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A minimal model of financial stylized facts
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(Dated: November 30, 2010)

In this work we afford the statistical characterization of a linear Stochastic Volatility Model
featuring Inverse Gamma stationary distribution for the high frequency volatility. We detail the
derivation of the moments of the return distribution, revealing the role of the Inverse Gamma law in
the emergence of fat tails, and of the relevant correlation functions. We also propose a systematic
methodology for estimating the parameters, and we describe the empirical analysis of the Standard &
Poor 500 index daily returns, confirming the ability of the model to capture many of the established
stylized fact as well as the scaling properties of empirical distributions over different time horizons.

PACS numbers: 02.50.-r,05.10.Gg,89.65.Gh

I. INTRODUCTION

A large number of empirical studies has shown that
financial time series exhibit statistical features strongly
departing from the Gaussian behavior, and characterized
by the non trivial scaling of higher order correlations be-
tween returns at different times, pointing toward the ex-
istence of a secondary stochastic process, as fundamental
as that of the price, governing the volatility of returns,
see for instance [1, 2]. More precisely, the emergence of
fat tails, multifractality, the correlation between returns
and volatilities, and the persistence of the volatility auto-
correlation are all universal evidences, shared among dif-
ferent markets in different times. Effective mechanisms
allowing to reproduce many of these stylized facts, where
the stochastic nature of the volatility plays a central role,
include ARCH-GARCH processes [3, 4], multifractal cas-
cades [5] and continuous time stochastic volatility mod-
els [6]. Focusing on the latter approach, in this work we
aim at reproducing many of the above mentioned facts.
The structure of the paper is the following. After in-

troducing a general class of stochastic models driving the
evolution of the volatility, in Section II we concentrate
on a linear one able to reproduce an Inverse Gamma
distribution in the long run. In Section III we detail
the derivation of the moments of the probability density
function p(x; t) of the returns over the time lag t, taking
into account explicitly the time at which the Y process
has started and deriving rigorously the stationary limit of
the volatility. We describe the mechanism through which
the power law distribution of σ induces fat tails on p(x; t)
for all the finite time lags. In Sections IV and V we de-
rive the analytical expressions of the leverage correlation
and the volatility autocorrelation functions respectively.
In Section VI we propose a systematic methodology for

∗ Electronic address: danilo.delpini@pv.infn.it
† Electronic address: giacomo.bormetti@sns.it

estimating the model parameters, and we apply it to the
time series of the daily returns of the Standard & Poor
500 index. The relevant conclusions, along with possible
perspectives, will be summarized in Section VII.

II. THE MODEL

We consider a model where the asset price

St = S0 exp (µ t+Xt)

is a function of the stochastic centred log-returnXt and µ
is a constant drift coefficient. We assume that Xt can be
modeled with the following stochastic differential equa-
tion (SDE)

dXt = σt dW1,t , (1)

where σt is the instantaneous volatility of the price.
Since X0 = 0, from the above assumption we have that
〈Xt〉 = 0 and 〈ln(St/S0)〉 = µt for all t. In the context
of stochastic volatility models (SVMs) the instantaneous
volatility is assumed to be a function of an underlying
driving process Yt, i.e. σt = σ(Yt). Typically, the dy-
namics chosen for Yt corresponds to a particular case of
the following general multiplicative diffusion process

dYt = (aYt + b) dt+
√

c Y 2
t + d Yt + e dW2,t , (2)

with suitable constraints on the parameters, in order to
ensure the well definiteness of the process. Moreover, the
two standard Wiener processes W1,2 are possibly corre-
lated

〈dW1,t1 dW2,t2〉 = ρ δ(t1 − t2) dt , (3)

with ρ ∈ [−1, 1], which is necessary to account for skew-
ness effects and for the return-volatility correlation. For
instance, in the Stein-Stein model [7, 8] the volatility
is linear, σt ∝ Yt, and Yt follows a mean reverting
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Ornstein-Uhlenbeck dynamics corresponding to a < 0,
b > 0, c = d = 0. Under the same Y dynamics but
with σt ∝ exp (Yt) we obtain the exponential Ornstein-
Uhlenbeck model [9, 10]. In the Heston model [11]
σt =

√
Yt and Yt evolves according to a Cox-Ingersoll-

Ross dynamics, stemming from (2) by taking a < 0,
b > 0 with c = e = 0. Finally, in the Hull-White model
the volatility has the same functional dependence as in
Heston, but Yt has a Log-Normal (non mean reverting)
dynamics corresponding to a > 0 and b = d = e = 0.

