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Abstract

Even low levels of trend inflation substantially affect the dynamics of a basic new
Keynesian DSGE model when monetary policy is conducted by a contemporaneous
Taylor rule. Positive trend inflation shrinks the determinacy region. Neither the
Taylor principle, which requires the inflation coefficient to be greater than one, nor
the generalized Taylor principle, which requires that in the long run the nominal
interest rate should be raised by more than the increase in inflation, is a sufficient
condition for local determinacy of equilibrium. This finding holds for different types
of Taylor rules, inertial policy rules and price indexation schemes. Therefore, re-
gardless of the theoretical set up, the monetary literature on Taylor rules cannot

disregard average inflation in both theoretical and empirical analysis.

JEL classification: E31, E52.

Keywords: Sticky Prices, Taylor Rules and Trend Inflation

* Address: Department of Economics and Quantitative Methods, University of Pavia, Via San Felice

5, 27100 PAVIA, Italy. Tel: +39 0382 986211; e-mail: guido.ascari@unipv.it
We would like to thank seminar participants at the Kiel Institute for World Economics, Milano-

Bicocca, Paris School of Economics, IGIER-Bocconi, Padova, Tor Vergata-Rome, York. Ascari thanks
the MIUR for financial support through the PRIN 05 programme. The views expressed herein are those

of the authors and do not necessarily reflect those of the Bank of Italy. The usual disclaimer applies.



1 Introduction!

Average inflation in the post-war period in developed countries was moderately different
from zero and varied across countries.? Nonetheless, much of the extensive literature on
monetary policy rules employed models approximated around the zero inflation steady
state (see e.g., Clarida et al., 1999; Gali, 2003; Woodford, 2003; or the book edited by
Taylor, 1999).

In this article we address this inconsistency by extending the basic small scale new
Keynesian DSGE model to allow for positive trend inflation.? We add a Taylor rule
to describe the monetary authority’s behaviour and then examine to what extent the
properties of the model economy change as trend inflation varies. We show that even
moderate levels of trend inflation: (i) modify the conditions under which the ratio-
nal expectations equilibrium is determinate (or unique); (ii) alter the impulse response
functions after a cost-push shock; and (iii) increase the unconditional variances of key
variables, such as inflation and output.

Trend inflation has substantial effects on the well-known Taylor principle for the
determinacy of the rational expectations equilibrium. This result is driven by the steady
state relative prices distortion induced by trend inflation in the Calvo setting. As shown
by Ascari (2004) and Yun (2005), the steady state relation between output and inflation
is highly nonlinear. The long-run Phillips curve is positively sloped around the zero
inflation steady state; however, as soon as trend inflation takes up even moderate positive
values, the long-run Phillips curve inverts and becomes negatively sloped reflecting the
relative price distortion. In other words, the higher the trend inflation the lower the level

of output in steady state. In this article, we demonstrate that this feature has remarkable
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?For example, Schmitt-Grohé¢ and Uribe (2004a,b) using US data from 1960 to 1998 calibrate trend

inflation at 4.2%. In the same period, Germany, Italy, Spain, and the UK experienced average inflation

rates of 3.2%, 8.1%, 7.1% and 9.0% respectively (source: OECD).
3Throughout our analysis, we shall use indifferently trend inflation or long-run inflation to denote

the inflation rate in the deterministic steady state. As our focus is on the effects of trend inflation, we
abstract from other extensions of the model that may modify the key structural equations and thereafter
the Taylor principle. For example, Kurozumi (2006) considers a non separable utility function between

consumption and real money balances, while Surico (2006) introduces a cost channel.



implications for the celebrated Taylor principle. Therefore, a natural suspicion arises
that many of the results in the literature are drawn from a case, namely the zero inflation
steady state, which is both empirically unrealistic and theoretically special.

Our key result is generalized and proved to be qualitatively robust to a number of
checks: (a) different types of Taylor rules (contemporaneous, backward-looking, forward-
looking and hybrid nominal interest rate rules, see e.g., Clarida et al., 2000; Bullard and
Mitra, 2002); (b) inertial Taylor rules for all the cases listed in (a); (c) different price
indexation schemes (see, e.g., Yun, 1996 and Christiano et al., 2005); and (d) different
calibration values.

In a nutshell, research in the field of monetary policy cannot neglect trend inflation,
as both the theoretical model and determinacy properties of Taylor rules are sensitive
to low and moderate levels of positive trend inflation, as generally observed in western
countries.

The seminal analysis in Clarida et al. (2000) can be taken as an example. Clarida
et al. (2000) were the first to estimate a Taylor rule on US data. They found the response
coefficient of nominal interest rate to inflation was lower than one during the pre-Volcker
period, while larger than one afterwards. Strictly speaking, US monetary policy did not
satisfy the Taylor principle in the first sub-sample, while it did in the second one. Thus,
Clarida et al. (2000) interpreted this evidence as responsible for inflation getting out
of control in the Seventies, while getting back on track later. However, the data set
used in Clarida et al. (2000) features an average inflation of roughly 4 per cent (see
Table II, p. 157). Yet, their analysis is based on a theoretical model that assumes
zero trend inflation. When appropriately taken into account, positive trend inflation
substantially changes the model’s structural equations and the determinacy region, so
that one needs to account for trend inflation in order to label the equilibrium determinate
or indeterminate. Indeed, using our benchmark parameters calibration in the standard
new Keynesian DSGE model, the Clarida et al. (2000) baseline estimates of the Taylor
rule coefficients would deliver indeterminacy of the rational expectation equilibrium both
in the pre-Volcker and in the Volcker-Greenspan sample period.

Not many articles in the literature investigate the effects of different levels of trend

inflation in the standard new Keynesian model.* King and Wolman (1996) and As-

1A few papers do allow for non-zero steady state inflation in their analysis, but they do not look
at what happens when trend inflation changes. Khan et al. (2003) solves the optimal monetary policy

problem and then investigates the dynamics of the economy around the given optimal steady state



cari (1998) are early papers that look at the effects of trend inflation on the properties
of the steady state of such a model. Following these contributions, Karanassou et al.
(2005) studies the long-run relationship between inflation and output in the New Key-
nesian framework, from both a theoretical and an empirical perspective. Ascari (2004)
examines, instead, the effects of trend inflation on the dynamics of the standard new
Keynesian model both with Calvo (1983) and Taylor (1979) price setting specification.
Ascari (2004), however, assumes an autoregressive process for the money supply and
thus the issue of indeterminacy under different policy rules remains unexplored. The
analysis in Ascari (2004) is extended by Amano et al. (2007) that studies how the busi-
ness cycle characteristics of the model (i.e., persistence, correlations, and volatilities)
vary with trend inflation. Ascari and Ropele (2007) analyzes how optimal short-run
monetary policy changes with trend inflation. Cogley and Sbordone (2005) estimates
the New Keynesian Phillips Curve (NKPC, henceforth) allowing for trend inflation.
The key finding by Cogley and Sbordone (2008) is that once shifts in trend inflation are
properly taken into account, the NKPC is structural. In other words, a Calvo pricing
model with constant parameters fits the data very well with no need for indexation or
a backward-looking component.

Finally, Kiley (2007) is a very closely related paper. Kiley (2007) investigates how
trend inflation influences the determinacy region and the unconditional variance of in-
flation in a model where prices are staggered a la Taylor (1979) and monetary policy is
described by a Taylor rule. Moreover, Hornstein and Wolman (2005) looks at a model
similar to Kiley (2007), but allow for firm-specific capital. The results in Kiley (2007) are
qualitatively similar to ours, but we extend and complement his analysis in several ways.
First, we embed trend inflation in the standard New Keynesian framework (see, e.g.,
Gali, 2003 or Woodford, 2003) using the more popular Calvo (1983) staggered pricing
framework. While the model employed in Kiley (2007) is quite stylized (i.e., two-period
Taylor-type staggering), the Calvo pricing scheme allows to vary the average price du-
ration of price contracts. Second, we provide clear analytical results about how trend
inflation affects the Taylor principle, while Kiley (2007) presents only numerical results.
Third, we generalize the analysis to different kinds of price indexation schemes, different
kinds of Taylor rules (contemporaneous, forward and backward looking) and different

degrees of inertia in the rules. Indeed, a further contribution of this article is to provide

inflation level. Schmitt-Grohe and Uribe (2004, 2007) simulates the model under different Taylor-type

rules calibrating average inflation on US data.



a compact presentation of the basic New Keynesian DSGE model approximated around
a general trend inflation level with price indexation. As such, we further generalize the
model in Ascari and Ropele (2007) by allowing for different price indexation schemes.
The next section presents the model. Section 3 provides a general formulation of
the NKPC allowing for trend inflation and different kinds and degrees of indexation.
Section 4 discusses a series of analytical results concerning how trend inflation affects
both the determinacy of the rational expectation equilibrium and the dynamic response
of the variables to a cost push shock. Section 5 displays numerical results regarding
indexation, different kinds of Taylor rules and parameter sensitivity analysis. Section 6

concludes.

