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Abstract

Even low levels of trend in�ation substantially a¤ect the dynamics of a basic new

Keynesian DSGE model when monetary policy is conducted by a contemporaneous

Taylor rule. Positive trend in�ation shrinks the determinacy region. Neither the

Taylor principle, which requires the in�ation coe¢cient to be greater than one, nor

the generalized Taylor principle, which requires that in the long run the nominal

interest rate should be raised by more than the increase in in�ation, is a su¢cient

condition for local determinacy of equilibrium. This �nding holds for di¤erent types

of Taylor rules, inertial policy rules and price indexation schemes. Therefore, re-

gardless of the theoretical set up, the monetary literature on Taylor rules cannot

disregard average in�ation in both theoretical and empirical analysis.
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1 Introduction1

Average in�ation in the post-war period in developed countries was moderately di¤erent

from zero and varied across countries.2 Nonetheless, much of the extensive literature on

monetary policy rules employed models approximated around the zero in�ation steady

state (see e.g., Clarida et al., 1999; Galí, 2003; Woodford, 2003; or the book edited by

Taylor, 1999).

In this article we address this inconsistency by extending the basic small scale new

Keynesian DSGE model to allow for positive trend in�ation.3 We add a Taylor rule

to describe the monetary authority�s behaviour and then examine to what extent the

properties of the model economy change as trend in�ation varies. We show that even

moderate levels of trend in�ation: (i) modify the conditions under which the ratio-

nal expectations equilibrium is determinate (or unique); (ii) alter the impulse response

functions after a cost-push shock; and (iii) increase the unconditional variances of key

variables, such as in�ation and output.

Trend in�ation has substantial e¤ects on the well-known Taylor principle for the

determinacy of the rational expectations equilibrium. This result is driven by the steady

state relative prices distortion induced by trend in�ation in the Calvo setting. As shown

by Ascari (2004) and Yun (2005), the steady state relation between output and in�ation

is highly nonlinear. The long-run Phillips curve is positively sloped around the zero

in�ation steady state; however, as soon as trend in�ation takes up even moderate positive

values, the long-run Phillips curve inverts and becomes negatively sloped re�ecting the

relative price distortion. In other words, the higher the trend in�ation the lower the level

of output in steady state. In this article, we demonstrate that this feature has remarkable

1We would like to thank seminar participants at the Kiel Institute for World Economics, Milano-

Bicocca, Paris School of Economics, IGIER-Bocconi, Padova, Tor Vergata-Rome, York. Ascari thanks

the MIUR for �nancial support through the PRIN 05 programme. The views expressed herein are those

of the authors and do not necessarily re�ect those of the Bank of Italy. The usual disclaimer applies.
2For example, Schmitt-Grohé and Uribe (2004a,b) using US data from 1960 to 1998 calibrate trend

in�ation at 4.2%. In the same period, Germany, Italy, Spain, and the UK experienced average in�ation

rates of 3.2%, 8.1%, 7.1% and 9.0% respectively (source: OECD).
3Throughout our analysis, we shall use indi¤erently trend in�ation or long-run in�ation to denote

the in�ation rate in the deterministic steady state. As our focus is on the e¤ects of trend in�ation, we

abstract from other extensions of the model that may modify the key structural equations and thereafter

the Taylor principle. For example, Kurozumi (2006) considers a non separable utility function between

consumption and real money balances, while Surico (2006) introduces a cost channel.
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implications for the celebrated Taylor principle. Therefore, a natural suspicion arises

that many of the results in the literature are drawn from a case, namely the zero in�ation

steady state, which is both empirically unrealistic and theoretically special.

Our key result is generalized and proved to be qualitatively robust to a number of

checks: (a) di¤erent types of Taylor rules (contemporaneous, backward-looking, forward-

looking and hybrid nominal interest rate rules, see e.g., Clarida et al., 2000; Bullard and

Mitra, 2002); (b) inertial Taylor rules for all the cases listed in (a); (c) di¤erent price

indexation schemes (see, e.g., Yun, 1996 and Christiano et al., 2005); and (d) di¤erent

calibration values.

In a nutshell, research in the �eld of monetary policy cannot neglect trend in�ation,

as both the theoretical model and determinacy properties of Taylor rules are sensitive

to low and moderate levels of positive trend in�ation, as generally observed in western

countries.

The seminal analysis in Clarida et al. (2000) can be taken as an example. Clarida

et al. (2000) were the �rst to estimate a Taylor rule on US data. They found the response

coe¢cient of nominal interest rate to in�ation was lower than one during the pre-Volcker

period, while larger than one afterwards. Strictly speaking, US monetary policy did not

satisfy the Taylor principle in the �rst sub-sample, while it did in the second one. Thus,

Clarida et al. (2000) interpreted this evidence as responsible for in�ation getting out

of control in the Seventies, while getting back on track later. However, the data set

used in Clarida et al. (2000) features an average in�ation of roughly 4 per cent (see

Table II, p. 157). Yet, their analysis is based on a theoretical model that assumes

zero trend in�ation. When appropriately taken into account, positive trend in�ation

substantially changes the model�s structural equations and the determinacy region, so

that one needs to account for trend in�ation in order to label the equilibrium determinate

or indeterminate. Indeed, using our benchmark parameters calibration in the standard

new Keynesian DSGE model, the Clarida et al. (2000) baseline estimates of the Taylor

rule coe¢cients would deliver indeterminacy of the rational expectation equilibrium both

in the pre-Volcker and in the Volcker-Greenspan sample period.

Not many articles in the literature investigate the e¤ects of di¤erent levels of trend

in�ation in the standard new Keynesian model.4 King and Wolman (1996) and As-

4A few papers do allow for non-zero steady state in�ation in their analysis, but they do not look

at what happens when trend in�ation changes. Khan et al. (2003) solves the optimal monetary policy

problem and then investigates the dynamics of the economy around the given optimal steady state
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cari (1998) are early papers that look at the e¤ects of trend in�ation on the properties

of the steady state of such a model. Following these contributions, Karanassou et al.

(2005) studies the long-run relationship between in�ation and output in the New Key-

nesian framework, from both a theoretical and an empirical perspective. Ascari (2004)

examines, instead, the e¤ects of trend in�ation on the dynamics of the standard new

Keynesian model both with Calvo (1983) and Taylor (1979) price setting speci�cation.

Ascari (2004), however, assumes an autoregressive process for the money supply and

thus the issue of indeterminacy under di¤erent policy rules remains unexplored. The

analysis in Ascari (2004) is extended by Amano et al. (2007) that studies how the busi-

ness cycle characteristics of the model (i.e., persistence, correlations, and volatilities)

vary with trend in�ation. Ascari and Ropele (2007) analyzes how optimal short-run

monetary policy changes with trend in�ation. Cogley and Sbordone (2005) estimates

the New Keynesian Phillips Curve (NKPC, henceforth) allowing for trend in�ation.

The key �nding by Cogley and Sbordone (2008) is that once shifts in trend in�ation are

properly taken into account, the NKPC is structural. In other words, a Calvo pricing

model with constant parameters �ts the data very well with no need for indexation or

a backward-looking component.

Finally, Kiley (2007) is a very closely related paper. Kiley (2007) investigates how

trend in�ation in�uences the determinacy region and the unconditional variance of in-

�ation in a model where prices are staggered a là Taylor (1979) and monetary policy is

described by a Taylor rule. Moreover, Hornstein and Wolman (2005) looks at a model

similar to Kiley (2007), but allow for �rm-speci�c capital. The results in Kiley (2007) are

qualitatively similar to ours, but we extend and complement his analysis in several ways.

First, we embed trend in�ation in the standard New Keynesian framework (see, e.g.,

Galí, 2003 or Woodford, 2003) using the more popular Calvo (1983) staggered pricing

framework. While the model employed in Kiley (2007) is quite stylized (i.e., two-period

Taylor-type staggering), the Calvo pricing scheme allows to vary the average price du-

ration of price contracts. Second, we provide clear analytical results about how trend

in�ation a¤ects the Taylor principle, while Kiley (2007) presents only numerical results.

Third, we generalize the analysis to di¤erent kinds of price indexation schemes, di¤erent

kinds of Taylor rules (contemporaneous, forward and backward looking) and di¤erent

degrees of inertia in the rules. Indeed, a further contribution of this article is to provide

in�ation level. Schmitt-Grohe and Uribe (2004, 2007) simulates the model under di¤erent Taylor-type

rules calibrating average in�ation on US data.
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a compact presentation of the basic New Keynesian DSGE model approximated around

a general trend in�ation level with price indexation. As such, we further generalize the

model in Ascari and Ropele (2007) by allowing for di¤erent price indexation schemes.

The next section presents the model. Section 3 provides a general formulation of

the NKPC allowing for trend in�ation and di¤erent kinds and degrees of indexation.

Section 4 discusses a series of analytical results concerning how trend in�ation a¤ects

both the determinacy of the rational expectation equilibrium and the dynamic response

of the variables to a cost push shock. Section 5 displays numerical results regarding

indexation, di¤erent kinds of Taylor rules and parameter sensitivity analysis. Section 6

concludes.

