceMX of boundedly finite measures on (X,X ) such that for any A1, . . . , An inX , with

Ai ∩Aj = ∅ for i 6= j, the random variables µ̃(A1), . . . , µ̃(An) are mutually independent. Then

µ̃ is termed completely random measure (CRM). It is well–known that the Laplace functional

transform of µ̃ has a simple representation of the type

E

[

e−
∫
f dµ̃

]

= e−ψ(f)

where ψ(f) =
∫

R+×X
[1 − e−sf(y)] ν(ds, dy) for any measureable function f : X → R such that

∫

|f | dµ̃ < ∞ almost surely and the measure ν on R
+ × X is known as the Lévy intensity of

µ̃. See, e.g., [21]. Since a CRM is almost surely discrete, any CRM can be represented as

µ̃ =
∑

i≥1 Ji δYi with independent random jump locations (Yi)i≥1 and heights (Ji)i≥1. For our

purposes it is enough to focus on the special case of ν factorizing as ν(ds, dx) = ρ(s) ds α(dx),

which implies independence of the locations Yi’s and jumps Ji’s in the above series representation.

Furthermore, α can be taken to be non–atomic and finite, the latter ensuring almost sure

finiteness of the corresponding CRM. Now, if card({Ji : i ≥ 1} ∩ (0, ǫ)) =
∫ ǫ
0 ρ(s) ds = ∞ for
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any ǫ > 0, one can define a random probability measure on X as

p̃ =
µ̃

µ̃(X)
. (5)

This family of random probability measures is known from [19] as homogeneous normalized

random measure with independent increments, a subclass of the general class of normalized

processes introduced in [35]. Note that an X–valued exchangeable sequence (Xn)n≥1 generated

by p̃ as in (5) is a species sampling sequence.

Here we focus on a specific example where the CRM defining p̃ in (5) is the so–called

generalized gamma process [3] that is characterized by

ρ(s) =
σ

Γ(1− σ)
s−1−σ e−τs

with σ ∈ (0, 1) and τ > 0. In this case

ψ(f) =

∫

X

[(f(x) + τ)σ − τσ]α(dx) (6)

for any measurable function f : X → R such that
∫

|f |σ dα < ∞. In the sequel the model will

be reparameterized, without loss of generality (see, e.g., [33, 23]), by setting β := τσ and α as a

probability measure. The corresponding CRM will be denoted by µ̃σ,β . Henceforth, the random

probability measure p̃ obtained by normalizing µ̃σ,β as in (5) coincides, in distribution, with the

NGG(σ, β) process prior. An important special case arises when β = 0, since µ̃σ,0 reduces to

the σ–stable process, which plays a key role within the paper. For example, it is worth noting

that µ̃σ,β can also be defined as an exponential tilting of µ̃σ,0, for any β > 0. Specifically, if Pσ,0

is the probability distribution of µ̃σ,0 on MX and Pσ,β is a probability measure on MX that is

absolutely continuous with respect to Pσ,0 and such that

dPσ,β
dPσ,0

(µ) = exp
{

β − β1/σ µ(X)
}

(7)

then Pσ,β coincides with the probability distribution of µ̃σ,β . In a similar fashion one can

also define the PD(σ, θ) process as a polynomial tilting of µ̃σ,0, for any θ > −σ. Indeed, one

introduces another probability measure Qσ,θ that is still absolutely continuous with respect to

Pσ,0 and whose Radon–Nykodim derivative is

dQσ,θ

dPσ,0
(µ) =

Γ (θ + 1)

Γ
(

θ
σ + 1

) [µ(X)]−θ (8)

for any σ ∈ (0, 1) and θ > −σ. If µ∗σ,θ is the random measure with probability distribution Qσ,θ

above, then p∗ = µ∗σ,θ/µ
∗
σ,θ(X) coincides, in distribution, with a PD(σ, θ) process. See [34]. The

different tilting structure featured by the normalized generalized gamma process and the two
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parameter Poisson–Dirichlet process will be reflected by the limiting results to be illustrated in

the paper.

It is also worth to recall that both the NGG(σ, β) and the PD(σ, θ) processes can be seen as

elements of the general class of Gibbs–type nonparametric priors introduced in [13]. Gibbs–type

priors represent the most tractable subclass of species sampling models. They are characterized

by a parameter σ < 1 and a collection of non–negative quantities {Vn,k : n ≥ 1, 1 ≤ k ≤ n}

that satisfy the forward recursive relations

Vn,k = Vn+1,k+1 + (n− kσ)Vn+1,k.