2 The Model

In this section we extend the basic new Keynesian DSGE model of Clarida et al. (1999),
Gali (2003) and Woodford (2003) to allow for positive trend inflation and price indexa-
tion.

Households

Households live forever and their expected lifetime utility is:

00 1—0o 1—om 140
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where 5 € (0,1) is the subjective rate of time preference and Ej is the expectation
operator conditional on time ¢t = 0 information. The instantaneous utility function is
increasing in the consumption of a final good (C;) and real money balances (M;/P;)
and decreasing in labour (N;). The parameters o, o, and o0, represent the inverse
intertemporal elasticity of substitution in consumption, real money balances and labour
respectively; x,, and Yx,, are positive constants. At a given period ¢, the representative

household faces the following nominal flow budget constraint
PCy+ M+ B < PBwgNy + My + (1 +i4-1) Bi1 + F, + T3 (2)

where P, is the price of the final good, B; represents holding of bonds offering a one-
period nominal return ;, wy is the real wage, and F} are firms’ profits that are returned
to households. In addition, in each period the government makes lump-sum nominal

transfers to households of T;. The representative household’s problem is to maximize



(1) subject to the sequence of budget constraints (2), yielding the following first order

conditions:
labor supply : Xn N7 Ce = wy, (3)
money demand : X (My/Py)" 7™ CYe =i/ (1 +144) , (4)
consumption Euler eq. : Cy % = BE; [CL% (1 +14) P/ Piya] . (5)

Equations (3), (4) and (5) have the usual economic interpretation.

Final Good Producers

In each period, a final good Y; is produced by perfectly competitive firms, using a
continuum of intermediate inputs Y;; indexed by i € [0,1] and a standard CES produc-
tion function Y; = [fo (6-1/64 ] /(6_1), with # > 1. Taking prices as given, the final
good producer chooses 1ntermed1ate good quantities Y;; to maximize profits, resulting
in the usual demand schedule: Y;; = (P;¢/ Pt)fe Y;. The zero profit condition of final
good producers leads the aggregate price index P, = [fo P1 0 ]1/(179).

Intermediate Goods Producers

Intermediate inputs Y;; are produced by a continuum of firms indexed by i € [0, 1]
with technology Y;; = N;;. Prices are sticky, with intermediate goods producers in
monopolistic competition setting prices according to a generalized discrete-time version
of the Calvo (1983) mechanism. In each period there is a fixed probability 1 — « that
a firm can re-optimize its nominal price, L.e., P. With probability «, instead, the firm
may either keep its nominal price unchanged or index it. In the latter case the firm may
index its nominal price partly to steady state inflation (e.g., Yun, 1996) and/or partly to
past inflation rate (e.g., Christiano et al., 2005). In general, the maximization problem

of a price-resetting firm can be formulated as

5 i i P [H H‘tdt+] 1} .
max o . i~ TDigei
P t pr tt+j Pt—i—j i,t+j 1,t+]
. [Fil-w) ey 7
P [P, ]
s.t. Yigj = Pt—l—' Vit (6)
J
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where I'; ; is the real total cost function, D; ;4 ; is the stochastic discount factor, 11 is the
level of trend inflation (introduced below), and IT; 4+ j—1 represents the cumulative gross
inflation rate (CGIR, hereafter). The parameter € € [0, 1] measures the overall degree
of price indexation, while the parameter w € [0, 1] allows for any degree of (geometric)
combination of indexation to trend or past inflation rate.” Moreover, the aggregate price
level evolves as

1/(1-9)
} , )

—=1—wirw e(1-0) _ * —0
by = [a (H Ht—l) P4 (1—a)( i,t)l

where I, = P,/P,_1. The solution to the profit maximization problem (6) returns a

formula for the optimal relative price:

j = 0i(1-w) -0 c
P 0 Ey Z;io & Dy p4j {Hf—&-l,t—i-thJer;—i—j [H Ht,t—fj—l} } ()
- i — —=(1-0)5(1— 1-6 e
Fi o-1 By Zjo'io oI Dt {H§+11,t+jY;f+j {H( )J( W)Hl(f,t+j)idlj| }

where I', = 9I';/0Y;; denotes the real marginal costs function. Given the linear pro-

duction technology, it follows that I, = w;. In the deterministic steady state, equation

€)

(8) converges to a solution if and only if aﬂﬁe(k < 1. In addition, from equation (7)

it must also hold that oT[" 2"

< 1 so that in the steady state the optimal relative
price is strictly positive. Given parameter values for «, 5, 8 and ¢, these two inequalities
define an upper bound on the level of trend inflation. Throughout our analysis, we work
with levels of trend inflation that meet these restrictions.

To fully understand the effects of trend inflation on the optimal reset price, it is

insightful to look at the case of no indexation, i.e., ¢ = 0, for which equation (8)

becomes
Py g B > 50 Dy (Hf+1,t+jyt+jré+j> ()
P01 B3 aiDysy (UL Vs )

and then focus on the steady state behaviour of (9). In the standard case of zero trend

inflation, II = 1 and the CGIRs attached to future expected terms are equal to one at
all times. Future expected terms are discounted by «f. With positive trend inflation,

II > 1 and two effects come into play. First, CGIRs at different time horizons shift

®For example: the case where ¢ = 1 and w = 1 represents full price indexation to the past inflation
rate; the combination € = 0.5 and w = 0.5 represents the case in which prices are indexed for 25% to
trend inflation and for 25% to the past inflation rate; finally, when ¢ = 0 there is no price indexation
(whatever the value of w). Note that the value of w does not affect the steady state of the model, as in

steady state: II = m;_1, for every t.
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upwards, changing the effective discount factors to a,@ﬁe and aﬂﬁe_l in the numerator
and denominator, respectively. Accordingly, when intermediate firms are free to adjust,
they will set higher prices to try to offset the erosion of relative prices and profits
that trend inflation automatically creates. Second, future terms in (9) are progressively
multiplied by larger CGIRs. This means that optimal price-setting under trend inflation
reflects future economic conditions more than short-run cyclical variations. Price-setting
firms become more “forward-looking”. Extending the same reasoning to (8), it is easy
to see that indexation mitigates the two effects just described.

Relative price dispersion and real marginal costs

At the level of intermediate firms, it holds true that (P; ./ Pt)fe Y; = N; ;. Integrating
this expression over ¢ yields Y;s; = Ny, where we defined s; = fol (PLt/Pt)*e di and
Ny = fol N;di. In other words, the variable s; measures the relative price dispersion

across intermediate firms and can be shown to evolve as

Pr\ ™
st =(1-a) 2 +a

?) shows that the variable s; is bounded below at one. s; represents the resource costs

0
IT;
=Wl —w St—1- (10)
(I, )El

(or inefficiency loss) due to relative price dispersion under the Calvo mechanism: the
higher s;, the more labour is needed to produce a given level of output. The variable s;
directly affects the real marginal costs via the labour supply equation (3): T} = wy =
Xn Yy "GP

Government

The government injects money into the economy through nominal transfers, so T; =
M7 — M7 where M? is the aggregate nominal money supply. Most importantly, we
assume that steady state money supply evolves according to the following fixed rule:
M¢ = TIM} ;, where I is the (gross) steady-state growth rate of the nominal money
supply.

Market clearing conditions

The market clearing conditions in the goods, money and labour markets are: Y; = C};
Y= Y-? = (Pm/Pt)_e Y:, Vi; My = M7; and Ny = fol Nj idi.

3 (2

3 A generalized New Keynesian Phillips Curve

Log-linearizing (3) and (5), and using the market clearing condition Y, = @, yields

Un]/\\[tTLUc?t :ﬁ)\ta (11)

11



?t = Eti/\;f—i-l - 021 (/Z\t — Eﬁtﬂ) ) (12)

where hatted variables denote percentage deviations from deterministic steady state.
The log-linearization of (7), (8) and (10) is more complicated and leads to the fol-
lowing system of difference equations characterizing the generalized NKPC under trend

inflation (and price indexation)

;

1 ~ R ~
Ay =BT "ElAi1 + KoY + Mmoo 0nSt + (e o) B [(9 — 1) Apr + (bt—&-l} ,

o~

b, =(1—0))|1— aﬁﬁ(e_l)(l_s) ?t + aﬁﬁ(e‘l)(l‘E)Et [(9 1) Apnr +$t+1] :

5t =Eme) DAt + aﬁe(lis)gtfl,

(13)
where Ay = 7, — e (wmy—1) and at is an auxiliary variable. The coefficients k(z ), A7)
Nz and {(z ) are complicated convolutions of parameters that depend, inter alia, on
trend inflation and price indexation (for their expressions see Appendix A.1). Of course,
our generalization (13) encompasses the standard NKPC: with zero trend inflation (or

full price indexation), Il = 1 (or ¢ = 1) and Nre) = Ere) = 0. In this case, both

e
the auxiliary variable and the measure of relative prices dispersion become irrelevant
for inflation dynamics (up to the first order). Thus, the system (13) is reduced to the
standard specification: Ay = SE:A 11 + /dA/}.