2 The Model

In this section we extend the basic new Keynesian DSGE model of Clarida et al. (1999),

Galí (2003) and Woodford (2003) to allow for positive trend in�ation and price indexa-

tion.

Households

Households live forever and their expected lifetime utility is:

E0

1X

t=0

�t

"
C1��ct � 1

1� �c
+ �m

(Mt=Pt)
1��m � 1

1� �m
� �n

N1+�n
t

1 + �n

#
, (1)

where � 2 (0; 1) is the subjective rate of time preference and E0 is the expectation

operator conditional on time t = 0 information. The instantaneous utility function is

increasing in the consumption of a �nal good (Ct) and real money balances (Mt=Pt)

and decreasing in labour (Nt). The parameters �c, �m and �n represent the inverse

intertemporal elasticity of substitution in consumption, real money balances and labour

respectively; �m and �n are positive constants. At a given period t, the representative

household faces the following nominal �ow budget constraint

PtCt +Mt +Bt � PtwtNt +Mt�1 + (1 + it�1)Bt�1 + Ft + Tt (2)

where Pt is the price of the �nal good, Bt represents holding of bonds o¤ering a one-

period nominal return it, wt is the real wage, and Ft are �rms� pro�ts that are returned

to households. In addition, in each period the government makes lump-sum nominal

transfers to households of Tt. The representative household�s problem is to maximize
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(1) subject to the sequence of budget constraints (2), yielding the following �rst order

conditions:

labor supply : �nN
�n
t C�ct = wt, (3)

money demand : �m (Mt=Pt)
��m C�ct = it= (1 + it) , (4)

consumption Euler eq. : C��ct = �Et
�
C��ct+1 (1 + it)Pt=Pt+1

�
. (5)

Equations (3), (4) and (5) have the usual economic interpretation.

Final Good Producers

In each period, a �nal good Yt is produced by perfectly competitive �rms, using a

continuum of intermediate inputs Yi;t indexed by i 2 [0; 1] and a standard CES produc-

tion function Yt =
hR 1
0 Y

(��1)=�
i;t di

i�=(��1)
, with � > 1. Taking prices as given, the �nal

good producer chooses intermediate good quantities Yi;t to maximize pro�ts, resulting

in the usual demand schedule: Yi;t = (Pi;t=Pt)
�� Yt. The zero pro�t condition of �nal

good producers leads the aggregate price index Pt =
hR 1
0 P

1��
i;t di

i1=(1��)
.

Intermediate Goods Producers

Intermediate inputs Yi;t are produced by a continuum of �rms indexed by i 2 [0; 1]

with technology Yi;t = Ni;t. Prices are sticky, with intermediate goods producers in

monopolistic competition setting prices according to a generalized discrete-time version

of the Calvo (1983) mechanism. In each period there is a �xed probability 1 � � that

a �rm can re-optimize its nominal price, i.e., P �i;t. With probability �, instead, the �rm

may either keep its nominal price unchanged or index it. In the latter case the �rm may

index its nominal price partly to steady state in�ation (e.g., Yun, 1996) and/or partly to

past in�ation rate (e.g., Christiano et al., 2005). In general, the maximization problem

of a price-resetting �rm can be formulated as

max
P �i;t

Et

1X

j=0

�jDt;t+j

8
<
:
P �i;t

h
�
j(1�!)

�!t;t+j�1

i"

Pt+j
Yi;t+j � �i;t+j

9
=
; ,

s.t. Yi;t+j =

8
<
:
P �i;t

h
�
j(1�!)

�!t;t+j�1

i"

Pt+j

9
=
;

��

Yt+j (6)

and

�t;t+j�1 =

8
<
:

1 for j = 0�
Pt
Pt�1

��
Pt+1
Pt

�
� � � � �

�
Pt+j�1
Pt+j�2

�
for j = 1; 2; � � � .
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where �i;t is the real total cost function, Dt;t+j is the stochastic discount factor, � is the

level of trend in�ation (introduced below), and �t;t+j�1 represents the cumulative gross

in�ation rate (CGIR, hereafter). The parameter " 2 [0; 1] measures the overall degree

of price indexation, while the parameter ! 2 [0; 1] allows for any degree of (geometric)

combination of indexation to trend or past in�ation rate.5 Moreover, the aggregate price

level evolves as

Pt =

�
�
�
�
1�!

�!t�1

�"(1��)
P 1��t�1 + (1� �)

�
P �i;t
�1��

�1=(1��)
, (7)

where �t = Pt=Pt�1. The solution to the pro�t maximization problem (6) returns a

formula for the optimal relative price:

P �i;t
Pt

=
�

� � 1

Et
P1
j=0 �

jDt;t+j

n
��t+1;t+jYt+j�

0
t+j

h
�
��j(1�!)

���!t;t+j�1

i"o

Et
P1
j=0 �

jDt;t+j

n
���1t+1;t+jYt+j

h
�
(1��)j(1�!)

�
(1��)!
t;t+j�1

i"o , (8)

where �0t � @�t=@Yi;t denotes the real marginal costs function. Given the linear pro-

duction technology, it follows that �0t = wt. In the deterministic steady state, equation

(8) converges to a solution if and only if ���
�(1�")

< 1. In addition, from equation (7)

it must also hold that ��
(1�")(��1)

< 1 so that in the steady state the optimal relative

price is strictly positive. Given parameter values for �, �, � and ", these two inequalities

de�ne an upper bound on the level of trend in�ation. Throughout our analysis, we work

with levels of trend in�ation that meet these restrictions.

To fully understand the e¤ects of trend in�ation on the optimal reset price, it is

insightful to look at the case of no indexation, i.e., " = 0, for which equation (8)

becomes

P �i;t
Pt

=
�

� � 1

Et
P1
j=0 �

jDt;t+j

�
��t+1;t+jYt+j�

0
t+j

�

Et
P1
j=0 �

jDt;t+j

�
���1t+1;t+jYt+j

� , (9)

and then focus on the steady state behaviour of (9). In the standard case of zero trend

in�ation, � = 1 and the CGIRs attached to future expected terms are equal to one at

all times. Future expected terms are discounted by ��. With positive trend in�ation,

� > 1 and two e¤ects come into play. First, CGIRs at di¤erent time horizons shift

5For example: the case where " = 1 and ! = 1 represents full price indexation to the past in�ation

rate; the combination " = 0:5 and ! = 0:5 represents the case in which prices are indexed for 25% to

trend in�ation and for 25% to the past in�ation rate; �nally, when " = 0 there is no price indexation

(whatever the value of !). Note that the value of ! does not a¤ect the steady state of the model, as in

steady state: � = �t�1, for every t.
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upwards, changing the e¤ective discount factors to ���
�
and ���

��1
in the numerator

and denominator, respectively. Accordingly, when intermediate �rms are free to adjust,

they will set higher prices to try to o¤set the erosion of relative prices and pro�ts

that trend in�ation automatically creates. Second, future terms in (9) are progressively

multiplied by larger CGIRs. This means that optimal price-setting under trend in�ation

re�ects future economic conditions more than short-run cyclical variations. Price-setting

�rms become more �forward-looking�. Extending the same reasoning to (8), it is easy

to see that indexation mitigates the two e¤ects just described.

Relative price dispersion and real marginal costs

At the level of intermediate �rms, it holds true that (Pi;t=Pt)
�� Yt = Ni;t. Integrating

this expression over i yields Ytst = Nt, where we de�ned st �
R 1
0 (Pi;t=Pt)

�� di and

Nt �
R 1
0 Ni;tdi. In other words, the variable st measures the relative price dispersion

across intermediate �rms and can be shown to evolve as

st = (1� �)

�
P �i;t
Pt

���
+ �

"
�t�

�
!
�1�!t�1

�"

#�
st�1. (10)

?) shows that the variable st is bounded below at one. st represents the resource costs

(or ine¢ciency loss) due to relative price dispersion under the Calvo mechanism: the

higher st, the more labour is needed to produce a given level of output. The variable st

directly a¤ects the real marginal costs via the labour supply equation (3): �0t = wt =

�nY
�n
t s�nt C

�c
t .

Government

The government injects money into the economy through nominal transfers, so Tt =

M s
t �M

s
t�1where M

s is the aggregate nominal money supply. Most importantly, we

assume that steady state money supply evolves according to the following �xed rule:

M s
t = �M s

t�1, where � is the (gross) steady-state growth rate of the nominal money

supply.

Market clearing conditions

The market clearing conditions in the goods, money and labour markets are: Yt = Ct;

Y si;t = Y
D
i;t = (Pi;t=Pt)

�� Yt, 8i; Mt =M
s
t ; and Nt =

R 1
0 Ni;tdi.

3 A generalized New Keynesian Phillips Curve

Log-linearizing (3) and (5), and using the market clearing condition bYt = bCt, yields

�n bNt + �c bYt = bwt, (11)
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bYt = Et bYt+1 � ��1c
�
bit � Etb�t+1

�
, (12)

where hatted variables denote percentage deviations from deterministic steady state.