These Vn,k’s define the predictive weights that characterize a species sampling sequence governed

by a Gibbs–type prior. Indeed, one has

pKn+1,n(n1, . . . , nKn) =
Vn+1,Kn+1

Vn,Kn

, pj,n(n1, . . . , nKn) =
Vn+1,Kn

Vn,Kn

(nj − σ) (9)

for each j ∈ {1, . . . ,Kn}. The fundamental simplification involved in (9) is that the probability

of observing a “new” or an “old” species depend on the sample size and on the number of

already observed distinct species but not on their frequencies: this crucially simplifies explicit

calculations. Turning to the two specific processes introduced before, in accordance with (2),

the PD(σ, θ) process identifies a Gibbs–type prior with

Vn,k =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
,

whereas, in accordance with (3) and (4), a NGG(σ, β) prior is also of Gibbs type with σ ∈ (0, 1)

and

Vn,k =
eβ σk−1

Γ(n)

n−1
∑

l=0

(

n− 1

l

)

(−1)l βl/σ Γ

(

k −
l

σ
;β

)

.

As shown in [27], a normalized CRM is a Gibbs–type prior (with σ ∈ (0, 1)) if and only if it is a

NGG(σ, β) process. This result also motivates the focus of the paper on the NGG(σ, β) process,

which clearly has a prominent role.

The result on the limiting behaviour of K
(n)
m to be determined in the next section parallels

known results for the unconditional case where one aims at determining the asymptotics ofKn as

the sample size n increases and connects to the conditional asymptotics displayed in [10] for the

PD(σ, θ) process. In order to describe the result for the unconditional case, let Tσ,0 := µ̃σ,0(X) be

the random total mass of a σ–stable CRM and denote by fσ its density function which satisfies
∫∞

0 e−λs fσ(s) ds = e−λ
σ
for any λ > 0. Moreover, let Tσ,β := µ̃σ,β(X) be the random total

mass of NGG(σ, β) process and recall that its law can be obtained by exponentially tilting the

probability distribution of Tσ,0 as in (7). In particular, if

Sσ,β
d
= T−σσ,β , (10)
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then its density function, with respect to the Lebesgue measure on R, coincides with

gσ,β(s) =
eβ

σ
e−(

β
s )

1
σ
s−1−

1
σ fσ(s

−1/σ)1(0,∞)(s).

and one has that
Kn

nσ
a.s.
−→ Sσ,β . (11)

According to the terminology introduced by [33], the random variable Sσ,β is the so–called σ–

diversity of the exchangeable random partition induced by a NGG(σ, β) process prior. See also

Definition 3.10 in Pitman [34]. Note that a similar result holds true for the PD(σ, θ) process.

Indeed, if T
′

σ,θ
d
= µ∗σ,θ(X) so that its probability distribution is obtained by polynomially tilting

the probability distribution of Tσ,0 as in (8) and

S′σ,θ
d
= (T ′σ,θ)

−σ (12)

admits density function

hσ,θ(s) =
Γ(θ + 1)

Γ
(

θ
σ + 1

)

s
θ
σ
− 1

σ
−1

σ
fσ(s

−1/σ)1(0,∞)(s).

Then one has
Kn

nσ
a.s.
−→ S′σ,θ. (13)

See [34, Theorem 3.8]. These results are somehow in line with the fact that the NGG(σ, β)

and the PD(σ, θ) processes are distributionally equivalent to normalized random measures that

are obtained by an exponential and a polynomial tilting, respectively, of a σ–stable CRM as

highlighted in (7) and in (8). Finally note that a combination of [13, Theorem 12] and [33,

Proposition 13] shows that the unconditional asymptotic results in (11) and (13) can be extended

to the whole class of Gibbs–type priors. See also [17] for another contribution at the interface

between Bayesian Nonparametrics and Gibbs–type random partitions.

3 Asymptotics of K
(n)
m with a NGG(σ, β) process

As mentioned before, inference on K
(n)
m is of great importance since it provides a measure of

species richness of a community of plants/animals or of a cDNA library for gene discovery.