Several remarks are noteworthy. As stressed by Ascari and Ropele (2007), trend
inflation sensibly alters the inflation dynamics compared to the usual Calvo model with
II =1 (or e = 1). Firstly, trend inflation enriches the dynamic structure by adding two
new endogenous variables: ?qgt, which is a forward-looking variable, and sy, which is a pre-
determined variable. Secondly, trend inflation directly affects the NKPC coefficients. As
price-setting becomes more “forward-looking”, higher trend inflation leads to a smaller
coeflicient on current output and a larger coeflicient on future expected inflation. Given

the restrictions aﬁﬁe(lf‘a) < 1 and Q)

< 1 it holds true that: 9k /91l < 0,
I (7e)/ oIl < 0 and M)/ OIl > 0 (see Appendix A.1). Consequently, as trend infla-
tion increases, the short-run NKPC flattens when drawn in the plane (}Aft,ﬁt). Hence,
the contemporaneous relation between 7; and EAG progressively weakens: the inflation

rate becomes less sensitive to variations in current output and more forward looking.

Thirdly, trend inflation increases the autoregressive coefficient in the equation of rela-

12



tive prices dispersion. Other things being equal, higher trend inflation yields a more
persistent adjustment of the inflation rate. Finally, the effects of trend inflation on the
NKPC coefficients are partly counterbalanced by the degree of price indexation. Indeed,
one can show: Ok(ze)/0c > 0, 0z /0c > 0 and Onez.)/0e < 0. In case of full price
indexation, the effects of trend inflation are completely neutralized.

To close the model we assume the central bank sets the short run nominal interest

rate according to the classic contemporaneous Taylor rule
it = GpTe + Py Vi, (14)

with ¢, [0,00), ¢y [—1,00) and at least one different from zero. Note that by letting
the policy coefficient ¢y take small negative values too, we also consider pro-cyclical
monetary policy rules.

To assess the determinacy of the rational expectations equilibrium (REE henceforth),
we first substitute the postulated monetary policy rule (14) into (12) and then write the

structural equations in the following matrix format
Ty = AEt.’L‘t+1 + Buy, (15)

where vector x; includes the endogenous variables of the model while u; represents a
cost-push shock. This stochastic disturbance is simply added to the first equation in
(13). Finally, A and B are conformable matrices. Determinacy of the REE obtains if
the standard Blanchard and Kahn (1980) conditions are satisfied. Next, we analyse how
trend inflation affects the determinacy of the REE.

4 Analytical results

This section presents the analytical derivation of our main results. In order to do so,
we assume logarithmic utility in consumption, i.e., o, — 1, indivisible labor
(see, Hansen, 1985), i.e., o, = 0, and indexation to trend inflation, i.e., w = 0. These
parameter values greatly simplify the specification of the NKPC given in (13). Firstly,
under indexation to trend inflation, w = 0 and A; = 74; so, the lagged inflation rate
does not enter the system (13). Secondly, under indivisible labour, the real marginal
costs function is independent from the measure of relative prices dispersion. Then, the
variable 5; does not contribute to the joint dynamics of output and inflation, but only

determines the path of employment.

13



Overall, these simplifying assumptions remove the two endogenous predetermined
variables present in the model, i.e., 7;_1 and 5;, and this allows us to derive several

analytical results.

4.1 Determinacy of the REE under trend inflation

Under the above assumptions, vector x; in the representation (15) includes three non-
~ —~ 7/

predetermined variables, i.e., x; = [Yt,?r\t, d)t} . Hence, determinacy of REE obtains if

and only if all the eigenvalues of A lie inside the unit circle.% Brooks (2004) demonstrates

that necessary and sufficient conditions are

D] < 1, (16)
T+ D| < M+1, (17)
D*-TD+ M1 < 1, (18)

where T, M and D denote the trace, the sum of leading minors of order two and the

determinant of matrix A, respectively. Thus, we state the following proposition.

Proposition 1. Necessary and sufficient conditions for determinacy of the
REE. Let w =0, =0,0.=1,¢ € [0,1], ¢, € [0,00), ¢y € [-1,00) and at least
one different from zero. As T, M and D are all positive, determinacy of the REE

under positive trend inflation obtains if and only if

¢y + K’(?,E)(bﬂ' > 05527[-9(176) - 17 (19)
¢7r + 5(f,s)¢y > 1, (20)
D*-TD+ M < 1, (21)

where (7 ¢y is a complicated convolution of parameters that represents the long-run

elasticity of output to inflation (reported in Appendix A.2).

Proof. See Appendix A.3.

See proposition 1 in Blanchard and Kahn (1980). As we work with a linearly approximated model,

all our propositions and results relate to local properties of the rational expectations equilibrium.
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4.1.1 Determinacy condition under zero inflation steady state

Conditions (19), (20) and (21) generalize the determinacy conditions that obtain in the
case zero inflation steady state (or full price indexation to trend inflation). It is useful
to briefly recall this case in order to fully understand the effects of trend inflation on
determinacy of the REE. Substituting IT = 1 or (¢ = 1) into (13), the relevant dynamic
system (15) becomes bivariate, i.e., x; = [}A’t, 7?,5} ,. In this case, necessary and sufficient

conditions for determinacy of the REE are (see Brooks, 2004),
|D| < 1, (22)
T < D+1. (23)
Substituting out for D and 7', these two inequalities can be written as

¢y+ﬂ¢ﬂ' >/8_17 (24)

and

1-8
Ot ——0 > 1, (25)

which correspond to (19) and (20) for the general case. Figure 1 plots the determinacy
region (shaded area) in the plane (¢,,,) under zero inflation steady state (or full
indexation to trend inflation). This type of picture is very well-known in the literature,
although only the positive orthant is usually displayed (e.g., Bullard and Mitra, 2002,
Woodford, 2003). Evidently, condition (24) does not bind in the positive orthant while
condition (25) does. As stressed by Bullard and Mitra (2002) and Woodford (2001, 2003,
see Ch. 4.2.2) among others, condition (25) is a generalization of the standard Taylor
principle: to ensure determinacy of the REE, the nominal interest rate should rise by
more than the increase of inflation in the long run. Indeed, the coefficient (1 — () /k
represents the long run multiplier of the inflation rate on output in a standard NKPC
log-linearized around the zero-inflation steady state. Hence, the left-hand side of (25)
“represents the long-run increase in the nominal interest rate prescribed [...] for each unit
of permanent increase in the inflation rate” (Woodford, 2003, p. 254). Therefore, “The
Taylor principle continues to be a crucial condition for determinacy, once understood to
refer to the cumulative response to a permanent inflation increase” (Woodford, 2003, p.
256, italics as in the original). In other words, the Taylor principle has to be understood

as (where LR stands for long run),

Bh oY

> 1. (26)

on

15



The intuition is straightforward as provided again by Woodford (2003). Indeed, (12),
(14) and the standard NKPC continue to be satisfied if inflation, output and interest
rates are increased at all dates by constant factors satisfying (26) with equality. This
means that a real eigenvalue of value one corresponds to that equality.

Note that condition (25) has two main implications. Firstly, it implies a sort of
trade-off between ¢, and ¢y-: values of ¢, smaller than one may still ensure determinacy
provided the central bank responds more aggressively to output. Secondly, in reality this
trade-off is very weak: as the subjective discount factor is calibrated very close to one,
the coefficient (1 — ) /k turns out to be roughly zero. Consequently, most researchers,
particularly in the empirical monetary policy literature, have concentrated on the value
of ¢, and on condition ¢, > 1, while neglecting the role of ¢y (see e.g., Clarida et al.,

2000).

4.1.2 The Taylor principle under trend inflation

Here we extend the discussion in Woodford (2003) to the case of positive trend inflation.
Indeed, inequality (20) in Proposition 1 corresponds exactly to (26) in the general case as

% e d(z,e)- Therefore, even under trend inflation, the Taylor principle, expressed in
its generalized form (26), continues to be a crucial condition for determinacy of the REE.
What are then the effects of positive trend inflation on the Taylor principle? Clearly,

these effects have to come through the coefficient dz ).

Proposition 2. Effect of trend inflation on §(z.). Let w =0, =0,0.=1,¢ €[0,1]
and iy = ¢, 7 + oy Yy, with ¢, € [0,00), ¢y € [~1,00) and at least one strictly
positive. Then, there exists a value of trend inflation e (1,55%1) such that

ey > 0, forTle [1,ﬁ*), (27)

5W><QMﬁ€FWWWQ) (28)

Proof. See Appendix A.4.