In the Econophysics literature several studies have
been devoted to asses the statistical properties of the
volatility (see for instance Chapter 7 in [2] and [12]), es-
pecially its distribution, and it has been recognized that
the instantaneous volatiliy, measured by suitable prox-
ies, distributes in good agreement with a Log-Normal
or an Inverse Gamma law, the best fit being obtained
with the latter [2] which is able to better capture the
heavy tail of the empirical distribution. None of the pre-
viously cited models feature an Inverse Gamma proba-
bility density function (PDF) for σt, even though this
distribution has been considered previously in different
contexts; for instance, it is known that the marginaliza-
tion of Normally distributed returns conditionally on In-
verse Gamma variance generates a generalized Student-t
distribution [13, 14], while the Inverse Gamma was in-
troduced in the context of an ARCH-like evolution of
the variance in [15].

Here we afford the statistical characterization of the
simplest linear SVM able to account for this stylized fact
about the volatility. The process (2) has been extensively
studied and characterized in [16] where exact solutions
for the moments of the associated PDF have been ob-
tained allowing to study its relaxation modes toward a
stationary distribution, if any. In particular, when a < 0
and d = e = 0, with c > 0, the process (2) has indeed an
Inverse Gamma stationary distribution, whose support
is [0,+∞) as long as b > 0. Thereby we consider the
following SVM

dXt =
√
c Yt dW1,t , X0 = 0

dYt = (aYt + b) dt+
√
c Yt dW2,t , Yt0 = yt0 ,

(4)

where t0 ≤ 0, yt0 may be a fixed constant or randomly
sampled, and the factor

√
c in the expression of the in-

stantaneous volatility has been added for later conve-
nience. As explained in [16] the stationary PDF of σt

is

Πst(σ) =
λν

Γ(ν)

exp (−λ/σ)
σν+1

, (5)

where the shape parameter ν and the scale parameter λ
are given by

ν = 1− 2a

c
and λ =

2b√
c
. (6)

III. EMERGENCE OF FAT TAILS

A major point to be discussed before presenting a de-
tailed derivation of our results is the different role played
by the initial time conditions for the X and Y processes.
Since Xt represents the detrended logarithmic increment
of the price over the time lag t, it can be directly mea-
sured from real time series, and in a natural way we can
assume as starting point for this process the spot time
t = 0. On the other hand, the secondary process can
not be observed directly but some of its statistical prop-
erties have been measured by means of suitable proxies.
In particular, for intra-day frequencies there is no clear
evidence of mean reversion, that is the high frequency
volatility is very close to its asymptotic value [17, 18]. In
order to capture this evidence, we assume that Y , driving
the return process from 0 to t, had started at the time
t0 < 0 in the past and we will perform the limit t0 → −∞
at the end. The assumption of stationarity for the σt

process in (1) allows also to consider the returns dXt as
identically distributed and uncorrelated, even though not
independent variables, by virtue of the i.i.d. property of
the Wiener increments.
The structure of the model (4) allows to compute the

moments of the PDF of Xt at all times t recursively.
Application of the Itô Lemma to the function Xn

t readily
provides

〈Xn
t 〉 =

1

2
n(n− 1)c

∫ t

0

〈

Xn−2
s Y 2

s

〉

ds ,

and the same Lemma proves that the correlation func-
tions between X and Y satisfy the following differential
equation

d

dt
〈Xp

t Y
q
t 〉 = Fq 〈Xp

t Y
q
t 〉+Aq

〈

Xp
t Y

q−1
t

〉

+ c ρ p q
〈

Xp−1
t Y q+1

t

〉

+
1

2
p(p− 1)c

〈

Xp−2
t Y q+2

t

〉

,

(7)

where we defined Fk = ka+ k(k− 1)c/2, Ak = kb for ev-
ery k ∈ N, and p, q ∈ N. The previous equation is a linear
ordinary differential equation (ODE) for every p and q,
which can be solved recursively starting from the lowest
order of p and q [19], and whose solution involves integra-
tion of the moments 〈Y n

t 〉
.
= µn(t; t0) of the Y process.

