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Summary

We propose a new method for the objective comparison of two nested models
based on non-local priors. More specifically, starting with a default prior under
each of the two models, we construct a moment prior under the larger model,
and then use the fractional Bayes factor for a comparison. Non-local priors
have been recently introduced to obtain a better separation between nested
models, thus accelerating the learning behaviour, relative to currently used
local priors, when the smaller model holds. Although the argument showing
the superior performance of non-local priors is asymptotic, the improvement
they produce is already apparent for small to moderate samples sizes, which
makes them a useful and practical tool. As a by-product, it turns out that rou-
tinely used objective methods, such as ordinary fractional Bayes factors, are
alarmingly slow in learning that the smaller model holds. On the downside,
when the larger model holds, non-local priors exhibit a weaker discriminatory
power against sampling distributions close to the smaller model. However,
this drawback becomes rapidly negligible as the sample size grows, because
the learning rate of the Bayes factor under the larger model is exponentially
fast, whether one uses local or non-local priors. We apply our methodology to
directed acyclic graph models having a Gaussian distribution. Because of the
recursive nature of the joint density, and the assumption of global parame-
ter independence embodied in our prior, calculations need only be performed
for individual vertices admitting a distinct parent structure under the two
graphs; additionally we obtain closed-form expressions as in the ordinary con-
jugate case. We provide illustrations of our method for a simple three-variable
case, as well as for a more elaborate seven-variable situation. Although we
concentrate on pairwise comparisons of nested models, our procedure can be
implemented to carry-out a search over the space of all models.

June 2010. This work was partially supported by PRIN grant 2007XECZ7L 001 (MIUR-
Italy). The authors would like to thank Alberto Roverato, Giovanni Marchetti and Piero
Veronese for useful discussions; thanks also to Davide Altomare for checking some numerical
results.
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1. INTRODUCTION

Bayesian model choice is an important and fascinating area. In particular, the
choice of suitable parameter priors is still a challenge, especially if an objec-
tive analysis is pursued; the latter being almost inevitable when the number
of models is large, because subjective elicitations are not a viable option. Un-
fortunately, standard default priors for estimation or prediction, which are
known to perform very well within the standard single-model paradigm, are
not appropriate for Bayesian model comparison, if the marginal likelihood is
used as a measure of the support for the model, as with Bayes factors. Stan-
dard default priors are obviously unsuitable when they are improper, because
the marginal likelihood would be defined only up to an arbitrary constant.
Interestingly, however, they are also inappropriate when they are proper (as
it may happen for discrete data models). The reason is best understood when
comparing two nested models and can be succinctly put as follows: the prior
on the larger model tends to be too diffuse for typical data sets, thus unduly
favouring the smaller model. This feature is closely related to the Jeffreys-
Lindley’s paradox; see Robert (2001, sect. 5.2.5).

Several attempts have been made to produce objective Bayesian model
comparisons. The notions of partial Bayes factor, intrinsic Bayes factor and
fractional Bayes factor stand out as major contributions; see Pericchi (2005)
for a comprehensive review. More specific contributions have appeared in
specialized areas, notably variable selection in linear models; see Liang et al.
(2008) and references therein.

A recent area of research concerns the rate of learning of Bayesian model
selection procedures, and this has important implications on the choice of
priors. Consider for simplicity two nested models. Most currently used pa-
rameter priors, whether subjective or objective, share a common structural
feature: they are local, i.e., the prior under the larger model does not van-
ish on the parameter subspace characterising the smaller model. This aspect
is epitomized in testing a sharp null hypothesis on the mean of a normal
model with known variance. Typical conjugate priors on the mean parameter
under the alternative hypothesis have a mode on the null, and this is also
true for intrinsic priors. While there are good reasons to follow this practice
(basically to mitigate the inherent larger diffuseness of the prior under the
alternative), the implications on the ability of the Bayes factor to learn the
true model are disturbing. Essentially, the asymptotic learning rate is expo-
nential when the larger model holds, while it behaves only as a power of the
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sample size when the smaller model is assumed to be true. To countervail
this phenomenon, Johnson and Rossell (2010) recently suggested that priors
for nested model comparison should be non-local (thus vanishing on the null)
and showed that such priors can be effectively constructed (in particular as
moment priors). The main advantages of non-local priors can be summarized
under two headings: from a descriptive viewpoint, they embody a notion of
separation between the larger and the smaller model; from an inferential per-
spective, they produce an accelerated learning behaviour when the smaller
model holds.