Under positive trend inflation the coefficient 0z ), which represents the long-run
elasticity of output to inflation, switches sign from positive to negative as soon as II
becomes larger than II". The long-run NKPC is extremely non-linear around II = 1: it

is positively sloped at I = 1 (because of a discounting effect), but then the slope turns

16



negative, because of the relative prices dispersion effect (see Ascari, 2004, Yun, 2005,

Ascari and Ropele, 2007).7

Corollary. Effect of trend inflation on condition (20). In the plane (qbﬂ,qﬁy),
as trend inflation increases, the upper determinacy frontier defined by ¢, =
(1= ¢5) /0(z,) progressively turns clockwise tilting around the point ¢, = 1 and
¢, = 0. For II <II" the upper determinacy frontier is negatively sloping, while
for II > I it is positively sloping.

Figure 2 visualizes what happens to the Taylor principle (20) as trend inflation
increases. The intuition is exactly as described above by Woodford (2003). One has to
keep in mind that the Taylor principle relates to the long-run properties of the model,
that is, to “cumulative responses to a permanent inflation increase”. The fact that the
long-run slope of the NKPC switches sign is evident in (13), where the term ﬁﬁl_a
becomes bigger than one for low levels of trend inflation.®

Note that the presence of positive trend inflation overturns the two implications
stemming from (25) under zero trend inflation. Firstly, even for low levels of trend
inflation, the trade-off between ¢, and ¢y disappears as the slope of the upper deter-
minacy frontier switches sign (from negative to positive). Along the upper determinacy
frontier, a central bank that wanted to be less strict on inflation (i.e., a lower value of
¢,.) should be at the same time less aggressive towards output. Similarly, a central bank
that wanted to be more aggressive towards output should also be tighter on inflation.
Secondly, the higher the level of trend inflation, the larger the absolute value of ¢z ),
hence the flatter the upper determinacy frontier. Now, this implies a crucial role for the
policy coeflicient ¢y-. Indeed, given our postulated Taylor rule, the central bank has to
be careful not to over-react to output. Why? Because under positive trend inflation, in
the long-run attempts to decrease output via a contractionary monetary policy yields
higher inflation.

Therefore, under positive trend inflation the Taylor principle remains valid in its

more general formulation, however its implications are radically different. This in turn

"Just to give an idea, with the parameter values used in Section 5 and assuming no indexation, i.e.,
e = 0, it turns out that I = 1.00098; this corresponds to an annualized value of trend inflation equal

to 0.39 per cent.
®1n this sense, the so-called Taylor principle can be seen as an example of the Samuelson’s famous

correspondence principle, “whereby the comparative statical behavior of a system is seen to be closely

related to its dynamical stability properties” (Samuelson, 1947, p. 351).
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casts shadows on the results in most of the literature which are based on a particular

case, i.e., Il = 1, which is theoretically special as well as empirically unrealistic.

4.1.3 A second determinacy condition

In general the Taylor principle does not suffice for determinacy of the REE. Also in
the standard case of zero inflation steady state, a second condition needs to be fulfilled,
namely (24). While this second condition always holds in the positive orthant, generally
it may not hold for ¢, € [0,00), ¢y € [~1,00), as shown in Figure 1.? In particular, for a
given ¢, € [1,00) to ensure determinacy of the REE the central bank cannot implement
a monetary policy that is excessively pro-cyclical.

Similarly, in the case of positive trend inflation, two more conditions need to be
fulfilled. Interestingly, both these conditions can be regarded as generalizations of (22)

to the case of trend inflation. Restriction (19) directly corresponds to (22) in the case of
a62ﬁ9(1—6)
14+¢y+Km,e)Pr

also collapses to (22) when translated from a trivariate to a bivariate dynamic system.

Furthermore, condition (21)
0

the trivariate dynamic system, where D =

Due to the obscure convolution of parameters in (21), it is not easy to provide a readable
expression for it, and hence we resort to the numerical analysis (as discussed in section
5). Notwithstanding, we may provide an intuition of what happens in the simulation.

Appendix A.5 shows that, assuming that the coefficient 7z is small enough (which is

T,E)

quite likely under moderate trend inflation levels), then (21) holds if

by + Kreybr > BT — 1. (29)

Note that condition (29) implies (19), which then becomes redundant. Moreover, it also
yields (24) if II = 1. It is easy to see how trend inflation affects the line described by
condition (29) in the plane (¢, ¢,). As visualized in Figure 3, trend inflation reduces
K(7.), and thus it flattens the line, and it increases the intercept, which become positive
for values of II > 51%5. As trend inflation increases, therefore, the lower determinacy
frontier progressively shifts upwards and eventually crosses the upper determinacy fron-

tier for ¢, > 0. Trend inflation then implies the two determinacy frontiers may cross

9More generally, conditions (25) and (24) are not sufficient either for ¢, or ¢, € (=00, +00), in which

case the admissible values of ¢, and ¢, allow the possibility to D < 0.
'%See Theorem 2 in Brooks (2004). If an eigenvalue is equal zero, the set of inequalities (16)-(18) are

the same as the stability ones for a two-dimensional system, where the sum of minors is replaced by the

determinant.
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in the positive orthant. In other words, while most of the literature discarded condition
(22) because it was satisfied for positive values of (¢, ¢,) in the case of zero inflation
steady state, this is no longer true under positive trend inflation.

Condition (29) is however only necessary, but not sufficient for (21), and thus to
investigate the relevance of this qualitative result we need to resort to numerical simu-
lations. Figure 4 illustrates the numerical determinacy region in the plane (¢, ¢y) for
different levels of annualized trend inflation, i.e., 0, 2, 4, 6 and 8 per cent, showing that

the analytical insights of this section holds true.!

Result 1. Effect of trend inflation on condition (21). As trend inflation in-
creases, the lower determinacy frontier implicitly defined by D?> — TD + M = 1
progressively shifts upwards crossing the upper determinacy frontier in the positive

orthant of the plane (¢, oy ).

According to our calibration, the intersection in the positive orthant between the
upper and lower determinacy frontiers happens for levels of annualized trend inflation
greater than 2.42 per cent. For levels of annualized trend inflation greater than this value,
not only does the smallest admissible value of ¢, positively co-move with II (because of
the upper shift of the lower frontier) but also the central bank cannot always implement
a strict inflation targeting policy. Moreover, Figure 4 visualizes the crucial role that
the policy coefficient on output plays with positive trend inflation. As an example, in
Figure 4 we highlight with a cross the classical Taylor rule specification, i.e., ¢, = 1.5
and ¢y = 0.5. As (annualized) trend inflation exceeds 2.4 per cent, the classical Taylor
rule yields indeterminacy of the REE. Hence, in empirical applications for realistic values

of trend inflation the value of ¢y- cannot be neglected.

4.1.4 The effects of price indexation

Proposition 3. Effects of price indexation to trend inflation on REE determi-
nacy. Let w=0,=0,0,=1,¢¢€[0,1] and iy = ¢, 7 + gbyl?t, with ¢, € [0,00),
¢y € [—1,00) and at least one strictly positive. Then, allowing for partial price
indezation to trend inflation, i.e., € € (0,1), counteracts the effects trend inflation

has on REFE determinacy properties described above.

"In drawing Figure 4, we set the free parameters as in Section 5: a = 0.75, = 0.99, § = 11,
e = 0. Quantitatively, 7. ) is indeed very low (see Appendix), so the relevant condition (21) is not

very different from (29).
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Proof. Notice the indexation parameter only appears in the model coefficients as
power to trend inflation, i.e., e Thus, increasing the value of indexation is

equivalent to decrease the level of trend inflation.

So, the whole set of results discussed above carries on, although partial price index-
ation to trend inflation mitigates the effects of II to some extent.

In summary, trend inflation unambiguously affects the determinacy properties of the
REE: as II increases, the determinacy region shrinks, increasing the possibility of sunspot
fluctuations. As trend inflation rises, implementable monetary rules call for increasingly
larger and positive coefficients on inflation and smaller coefficients on output. These
outcomes are in agreement with the policy prescriptions suggested in Schmitt-Grohé and
Uribe (2004, 2007) and in Bullard and Mitra (2002). Although dealing with different
issues, these two articles robustly advocate a monetary policy rule characterized by a
large response to current inflation and a close to zero coefficient on output. Allowing
for positive trend inflation in a basic new Keynesian DSGE model casts some doubts
on the leaning against the wind prescription in Clarida et al. (1999). As II increases,
the central bank cannot run the risk of stabilizing the output (in deviation from steady

state) but should focus primarily on inflation.

4.2 Closed-form solution under trend inflation

Now we investigate how trend inflation affects the model solution. Without loss of

generality, assuming the cost-push shock is purely transitory, i.e., u; ~ i.i.d N (0,1),

allows us to obtain the following closed-form solution'?
~ 1+ ¢y
= , 30
" L+ ¢y + Ko r Ut 0
% ¢7T
t L+ by + Aroybr (31
N ¢7r
= ) 32
. 1+ ¢y + H(ﬁ,a)gbw Ut ( )
o = 0. (33)

In the event of a positive cost-push shock that increases inflation, the central bank raises

the nominal interest rate. Output falls and inflation returns to steady state. During the

2Needless to say, the solution given by (30)-(33) is legitimate if and only if conditions in Proposition

1 are fulfilled.
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adjustment path, the variable gAbt does not move at all from steady state.'® Equations
(30)-(32) exactly parallel the solution that one would obtain in the standard case of zero
inflation steady state (see Clarida et al., 1999). However, in our generalized set-up the
closed-form coefficients depend, inter alia, on trend inflation and the price indexation

parameter through the term rz ). Several results are worth emphasizing.