The key quantity for obtaining posterior inferences is given by the probability distribution

P[K
(n)
m = k |X1, . . . , Xn] for k = 0, . . . ,m. By virtue of predictive sufficiency of the number Kn

of distinct species observed among the first n data X1, . . . , Xn, in [24] it has been shown that

in the NGG(σ, β) this distribution coincides with

P (n,j)
m (k) := P

[

K(n)
m = k |Kn = j

]

(14)
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=
G (m, k;σ,−n+ jσ)

(n)m

∑n+m−1
l=0

(

n+m−1
l

)

(−1)lβl/σΓ
(

j + k − l
σ ;β

)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

j − l
σ ;β

)

for k = 0, . . . ,m, with G (n, k; s, r) denoting the non–central generalized factorial coefficient.

See [7] for a comprehensive account on generalized factorial coefficients. Expression (14) can be

interpreted as the “posterior” probability distribution of the number of distinct new species to

be observed in a further sample of size m. Now, based on (14), one obtains the expected number

of new species as

Ê(n,j)
m := E[K(n)

m |Kn = j] =

m
∑

k=0

kP (n,j)
m (k), (15)

which corresponds to the Bayes estimator of K
(n)
m under quadratic loss. Moreover, a measure

of uncertainty of the point estimate Ê
(n,j)
m can be obtained in terms of α–credible intervals i.e.

by determining an interval (z1, z2) with z1 < z2 such that P[z1 ≤ K
(n)
m ≤ z2 |Kn = j] ≥ α.

The interval (z1, z2) of shortest length is then typically referred to as highest posterior density

interval.

The main advantage of the distribution (14) is that it is explicit. However, since the sum

of incomplete gamma functions cannot be further simplified, its computation can become over-

whelming even for moderately large sizes of n and m. This fact represents a major problem in

the frequent practical situations in which the size of the additional sample of interest is large.

For instance, in genomic applications one has to deal with relevant portions of cDNA libraries

which typically consist of millions of genes. Hence, it is natural to study the asymptotics for

K
(n)
m , given Kn, as m→ +∞, in order to obtain approximations of (14) and, consequently, also

of (15) and of the corresponding highest posterior density intervals. Indeed, if one is able to

show that a suitable rescaling of K
(n)
m , given Kn, converges in law to some random variable,

one can use the probability distribution of this limiting random quantity in order to derive the

desired approximations.

3.1 Asymptotic distribution.

The statement of the main result in the paper involves a positive random variable Yq whose

density function is, for any q > 0,

fYq(y) =
Γ(qσ + 1)

σ Γ (q + 1)
yq−1−1/σ fσ

(

y−1/σ
)

and we Ba,b to denote a beta random variable with parameters (a, b). Moreover, set Sn,j
d
=

Bj,n/σ−jYn/σ, with Bj,n/σ−j and Yn/σ independent, and denote by gSn,j the density function of

Sn,j .
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Theorem 3.1 If (Xn)n≥1 is a species sampling sequence directed by a NGG(σ, β) process prior,

conditional on Kn = j one has

K
(n)
m

mσ
→ Zn,j a.s. (16)

as m → +∞, where Zn,j is a positive random variable obtained by exponentially tilting the

density function of Sn,j, namely

fZn,j (z) =
Γ(j)e−(β/z)

1/σ
gSn,j (z)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

j − l
σ ;β

) .

Proof. The first part of the proof exploits a martingale convergence theorem along the

same lines of [34, Theorem 3.8]. In particular, let us start by computing the likelihood ratio

M
(n)
σ,β,m =

dP
(n)
σ,β

dP
(n)
σ,0

∣

∣

∣

∣

∣

∣

F
(n)
m

=
q
(n)
σ,β(K

(n)
m )

q
(n)
σ,0 (K

(n)
m )

where F
(n)
m = σ(Xn+1, . . . , Xn+m), P

(n)
σ,β is the conditional probability distribution of a normal-

ized generalized gamma process with parameter (σ, β) givenKn and, by virtue of [26, Proposition

1],

q
(n)
σ,β(K

(n)
m ) =

σK
(n)
m

(n)m

∑n+m−1
l=0

(

n+m−1
l

)

(−1)lβl/σΓ
(

Kn +K
(n)
m − l

σ ;β
)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

for any integer Kn ≥ 1 and

q
(n)
σ,0 (K

(n)
m ) =

σK
(n)
m (Kn)K(n)

m

(n)m
.