The log-linearization of (7), (8) and (10) is more complicated and leads to the fol-

lowing system of di¤erence equations characterizing the generalized NKPC under trend

in�ation (and price indexation)

8
>>>>>>>>><
>>>>>>>>>:

�t = ��
1�"
Et�t+1 + �(�;") bYt + �(�;")�nbst + �(�;")Et

h
(� � 1)�t+1 + b�t+1

i
,

b�t = (1� �c)
h
1� ���

(��1)(1�")
i
bYt + ���

(��1)(1�")
Et

h
(� � 1)�t+1 + b�t+1

i
,

bst = �(�;")�t + ��
�(1�")bst�1,

(13)

where �t � b�t� " (!b�t�1) and b�t is an auxiliary variable. The coe¢cients �(�;"), �(�;"),
�(�;") and �(�;") are complicated convolutions of parameters that depend, inter alia, on

trend in�ation and price indexation (for their expressions see Appendix A.1). Of course,

our generalization (13) encompasses the standard NKPC: with zero trend in�ation (or

full price indexation), � = 1 (or " = 1) and �(�;") = �(�;") = 0. In this case, both

the auxiliary variable and the measure of relative prices dispersion become irrelevant

for in�ation dynamics (up to the �rst order). Thus, the system (13) is reduced to the

standard speci�cation: �t = �Et�t+1 + �bYt.
Several remarks are noteworthy. As stressed by Ascari and Ropele (2007), trend

in�ation sensibly alters the in�ation dynamics compared to the usual Calvo model with

� = 1 (or " = 1). Firstly, trend in�ation enriches the dynamic structure by adding two

new endogenous variables: b�t, which is a forward-looking variable, and bst, which is a pre-
determined variable. Secondly, trend in�ation directly a¤ects the NKPC coe¢cients. As

price-setting becomes more �forward-looking�, higher trend in�ation leads to a smaller

coe¢cient on current output and a larger coe¢cient on future expected in�ation. Given

the restrictions ���
�(1�")

< 1 and ��
(��1)(1�")

< 1 it holds true that: @�(�;")=@� < 0,

@�(�;")=@� < 0 and @�(�;")=@� > 0 (see Appendix A.1). Consequently, as trend in�a-

tion increases, the short-run NKPC �attens when drawn in the plane (bYt; b�t). Hence,
the contemporaneous relation between b�t and bYt progressively weakens: the in�ation
rate becomes less sensitive to variations in current output and more forward looking.

Thirdly, trend in�ation increases the autoregressive coe¢cient in the equation of rela-

12



tive prices dispersion. Other things being equal, higher trend in�ation yields a more

persistent adjustment of the in�ation rate. Finally, the e¤ects of trend in�ation on the

NKPC coe¢cients are partly counterbalanced by the degree of price indexation. Indeed,

one can show: @�(�;")=@" > 0, @�(�;")=@" > 0 and @�(�;")=@" < 0. In case of full price

indexation, the e¤ects of trend in�ation are completely neutralized.

To close the model we assume the central bank sets the short run nominal interest

rate according to the classic contemporaneous Taylor rule

bit = ��b�t + �Y bYt, (14)

with �� [0;1), �Y [�1;1) and at least one di¤erent from zero. Note that by letting

the policy coe¢cient �Y take small negative values too, we also consider pro-cyclical

monetary policy rules.

To assess the determinacy of the rational expectations equilibrium (REE henceforth),

we �rst substitute the postulated monetary policy rule (14) into (12) and then write the

structural equations in the following matrix format

xt = AEtxt+1 +But, (15)

where vector xt includes the endogenous variables of the model while ut represents a

cost-push shock. This stochastic disturbance is simply added to the �rst equation in

(13). Finally, A and B are conformable matrices. Determinacy of the REE obtains if

the standard Blanchard and Kahn (1980) conditions are satis�ed. Next, we analyse how

trend in�ation a¤ects the determinacy of the REE.

4 Analytical results

This section presents the analytical derivation of our main results. In order to do so,

we assume logarithmic utility in consumption, i.e., �c ! 1, indivisible labor

(see, Hansen, 1985), i.e., �n = 0, and indexation to trend in�ation, i.e., ! = 0. These

parameter values greatly simplify the speci�cation of the NKPC given in (13). Firstly,

under indexation to trend in�ation, ! = 0 and �t � b�t; so, the lagged in�ation rate
does not enter the system (13). Secondly, under indivisible labour, the real marginal

costs function is independent from the measure of relative prices dispersion. Then, the

variable bst does not contribute to the joint dynamics of output and in�ation, but only
determines the path of employment.
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Overall, these simplifying assumptions remove the two endogenous predetermined

variables present in the model, i.e., b�t�1 and bst, and this allows us to derive several
analytical results.

4.1 Determinacy of the REE under trend in�ation

Under the above assumptions, vector xt in the representation (15) includes three non-

predetermined variables, i.e., xt �
h
bYt; b�t; b�t

i0
. Hence, determinacy of REE obtains if

and only if all the eigenvalues ofA lie inside the unit circle.6 Brooks (2004) demonstrates

that necessary and su¢cient conditions are

jDj < 1, (16)

jT +Dj < M + 1, (17)

D2 � TD +M1 < 1, (18)

where T , M and D denote the trace, the sum of leading minors of order two and the

determinant of matrix A, respectively. Thus, we state the following proposition.

Proposition 1. Necessary and su¢cient conditions for determinacy of the

REE. Let ! = �n = 0, �c = 1, " 2 [0; 1], �� 2 [0;1), �Y 2 [�1;1) and at least

one di¤erent from zero. As T , M and D are all positive, determinacy of the REE

under positive trend in�ation obtains if and only if

�y + �(�;")�� > ��
2��(1�") � 1, (19)

�� + �(�;")�y > 1, (20)

D2 � TD +M < 1, (21)

where �(�;") is a complicated convolution of parameters that represents the long-run

elasticity of output to in�ation (reported in Appendix A.2).

Proof. See Appendix A.3.

6See proposition 1 in Blanchard and Kahn (1980). As we work with a linearly approximated model,

all our propositions and results relate to local properties of the rational expectations equilibrium.
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4.1.1 Determinacy condition under zero in�ation steady state

Conditions (19), (20) and (21) generalize the determinacy conditions that obtain in the

case zero in�ation steady state (or full price indexation to trend in�ation). It is useful

to brie�y recall this case in order to fully understand the e¤ects of trend in�ation on

determinacy of the REE. Substituting � = 1 or (" = 1) into (13), the relevant dynamic

system (15) becomes bivariate, i.e., xt �
h
bYt; b�t

i0
. In this case, necessary and su¢cient

conditions for determinacy of the REE are (see Brooks, 2004),

jDj < 1, (22)

jT j < D + 1. (23)

Substituting out for D and T , these two inequalities can be written as

�y + ��� > � � 1, (24)

and

�� +
1� �

�
�y > 1, (25)

which correspond to (19) and (20) for the general case. Figure 1 plots the determinacy

region (shaded area) in the plane (��; �y) under zero in�ation steady state (or full

indexation to trend in�ation). This type of picture is very well-known in the literature,

although only the positive orthant is usually displayed (e.g., Bullard and Mitra, 2002,

Woodford, 2003). Evidently, condition (24) does not bind in the positive orthant while

condition (25) does. As stressed by Bullard and Mitra (2002) and Woodford (2001, 2003,

see Ch. 4.2.2) among others, condition (25) is a generalization of the standard Taylor

principle: to ensure determinacy of the REE, the nominal interest rate should rise by

more than the increase of in�ation in the long run. Indeed, the coe¢cient (1� �) =�

represents the long run multiplier of the in�ation rate on output in a standard NKPC

log-linearized around the zero-in�ation steady state. Hence, the left-hand side of (25)

�represents the long-run increase in the nominal interest rate prescribed [...] for each unit

of permanent increase in the in�ation rate� (Woodford, 2003, p. 254). Therefore, �The

Taylor principle continues to be a crucial condition for determinacy, once understood to

refer to the cumulative response to a permanent in�ation increase� (Woodford, 2003, p.

256, italics as in the original). In other words, the Taylor principle has to be understood

as (where LR stands for long run),

@{̂

@�̂

����
LR

= �� + �Y
@Ŷ

@�̂

�����
LR

> 1. (26)
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The intuition is straightforward as provided again by Woodford (2003). Indeed, (12),

(14) and the standard NKPC continue to be satis�ed if in�ation, output and interest

rates are increased at all dates by constant factors satisfying (26) with equality. This

means that a real eigenvalue of value one corresponds to that equality.

Note that condition (25) has two main implications. Firstly, it implies a sort of

trade-o¤ between �� and �Y : values of �� smaller than one may still ensure determinacy

provided the central bank responds more aggressively to output. Secondly, in reality this

trade-o¤ is very weak: as the subjective discount factor is calibrated very close to one,

the coe¢cient (1� �) =� turns out to be roughly zero. Consequently, most researchers,

particularly in the empirical monetary policy literature, have concentrated on the value

of �� and on condition �� > 1, while neglecting the role of �Y (see e.g., Clarida et al.,

2000).