For every n and every time t the latter can be expressed
as a linear superposition of exponential functions

µn(t; t0) =

n
∑

j=0

K
(n)
j exp [Fj(t− t0)] . (8)

The explicit expressions of the coefficients in the above
expansion can be computed as explained in [16], and

it turns out that K
(n)
j involves the values µk(t0; t0) for

k = 1, . . . , j, while K
(n)
0 does not. This implies that

whenever the constants Fj are all negative, the only term
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surviving in the limit t0 → −∞ is K
(n)
0 and the pro-

cess looses every information about the distribution of
yt0 . It is worth noticing that, even though the moments
µn(t; t0) are homogeneous functions of time, when t0 is
finite this is not true for the solution of Eq. (7) which
is obtained by integration from 0 to t, with boundary
condition 〈Xp

0 Y
q
0 〉 = 0 for every p > 0 [20].

From the analysis of Eq. (7) it is not difficult to verify
that the moments of X can be expressed always as a su-
perposition of exponential functions of the starting time
of the volatility as follows

〈Xn
t 〉 =

n
∑

j=0

H
(n)
j (t) exp (−Fjt0) . (9)

The coefficients H
(n)
j depend on the time lag t and, more

precisely, by virtue of the linearity of the ODEs (7),
they correspond to a combination of exponential terms
weighted by polinomial functions of t. In Appendix A we

report the explicit expressions of the coefficients H
(n)
j (t)

for the cases n = 2 and n = 3, from which it can be read-
ily verified that the skewness of the PDF converge to zero
asymptotically for t → +∞. A messy calculation would
show that an analogous behavior holds for kurtosis. Thus
the scaling of the lowest order moments is in full agree-
ment with the one of the empirical distributions over long

time horizons [1, 2]. When t is finite the coefficients H
(n)
j

are finite quantities themselves, and all the relevant in-
formation about the behavior of 〈Xn

t 〉 in the stationary
limit of Y is retained by the t0-exponentials in Eq. (9).
Two cases are possible here: if all the Fj are negative
(j 6= 0), 〈Xn

t 〉 is finite in the stationary limit t0 → −∞,
otherwise it diverges [21] indicating the emergence of fat
tails in the PDF of Xt. The latter case applies when
n > ν = 1 − 2 a/c, as can be checked directly from the
definition of Fn. Since Fn+1 > Fn, when Fn > 0, the di-
vergence of 〈Xn

t 〉 implies the divergence of all the higher
order moments [22]. The same condition is responsible
for the divergence of the moments µn(t) of the volatility
for n > ν (see Eq. (8)) in agreement with the fact that
the stationary distribution of the volatility (5) is an In-
verse Gamma distribution with shape parameter ν. Here
we see at work a mechanism in which the power law tail
of the stationary distribution of the volatility induces,
for every time lag t, fat tails in the return distribution,
whose scaling for large |x| is compatible with a power law
assumption

p(x) ∼
x→±∞

1

|x|1+β
.

This is in agreement with empirical studies about the dis-
tribution of high frequency returns over daily or intra-day
time scales [1, 2, 23–25], and from the previous consid-
erations we are able to constraint the tail index in the
following range

n∗ < β ≤ n∗ + 1 , (10)

0 0.5 1 1.5 2

−t0 (years)

0

0.01

0.02

0.03
〈

X
2
〉

〈

X
3
〉

0 1 2
0

25 〈

X
3
〉

Figure 1. (Color online) Scaling as a function of t0 of the sec-
ond and third moment of X at t = 1 day, for a = −16.06 yr,
b = 0.86 yr, c = 17.84 yr and ρ = −0.51, |a| /c = 0.6. Yearly
units (1 yr = 250 trading days).

where n∗ > 0 is the largest integer satisfying n∗ < ν. As
an example, in Fig. 1 it is shown the scaling of

〈

X2
t

〉

and
〈

X3
t

〉

as a function of the starting time of the volatility,
for t = 1 day and for a choice of the parameters cor-
responding to |a| /c = 0.6. For this value of the ratio
the third moment of the stationary distribution of the
volatility diverges; correspondingly,

〈

X3
t

〉

diverges as t0
becomes more and more negative, while

〈

X2
t

〉

approaches
its finite stationary value, and the tail index of the return
distribution is 2 < β ≤ 3.