Hence (M
(n)
σ,β,m,F

(n)
m )m≥1 is a P

(n)
σ,0–martingale and by a martingale convergence theorem,M

(n)
σ,β,m

has a P
(n)
σ,0 almost sure limit, say M

(n)
σ,β , as m → +∞. Clearly we have that E

(n)
σ,0 [M

(n)
σ,β ] = 1,

where E
(n)
σ,0 denotes the expected value with respect to P

(n)
σ,0 . Let now (En)n≥1 be a sequence of

i.i.d. random variables having a negative exponential distribution with parameter 1. Moreover,

suppose the En’s are independent of (Kn,K
(n)
m ). Set E

(n)
m :=

∑Kn+K
(n)
m

i=1 Ei and note that,

conditionally on (Kn,K
(n)
m ), E

(n)
m has gamma distribution with expected value Kn +K

(n)
m . We

can then rewrite M
(n)
σ,β,m as follows

M
(n)
σ,β,m =

Γ(Kn)
∑n−1

l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

1

Γ(Kn +K
(n)
m )

×

n+m−1
∑

l=0

(

n+m− 1

l

)

(−1)lβl/σ
∫ +∞

β
yKn+K

(n)
m −l/σ−1e−ydy

=
Γ(Kn)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

1

Γ(Kn +K
(n)
m )
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×

∫ +∞

β
yKn+K

(n)
m −1e−y

(

1−
β1/σ

y1/σ

)n+m−1

dy

=
Γ(Kn)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

× E





 (β,+∞)(E
(n)
m )

(

1−
β1/σ

(E
(n)
m )1/σ

)n+m+1
∣

∣

∣

∣

∣

∣

F
(n)
m



 .

From the strong law of large numbers, E
(n)
m /(Kn+K

(n)
m )→ 1 as m→ +∞ and conditionally on

(Kn,K
(n)
m ). Using the dominated convergence theorem, we have

M
(n)
σ,β,m ≈

Γ(Kn)
∑n−1

l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

×

(

1−
β1/σ

((Kn +Kn
m)(E

n
m/(Kn +Kn

m)))
1/σ

)n+m−1

≈
Γ(Kn)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)

(

1−
β1/σ

(Kn +K
(n)
m )1/σ

)n+m−1

≈
Γ(Kn)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

) exp

{

−m
β1/σ

(K
(n)
m )1/σ

}

as m→ +∞. Since M
(n)
σ,β,m →M

(n)
σ,β almost surely (with respect to P

(n)
σ,0), then there exists some

positive random variable, say Lσ,n such that m/(K
(n)
m )1/σ → Lσ,n almost surely (with respect

to P
(n)
σ,0). In order to identify the probability distribution of Lσ,n note that it must be such that

E[e−β
1/σLσ,n ] =

1

Γ(Kn)

∫ +∞

β
yKn−1

(

1−
β1/σ

y1/σ

)n−1

e−y dy. (17)

Since Sn,Kn

d
= BKn,n/σ−Kn

Yn/σ, we have to prove that Lσ,n
d
= S

−1/σ
n,Kn

, i.e. that the density

function of Lσ,n coincides with

fLσ,n(z) =
σΓ(n)

Γ(Kn)Γ
(

n
σ −Kn

) z−σ−1

×

∫ +∞

z−σ

1

v
v

n
σ
−1− 1

σ fσ

(

v−
1
σ

)

(

z−σ

v

)Kn−1 (

1−
z−σ

v

)
n
σ
−Kn−1

dv. (18)

So we simply have to show that the Laplace transform of the density function in (18) is given

by (17). By a simple change of variable, x = v−1/σ, the previous density reduces to

fLσ,n(z) =
σ2Γ(n)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ z

0
x−n+σfσ (x)

(

z−σ

x−σ

)Kn−1 (

1−
z−σ

x−σ

)
n
σ
−Kn−1

z−σ−1dx

10



and by the change of variable y = z−σ/x−σ

fLσ,n(z) =
σΓ(n)

Γ(Kn)Γ
(

n
σ −Kn

)z−n
∫ 1

0
y−n/σ+1/σ+Kn−1(1− y)n/σ−Kn−1fσ

(

zy1/σ
)

dy.