4.1.2 The Taylor principle under trend in�ation

Here we extend the discussion in Woodford (2003) to the case of positive trend in�ation.

Indeed, inequality (20) in Proposition 1 corresponds exactly to (26) in the general case as

@Ŷ
@�̂

���
LR
= �(�;"). Therefore, even under trend in�ation, the Taylor principle, expressed in

its generalized form (26), continues to be a crucial condition for determinacy of the REE.

What are then the e¤ects of positive trend in�ation on the Taylor principle? Clearly,

these e¤ects have to come through the coe¢cient �(�;").

Proposition 2. E¤ect of trend in�ation on �(�;"). Let ! = �n = 0, �c = 1, " 2 [0; 1]

and bit = ��b�t + �Y bYt, with �� 2 [0;1), �Y 2 [�1;1) and at least one strictly
positive. Then, there exists a value of trend in�ation �

�
2
�
1; �

1
"�1

�
such that

�(�;") > 0, for � 2
h
1;�

�
�
, (27)

�(�;") 6 0, for � 2
h
�
�
; (��)

1
�("�1)

�
. (28)

Proof. See Appendix A.4.

Under positive trend in�ation the coe¢cient �(�;"), which represents the long-run

elasticity of output to in�ation, switches sign from positive to negative as soon as �

becomes larger than �
�
. The long-run NKPC is extremely non-linear around � = 1: it

is positively sloped at � = 1 (because of a discounting e¤ect), but then the slope turns
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negative, because of the relative prices dispersion e¤ect (see Ascari, 2004, Yun, 2005,

Ascari and Ropele, 2007).7

Corollary. E¤ect of trend in�ation on condition (20). In the plane
�
��; �y

�
,

as trend in�ation increases, the upper determinacy frontier de�ned by �y =

(1� ��) =�(�;") progressively turns clockwise tilting around the point �� = 1 and

�y = 0. For � < �
�
the upper determinacy frontier is negatively sloping, while

for � > �
�
it is positively sloping.

Figure 2 visualizes what happens to the Taylor principle (20) as trend in�ation

increases. The intuition is exactly as described above by Woodford (2003). One has to

keep in mind that the Taylor principle relates to the long-run properties of the model,

that is, to �cumulative responses to a permanent in�ation increase�. The fact that the

long-run slope of the NKPC switches sign is evident in (13), where the term ��
1�"

becomes bigger than one for low levels of trend in�ation.8

Note that the presence of positive trend in�ation overturns the two implications

stemming from (25) under zero trend in�ation. Firstly, even for low levels of trend

in�ation, the trade-o¤ between �� and �Y disappears as the slope of the upper deter-

minacy frontier switches sign (from negative to positive). Along the upper determinacy

frontier, a central bank that wanted to be less strict on in�ation (i.e., a lower value of

��) should be at the same time less aggressive towards output. Similarly, a central bank

that wanted to be more aggressive towards output should also be tighter on in�ation.

Secondly, the higher the level of trend in�ation, the larger the absolute value of �(�;"),

hence the �atter the upper determinacy frontier. Now, this implies a crucial role for the

policy coe¢cient �Y . Indeed, given our postulated Taylor rule, the central bank has to

be careful not to over-react to output. Why? Because under positive trend in�ation, in

the long-run attempts to decrease output via a contractionary monetary policy yields

higher in�ation.

Therefore, under positive trend in�ation the Taylor principle remains valid in its

more general formulation, however its implications are radically di¤erent. This in turn

7Just to give an idea, with the parameter values used in Section 5 and assuming no indexation, i.e.,

" = 0, it turns out that �
�
= 1:00098; this corresponds to an annualized value of trend in�ation equal

to 0:39 per cent.
8 In this sense, the so-called Taylor principle can be seen as an example of the Samuelson�s famous

correspondence principle, �whereby the comparative statical behavior of a system is seen to be closely

related to its dynamical stability properties� (Samuelson, 1947, p. 351).
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casts shadows on the results in most of the literature which are based on a particular

case, i.e., � = 1, which is theoretically special as well as empirically unrealistic.

4.1.3 A second determinacy condition

In general the Taylor principle does not su¢ce for determinacy of the REE. Also in

the standard case of zero in�ation steady state, a second condition needs to be ful�lled,

namely (24). While this second condition always holds in the positive orthant, generally

it may not hold for �� 2 [0;1), �Y 2 [�1;1), as shown in Figure 1.
9 In particular, for a

given �� 2 [1;1) to ensure determinacy of the REE the central bank cannot implement

a monetary policy that is excessively pro-cyclical.

Similarly, in the case of positive trend in�ation, two more conditions need to be

ful�lled. Interestingly, both these conditions can be regarded as generalizations of (22)

to the case of trend in�ation. Restriction (19) directly corresponds to (22) in the case of

the trivariate dynamic system, where D = ��2�
�(1�")

1+�y+�(�;")��
. Furthermore, condition (21)

also collapses to (22) when translated from a trivariate to a bivariate dynamic system.10

Due to the obscure convolution of parameters in (21), it is not easy to provide a readable

expression for it, and hence we resort to the numerical analysis (as discussed in section

5). Notwithstanding, we may provide an intuition of what happens in the simulation.

Appendix A.5 shows that, assuming that the coe¢cient �(�;") is small enough (which is

quite likely under moderate trend in�ation levels), then (21) holds if

�y + �(�;")�� > ��
1�"

� 1. (29)

Note that condition (29) implies (19), which then becomes redundant. Moreover, it also

yields (24) if � = 1: It is easy to see how trend in�ation a¤ects the line described by

condition (29) in the plane (��; �y): As visualized in Figure 3, trend in�ation reduces

�(�;"), and thus it �attens the line, and it increases the intercept, which become positive

for values of � > �
1

1�" . As trend in�ation increases, therefore, the lower determinacy

frontier progressively shifts upwards and eventually crosses the upper determinacy fron-

tier for �y > 0. Trend in�ation then implies the two determinacy frontiers may cross

9More generally, conditions (25) and (24) are not su¢cient either for �y or �� 2 (�1;+1), in which

case the admissible values of �y and �� allow the possibility to D < 0:
10See Theorem 2 in Brooks (2004). If an eigenvalue is equal zero, the set of inequalities (16)-(18) are

the same as the stability ones for a two-dimensional system, where the sum of minors is replaced by the

determinant.
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in the positive orthant. In other words, while most of the literature discarded condition

(22) because it was satis�ed for positive values of (��; �y) in the case of zero in�ation

steady state, this is no longer true under positive trend in�ation.

Condition (29) is however only necessary, but not su¢cient for (21), and thus to

investigate the relevance of this qualitative result we need to resort to numerical simu-

lations. Figure 4 illustrates the numerical determinacy region in the plane (��; �Y ) for

di¤erent levels of annualized trend in�ation, i.e., 0, 2, 4, 6 and 8 per cent, showing that

the analytical insights of this section holds true.11

Result 1. E¤ect of trend in�ation on condition (21). As trend in�ation in-

creases, the lower determinacy frontier implicitly de�ned by D2 � TD +M = 1

progressively shifts upwards crossing the upper determinacy frontier in the positive

orthant of the plane (��; �Y ).

According to our calibration, the intersection in the positive orthant between the

upper and lower determinacy frontiers happens for levels of annualized trend in�ation

greater than 2.42 per cent. For levels of annualized trend in�ation greater than this value,

not only does the smallest admissible value of �� positively co-move with � (because of

the upper shift of the lower frontier) but also the central bank cannot always implement

a strict in�ation targeting policy. Moreover, Figure 4 visualizes the crucial role that

the policy coe¢cient on output plays with positive trend in�ation. As an example, in

Figure 4 we highlight with a cross the classical Taylor rule speci�cation, i.e., �� = 1:5

and �Y = 0:5. As (annualized) trend in�ation exceeds 2.4 per cent, the classical Taylor

rule yields indeterminacy of the REE. Hence, in empirical applications for realistic values

of trend in�ation the value of �Y cannot be neglected.

4.1.4 The e¤ects of price indexation

Proposition 3. E¤ects of price indexation to trend in�ation on REE determi-

nacy. Let ! = �n = 0, �c = 1, " 2 [0; 1] and bit = ��b�t + �Y bYt, with �� 2 [0;1),
�Y 2 [�1;1) and at least one strictly positive. Then, allowing for partial price

indexation to trend in�ation, i.e., " 2 (0; 1), counteracts the e¤ects trend in�ation

has on REE determinacy properties described above.

11 In drawing Figure 4, we set the free parameters as in Section 5: � = 0:75, � = 0:99, � = 11,

" = 0. Quantitatively, �(�;") is indeed very low (see Appendix), so the relevant condition (21) is not

very di¤erent from (29).
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Proof. Notice the indexation parameter only appears in the model coe¢cients as

power to trend in�ation, i.e., �
1�"
. Thus, increasing the value of indexation is

equivalent to decrease the level of trend in�ation.