Proposition 4. Effects of positive trend inflation. Provided the contemporaneous
Taylor rule leads to REE determinacy and e € [0, 1), higher levels of trend infla-
tion unambiguously increase the absolute value of the closed-form coefficients on

inflation, output and nominal interest rate.
Proof It follows immediately from Ok z )/ oIl < 0.

Corollary. As trend inflation increases, the impulse response functions of output, in-

flation and nominal interest rate to a cost-push shock shift outwards.

As trend inflation increases, the central bank’s reaction to a cost-push shock becomes
increasingly more aggressive leading to a higher nominal interest rate and a deeper
recession; nevertheless, inflation also rises more. Indeed, as already noted above, the
degree to which a contraction in output reduces inflation decreases with trend inflation
(ie., Ok(me)/ Ol < 0). So, the contemporaneous output cost for a given reduction in
inflation has to increase with II. In other words, by varying the nominal interest rate,
the central bank can engineer a fall in output, which, however, becomes less efficient
at stabilizing inflation, as the higher the trend inflation, the flatter the NKPC. In sum,
positive trend inflation weakens the interest rate as a policy instrument and worsens the

trade-off monetary policy will have to face.

Proposition 5. Effects of price indexation. For a given level of positive trend in-
flation, a higher degree of price indexation to trend inflation dampens the absolute

value of the closed-form coefficients on inflation, output and nominal interest rate.

Thus, price indexation to trend inflation counteracts the effects of trend inflation
(recall that Ok(z ) /e > 0): it slants the short-run generalized NKPC making monetary

policy more efficient at stabilizing the economy.

13To explain this latter point, note that for o, = 1 the variable at depends only on future expected

variables (see the second equation in (13)).
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The effects just described are also reflected in the what is called the efficient policy
frontier. The efficient policy frontier links output and inflation variabilities, arguments
that typically characterize the central bank’s loss function, for different values of ¢y and
¢,. In principle, with a Taylor rule such as (14) there should be two distinct efficient
frontiers: one arising when varying ¢y and keeping ¢, constant; the other one arising
when varying ¢, and keeping ¢y constant. Under our assumptions in this section, the

efficient policy frontier is the same in both cases.

Proposition 6. Efficient policy frontier. Provided the interest rate rule leads to

determinacy of the REE |, the efficient policy frontier is given by
or=1- K(7e)0Y s (34)

where oy and o, denote the standard deviations of output and inflation respec-

tively.

Proof. From (30) and (31), and since u; ~ i.i.d N (0,1), it follows

_ 1+ QZ)Y —1_ ﬁ(f,a)¢7r
1+ ¢y + Kme)bn 1+ ¢y + Kze)Pn

On =1- K(7,e)0Y -

Before discussing the effects of trend inflation and price indexation, it is useful to
provide the interpretation of equation (34). In the plane (oy, o), equation (34) draws
a straight line, which is negatively sloped and with a vertical intercept at 1. Moving
along the efficient frontier, say from north-west to south-east, one obtains the effect of
increasing the value of ¢, (for any ¢y ) or equivalently the effect of decreasing the value
of ¢y (for any ¢, ). As the central bank becomes relatively more aggressive on inflation,
it delivers more stable inflation and more output variability. Clearly, the length of the
efficient policy frontier will differ according to the values of the coefficient that ensure
a determinate REE in Figure 3. Trend inflation diminishes the slope of the efficiency
frontier, that rotates around the point (oy = 0, 0, = g, = 1).1* It follows, as shown in
Figure 5, that the efficient policy frontier worsens with trend inflation, in the sense that
a given output variability can be met only at the cost of a higher inflation variability and
vice versa. Points on the zero trend inflation frontier (except for oy = 0 and o, = 1)
are no longer attainable as II rises, so there must be an increase in oy and/or o, as
trend inflation increases. As explained above, this is due to the fact that trend inflation

worsens the trade-off the monetary authority faces, by changing the slope of the NKPC.

M The situtation oy = 0 and o, = 1 obtains in the limit case: ¢y — 00.
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5 Numerical results

In this section, we check the robustness of our analytical results to the simplifying
assumptions introduced in Section 4. We remove the assumption of labour indivisibility,
which implies that now the dispersion of relative prices enters the real marginal costs,
and thus contributes to explain the dynamics of inflation. We also consider both price
indexation schemes to trend and the past inflation rate and varying degrees of overall
indexation. Furthermore, we investigate the effects of changing the monetary policy
rule, by introducing inertial or backward-looking and forward-looking components. For
the numerical analysis, we set parameter values as in Gali (2003): o, = 1, 0. = 1,

a =075 8=099,0 =11 and y, = 1.

5.1 Price indexation

We begin our analysis by comparing the effects of price indexation to trend inflation,
i.e., w =0, versus past inflation, i.e., w = 1. Note in the latter case the model is further
complicated by the presence of another endogenous predetermined variable, namely
mi—1. To analyze the determinacy of the REE we grid-search the region of the plane
defined by ¢, € [0,5] and ¢y € [—1,5] and then pick up the pairs (¢,, ¢y ) that lead
to determinate equilibria. Figure 6 reports the determinacy regions for different levels
of trend inflation, i.e. 0, 2, 4, 6 and 8 per cent, in the cases of partial indexation, i.e.,
€ = 0.5, and full indexation, i.e., ¢ = 1.

The overall results are in line with the findings presented in previous sections. Firstly,
positive trend inflation shrinks the determinacy region. The upper determinacy frontier
tilts clockwise, becoming positively sloping even for low levels of trend inflation, while the
lower determinacy frontier shifts upwards. However, with respect to Figure 4, partial
price indexation visibly counteracts the effects of II. For example, for ¢ = 0.5 the
basic Taylor specification (marked with a cross in the three panels of Figure 6) ensures
determinacy up to levels of trend inflation slightly below 6 per cent. Moreover, the lowest
admissible value of ¢, becomes relatively less sensitive to trend inflation. Secondly, for
a given level of trend inflation, price indexation to past inflation yields a larger number
of determinate interest rate rules than under price indexation to trend inflation. While
the location of the upper determinacy frontier is similar under both price indexation
schemes (see panels A and B in Figure 6), price indexation to past inflation has a different

effect on the lower determinacy frontier, which is shifted further downwards. So, the
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enlargement of the determinacy region moves in favour of more pro-cyclical monetary
policy rules, i.e., more negative values of ¢y-. Finally, allowing for full price indexation,
i.e., ¢ = 1, which neutralizes any effects of trend inflation, has different implications for
the determinacy region. Full price indexation to trend inflation returns the determinacy
region that would arise under zero inflation steady state; whereas, full price indexation
to past inflation restores the original Taylor (1993) principle, i.e., ¢, > 1, making ¢y

completely irrelevant for determinacy.'®

5.2 Dynamic analysis and efficient policy frontier

Next, we study the effects of trend inflation on the model dynamics. We assume the
cost-push shock follows an AR(1) process with a 0.8 autoregressive parameter. Figure
8 displays the impulse response functions (IRFs, henceforth) of output, annualized in-
flation, nominal and real interest rate to a unit cost-push shock both in the case of
zero price indexation (the left column) and price indexation to past inflation (the right
column).'6 In general, after a shock that boosts inflation the central bank raises the
nominal interest rate for several quarters. Such monetary policy increases future ex-
pected, and possibly current, short-term (ex-ante) real interest rates making households
willing to postpone consumption. Output falls. Then, a long-lasting recession kicks in
which decreases the real marginal costs and brings inflation back to steady state. In line
with Proposition 4, positive trend inflation shifts outward the IRFs of output, inflation
and nominal interest rate, suggesting a deterioration of the short run output/inflation
trade-off. Although the central bank implements monetary policies that are progres-
sively more restrictive as trend inflation increases, the flattening of the short-run NKPC
makes output have a weaker stabilizing effect on inflation. The right panels of Figure 8
also illustrate the effects of 50 per cent price indexation to past inflation.

Finally, we analyze the effects of trend inflation on the efficient policy frontier. In

particular, when we vary ¢, in the range [0,3] we set ¢y = 0.5, while when varying

“Ropele (2007) analytically shows that condition ¢, > 1 is indeed the necessary and sufficient con-

dition for the determinacy of REE.