The Laplace transform of fLσ,n is then given by

E[e−β
1/σLσ,n ] =

σΓ(n)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ ∞

0
eβ

1/σzz−n

×

∫ 1

0
y−n/σ+1/σ+Kn−1(1− y)n/σ−Kn−1fσ

(

zy1/σ
)

dy dz

=
σΓ(n)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
y−n/σ+1/σ+Kn−1(1− y)n/σ−Kn−1

×

∫ ∞

0
eβ

1/σzz−nfσ

(

zy1/σ
)

dzdy

=
σΓ(n)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
yKn−1(1− y)n/σ−Kn−1

×

∫ ∞

0
e(β/y)

1/σhh−nfσ (h) dh dy

=
Γ
(

n
σ

)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
yKn−1(1− y)n/σ−Kn−1

×
σΓ(n)

Γ
(

n
σ

)

∫ ∞

0
e(β/y)

1/σhh−nfσ (h) dh dy.

According to the well–known gamma identity, we can write

σΓ(n)

Γ
(

n
σ

)

∫ ∞

0

e(β/y)
1/σh

hn
fσ (h) dh =

σ

Γ
(

n
σ

)

∫ ∞

0
un−1

∫ ∞

0
e
−h(β

1/σ

y1/σ
+u)

fσ(h) dh du

obtaining

Γ
(

n
σ

)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
yKn−1(1− y)n/σ−Kn−1

×
σ

Γ
(

n
σ

)

∫ +∞

0
un−1

∫ +∞

0
e
−h(β

1/σ

y1/σ
+u)

fσ(h)dh du

=
Γ
(

n
σ

)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
yKn−1(1− y)n/σ−Kn−1

×
σ

Γ
(

n
σ

)

∫ +∞

0
un−1e

−(β
1/σ

y1/σ
+u)σ

du

11



=
Γ
(

n
σ

)

Γ(Kn)Γ
(

n
σ −Kn

)

∫ 1

0
yKn−1(1− y)n/σ−Kn−1

×
1

Γ
(

n
σ

)

∫ +∞

β
zn/σ−1

(

1−

(

β

zy

)1/σ
)n−1

e−zdz dy

=
1

Γ(Kn)Γ
(

n
σ −Kn

)

∫ +∞

β
e−z

×

∫ z

0
wKn−1(z − w)n/σ−Kn−1

(

1−

(

β

w

)1/σ
)n−1

dw dz

=
1

Γ(Kn)Γ
(

n
σ −Kn

)

∫ ∞

β
wKn−1

(

1−

(

β

w

)1/σ
)n−1

×

∫ +∞

w
e−z(z − w)n/σ−Kn−1 dz dw

which corresponds to (17). Finally, since the probability measures P
(n)
β,σ and P

(n)
0,σ are mutually

absolutely continuous, almost sure convergence holds true with respect to P
(n)
β,σ, as well. In order

to deduce the P
(n)
β,σ-law of Zn,Kn , it is sufficient to exploit a change of measure suggested by

P
(n)
σ,β(A) =

∫

A

dP
(n)
σ,β

dP
(n)
σ,0

dP
(n)
σ,0

and by the fact that

dP
(n)
σ,β

dP
(n)
σ,0

=M
(n)
σ,β =

Γ(Kn)
∑n−1

l=0

(

n−1
l

)

(−1)lβl/σΓ
(

Kn −
l
σ ;β

)e−β
1/σLσ,n .

This completes the proof. �

It is worth stressing that the limit random variable in the conditional case is the same as in the

unconditional case but with updated parameters and a rescaling induced by a beta-distributed

random variable. The density of Zn,j in (16) can be formally represented as

fZn,j (z) =
Γ(j)e−(β/z)

1/σ

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

j − l
σ ;β

) (19)

×
Γ(n)

Γ(j)Γ
(

n
σ − j

)zj−1
∫ +∞

z
v−1/σ(v − z)n/σ−j−1fσ(v

−1/σ)dv,

where we recall that fσ is the density function of a positive stable random variable and, then,

coincides with a density function of the random total mass of a σ–stable CRM Tσ,0 := µ̃σ,0(X).

Theorem 3.1 can be compared with an analogous result recently obtained in [10, Proposition

12



2] for the PD (σ, θ) process, where it is shown that the number of new distinct species K
(n)
m

induced by the PD(σ, θ) process is such that

K
(n)
m

mσ

a.s.
−→ Z

′

n,j (20)

as m → +∞, where Z
′

n,j
d
= Bj+θ/σ, n/σ−j Y(θ+n)/σ and the random variables Bj+θ/σ, n/σ−j and

Y(θ+n)/σ are independent. This can be paralleled with the unconditional limit since it is known

that Kn/n
σ → Yθ/σ, almost surely, as n→∞. See, e.g., [34, Theorem 3.8].