So, the whole set of results discussed above carries on, although partial price index-

ation to trend in�ation mitigates the e¤ects of � to some extent.

In summary, trend in�ation unambiguously a¤ects the determinacy properties of the

REE: as � increases, the determinacy region shrinks, increasing the possibility of sunspot

�uctuations. As trend in�ation rises, implementable monetary rules call for increasingly

larger and positive coe¢cients on in�ation and smaller coe¢cients on output. These

outcomes are in agreement with the policy prescriptions suggested in Schmitt-Grohé and

Uribe (2004, 2007) and in Bullard and Mitra (2002). Although dealing with di¤erent

issues, these two articles robustly advocate a monetary policy rule characterized by a

large response to current in�ation and a close to zero coe¢cient on output. Allowing

for positive trend in�ation in a basic new Keynesian DSGE model casts some doubts

on the leaning against the wind prescription in Clarida et al. (1999). As � increases,

the central bank cannot run the risk of stabilizing the output (in deviation from steady

state) but should focus primarily on in�ation.

4.2 Closed-form solution under trend in�ation

Now we investigate how trend in�ation a¤ects the model solution. Without loss of

generality, assuming the cost-push shock is purely transitory, i.e., ut � i.i.d N (0; 1),

allows us to obtain the following closed-form solution12

b�t =
1 + �Y

1 + �Y + �(�;")��
ut, (30)

bYt = �
��

1 + �Y + �(�;")��
ut, (31)

bit =
��

1 + �Y + �(�;")��
ut, (32)

b�t = 0. (33)

In the event of a positive cost-push shock that increases in�ation, the central bank raises

the nominal interest rate. Output falls and in�ation returns to steady state. During the

12Needless to say, the solution given by (30)-(33) is legitimate if and only if conditions in Proposition

1 are ful�lled.
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adjustment path, the variable b�t does not move at all from steady state.13 Equations

(30)-(32) exactly parallel the solution that one would obtain in the standard case of zero

in�ation steady state (see Clarida et al., 1999). However, in our generalized set-up the

closed-form coe¢cients depend, inter alia, on trend in�ation and the price indexation

parameter through the term �(�;"). Several results are worth emphasizing.

Proposition 4. E¤ects of positive trend in�ation. Provided the contemporaneous

Taylor rule leads to REE determinacy and " 2 [0; 1), higher levels of trend in�a-

tion unambiguously increase the absolute value of the closed-form coe¢cients on

in�ation, output and nominal interest rate.

Proof It follows immediately from @�(�;")=@� < 0.

Corollary. As trend in�ation increases, the impulse response functions of output, in-

�ation and nominal interest rate to a cost-push shock shift outwards.

As trend in�ation increases, the central bank�s reaction to a cost-push shock becomes

increasingly more aggressive leading to a higher nominal interest rate and a deeper

recession; nevertheless, in�ation also rises more. Indeed, as already noted above, the

degree to which a contraction in output reduces in�ation decreases with trend in�ation

(i.e., @�(�;")=@� < 0). So, the contemporaneous output cost for a given reduction in

in�ation has to increase with �. In other words, by varying the nominal interest rate,

the central bank can engineer a fall in output, which, however, becomes less e¢cient

at stabilizing in�ation, as the higher the trend in�ation, the �atter the NKPC. In sum,

positive trend in�ation weakens the interest rate as a policy instrument and worsens the

trade-o¤ monetary policy will have to face.

Proposition 5. E¤ects of price indexation. For a given level of positive trend in-

�ation, a higher degree of price indexation to trend in�ation dampens the absolute

value of the closed-form coe¢cients on in�ation, output and nominal interest rate.

Thus, price indexation to trend in�ation counteracts the e¤ects of trend in�ation

(recall that @�(�;")=@" > 0): it slants the short-run generalized NKPC making monetary

policy more e¢cient at stabilizing the economy.

13To explain this latter point, note that for �c = 1 the variable b�t depends only on future expected

variables (see the second equation in (13)).
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The e¤ects just described are also re�ected in the what is called the e¢cient policy

frontier. The e¢cient policy frontier links output and in�ation variabilities, arguments

that typically characterize the central bank�s loss function, for di¤erent values of �Y and

��. In principle, with a Taylor rule such as (14) there should be two distinct e¢cient

frontiers: one arising when varying �Y and keeping �� constant; the other one arising

when varying �� and keeping �Y constant. Under our assumptions in this section, the

e¢cient policy frontier is the same in both cases.

Proposition 6. E¢cient policy frontier. Provided the interest rate rule leads to

determinacy of the REE , the e¢cient policy frontier is given by

�� = 1� �(�;")�Y , (34)

where �Y and �� denote the standard deviations of output and in�ation respec-

tively.

Proof. From (30) and (31), and since ut � i.i.d N (0; 1), it follows

�� =
1 + �Y

1 + �Y + �(�;")��
�u = 1�

�(�;")��
1 + �Y + �(�;")��

= 1� �(�;")�Y .

Before discussing the e¤ects of trend in�ation and price indexation, it is useful to

provide the interpretation of equation (34). In the plane (�Y ; ��), equation (34) draws

a straight line, which is negatively sloped and with a vertical intercept at 1. Moving

along the e¢cient frontier, say from north-west to south-east, one obtains the e¤ect of

increasing the value of �� (for any �Y ) or equivalently the e¤ect of decreasing the value

of �Y (for any ��). As the central bank becomes relatively more aggressive on in�ation,

it delivers more stable in�ation and more output variability. Clearly, the length of the

e¢cient policy frontier will di¤er according to the values of the coe¢cient that ensure

a determinate REE in Figure 3. Trend in�ation diminishes the slope of the e¢ciency

frontier, that rotates around the point (�Y = 0, �� = �u = 1).
14 It follows, as shown in

Figure 5, that the e¢cient policy frontier worsens with trend in�ation, in the sense that

a given output variability can be met only at the cost of a higher in�ation variability and

vice versa. Points on the zero trend in�ation frontier (except for �Y = 0 and �� = 1)

are no longer attainable as � rises, so there must be an increase in �Y and/or �� as

trend in�ation increases. As explained above, this is due to the fact that trend in�ation

worsens the trade-o¤ the monetary authority faces, by changing the slope of the NKPC.

14The situtation �Y = 0 and �� = 1 obtains in the limit case: �Y !1.
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5 Numerical results

In this section, we check the robustness of our analytical results to the simplifying

assumptions introduced in Section 4. We remove the assumption of labour indivisibility,

which implies that now the dispersion of relative prices enters the real marginal costs,

and thus contributes to explain the dynamics of in�ation. We also consider both price

indexation schemes to trend and the past in�ation rate and varying degrees of overall

indexation. Furthermore, we investigate the e¤ects of changing the monetary policy

rule, by introducing inertial or backward-looking and forward-looking components. For

the numerical analysis, we set parameter values as in Galí (2003): �n = 1, �c = 1,

� = 0:75, � = 0:99, � = 11 and �n = 1.

5.1 Price indexation

We begin our analysis by comparing the e¤ects of price indexation to trend in�ation,

i.e., ! = 0, versus past in�ation, i.e., ! = 1. Note in the latter case the model is further

complicated by the presence of another endogenous predetermined variable, namely

b�t�1. To analyze the determinacy of the REE we grid-search the region of the plane
de�ned by �� 2 [0; 5] and �Y 2 [�1; 5] and then pick up the pairs (��; �Y ) that lead

to determinate equilibria. Figure 6 reports the determinacy regions for di¤erent levels

of trend in�ation, i.e. 0, 2, 4, 6 and 8 per cent, in the cases of partial indexation, i.e.,

" = 0:5, and full indexation, i.e., " = 1.