IV. LEVERAGE EFFECT

For the linear model (4) the leverage, measuring the
correlation between returns and volatility, can be com-
puted exactly. Since the squared increment dX2 pro-
vides an estimation of the instantaneous volatility, it can
be defined through the following function

L(τ ; t) =
〈

dXt dX
2
t+τ

〉

〈dX2
t 〉

2 . (11)

Empirically, for arbitrary t, L(τ ; t) is found to be expo-
nentially decaying for positive τ and approximately zero
otherwise, meaning that a correlation exists between past
returns and the volatility in the future and not vice versa.
Empirical analysis shows that it is a short range corre-
lation; more precisely, the decay time of L(τ ; t) is found
to be of approximately 69 days for U.S. stocks and even
smaller, about 10 days, for indexes [2].
The numerator (11) can be rewritten as

〈

dXt dX
2
t+τ

〉

= c3/2
〈

ζ1,t Yt Y
2
t+τ

〉

dt2 ,

expressing the Wiener increment as ζt dt, where ζt is
a Gaussian noise with zero mean and 1/dt variance.
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Novikov theorem [26, 27] allows to compute the expecta-
tion involving ζ1,t, giving us

〈

dXt dX
2
t+τ

〉

=

2ρ c2H(τ) exp (aτ)
〈

Y 2
t Yt+τ exp

[√
c∆tW2(τ)

]〉

,

where we defined ∆tW (τ)
.
=

∫ t+τ

t
dWs, we took into

account the correlation structure (3) and we used the
following expression of the functional derivative of Y

δYt+τ

δζ1,t
= ρ

δYt+τ

δζ2,t
=

ρ
√
cH(τ) exp (aτ)Yt exp

[√
c∆W2,t(τ)

]

,

with the Heaviside step function H(τ) defined as zero if
τ ≤ 0 and one otherwise. The expectation f(τ ; t, Y )

.
=

〈

Y 2
t Yt+τ exp [

√
c∆tW2(τ)]

〉

satisfies an integral Volterra
equation of the second kind, whose derivation is detailed
in Appendix B, and the final expression of the leverage
correlation reads

L(τ ; t) = 2 ρH(τ)

µ2(t)2

{[

µ3(t) +
b

a+ c
µ2(t)

]

×

exp

[(

2a+
3

2
c

)

τ

]

− b

a+ c
µ2(t) exp

[(

a+
c

2
τ
)]

}

,

(12)

which inherits the explicit dependence on t from the mo-
ments of Y . In order to compare the previous expression
with real data, following the discussion at the beginning
of Section III, we take the limit t0 → −∞, so that we
can replace µ2(t) and µ3(t) with their asymptotic values,
whose general expression, valid for n < ν, is

µn,st = K
(n)
0 =

n
∏

k=1

(−1)k Ak

Fk
. (13)

Substitution in Eq. (12) reveals that the first term van-
ishes, and the leverage correlation reduces to

L(τ) = −ρH(τ)
a(2a+ c)

b(a+ c)
exp

(

− τ

τL

)

, (14)

where the leverage decay time reads

τL =
2

2 |a| − c
.

So, the model correctly forecasts the exponential decay
of L(τ) and its vanishing for negative correlation times.

V. VOLATILITY AUTOCORRELATION

The volatility autocorrelation provides an estimate of
how much the volatility at time t + τ depends on the
value it had at time t and it is usually defined as

A(τ ; t) =
〈

dX2
t dX

2
t+τ

〉

−
〈

dX2
t

〉 〈

dX2
t+τ

〉

√

Var[dX2
t ] Var[dX

2
t+τ ]

. (15)

It is a well known stylized fact [10, 28, 29] that A decays
with multiple time scales and in particular, it shows a
long range memory effect, vanishing over a time scale of
the order of few years for stock indexes.
For the model under investigation, the volatility auto-

correlation can be computed exactly too. Recalling again
the Novikov theorem and the fact that δ dW1,t/δζ1,t = 1,
the correlation entering the numerator of (15) becomes

〈

dX2
t dX

2
t+τ

〉

= c2
〈

Y 2
t Y 2

t+τ

〉

dt2

+ 2 ρc5/2H(τ)
〈

Y 2
t Yt+τ exp

[√
c∆tW2(τ)

]

dW1,t

〉

dt2 ,

but, due to the presence of dW1,t, the second term re-
sults to be of order O(dt3) and therefore it can be dis-
carded. The exact expression of the autocorrelation
function

〈

Y 2
t Y 2

t+τ

〉

can be obtained as explained in Ap-
pendix C, leaving us with

A(τ ; t)= exp (aτ)