Remark. Note that a normalized σ–stable process coincides, in distribution, with both a

NGG(σ, 0) and a PD(σ, 0) process. Hence, it is no surprise that the two limits (16) and (20)

are the same, in distribution, when β = θ = 0. Another interesting case is represented by

the normalized generalized gamma process with parameter (1/2, β) which yield to the so–called

normalized inverse–gaussian processes ([22]). In particular, for the NGG(1/2, β) process the

density f1/2 in (19) is known explicitly and the previous expression can be simplified to

fZn,j (z) =
e−(β/z)

1/σ

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

j − l
σ ;β

)

Γ(n)4n−1zj/2−1

π1/2 Γ(2n− j)

×

2n−j−1
∑

l=0

(

2n− j − 1

l

)

(−z)l/2Γ

(

n−
j − 1 + l

2
; z

)

.

3.2 Sampling from the limiting random variable.

Since the above described limiting distributions cannot be easily handled for practical purposes,

it is useful to devise a simulation algorithm. In this respect, one can adapt, similarly to [28],

an exact sampling algorithm recently devised by [8] for random variate generation from poly-

nomially and exponentially tilted σ–stable distributions. This will allow to sample the limiting

random variables Z
′

n,j and Zn,j corresponding to the PD(σ, θ) and to the NGG(σ, β) case, respec-

tively. Indeed, note that Z
′

n,j is a scale mixture involving a beta random variable Bj+θ/σ, n/σ−j

and a positive random variable Y(θ+n)/σ. The latter is such that its transformation Y
−1/σ
(θ+n)/σ

admits density function of the form

f
Y
−1/σ
(θ+n)/σ

(y) =
Γ(θ + n+ 1)

Γ( θ+nσ + 1)
y−θ−nfσ(y) (0,∞)(y), (21)

which is precisely the density function of a polynomially tilted σ–stable distribution. Therefore,

random variate generation from Z
′

n,j can be easily done by independently sampling from a beta

random variable with parameter (j + θ/σ, n/σ − j) and from a random variable with density

function (21) by means of the algorithm devised in [8]. We refer to [10] for an alternative

13



sampling algorithm for Z
′

n,j via augmentation. Similar arguments can be applied in order to

sample from the limit random variable Zn,j . Indeed, observe that Zn,j is characterized by a

density function proportional to

e−(β/z)
1/σ
gSn,j (z)

with gSn,j being the density function of the random variable Sn,j
d
= Bj,n/σ−jYn/σ. Therefore,

in order to sample from the distribution of Zn,j one can apply a simple rejection sampling. In

particular, the sampling scheme would work as follows

(1) Generate B ∼ Bj,n/σ−j .

(2) Sample Y ∼ Y
−1/σ
n/σ according to Devroye’s algorithm.

(3) Set S = B Y −σ

(4) Sample U from a uniform on the interval (0, 1)

(4.a) If U ≤ exp{−(β/S)1/σ} set Z = S

(4.b) If U > exp{−(β/S)1/σ} restart from (1).

3.3 Interpretation of asymptotic quantities.

In this final section we provide a result that gives an interesting representation of the key random

variable Lσ,n
d
= S

−1/σ
n,j . To this end, we need to provide a representation for the posterior Laplace

transform of the total mass of the σ–stable CRM µ̃σ,0 or, equivalently, of the un–normalized

NGG(σ, 0) or PD(σ, 0) processes. Indeed one has

Proposition 3.1 Let (Xi)i≥1 be a species sampling sequence directed by a normalized σ–stable

process prior and suppose that the sample X1, . . . , Xn is such that Kn = j. Then

E

[

e−λ µ̃σ,0(X) |X1, . . . , Xn

]

=
1

Γ(j)

∫ ∞

λσ
yj−1

(

1−
λ1/σ

y1/σ

)n−1

e−y dy (22)

for any λ > 0.