The overall results are in line with the �ndings presented in previous sections. Firstly,

positive trend in�ation shrinks the determinacy region. The upper determinacy frontier

tilts clockwise, becoming positively sloping even for low levels of trend in�ation, while the

lower determinacy frontier shifts upwards. However, with respect to Figure 4, partial

price indexation visibly counteracts the e¤ects of �. For example, for " = 0:5 the

basic Taylor speci�cation (marked with a cross in the three panels of Figure 6) ensures

determinacy up to levels of trend in�ation slightly below 6 per cent. Moreover, the lowest

admissible value of �� becomes relatively less sensitive to trend in�ation. Secondly, for

a given level of trend in�ation, price indexation to past in�ation yields a larger number

of determinate interest rate rules than under price indexation to trend in�ation. While

the location of the upper determinacy frontier is similar under both price indexation

schemes (see panels A and B in Figure 6), price indexation to past in�ation has a di¤erent

e¤ect on the lower determinacy frontier, which is shifted further downwards. So, the
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enlargement of the determinacy region moves in favour of more pro-cyclical monetary

policy rules, i.e., more negative values of �Y . Finally, allowing for full price indexation,

i.e., " = 1, which neutralizes any e¤ects of trend in�ation, has di¤erent implications for

the determinacy region. Full price indexation to trend in�ation returns the determinacy

region that would arise under zero in�ation steady state; whereas, full price indexation

to past in�ation restores the original Taylor (1993) principle, i.e., �� > 1, making �Y

completely irrelevant for determinacy.15

5.2 Dynamic analysis and e¢cient policy frontier

Next, we study the e¤ects of trend in�ation on the model dynamics. We assume the

cost-push shock follows an AR(1) process with a 0:8 autoregressive parameter. Figure

8 displays the impulse response functions (IRFs, henceforth) of output, annualized in-

�ation, nominal and real interest rate to a unit cost-push shock both in the case of

zero price indexation (the left column) and price indexation to past in�ation (the right

column).16 In general, after a shock that boosts in�ation the central bank raises the

nominal interest rate for several quarters. Such monetary policy increases future ex-

pected, and possibly current, short-term (ex-ante) real interest rates making households

willing to postpone consumption. Output falls. Then, a long-lasting recession kicks in

which decreases the real marginal costs and brings in�ation back to steady state. In line

with Proposition 4, positive trend in�ation shifts outward the IRFs of output, in�ation

and nominal interest rate, suggesting a deterioration of the short run output/in�ation

trade-o¤. Although the central bank implements monetary policies that are progres-

sively more restrictive as trend in�ation increases, the �attening of the short-run NKPC

makes output have a weaker stabilizing e¤ect on in�ation. The right panels of Figure 8

also illustrate the e¤ects of 50 per cent price indexation to past in�ation.

Finally, we analyze the e¤ects of trend in�ation on the e¢cient policy frontier. In

particular, when we vary �� in the range [0; 3] we set �Y = 0:5, while when varying

15Ropele (2007) analytically shows that condition �� > 1 is indeed the necessary and su¢cient con-

dition for the determinacy of REE.
16 In Figure 8 we use the basic Taylor speci�cation, i.e., �� = 1:5 and �Y = 0:5. In the case of zero

price indexation, we can just plot two IRFs for each variable as the REE is not determinate for levels of

trend in�ation larger than 2 per cent. We do not show IRFs under price indexation to trend in�ation,

because this indexation rule only yields a rescaling with respect to IRFs with zero indexation. Finally,

from a qualitative standpoint, the results do not change if other values of ��and �Y are chosen.
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�Y [0; 3] we set �� = 2:5.17 In line with Proposition 6, Figure 9 shows that positive

levels of trend in�ation move the e¢cient policy frontier north-east, yielding worse out-

comes for both in�ation and output variability. Moreover, the e¢cient policy frontier

substantially shortens (i.e., it comprises a fewer number of points) as the REE enters the

indeterminacy region. Not surprisingly, for a given �, price indexation to trend in�a-

tion shifts the e¢cient policy frontier south-west, partially o¤setting the e¤ects of trend

in�ation (see panels C and D). Similar results obtain in the case of price indexation to

past in�ation (see panels E and F).

5.3 Interest rate rules

Inertial interest rate rules

Empirical works on Taylor rules report that central banks tend to adjust the nominal

interest rate only gradually (see, e.g., Rudebusch, 1995, Judd and Rudebusch, 1998 or

Clarida et al., 2000). Moreover, the recent monetary literature emphasizes the bene�t

of inertial behavior in the conduct of monetary policy when private agents are forward-

looking. So, here we consider speci�cations of the Taylor rule that allow the nominal

interest rate to respond also to its own lagged values, that is {̂t = ���̂t + �Y Ŷt + �i{̂t�1,

where the degree of interest rate smoothing is measured by �i. Generally speaking,

cases where �i 2 (0; 1) are referred to as partial adjustment; case �i = 1 is labelled

as a di¤erence rule; cases where �i 2 (1;1) represent instead superinertial behaviour

(Rotemberg and Woodford, 1999, and Woodford, 2003).

Figure 7 illustrates the e¤ects of trend in�ation on determinacy when �� 2 (0; 5),

�Y 2 (�1; 5) and �i = 0:5, 1, 2 and 5. Overall, the �gure con�rms that interest rate

inertia makes indeterminacy less likely, as in the basic New Keynesian model with zero

in�ation steady state. Moreover, the somewhat counterintuitive feature that explosive

rules enlarge the determinacy region survives in the trend in�ation. As discussed in

Rotemberg and Woodford (1997, see p. 100-101), it is exactly the possibility of the

explosiveness of the nominal interest rate that keeps the model on track.18

Trend in�ation, however, again radically changes the implications for determinacy

17 In this latter case the value for �� is di¤erent from the one used for the IRFs, only for convenience of

presentation. The e¢cient policy frontiers would otherwise be too short because the REE would quickly

become indeterminate as trend in�ation increases.
18The case of no feedback from in�ation and output gap on the nominal interest rate (i.e., �� =

�Y = 0) is of course indeterminate for values of �i bigger than 1.
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regarding the parameters of the monetary policy rule. In a zero trend in�ation model,

condition (26) becomes �� + �Y (1� �) =� > 1 � �i, such that �i � 1 is a su¢cient

condition for a determinate equilibrium in the positive orthant. In other words, a deter-

minate REE necessarily exists for superinertial rules (see Woodford, 2003, p. 256). In

the case of positive trend in�ation, instead, superinertial rules do not rule out indeter-

minacy in the positive orthant. Moreover, it is the value of �Y that actually matters for

REE determinacy. Looking at panel B, it is evident that there is no longer a su¢cient

condition on �� (provided that is positive) or on �i. On the contrary, for su¢ciently

high levels of trend in�ation, we can eventually state a su¢cient condition on �Y : As

stressed in Section 4.1, this is due to the switch in the sign of �(�;"). Moreover, �(�;") is

increasing with trend in�ation in absolute value. For values of trend in�ation at least

as large as 6 per cent, the value of the parameter �(�;") becomes so high (in absolute

value), that �Y becomes the crucial monetary policy parameter for condition (26) to

be satis�ed. To ensure a determinate REE, monetary policy should not respond to the

output, when monetary policy is characterized by an inertial (or superinertial) Taylor

rule and moderate trend in�ation (6 to 8 per cent).

Other interest rate rules

We further explore whether the results of the previous sections are robust to simple

variants of the Taylor rule commonly used in the literature (i.e., forward-looking interest

rate rule, backward-looking interest rate rule, and various kinds of hybrid interest rate

rules) and to changes in the structural parameters of the model. In all these cases, the

main result of the paper carries over: moderate levels of trend in�ation substantially

modify the determinacy region and a¤ect the dynamics of the model economy.

In this section, we just brie�y report the results concerning the determinacy condi-

tions in the case of the backward-looking interest rate rule, as for the other policy rules

the results are very similar to those presented in previous sections.19

When the monetary authority sets the nominal interest rate as a function of lagged

values of in�ation and output, i.e., {̂t = ���̂t�1 + �Y Ŷt�1, positive levels of trend

in�ation have some peculiar e¤ects on the determinacy regions. Panel A of Figure 10

illustrates the standard case of zero in�ation steady state. Roughly speaking, there are

two frontiers that divide the plane into four areas: one frontier is almost horizontal with

the �Y -intercept at two; the other frontier corresponds to the equivalent of condition

19The interested reader can download the extended working paper version from the authors� webpage.
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(26). Note that above the almost horizontal frontier, the determinacy region now lies on

the left hand side of condition (26) and not on its right, where the instability region lies.

Panels B, C and D of Figure 10 show the e¤ects of positive trend in�ation. Once again,

the frontier corresponding to (26) again visibly rotates clockwise.20 However, due to

the fact that the determinacy region is partly on the left and partly on the right of this

line, the e¤ect of trend in�ation is less clear-cut. Roughly speaking, as trend in�ation

increases: (i) above the almost horizontal frontier, the instability region progressively

shrinks and gives way to new determinate equilibria; (ii) below the almost horizontal

frontier, the indeterminacy region enlarges. Note that while this latter implication

parallels the e¤ect analysed in previous sections, the former e¤ect is speci�c of the

lagged interest rate rule. Moreover, as trend in�ation rises a central bank that follows

a backward-looking interest rate rule is progressively left with two options to ensure

determinacy. It could respond relatively more to in�ation and less to output, as in

previous sections; or, alternatively, the central bank could just respond with a large

coe¢cient to output, i.e. �Y > 2, and discard ��. Introducing inertial behavior in the

backward-looking interest rate rule shifts upward the almost horizontal line in Figure

10. Consequently, the e¤ect described in (i) becomes progressively less important and

disappears for superinertial policies.

5.4 Sensitivity Analysis

Finally, we check the robustness of our numerical �ndings to changes in the structural

parametrization. Figure 11 reports the REE determinacy regions, in the case of the

contemporaneous interest rate rule and no indexation,21 when the parameter values of

�, �, �n and �c are changed in turn.