3µ4(t)− µ2(t)2

{

2b

a+ c
[µ1(t)µ2(t)−µ3(t)] + exp [(a+ c)τ ]

[

µ4(t)+
2b

a+ c
µ3(t)−µ2(t)

(

µ2(t)+
2b

a+ c
µ1(t)

)]}

,

where the denominator of Eq. (15) has been approxi-
mated with Var[dX2

t ] = c2
[

3µ4(t)− µ2(t)
2
]

dt2 in view
of the stationary limit for Y . After replacing the mo-
ments µn(t) with their asymptotic expressions (13) we
end with

A(τ) = 1

D

[

N1e
−τ/τA1 +N2e

−τ/τA2

]

, (16)

where the coefficients read

D =

(

4a2 − 2ac− 3c2
)

(a+ c)

c2

N1 = −
(2a+ 3c) (2a+ c)

c
N2 = a ,

and we also defined the two volatility autocorrelation
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time scales as

τA1 =
1

|a| and τA2 =
1

2|a| − c
.

At this point it is crucial to notice that in deriving
Eq. (14) and Eq. (16) we assumed implicitly that the
moments of Yt up to the order n = 4 do converge asymp-
totically. Recalling the expression of the shape parameter
ν in (6), we see this assumption imposes

|a|
c

>
3

2
, (17)

which has to be interpreted as a consistency relation for
the model. This constraint imposes the following strict
ordering between the time scales of the model

τA2 < τA1 < τL , with τA1 >
2

3
τL , (18)

where the second inequality for τA1 follows from the con-
vergence of third moment of Yt which requires |a| /c > 1.
This ordering predicts a volatility autocorrelation func-
tion which decays faster than the leverage correlation,
but the lacking of a long range scale is shared with other
linear models, such as the Stein-Stein one. It can be en-
compassed only at the cost of introducing a non linear
volatility, as it is for the exponential Ornstein-Uhlenbeck
model [10], or coupling a third stochastic equation driv-
ing the dynamics of the long run value of Yt as in [28].
However, it is also known that for short τ the empirical
A decays with a time constant of the same order of the
leverage scale, and this evidence is correctly taken into
account by the ordering in (18).

VI. ESTIMATION OF PARAMETERS

Now we provide a systematic methodology for estimat-
ing the model parameters, which are the constants a, b,
c entering the dynamics of Yt, plus the correlation coef-
ficient ρ. We perform the estimation over the Standard
& Poor 500 (S&P500) index daily returns from 1970 to
2010, approximating dXt with ∆Xt = Xt+∆t −Xt

dXt ≈ ∆Xt = ln

(

St+∆t

St

)

−
〈

ln

(

St+∆t

St

)〉

,

where ∆t = 1/250 yr (one trading day). Taking into
account that dW1,t is independent of σt and that |∆W1|
is distributed accordingly to a Folded Normal law, the

Estimators S&P500 daily returns

A 0.1457 yr−1/2

B 0.0295 yr−1

C 0.0107 yr−3/2

|a| /c 1.7895

Table I. Estimates from return sample averages. We compute
the value of the estimators A, B, C and D for the daily log-
returns of the S&P500 index during the period 1970-2010,
exploiting the means of |∆X|, ∆X2 and |∆X|3.

following relations hold for the model (4)

A
.
=
〈|∆X|〉
〈|∆W1|〉

=

√

π

2∆t
〈|∆X|〉 = −

√
c
b

a

B
.
=

〈

∆X2
〉

〈∆W 2
1 〉

=

〈

∆X2
〉

∆t
= c

2b2

(2a+ c)a

C
.
=

〈

|∆X|3
〉

〈

|∆W1|3
〉 =

√

π

(2∆t)3

〈

|∆X|3
〉

= − 2b3 c3/2

(a+ c) (2a+ c) a
.

The constantsA andB can be measured directly from the
data, providing us an estimation of the ratio a/c through
the relation

D
.
=

B

2 (A2 −B)
=

a

c
.

The value of these quantities extracted from the series
of the daily returns of the S&P500 index are reported in
Table I. It is crucial to observe that the value obtained
for the ratio |a| /c is compatible with the constraint (17),
supporting the consistency of our model and the conver-
gence of the volatility autocorrelation. Moreover, since
we have n∗ = 4, the relation (10) indicates the following
range for the tail index of p(x)

4 < β ≤ 5 .