'Tn Figure 8 we use the basic Taylor specification, i.e., ¢_ = 1.5 and ¢y = 0.5. In the case of zero

U
price indexation, we can just plot two IRFs for each variable as the REE is not determinate for levels of
trend inflation larger than 2 per cent. We do not show IRFs under price indexation to trend inflation,
because this indexation rule only yields a rescaling with respect to IRFs with zero indexation. Finally,

from a qualitative standpoint, the results do not change if other values of ¢ _and ¢,  are chosen.
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oy [0, 3] we set ¢, = 2.5.17 In line with Proposition 6, Figure 9 shows that positive
levels of trend inflation move the efficient policy frontier north-east, yielding worse out-
comes for both inflation and output variability. Moreover, the efficient policy frontier
substantially shortens (i.e., it comprises a fewer number of points) as the REE enters the
indeterminacy region. Not surprisingly, for a given II, price indexation to trend infla-
tion shifts the efficient policy frontier south-west, partially offsetting the effects of trend
inflation (see panels C and D). Similar results obtain in the case of price indexation to

past inflation (see panels E and F).

5.3 Interest rate rules

Inertial interest rate rules

Empirical works on Taylor rules report that central banks tend to adjust the nominal
interest rate only gradually (see, e.g., Rudebusch, 1995, Judd and Rudebusch, 1998 or
Clarida et al., 2000). Moreover, the recent monetary literature emphasizes the benefit
of inertial behavior in the conduct of monetary policy when private agents are forward-
looking. So, here we consider specifications of the Taylor rule that allow the nominal
interest rate to respond also to its own lagged values, that is & = ¢, 7 + gbyf/t + Pil—1,
where the degree of interest rate smoothing is measured by ¢;. Generally speaking,
cases where ¢; € (0,1) are referred to as partial adjustment; case ¢, = 1 is labelled
as a difference rule; cases where ¢, € (1,00) represent instead superinertial behaviour
(Rotemberg and Woodford, 1999, and Woodford, 2003).

Figure 7 illustrates the effects of trend inflation on determinacy when ¢, € (0,5),
oy € (—1,5) and ¢, = 0.5, 1, 2 and 5. Overall, the figure confirms that interest rate
inertia makes indeterminacy less likely, as in the basic New Keynesian model with zero
inflation steady state. Moreover, the somewhat counterintuitive feature that explosive
rules enlarge the determinacy region survives in the trend inflation. As discussed in
Rotemberg and Woodford (1997, see p. 100-101), it is exactly the possibility of the
explosiveness of the nominal interest rate that keeps the model on track.'®

Trend inflation, however, again radically changes the implications for determinacy

'"In this latter case the value for ¢ is different from the one used for the IRFs, only for convenience of
presentation. The efficient policy frontiers would otherwise be too short because the REE would quickly

become indeterminate as trend inflation increases.
"8The case of no feedback from inflation and output gap on the nominal interest rate (i.e., ¢, =

¢y = 0) is of course indeterminate for values of ¢, bigger than 1.
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regarding the parameters of the monetary policy rule. In a zero trend inflation model,
condition (26) becomes ¢, + ¢y (1 — ) /k > 1 — ¢;, such that ¢; > 1 is a sufficient
condition for a determinate equilibrium in the positive orthant. In other words, a deter-
minate REE necessarily exists for superinertial rules (see Woodford, 2003, p. 256). In
the case of positive trend inflation, instead, superinertial rules do not rule out indeter-
minacy in the positive orthant. Moreover, it is the value of ¢y that actually matters for
REE determinacy. Looking at panel B, it is evident that there is no longer a sufficient
condition on ¢, (provided that is positive) or on ¢,. On the contrary, for sufficiently
high levels of trend inflation, we can eventually state a sufficient condition on ¢y-. As
stressed in Section 4.1, this is due to the switch in the sign of §(z.). Moreover, §(z ) is
increasing with trend inflation in absolute value. For values of trend inflation at least
as large as 6 per cent, the value of the parameter d(z.) becomes so high (in absolute
value), that ¢y becomes the crucial monetary policy parameter for condition (26) to
be satisfied. To ensure a determinate REE, monetary policy should not respond to the
output, when monetary policy is characterized by an inertial (or superinertial) Taylor
rule and moderate trend inflation (6 to 8 per cent).
Other interest rate rules

We further explore whether the results of the previous sections are robust to simple
variants of the Taylor rule commonly used in the literature (i.e., forward-looking interest
rate rule, backward-looking interest rate rule, and various kinds of hybrid interest rate
rules) and to changes in the structural parameters of the model. In all these cases, the
main result of the paper carries over: moderate levels of trend inflation substantially
modify the determinacy region and affect the dynamics of the model economy.

In this section, we just briefly report the results concerning the determinacy condi-
tions in the case of the backward-looking interest rate rule, as for the other policy rules
the results are very similar to those presented in previous sections.'”

When the monetary authority sets the nominal interest rate as a function of lagged
values of inflation and output, i.e., & = ¢, T4—1 + qbyf/t,l, positive levels of trend
inflation have some peculiar effects on the determinacy regions. Panel A of Figure 10
illustrates the standard case of zero inflation steady state. Roughly speaking, there are
two frontiers that divide the plane into four areas: one frontier is almost horizontal with

the ¢y-intercept at two; the other frontier corresponds to the equivalent of condition

Y The interested reader can download the extended working paper version from the authors’ webpage.
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(26). Note that above the almost horizontal frontier, the determinacy region now lies on
the left hand side of condition (26) and not on its right, where the instability region lies.
Panels B, C and D of Figure 10 show the effects of positive trend inflation. Once again,

20 However, due to

the frontier corresponding to (26) again visibly rotates clockwise.
the fact that the determinacy region is partly on the left and partly on the right of this
line, the effect of trend inflation is less clear-cut. Roughly speaking, as trend inflation
increases: (i) above the almost horizontal frontier, the instability region progressively
shrinks and gives way to new determinate equilibria; (ii) below the almost horizontal
frontier, the indeterminacy region enlarges. Note that while this latter implication
parallels the effect analysed in previous sections, the former effect is specific of the
lagged interest rate rule. Moreover, as trend inflation rises a central bank that follows
a backward-looking interest rate rule is progressively left with two options to ensure
determinacy. It could respond relatively more to inflation and less to output, as in
previous sections; or, alternatively, the central bank could just respond with a large
coefficient to output, i.e. ¢y > 2, and discard ¢,.. Introducing inertial behavior in the
backward-looking interest rate rule shifts upward the almost horizontal line in Figure

10. Consequently, the effect described in (i) becomes progressively less important and

disappears for superinertial policies.

5.4 Sensitivity Analysis

Finally, we check the robustness of our numerical findings to changes in the structural
parametrization. Figure 11 reports the REE determinacy regions, in the case of the
contemporaneous interest rate rule and no indexation,?! when the parameter values of
a, 0, o, and o, are changed in turn.

The Calvo parameter « is a particularly interesting parameter to look at. In a
recent paper Cogley and Sbordone (2008) estimates an NKPC similar to (13), allowing
for time-varying trend inflation. Their main finding is that once trend inflation is taken
into account, the NKPC performs rather well in the data with no need to additional

ad hoc persistence terms (such as indexation to past inflation). Moreover, they also

20The other almost horizontal line is, in contrast, only slightly sensitive to changes in trend inflation
for our calibration values. Finally, note the presence also of the lower frontier that qualitatively moves

as in previous cases, shifting upwards with trend inflation.
2! The qualitative effects of changes in the values of these parameters are in accordance with intuition,

and robust across different types of rules, indexation and inertia.
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found that the structural parameters of the NKPC are stable, and hence, the Calvo
time-dependent pricing model with an exogenous probability of adjustment does seem
to fit the data. Cogley and Sbordone’s (2008) estimate of a, however, is 0.57, which
is lower than the one used in our simulation. Panel A in Figure 11 shows that a lower
value of the Calvo parameter mitigates the effects of trend inflation, and thus, in our
case it makes the determinacy frontier close less rapidly compared with the baseline
case. This leaves room for a relatively larger set of implementable policies for a given
trend inflation, but it does not qualitatively change our main results, as evident from
the analytical results in Section 4. Lowering the value of the elasticity of substitution
across goods, i.e., 0, from 11 to 4 has a similar implication, as shown by Panel B.

In deriving our analytical results in Section 4, for convenience we fix two parameters:
on =0 and o, = 1. Panel C in Figure 11 shows that considering higher values of the
inverse of the intertemporal elasticity of the labour supply (o, = 5, see Pencavel, 1986)
has a negligible quantitative effect on the results presented above. Panel D, instead,
reveals that setting o. = 0.157, as in Rotemberg and Woodford (1997) and Bullard
and Mitra (2002), dramatically strengthens our results from a quantitative point of
view. Thus, in choosing a logarithmic utility function in consumption we considered a
specification biased against our argument. It is easy to understand why and again it
has to do with the slope of the NKPC (i.e., ko) = Age) (0c +0n) — (1 = 0c) N(ze)),

which is quite sensitive to o, for our benchmark parameters value (i.e., o, = 1).%?