The Calvo parameter � is a particularly interesting parameter to look at. In a

recent paper Cogley and Sbordone (2008) estimates an NKPC similar to (13), allowing

for time-varying trend in�ation. Their main �nding is that once trend in�ation is taken

into account, the NKPC performs rather well in the data with no need to additional

ad hoc persistence terms (such as indexation to past in�ation). Moreover, they also

20The other almost horizontal line is, in contrast, only slightly sensitive to changes in trend in�ation

for our calibration values. Finally, note the presence also of the lower frontier that qualitatively moves

as in previous cases, shifting upwards with trend in�ation.
21The qualitative e¤ects of changes in the values of these parameters are in accordance with intuition,

and robust across di¤erent types of rules, indexation and inertia.
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found that the structural parameters of the NKPC are stable, and hence, the Calvo

time-dependent pricing model with an exogenous probability of adjustment does seem

to �t the data. Cogley and Sbordone�s (2008) estimate of �, however, is 0.57, which

is lower than the one used in our simulation. Panel A in Figure 11 shows that a lower

value of the Calvo parameter mitigates the e¤ects of trend in�ation, and thus, in our

case it makes the determinacy frontier close less rapidly compared with the baseline

case. This leaves room for a relatively larger set of implementable policies for a given

trend in�ation, but it does not qualitatively change our main results, as evident from

the analytical results in Section 4. Lowering the value of the elasticity of substitution

across goods, i.e., �, from 11 to 4 has a similar implication, as shown by Panel B.

In deriving our analytical results in Section 4, for convenience we �x two parameters:

�n = 0 and �c = 1. Panel C in Figure 11 shows that considering higher values of the

inverse of the intertemporal elasticity of the labour supply (�n = 5, see Pencavel, 1986)

has a negligible quantitative e¤ect on the results presented above. Panel D, instead,

reveals that setting �c = 0:157; as in Rotemberg and Woodford (1997) and Bullard

and Mitra (2002), dramatically strengthens our results from a quantitative point of

view. Thus, in choosing a logarithmic utility function in consumption we considered a

speci�cation biased against our argument. It is easy to understand why and again it

has to do with the slope of the NKPC (i.e., �(�;") = �(�;") (�c + �n) � (1� �c) �(�;")),

which is quite sensitive to �c for our benchmark parameters value (i.e., �n = 1).
22

6 Conclusions

Despite the fact that average in�ation in the post-war period in developed countries

was moderately di¤erent from zero, much of the vast literature on monetary policy rules

worked with models approximated around the zero in�ation steady state. In this article,

we generalize the basic new Keynesian dynamic stochastic general equilibrium model

with Calvo staggered prices by taking a log-linear approximation around a general level

of trend in�ation. Imposing the monetary authority follows a simple contemporaneous

Taylor rule, we then look at how the properties of the model economy change as trend

22Moreover, the value of �c turns out to be quite important for the backward-looking interest rate

rule case. As already noted by Bullard and Mitra (2002), the position of the almost horizontal line that

characterizes Figure 10 is quite sensitive to �c: Indeed, it shifts notably upwards with �c and this has

strong e¤ects on the size of the determinacy/indeterminacy regions in our parameters� space.
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in�ation varies.

Trend in�ation greatly a¤ects the previous results established in the monetary policy

literature. Particularly, moderate levels of trend in�ation modify the determinacy region,

substantially changing the Taylor principle. Moreover, trend in�ation alters the impulse

response functions of the model economy after a cost-push shock. In line with Ascari and

Ropele (2007), this article shows that the new Keynesian framework is quite sensitive

to variations in the trend in�ation level, in the sense that higher trend in�ation makes

monetary policy much less e¤ective in controlling the dynamics of the economy. Our

key results are then generalized and proved to be robust to: (a) di¤erent kinds of Taylor

type rules; (b) inertial Taylor rules for all the cases listed in (a); (c) indexation schemes;

(d) di¤erent parameter values.

In summary, the literature on monetary policy rules is based on the of the zero in-

�ation steady state, that is both empirically unrealistic and theoretically special. The

speci�cation of the theoretical model, and consequently all the results, are quite sen-

sitive to low and moderate levels of trend in�ation as empirically observed in western

countries. Our analysis therefore shows the literature cannot neglect trend in�ation in

either empirical or theoretical investigation. As non-superneutrality is a basic feature of

the standard model, future work should aim at integrating the long-run properties and

the short-run dynamics into a fully non-linear analysis.

In future work, the relationship between price stickiness and trend in�ation in this

type of analysis should be embedded. In particular, one may argue that � is not a truly

structural parameter, and it should decrease with trend in�ation. As previously noted,

the empirical work of Cogley and Sbordone (2008) justi�es the analysis put forward

in this work and supports the empirical relevance of the results. From a theoretical

perspective, however, a possibility would be to employ the framework in Levin and Yun

(2007) that features endogenous contract duration in this analysis. Given the �ndings in

Levin and Yun (2007), our conjecture is that the results for a moderate rate of in�ation,

as considered in this paper, would not change very much while they would change for

high levels of in�ation, where the Calvo model is a poor approximation of price setting.
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A Appendix

A.1 The coe¢cients of the generalized NKPC

We report below the coe¢cients of the generalized NKPC (see the system (13) in the

text):

�(�;") =

h
1� ��

(��1)(1�")
i h
1� ���

�(1�")
i

��
(��1)(1�")

, (35)

�(�;") = �
�
�
1�"

� 1
� h
1� ��

(��1)(1�")
i
, (36)

�(�;") = �(�;") (�c + �n)� (1� �c) �(�;"), (37)

�(�;") =
���

(��1)(1�")
�
�
1�"

� 1
�

1� ��
(��1)(1�")

. (38)

Note that, given our restrictions in the main text, �(�;"), �(�;") and �(�;") are positive

for positive trend in�ation, i.e., � > 1, while the sign of �(�;") is surely positive only for

�c � 1 and ambiguous otherwise.

A.1.1 The coe¢cient �(�;") is decreasing in �, i.e.,
@�(�;")

@�
< 0

From equation (35) compute the partial derivative with respect to �,
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Notice the expression in square brackets can be factorized as follows
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And moreover, the expression in curly brackets can be written as
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Given restrictions ���
�(1�")

< 1 and ��
(��1)(1�")

< 1, the last expression is positive.

Hence,
@�(�;")

@�
< 0.

A.1.2 The coe¢cient �(�;") is increasing in �, i.e.,
@�(�;")

@�
> 0

From equation (36) compute the partial derivative with respect to �,

@�(�;")

@�
= (1� ")

�
�"
h
1� ��

(��1)(1�")
i
+ � (� � 1)�
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1�"

� 1
�

�
n�
�
1�"

� 1
� h
1� ��

(��1)(1�")
io2 > 0,

which is positive given positive trend in�ation (i.e., � > 1) and the restriction ��
(��1)(1�")

<

1.

A.1.3 The coe¢cient �(�;") is decreasing in �, i.e.,
@�(�;")

@�
< 0

This result immediately follows from the fact that
@�(�;")

@�
< 0 and

@�(�;")

@�
> 0.

A.1.4 The coe¢cient �(�;") is increasing in �, i.e.,
@�(�;")

@�
> 0

From (38) compute the partial derivative with respect to �,
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Again, assuming positive trend in�ation (i.e., � > 1) and the restriction ��
(��1)(1�")

<

1, it follows that
@�(�;")

@�
> 0.

A.2 The long-run multiplier of trend in�ation on output

We derive the long-run multiplier of trend in�ation on output, i.e., the partial derivative

@ bY =@�, where� � (1� "!) b�. To begin with, we eliminate from (13) all time subscripts
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and expectation operators, and then collect terms,
h
1� ��

1�"
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(39)

Then, we compute the derivatives:
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Therefore, substituting (41) and (42) into (40) yields
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Finally, setting �c = 1 and �n = 0 yields,
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A.3 REE Determinacy Conditions

With price indexation to trend in�ation, i.e., ! = 0, and in�nite labour supply elasticity,

i.e., �n = 0, the vector xt includes only non-predetermined variables, namelyYt, �t and

�t. To ensure determinacy of REE all eigenvalues of matrix A must lie inside the unit

circle.

The characteristic polynomial associated with a cubic matrix reads as

p (�) = ��3 + T�2 �M�+D, (45)
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where T , M and D denote the trace, the sum of leading minors of order two and the

determinant of matrix A, respectively. Setting �c = 1; the dynamic systems reads

8
>>>>>>>>><
>>>>>>>>>:
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where �(�;") = �(�;"): In matrix form,
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It follows that
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For standard calibration values and �� 2 [0;1) and �Y 2 [�1;1), one can show

that T 2 (0;1), M 2 (0;1) and D 2 (0;1).

Theorem 1 in Brooks (2004) demonstrates that necessary and su¢cient conditions

for 3X3 matrix as A to have all the eigenvalue within the unit circle are

jDj < 1, (52)

jT +Dj < M + 1, (53)

D2 � TD +M < 1. (54)
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Substituting the expressions for T , M and D in gives (19), (20) and (21) in Propo-

sition 1 in the main text.