The leverage correlation (14) provides a way to obtain
the two further relations needed to fix the four free pa-
rameters of the models. Indeed, a two parameters fit of
the function L(τ) gives estimates for the time scale τL

and for the limit τ → 0+

L(0+) .
= −ρ a(2a+ c)

b(a+ c)
,

with the results reported in Table II and Fig. 2. In
particular, the value obtained for the leverage time scale,
τL ≈ 21 days, and for its amplitude L(0+) are consistent
with those quoted in past analysis of different stock in-
dexes such as the Dow Jones Industrial Average [8, 28],
and confirm the short range nature of this effect.
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Estimators S&P500 daily returns

τL 0.0864 yr

L(0+) -30.9515

Table II. Estimation of the leverage time scale and its limit
for τ → 0, obtained from the fit of the empirical leverage
correlation (11) for the daily log-returns of the S&P500 index,
with the model predicted expression (14).

Parameter Estimate from S&P500

a −16.0608 yr−1

b 0.8627 yr−1

c 8.9749 yr−1

ρ −0.5089

Table III. Model parameters estimated from the daily log-
returns of the S&P500 index during 1970-2010 through the
relations (19)-(22).

At this point all the parameters can be recovered
through the following relations

c = −
[

τL
(

D +
1

2

)]−1

(19)

a = cD (20)

b = −a+ c√
c

C

B
(21)

ρ = − b (a+ c)

a (2a+ c)
L(0+) . (22)

The final results, reported in Table III, show a nega-
tive correlation coefficient, in agreement with the known
leftward asymmetry of daily return distributions. More-
over, our calibration provides for the relaxation time of
the volatility process a finite value τσ

.
= −1/a ≈ 15 days,

−50

−40

−30

−20

−10

0

10

−40 −20 0 20 40 60 80

L
(τ
)

τ (days)

S&P500 data
Model best fit

Figure 2. (Color online) Best fit of the empirical leverage
correlation with the model prediction (14) as a function of
the two parameters τL and L(0+).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100

A
(τ
)

τ

S&P500 data
Model

Figure 3. (Color online) Theoretical prediction for the volatil-
ity autocorrelation function of the daily returns of the S&P500
index 1970-2010, Eq. (16).

implying that, from a practical point of view, the limit
t0 → −∞ is equivalent to t0 ≪ −τσ. The fitted val-
ues of τL and L(0+) provides a good description of real
data, as shown in Fig. 2; on the other hand, Fig. 3 shows
that the theoretical volatility autocorrelation for the es-
timated values of the parameters, Eq. (16), does not cap-
ture the long range persistence of the empirical volatility,
as expected from the constraints (18), while it describes
correctly the exponential decay for small values of τ .
Finally, it is important to compare the return PDF pre-

dicted by the model with the data sample from which the
model parameters were estimated. Since we model the
return dynamics for increasing t, it is even more impor-
tant to asses to which extent the diffusion process (4) is
able to capture the scaling properties of the empirical dis-
tribution over different time horizons. At this aim, with
the parameters fixed from the daily S&P500 series, we
reconstruct the theoretical PDFs simulating the process
at different time scales, t = 1, 3, 7, 14 days, and we com-
pare them with the corresponding empirical distributions
obtained aggregating the daily returns. This comparison
is shown in Fig. 4 and Fig. 5. The daily distribution is
very well reproduced by the theoretical PDF, which is
able to fully capture the leptokurtic nature of the daily
data. The plots also confirm that the diffusive dynam-
ics (4), once the parameters have been fixed at the daily
scale, follows closely the evolution of the empirical curves
for larger t. In particular, it captures the progressive
convergence in the central region to a distribution with
vanishing skewness and kurtosis.

VII. CONCLUSIONS

In this work, we have introduced a class of SVMs where
the volatility is driven by the general process with mul-
tiplicative noise analyzed in detail in [16]. More specifi-
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Figure 4. (Color online) Linear plot showing the comparison
between the return PDFs predicted by the model (lines) and
the data for the S&P500 index, for different time scales.
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Figure 5. (Color online) In log-linear scale, return probabili-
ties for the model (lines) vs S&P500 returns (points). Curves
have been shifted for sake of readability.