Proof. Set Tσ,0
d
= µ̃σ,0(X). Since the joint distribution of (Kn, N1, . . . , NKn), also known as

exchangeable partition probability function (see [34]), of a normalized σ–stable process coincides

with P[(Kn, N1, . . . , NKn) = (k, n1, . . . , nk)] = σj−1Γ(j)
∏k
i=1(1− σ)ni−1/Γ(n), one has

E

[

e−λTσ,0 |X1, . . . , Xn

]

=
Γ(n)

σj−1 Γ(j)
∏k
i=1(1− σ)ni−1

1

Γ(n)

14



×

∫ ∞

0
un−1e−(λ+u)

σ
σj

k
∏

i=1

Γ(ni − σ)

Γ(1− σ)
(u+ λ)−ni+σ du

and a simple change of variable (u+ λ)σ = y yields the representation in (22). �

Proposition 3.1 allows one to draw an interesting comparison between unconditional and

conditional limits of the number of distinct species. As we have already highlighted in Section 2,

the probability distribution of the σ–diversities for the NGG(σ, β) process and the PD(σ, θ)

process arise as a power transformation (involving the parameter σ) of a suitable tilting of the

probability distribution of Tσ,0 := µ̃σ,0(X). We are now in the position to show that a similar

structure carries over when one deals with the conditional case. Resorting to the notation

set forth in Theorem 3.1, let Tσ,0,Kn to be a random variable whose law coincides with the

probability distribution of the conditional total mass Tσ,0 of a σ–stable process given a sample

of size n containing Kn distinct species. Hence, from the Laplace transform (17) in the proof of

Theorem 3.1 one can easily spot the following identity

Lσ,n
d
= Tσ,0,Kn . (23)

Let now P
(n)
σ,0 and P

(n)
σ,β be the conditional probability distributions of, respectively, the σ–stable

µ̃σ,0 and the generalized gamma µ̃σ,β processes. According to Theorem 3.1 the probability

distributions P
(n)
σ,0 and P

(n)
σ,β are mutually absolutely continuous giving rise to the conditional

counterpart of the identity (7), i.e.

dP
(n)
σ,β

dP
(n)
σ,0

(µ) =
Γ(j)

∑n−1
l=0

(

n−1
l

)

(−1)lβl/σΓ
(

j − l
σ ;β

) exp{−β1/σµ(X)}, (24)

for any σ ∈ (0, 1) and β > 0. In particular, if we denote by Tσ,β,Kn the random variable

whose probability distribution is obtained by exponentially tilting the probability distribution

of Tσ,0,Kn as in (24), then one can establish that

Zn,j
d
= (Tσ,β,Kn)

−σ. (25)

In other terms, one can easily verify that the probability distribution of the limit random variable

Zn,j in (16) can be also derived by applying to the probability distribution of Tσ,β,Kn the same

transformation characterizing the corresponding unconditional case. In a similar fashion, one can

also derive the conditional counterpart of the identity (8) for the two parameter Poisson–Dirichlet

process. Indeed, according to [10, Proposition 2], one can introduce a probability measure Q
(n)
σ,θ

onMX whose Radon–Nikodým derivative with respect to the dominating measure P
(n)
σ,0 is given

by

dQ
(n)
σ,θ

dP
(n)
σ,0

(µ) =
Γ(θ + n)Γ(j)

Γ(n)Γ
(

θ
σ + j

) [µ(X)]−θ , (26)
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for any σ ∈ (0, 1) and θ > −σ with Q
(n)
σ,θ being the probability measure of the random measure

µ∗σ,θ conditional on the sample. In particular, if we denote by T
′

σ,θ,Kn
the random variable whose

probability distribution is obtained by polynomially tilting the probability distribution of Tσ,0,Kn

as in (26), then one can easily verify that

Z
′

n,j
d
= (T

′

σ,θ,Kn
)−σ. (27)

This suggests that the probability distribution of the limiting random variable Z
′

n,j in (20) can

also be derived by applying to the probability distribution of T
′

σ,θ,Kn
the same transformation

characterizing the corresponding unconditional case.

4 Concluding remarks

The identities (25) and (27) represent the conditional counterparts of the identities (10) and

(12), respectively, given a sample containing Kn distinct species. Hence, in the same spirit

of [33, Proposition 13], we have provided a characterization of the distribution of the limiting

random variables Zn,j and Z
′

n,j in terms of a power transformation (involving the parameter σ)

applied to a suitable tilting for the conditional distribution of the total mass of the σ–stable

process. In particular, the identities (25) and (27) characterize the distribution of the limit

random variables Zn,j and Z
′

n,j via the same transformation characterizing the unconditional

case and applied to an exponential tilting and polynomial tilting, respectively, for a scale–mixture

distribution involving the beta distribution and the σ–stable distribution. To conclude, there is

a connection between the prior, and posterior, total mass of a σ–stable CRM that we conjecture

can be extended to any Gibbs–type random probability measure and will be object of future

research.
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