A.4 Proof of Proposition 2: E¤ects of trend in�ation on �(�;")

First, we prove there exists a value of trend in�ation, denoted by �
�
, such that �(��;") =

0. Notice that �(1;") = (1� �) =�(1;") > 0 and �(�1=("�1);") < 0. Therefore, as �(�;") is a

continuous function and � 2
h
1; (��)1=[�("�1)]

�
, there exists a value of trend in�ation

�
�
2
�
1; �1=("�1)

�
such that �(��;") = 0. Second, notice the sign of �(�;") depends

only on the sign of its numerator, as its denominator is always positive. Given that the

numerator of �(�;") monotonically decreases with �, for � 2
h
1; (��)1=[�("�1)]

�
, it follows

that �
�
is unique and therefore the proposition follows.

A.5 Factorization of (21)

Substituting into condition (21)

1�D2 + TD �M > 0

the relevant terms, it yields

0 < 1�

 
��1�"�(�;")

1 + �y + �(�;")��

!2
(55)

��1�"�(�;")

1 + �y + �(�;")��

 
�(�;") +

1 + �(�;") + ��
1�"
�
1 + �y

�
+ �(�;")q(�;") (� � 1)

�
1 + �y

�

1 + �y + �(�;")��

!
+

�
��1�" + �(�;")

�
1 + �(�;") + q(�;") (� � 1) + ��

1�"
�
1 + �y

��

1 + �y + �(�;")��

Using simple algebra

0 <
�
1 + �y + �(�;")��

�2
�
�
��1�"�(�;")

�2

�
1 + �y + �(�;")��

�
��1�"�2(�;") +

+��1�"�(�;")

h
1 + �(�;") + ��

1�"
�
1 + �y

�
+ �(�;")q(�;") (� � 1)

�
1 + �y

�i
+

�
�
��1�" + �(�;")

�
1 + �(�;") + q(�;") (� � 1) + ��

1�"
�
1 + �y

��� �
1 + �y + �(�;")��

�
;

multiplying and, then, factorizing
�
1 + �y + �(�;")��

�
and

�
��1�"�(�;")

�
; it delivers
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0 <
�
1 + �y + �(�;")��

�2
+

�
1 + �y + �(�;")��

� h
��1�"�2(�;") �

�
��1�" + �(�;")

�
1 + �(�;") + q(�;") (� � 1) + ��

1�"
�
1 + �y

���i

+
�
��1�"�(�;")

� h
���1�"�(�;") + 1 + �(�;") + ��

1�"
�
1 + �y

�
+ �(�;")q(�;") (� � 1)

�
1 + �y

�i
:

The same expression can also be written as

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

n
�(�;")

h
��1�"�(�;") � 1� �(�;") � ��

1�"
�
1 + �y

�i
+ 1 + �y + �(�;")��

o

+�(�;")q(�;") (� � 1)
h
��1�"�(�;")

�
1 + �y

�
� 1� �y � �(�;")��

i

Now add and subtract ���1�" in the last square bracket to write

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

n
�(�;")

h
��1�"�(�;") � 1� �(�;") � ��

1�"
�
1 + �y

�i
+ 1 + �y + �(�;")��

o

+�(�;")q(�;") (� � 1)
�
��1�" � 1� �y � �(�;")��

�

+�(�;")q(�;") (� � 1)
h
��1�"�(�;")

�
1 + �y

�
� ��1�"

i
:

Then group
�
1 + �y + �(�;")�� � ��

1�"
�
to get

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

n
�(�;")

h
��1�"�(�;") � 1� �(�;") � ��

1�"
�
1 + �y

�i
+ 1 + �y + �(�;")�� � �(�;")q(�;") (� � 1)

o

+�(�;")q(�;") (� � 1)
h
��1�"�(�;")

�
1 + �y

�
� ��1�"

i
:

Moreover, note that �(�;")q(�;") = �(�;"); since �(�;") � ���(��1)(1�") and q(�;") �

1���(��1)(1�")

��(��1)(1�")

�
�1�" � 1

�
: Thus, the condition (21) can be expressed as

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

n
�(�;")

h
��1�"�(�;") � 1� �(�;") � ��

1�"
�
1 + �y

�i
+ 1 + �y + �(�;")�� � �(�;") (� � 1)

o

+�(�;")q(�;") (� � 1)��
1�"
h
�(�;")

�
1 + �y

�
� 1
i

(56)
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By sum and subtract �
h
�(�;") (�� � 1) + �y

h�
1� ��1�"

�
�

�(�;")(��1)

1��(�;")

ii
to the curly

bracket in (56), and rearranging the terms there, one can write it as

n
�(�;")

h
��1�"�(�;") � 1� �(�;") � ��

1�"
�
1 + �y

�i
+ 1 + �y + �(�;")�� � �(�;") (� � 1)

o

= �(�;") (�� � 1) + �y

"
�
1� ��1�"

�
�
�(�;") (� � 1)

1� �(�;")

#
+
�(�;") (� � 1)

1� �(�;")

h
�(�;")

�
1 + �y

�
� 1
i
+

+
�
1� �(�;")

� h
1� ��1�"�(�;") + �(�;") + �y��

1�"
i
+ �(�;") (� � 1)�y:

Substituting the above expression in (56), it yields

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

(
�(�;") (�� � 1) + �y

"
�
1� ��1�"

�
�
�(�;") (� � 1)

1� �(�;")

#
+
�(�;") (� � 1)

1� �(�;")

h
�(�;")

�
1 + �y

�
� 1
i

+
�
1� �(�;")

� h
1� ��1�"�(�;") + �(�;") + �y��

1�"
i
+ �(�;") (� � 1)�y

o

+�(�;") (� � 1)��
1�"
h
�(�;")

�
1 + �y

�
� 1
i
: (57)

Recall the Taylor principle (20)

�� + �y

�
1� ���(��1)(1�")

� �
1� ��1�"

�
� �(�;") (� � 1)

�(�;")
�
1� ���(��1)(1�")

� > 1 (58)

which can also be written as
"
�(�;") (�� � 1) + �y

"
�
1� ��1�"

�
�
�(�;") (� � 1)

1� �(�;")

##
> 0

and so (56) becomes

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

(
�(�;")

�
�� + �(�;")�y � 1

�
+
�(�;") (� � 1)

1� �(�;")

h
�(�;")

�
1 + �y

�
� 1
i

+
�
1� �(�;")

� h
1� ��1�"�(�;") + �(�;") + �y��

1�"
i
+ �(�;") (� � 1)�y

o

+�(�;") (� � 1)��
1�"
h
�(�;")

�
1 + �y

�
� 1
i

(59)
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or,

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

(
�(�;")

�
�� + �(�;")�y � 1

�
+ �(�;") (� � 1)

"
�y

1� �(�;")
� 1

#

+
�
1� �(�;")

� h
1� ��1�"�(�;") + �(�;") + �y��

1�"
io

+�(�;") (� � 1)��
1�"
h
�(�;")

�
1 + �y

�
� 1
i
: (60)

A necessary, but not su¢cient condition for this last expression to hold is

0 <
�
1 + �y + �(�;")�� � ��

1�"
�

which is exactly condition (29) in the main text.

Moreover note all the terms and parentheses in (60) are positive, apart two am-

biguous terms: (i) �(�;") (� � 1)
h

�y
1��(�;")

� 1
i
in the curly bracket; (ii) the last term

�(�;") (� � 1)��
1�"
h
�(�;")

�
1 + �y

�
� 1
i
: Both of them are multiplied by �(�;"): So as-

suming �(�;") is small enough, then (29) is the relevant condition. In our numerical

exercises, �(�;") is indeed very small (2:081 1 � 10
�3 is the highest value for the 8%

annual in�ation), so that the necessary condition (29) approximates quite well the nec-

essary and su¢cient condition.
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Figure 1: The determinacy region in the zero in�ation steady state case.
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Figure 2: The e¤ect of trend in�ation on the Taylor principle.
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Figure 4: Contemporaneous nominal interest rate rule and the e¤ects of trend in�ation

on REE determinacy. The cross marker identi�es the classic Taylor rule speci�cation,

i.e. �� = 1:5 and �Y = 0:5.
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Figure 5: The e¤ects of trend in�ation on the e¢cient policy frontier.
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Figure 6: Contemporaneous interest rate rule, price indexation and the e¤ects of trend

in�ation. The cross marker identi�es the canonical Taylor rule, i.e. �� = 1:5 and

�Y = 0:5.
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Figure 7: Inertial contemporaneous interest rate rule and the e¤ects of trend in�ation.
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Figure 8: Impulse response functions to a unit cost push shock (�� = 1:5 and �Y =

0:5). Left column: zero price indexation. Right column: 50% price indexation to past

in�ation.
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Figure 9: E¢cient policy frontiers with contemporaneous interest rate rule and di¤erent

rates of trend in�ation.
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Figure 10: Backward looking interest rate rule and the e¤ects of trend in�ation (Black

area = REE instability; Grey = REE indeterminacy; White = REE determinacy).
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Figure 11: Sensitivity analysis. Contemporaneous interest rate rule and no indexation
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