cally, we focused on the set of parameters resulting in an
Inverse Gamma stationary distribution for the σt process.
This choice was motivated by empirical analysis discussed
in the literature [2, 12] concerning the statistical proper-
ties of volatility proxies in high frequency data. We pro-
vided an analytical characterization of the moments of
the return distribution, revealing the role played by the
power law behavior of the Inverse Gamma in the emer-
gence of fat tails. Nevertheless, even though the highest
order moments of X diverge for every time lag, the an-
alytical expressions we obtained reveal the vanishing of
both the skewness and the kurtosis, in agreement with
the Normality of returns for long horizons. As far as
the correlation functions are concerned, our model cor-
rectly predicts zero autocorrelation for the returns, and
the short range exponential decay of the leverage and
of the volatility autocorrelation. The persistence of the

latter over longer horizons is not captured, and in this
perspective we would like to explore the possibility of
coupling a third SDE in the same spirit of [28]. More-
over, we expect that relaxing the time homogeneity of
the processes, as done in [16], we may induce time scal-
ings more general than the exponential one. A further
perspective would be to explore possible ways to charac-
terize analytically the PDF associated to the process (4)
or its characteristic function. This task requires to solve
the Fokker-Planck equation for the PDF or its equiva-
lent version in the Fourier space, analogously to what
has been done in [30] for the Heston case. Such a re-
sult would also allow for an application of the model in
the context of market risk evaluation, possibly exploiting
efficient Fourier methodologies such as those proposed
in [31, 32].

Appendix A: Coefficients of
〈

X2
t

〉

and
〈

X3
t

〉

Here we report the explicit expressions of the coeffi-

cients H
(n)
j (t) entering the expansion (9) of the moments

of Xt for the cases n = 2 and n = 3. They were used to
plot the analytical curves in Fig. 1.

H
(2)
0 (t) = cK

(2)
0 t

H
(2)
1 (t) = cK

(2)
1

[

exp (F1t)− 1

F1

]

H
(2)
2 (t) = cK

(2)
2

[

exp (F2t)− 1

F2

]

;

H
(3)
0 (t) = 3 ρ c

2

{

t

F2

[

A2
K

(2)
0

F1

− 2K
(3)
0

]

+ 2K
(3)
0

[

exp (F2t)− 1

F 2
2

]

+A2
K

(2)
0

F2 − F1

[

exp (F2t)− 1

F 2
2

−
exp (F1t)− 1

F 2
1

]

}

H
(3)
1 (t) = 3 ρ c

2

{

1

F2 − F1

[

A2
K

(2)
1

F2 − F1

+ 2K
(3)
1

]

[

exp (F2t)− 1

F2

−
exp (F1t)− 1

F1

]

+ A2
K

(2)
1

(F2 − F1)F1

[

exp (F1t)− 1

F1

− t exp (F1t)

]

}

H
(3)
2 (t) = 3 ρ c

2

{

−A2
K

(2)
2

(F2 − F1)2

[

exp (F2t)− 1

F2

−
exp (F1t)− 1

F1

]

−
1

F2

[

A2
K

(2)
2

F2 − F1

+ 2K
(3)
2

]

[

exp (F2t)− 1

F2

− t exp (F2t)

]

}

H
(3)
3 (t) = 6 ρ c

2 K
(3)
3

F3 − F2

[

exp (F3t)− 1

F3

−
exp (F2t)− 1

F2

]

,

where the coefficients K
(2)
j and K

(3)
j , entering the ex-

pansion (8) of the moments of Yt, read

K
(2)
0 =

A2A1

F2F1

K
(2)
1 = −

A2

F2 − F1

[

µ1(t0) +
A1

F1

]

K
(2)
2 = µ2(t0) +

A2

F2 − F1

[

µ1(t0) +
A1

F2

]

;
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K
(3)
0 = −

A3AdA1

F3F2F1

K
(3)
1 =

A3A2

(F3 − F1)(F2 − F1)

[

µ1(t0) +
A1

F1

]

K
(3)
2 = −

A3

F3 − F2

{

µ2(t0) +
A2

F2 − F1

[

µ1(t0) +
A1

F2

]}

K
(3)
3 = µ3(t0) +

A3

F3 − F2

{

µ2(t0) +
A2

F3 − F1

[

µ1(t0) +
A1

F3

]}

.