6 Conclusions

Despite the fact that average inflation in the post-war period in developed countries
was moderately different from zero, much of the vast literature on monetary policy rules
worked with models approximated around the zero inflation steady state. In this article,
we generalize the basic new Keynesian dynamic stochastic general equilibrium model
with Calvo staggered prices by taking a log-linear approximation around a general level
of trend inflation. Imposing the monetary authority follows a simple contemporaneous

Taylor rule, we then look at how the properties of the model economy change as trend

*2Moreover, the value of o. turns out to be quite important for the backward-looking interest rate
rule case. As already noted by Bullard and Mitra (2002), the position of the almost horizontal line that
characterizes Figure 10 is quite sensitive to o.. Indeed, it shifts notably upwards with o. and this has

strong effects on the size of the determinacy/indeterminacy regions in our parameters’ space.
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inflation varies.

Trend inflation greatly affects the previous results established in the monetary policy
literature. Particularly, moderate levels of trend inflation modify the determinacy region,
substantially changing the Taylor principle. Moreover, trend inflation alters the impulse
response functions of the model economy after a cost-push shock. In line with Ascari and
Ropele (2007), this article shows that the new Keynesian framework is quite sensitive
to variations in the trend inflation level, in the sense that higher trend inflation makes
monetary policy much less effective in controlling the dynamics of the economy. Our
key results are then generalized and proved to be robust to: (a) different kinds of Taylor
type rules; (b) inertial Taylor rules for all the cases listed in (a); (c) indexation schemes;
(d) different parameter values.

In summary, the literature on monetary policy rules is based on the of the zero in-
flation steady state, that is both empirically unrealistic and theoretically special. The
specification of the theoretical model, and consequently all the results, are quite sen-
sitive to low and moderate levels of trend inflation as empirically observed in western
countries. Our analysis therefore shows the literature cannot neglect trend inflation in
either empirical or theoretical investigation. As non-superneutrality is a basic feature of
the standard model, future work should aim at integrating the long-run properties and
the short-run dynamics into a fully non-linear analysis.

In future work, the relationship between price stickiness and trend inflation in this
type of analysis should be embedded. In particular, one may argue that « is not a truly
structural parameter, and it should decrease with trend inflation. As previously noted,
the empirical work of Cogley and Sbordone (2008) justifies the analysis put forward
in this work and supports the empirical relevance of the results. From a theoretical
perspective, however, a possibility would be to employ the framework in Levin and Yun
(2007) that features endogenous contract duration in this analysis. Given the findings in
Levin and Yun (2007), our conjecture is that the results for a moderate rate of inflation,
as considered in this paper, would not change very much while they would change for

high levels of inflation, where the Calvo model is a poor approximation of price setting.
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A Appendix

A.1 The coefficients of the generalized NKPC

We report below the coefficients of the generalized NKPC (see the system (13) in the
text):

Are) = PR i) ) (35)
—=l—¢ —(0-1)(1—¢)

N = B(T " =1)[1-all | (36)

Rme) = A(ﬁ,s) (Uc + Un) - (1 - UC) NEe)> (37)

eaﬁ(efl)(lfs) (ﬁlfs _ 1)

§f, = —(0_ — - (38)
(Te) 1—aH(9 1(1—e)

Note that, given our restrictions in the main text, Az ), 7¢z,c) and §(z ) are positive
for positive trend inflation, i.e., IT > 1, while the sign of K(ze) 18 surely positive only for
0. > 1 and ambiguous otherwise.

I\ (z.e)
o <0

A.1.1 The coefficient Az .) is decreasing in 11, i.e., 5

From equation (35) compute the partial derivative with respect to II,

—20e+1 —20+ —=20e+1 —0+0c+1
Npey (-0 [9 (H = 210 8) I 4 sttt

o1l aﬁ(0+1)(e+1)

Notice the expression in square brackets can be factorized as follows

I I I +afll

_ 9ﬁ295+1 |:1 _ O[Qﬁﬁ€+9+€f(295+l)} - ﬁ29€+1 [1 - aﬁﬁ9+95+17(205+1)]

_ et {0 [1 - a25ﬁ0+0+e—(205+1)} _ [1 _ aﬁﬁ0+es+1—(2ee+1)} }

—=20e+1 —20+¢ —20s+1 —0-+0s+1
9 ( vy ) -

And moreover, the expression in curly brackets can be written as

20e+ {9 [1 B agﬁﬁ(ﬁ—l)(l—a)ﬁe(l—s)} B [1 B aﬁﬁe(l_e)} } ‘
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—e) —(0-1)(1-¢)

Given restrictions aﬁﬁe(l < 1 and oll < 1, the last expression is positive.

ON(rc
T2l < 0.

Hence, o

a"](?,s)
ot

A.1.2 The coefficient 7z . is increasing in 10, i.e., >0
From equation (36) compute the partial derivative with respect to II,

. 0 [1 B aﬁ(eq)(ke)} - l)ﬁ(eq)(ks)q (ﬁks B 1)
= = (1—¢) 5
m @) )

> 0,

which is positive given positive trend inflation (i.e., IT > 1) and the restriction aﬁwil)(lis) <
1.
A.1.3 The coefficient r(z.) is decreasing in 10, i.e., ana(%a) <0
This result immediately follows from the fact that % < 0 and % > 0.
A.1.4 The coefficient {z . is increasing in 10, i.e., 856%5) >0
From (38) compute the partial derivative with respect to II,
Oy  (1=2)0al" VO gy (T - 1) + 17
oo | — o 009
a20 (0 — 1) (1 — o) 2D (ﬁ“ - 1)
+ 3 .
[1 - aﬁ(efl)(lfs)}

Again, assuming positive trend inflation (i.e., IT > 1) and the restriction Qe

: 85(?,6)
1, it follows that > 0.

A.2 The long-run multiplier of trend inflation on output

We derive the long-run multiplier of trend inflation on output, i.e., the partial derivative

dY JOA, where A = (1 — ew) 7. To begin with, we eliminate from (13) all time subscripts
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and expectation operators, and then collect terms,

1 ~ . PR
[1 — BT =gy (0 — 1)} A = Kre)Y + AFe)0ns + 1700,

(1—aﬂH0 e )5: 1-o0) [ —apm VO Y am? I (g 1) A,
(1 — Oéﬁg(l_g)) :9\: é(?,s)A'
(39)
Then, we compute the derivatives:
oY 1 1 g 9
L BT T = ey (0 — 1) = Apm oy One — 1y e 4
A Kze) {1 B (7€) (0 1) )‘(w,s)o'n A N(ze) oA } ) ( 0)
~ (0-1)(1-e)] —(0—-1)(1—
% B (1 — O'c) |:1 — Ozﬂﬂ } aiy 0451'[(9 1)(1—¢) (9 o 1) (41)
OA 1_ aﬁﬁ (6-1)(1—¢) HA + 1_ aﬁﬁ(e—l)(l—s) ’
95 Ere)
N 71 o (42)
Therefore, substituting (41) and (42) into (40) yields
- {1—,31_[1_8—77(77,5)(9_1) B Ameyon Eme) e aBH(GD(la)(G—l)}
Y K(m.e) Fme) 1—all' ) Ame) 1—apm’ V0O
v _ el 79 1ol . (43)
oA N )
1+ 3 Kre)  1-apl@ VA9
Finally, setting 0. = 1 and o, = 0 yields,
N —l—c (0-1)(1—¢)
oy <1 — Bl ) { BT ] —Neme) (0 —1) m
IA —(0—1)(1— ’
0A Kze) [1 _ ozBH ) 6)]
O(m,e)

A.3 REE Determinacy Conditions

With price indexation to trend inflation, i.e., w = 0, and infinite labour supply elasticity,
i.e., o, = 0, the vector x; includes only non-predetermined variables, namelyY;, 7; and
¢,. To ensure determinacy of REE all eigenvalues of matrix A must lie inside the unit

circle.

The characteristic polynomial associated with a cubic matrix reads as
p(N) ==X+ TX\ - M)A+ D, (45)
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where T, M and D denote the trace, the sum of leading minors of order two and the

determinant of matrix A, respectively. Setting o. = 1, the dynamic systems reads

717 A~ ~
m =B “Eimis + fre)Ye + Nir o) B {(9 =D m + ¢t+1] ,

9= BT OB (0= 1) s + Gy ] (46)

Y= BYi1 — (¢y?t + ¢pTe — Eﬁf\t+1>

where Kz o) = A(z¢). In matrix form,

1 0 -k Tt /Bﬁlig +n((0—1) 7

0 Tt4+1
01 0 o | = | 0—1)apm” VD om0 o || 3,
6. 0 1490, | | V. 1 0 L] [ Yen
(47)
and thus
—1—¢
/<;+(977+H ﬁ—n)(1+¢y) 77(1+¢y) K
1 1+6, +rby 1+¢, 5o,
e A S I B
=1—€
Ngx(1—0)—1I'" "Bo, +1 —N¢r 1

It follows that

BIL S+ pir oy |1+ Kre) + Q) (0 — 1) + BT~ (1+9,)
(7) (7) (’) Yy
1+¢y+ﬁ(ﬁ,a)¢7r

717
1+ Kge +BIT (14 Oy) + re)dme) (0 — 1) (14 ¢,)
1 + ¢y + I{(f,s)gbﬂ

T = M(?,s)+ ) (50)

—1—c
1I =
p - P e (51)
1+ ¢y + Ii(ﬁs)(]ﬁﬂ.