Appendix B: Derivation of Eq. (12)

After expressing Yt+τ in terms of its integral solution
form t to t + τ , the function f(τ, t;Y ) can be rewritten
in the form

f(τ, t;Y ) =

〈

Y
2
t

(

Yt +

∫

t+τ

t

(aYs + b) ds

)

exp
[√

c∆tW2(τ)
]

〉

+

〈

Y
2
t

(√
c

∫

t+τ

t

YsdW2,s

)〉

=
〈

exp
[√

c∆tW2(τ)
]〉

[µ3(t) + bτµ2(t)]

+ a

∫

t+τ

t

〈

Y
2
t Ys exp

[√
c∆tW2(τ)

]

〉

ds

+
√
c

∫

t+τ

t

〈

Y
2
t Ys exp

[√
c∆tW2(τ)

]

dW2,s

〉

.

Taking into account that for t ≤ s ≤ t+τ we can always
split ∆tW2(τ) as

∆tW2(τ) = W2,t+τ −W2,t = W2,t+τ −W2,s + W2,s −W2,t

= ∆sW2(t + τ − s) + ∆tW2(s− t) ,

the function f(τ, t;Y ) becomes

f(τ, t;Y ) =
〈

exp
[√

c∆tW2(τ)
]〉

[µ3(t) + bτµ2(t)]

+ a

∫

τ

0

〈

Y
2
t Yt+τ′ exp

[√
c∆tW2(τ

′
)
]

〉

×
〈

exp
[√

c∆t+τ′W2(τ − τ
′
)
]〉

dτ
′

+
√
c

∫

τ

0

〈

Y
2
t Yt+τ′ exp

[√
c∆tW2(τ

′
)
]

〉

×
〈

exp
[√

c∆t+τ′W2(τ − τ
′
)
]

dW2,t+τ′

〉

, (B1)

where we changed the variable of integrations to τ ′ =
s− t. Since the process

√
c∆t+τ ′W2(τ − τ ′) is Normally

distributed with zero mean and variance c(τ−τ ′), and re-
calling the expression of the Gaussian characteristic func-
tion, φG, we can write

〈

exp
[√

c∆t+τ′W2(τ − τ
′
)
]〉

= φ
G
(ω)

∣

∣

∣

ω=−i
= exp

[

c

2
(τ − τ

′
)

]

.

Application of the Novikov theorem also gives

〈

exp
[√

c∆t+τ′W2(τ − τ
′
)
]

dW2,t+τ′

〉

=

〈

δ exp
[√

c
∫

t+τ

t+τ′
ζ2,sds

]

δζW2
(t + τ ′)

〉

dτ
′

=
√
c exp

[

c

2
(τ − τ

′
)

]

,

where we expressed the Wiener variation in terms of a
Gaussian white noise ζ2,t as dW2,t = ζ2,t dt. Replacing
the previous expressions in Eq. (B1) we conclude that
f(τ, t;Y ) has to satisfy

f(τ, t;Y )− (a + c)

∫

τ

0

f(τ
′
, t;Y ) exp

[

c

2
(τ − τ

′
)

]

dτ
′
=

exp

(

c

2
τ

)

[µ3(t) + bτµ2(t)] ,

which is a Volterra equation of the second kind, whose
solution leads to Eq. (12).

Appendix C: Computation of
〈

Y 2
t Y

2
t+τ

〉

.

With reference to the model (4), the cross correlation
〈

Y m
t Y n

t+τ

〉

can be computed exactly. Provided to express
Y n
t+τ as integral solution from t to t+ τ

Y
n
t+τ = Y

n
t +

∫

t+τ

t

[

FnY
n
s + AnY

n−1
s

]

ds +

∫

t+τ

t

. . . dW2,s

it is straightforward to check that
〈

Y m
t Y n

t+τ

〉

satisfies
the following equation

d

dτ

〈

Y
m
t Y

n
t+τ

〉

= Fn

〈

Y
m
t Y

n
t+τ

〉

+ An

〈

Y
m
t Y

n−1
t+τ

〉

, (C1)

which is an ODE provided that the correlation
〈

Y m
t Y n−1

t+τ

〉

has been computed at the lower order n− 1.
In particular, for the case m = n = 2, we need the fol-
lowing correlation

〈

Y
2
t Yt+τ

〉

= exp (aτ)µ3(t)−
b

a
[1− exp (aτ)]µ2(t) ;

whose substitution in Eq. (C1) provides the solution

〈

Y
2
t Y

2
t+τ

〉

=exp (F2τ)µ4(t) +
A2

a− F2

[exp (aτ)− exp (F2τ)]µ3(t)

−
b

a

{

A2

F2

[exp (F2τ)− 1]−
A2

a− F2

[exp (aτ)−exp (F2τ)]

}

×µ2(t) .
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