(6-1)(1—)

where fi(z ) = afII [1—aﬁ<0*1)(1*5)] <ﬁ175_1)'

aﬁ(e_l)(l_g)

<1, and ¢z, =
For standard calibration values and ¢, € [0,00) and ¢y € [—1,00), one can show
that T' € (0,00), M € (0,00) and D € (0, c0).
Theorem 1 in Brooks (2004) demonstrates that necessary and sufficient conditions

for 3X3 matrix as A to have all the eigenvalue within the unit circle are

D] < 1, (52)
IT+D| < M+1, (53)
D*-TD+M < 1. (54)
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Substituting the expressions for 7', M and D in gives (19), (20) and (21) in Propo-
sition 1 in the main text.
A.4 Proof of Proposition 2: Effects of trend inflation on i)

First, we prove there exists a value of trend inflation, denoted by T, such that O e) =
0. Notice that 61 = (1 = 8) /K@) > 0 and (5(51/(871)75) < 0. Therefore, as d¢z.) is a
continuous function and II € [1, (045)1/ [9(6_1)]), there exists a value of trend inflation
o e (1,51/(5*1)> such that dz+.) = 0. Second, notice the sign of ¢z .) depends
only on the sign of its numerator, as its denominator is always positive. Given that the
numerator of 4z .y monotonically decreases with II, for IT € [1, (aﬁ)l/ [9(6_1)}) , it follows

that II" is unique and therefore the proposition follows.

A.5 Factorization of (21)
Substituting into condition (21)
1-D*+TD—-M >0

the relevant terms, it yields

—1l—c,, 2
0 < 1T Hee
1+ d)y + E(f,s)(ﬁﬂ'

BT iz ) R AT (14 6)) + i edme (0 —1) (1+6,)
1+ ¢, + Reydy \| ) 1+ ¢y + Kme)Pn
BT+ i) [1 4 Bire) + ame) (0 = 1) + 5772 (14 6]
1+ st + Kf(f,e)(ﬁw

Using simple algebra

2
0 < (140, +rmads) — (571_6/%,6))
(1 + ¢, + /ﬁ;(ﬁg)gb,r) 5f1_sﬂ%ﬁ,a) +
BT i [1 +hme) + BT (14 0y) + L(re)deme) (0= 1) (1+6,) } *

- (Bﬁl*e F firey [+ B(me) T dme) (0 — 1) + 57 (1+ %)]) (14 ¢y + Km0 0x) -

multiplying and, then, factorizing (1 + ¢, + /-i(ﬁa)qbﬂ) and <5%1*5 u(ﬁe)) , it delivers
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0 < (1+¢,+rmad.)’ +
(1+ ¢y + K(re) 0x) [Bfl_gﬂ%ﬂ) - (571_5 e [+ Koy T dme (0= 1) + 677 (1+6,)] )}
+ (ﬁﬁl*eﬂ(f,eﬂ {-Bﬁl*eﬂ(ﬁe) F 1+ K + 0T (L4 0y) + fize e (0 — 1) (1+ %)] :

The same expression can also be written as

0 < [L+¢y+rmede — BT ]
(1o [BF ey = 1= Bmey = B (L4 6,)| + 14 6, + Kz yn |

ey d(me) (0 — 1) [ﬁfl_su(ﬁ,e) (1+¢,)-1—0¢,— K(f,e)%]

Now add and subtract +47~¢ in the last square bracket to write

0 < [L4¢,+kmed, — BT 7]

{M(ﬁ,z—:) [ﬁﬁl_eﬂ(f,s) —-1- H’(ﬁ,e) - Bﬁl_s (1 + ¢y)i| +1+ ¢y + K’(f,e)qsw}
+M(ﬁ,5)q(f,a) (0 - 1) [ﬂﬁlis -1- (by - K’(f,s)(bw]
i e)d(me) (0 — 1) [ﬂfl_su(m) (1+0,) - /%1_5} :

Then group [1 + @y + Kre)Or — Bﬁl_s] to get

0 < [14¢,+hmead. — 7 7]
{:U’(f,s) [/5?1_6#(?,5) 1 =Ko — BT (1+ %)} + 14 ¢y + hre)br — Hime)d(re) (0 — 1)}

iz e)d(me) (0 — 1) [ﬂfl_au(m) (1+9,) — 5f1_£} :

Moreover, note that iz .)q(me) = Nere)s SINCE iz ey = afm0-1D0-2) and U(7e) =
% (7'7¢ — 1) . Thus, the condition (21) can be expressed as

0 < [1+0¢,+ koo, — BT °)

{M(f,e) [5fl_au(ﬁ,a) —1— Kz — BT (1+ %)} + 14 ¢y + Ko Pr — Nere) (0 — 1)}
ey dme) 0 = D AT ey (1+6,) = 1] (56)
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By sum and subtract + [Fa(ﬁ,a) (6r — 1) + ¢, [(1 — p7te) — %Ef_)l)” to the curly

bracket in (56), and rearranging the terms there, one can write it as

{M(ﬁ,z—:) [Bﬁl_elu‘(f,s) -1- R(Te) — ﬁﬁl_e (]- + ¢y):| +1+ ¢y + K‘(f,a)qsﬂ - 77(?,5) (9 - 1)}

= (0 —1 = (0 —1
N ( )]+77(,)( )

1- 87 7¢) -
( L= pigz ) L= fi(z e

= KFe) (¢7‘r - 1) + ¢y

ey (14 0,) = 1] +
+ (1 - M(ﬁ,e)) [1 — BT e + Rme) + ¢y5f1_5} F ey (0= 1) @y

Substituting the above expression in (56), it yields

0 < [1+¢,+ koo, — BT °)

{K’(TI',E) (¢7r - 1) + ¢y

(1-p7) pirey (14 6,) — 1]

N (0 1)] L ) 0-1) [
L= peme I = pze

+ (1 - M(F,e)) [1 — BT ey + K(re) + %ﬂfl_a] + N(we (0 — 1) %}
Fmey (0= 1) 57 [y (14 6,) 1] (57)

Recall the Taylor principle (20)

(1- aBRO-00-9) (1 - 571) ey (8- 1)
K (7 e) [1 - aﬁf(efl)(lfg)]

b + &y > 1 (58)

which can also be written as

(1- /371*5) _ TWH” >0
T,E)

[K(ﬂ',E) (¢7r - 1) + ¢y 1_ )

and so (56) becomes

0 < [1 + ¢y + K‘(W,E)gbw - ﬁfl_a]
Nere) (0 —1)

1mw)bwmﬂ+%yq}

{ﬁ(w,s) (% + 0(re) Py — 1) +

+ <1 - M(ﬁ,a)) {1 — BT pm )+ Bi(me) + ¢y5f1*5} + (e (0 —1) %}
ey (0 — 1) BT % [“(ﬁ,s) (1+9¢,) - 1} (59)
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or,
0 < [1+¢,+kmed,— BT ¢

¢
{Fd(m) (0r + 0me)by — 1) + 1z (0= 1) [1_:(7r8) - 1]

+ (1 - M(w@) [1 — BT "tz ) + Rime) + %Bﬁl_‘g] }
e (0 —1) BT —F [:U’(ﬁ,a) (1+9¢,) - 1} : (60)

A necessary, but not sufficient condition for this last expression to hold is

0< [L4 ¢y, + K(re)dr — BT ]

which is exactly condition (29) in the main text.

Moreover note all the terms and parentheses in (60) are positive, apart two am-

by
1_M(?,5)

biguous terms: (i) 7o) (0 —1) [ - 1} in the curly bracket; (ii) the last term
Nir.e) (6 — 1) B~ [H(m (1+0,) - 1} . Both of them are multiplied by 9. So as-
suming 7z is small enough, then (29) is the relevant condition. In our numerical
exercises, 7z, is indeed very small (2.0811 x 1073 is the highest value for the 8%
annual inflation), so that the necessary condition (29) approximates quite well the nec-

essary and sufficient condition.
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Figure 1: The determinacy region in the zero inflation steady state case.
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Figure 2: The effect of trend inflation on the Taylor principle.
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Figure 3: The effects of trend inflation on the determinacy conditions.
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Figure 4: Contemporaneous nominal interest rate rule and the effects of trend inflation
on REE determinacy. The cross marker identifies the classic Taylor rule specification,

ie. ¢, = 1.5 and ¢y = 0.5.
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Figure 5: The effects of trend inflation on the efficient policy frontier.
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Figure 6: Contemporaneous interest rate rule, price indexation and the effects of trend

inflation. The cross marker identifies the canonical Taylor rule, i.e. ¢, = 1.5 and
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Figure 7: Inertial contemporaneous interest rate rule and the effects of trend inflation.
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Figure 10: Backward looking interest rate rule and the effects of trend inflation (Black

area = REE instability; Grey = REE indeterminacy; White = REE determinacy).
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