We believe that the rationale underpinning non-local priors is sound and
attractive. On the other hand, we are convinced of the need to produce
Bayesian model choice procedures applicable in contexts where prior infor-
mation is very limited or cannot be elicited in a reasonable amount of time.
In this spirit, the paper Consonni, Forster and La Rocca (2010) combines
non-local and intrinsic priors to obtain an enhanced Bayesian test for the
equality of two proportions. In the same spirit, we here merge the idea of
non-local priors with the methodology based on fractional Bayes factors, and
apply our method to the comparison of Gaussian graphical models, focussing
on directed acyclic graphs; see Cowell et al. (1999).

The structure of this paper is as follows. Section 2 presents some back-
ground material on non-local priors, fractional Bayes factors and directed
acyclic graph models. Section 3 presents our new method, namely fractional
Bayes factors based on moment priors, and presents our main result for the
comparison of two nested Gaussian directed acyclic graph models (Theorem
1); some asymptotic considerations are also developed about the rate of learn-
ing of our procedure. Finally, Section 4 illustrates the performance of our
method with two examples. The Appendix contains a lemma for the expres-
sion of some raw moments of the multivariate normal distribution, as well as
the proof of Theorem 1.

2. BACKGROUND

2.1. Non-Local and Moment Priors

For data y, consider two models M0 : f0(y|θ0) and M1 : f1(y|θ1) with M0

nested in M1, so that each distribution in M0 coincides with some f1(y|θ1) in
M1. Let p1(θ1) denote the parameter prior underM1, and similarly for p0(θ0)
under M0. We assume that model comparison takes place through the Bayes
factor (BF) and write BF10(y) = m1(y)/m0(y) for the BF of M1 against
M0 (or simply in favour of M1), where mk(y) is the marginal likelihood of
Mk, i.e., mk(y) =

∫

fk(y|θk)pk(θk) dθk. Usually p1(θ1) is a local prior, i.e.,
assuming continuity, it is strictly positive over the subspace Θ0 characterising
the smaller model M0.

Assume that the data y(n) = (y1, . . . , yn) arise under i.i.d. sampling from
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some (unknown) distribution q. We say that the smaller model holds if q
belongs to M0, while we say that the larger model holds if q belongs to M1

but not to M0. If M0 holds, then BF10(y
(n)) = Op(n

−(d1−d0)/2), as n → ∞,
where dk is the dimension of Mk, k = 0, 1, and d1 > d0; if M1 holds, then
BF01(y

(n)) = e−Kn+Op(
√
n), as n → ∞, for some K > 0 (Kullback-Leibler

divergence ofM0 from q). For a proof of this result, which shows an imbalance
in the learning rate of the Bayes factor, see Dawid (1999). It is clear from
Dawid’s proof that, by forcing the prior density under M1 to vanish on Θ0,
one can speed up the decrease of BF10(y

(n)) when M0 holds. This is indeed
the approach taken by Johnson and Rossell (2010) when defining non-local
priors. We focus here on a specific family of non-local priors. Let g(θ1) be a
continuous function vanishing on Θ0. For a given local prior p1(θ1), define a
new non-local prior as

pM1 (θ1) ∝ g(θ1)p1(θ1),

which we name a generalized moment prior. For instance, if θ1 is a scalar
parameter in IR and θ0 a fixed value, we may take g(θ1) = (θ1 − θ0)

2h, where
h is a positive integer (h = 0 returns the starting local prior); this is precisely
the moment prior introduced by Johnson and Rossell (2010) for testing a
sharp hypothesis on a scalar parameter. It can be proved that in this case
BF10(y

(n)) = Op(n
−h−1/2) when M0 holds, while BF01(y

(n)) = e−Kn+Op(
√
n)

when M1 holds. In the former case the extra power h means that, for in-
stance, if h = 1 the rate changes from sublinear to superlinear. While the
above argument is asymptotic, we shall see that it is clearly reflected in finite
sample size results. However, for small samples, a price is paid in terms of dis-
criminatory power when the sampling distribution is in the low prior density
region around Θ0. We shall see that this price is affordable, and worth paying,
at least if h = 1. The idea of moment priors outlined above can be suitably
extended to the multivariate case; we shall give an example in Section 3.

2.2. Fractional Bayes Factors

Objective priors are often improper and thus they cannot be naively used to
compute Bayes factors, even when the marginal likelihoods mk(y) are positive
and finite for all y, because of the presence of arbitrary constants which do not
cancel out when taking their ratios. A basic tool to overcome this difficulty is
represented by the partial Bayes factor, which however depends on the specific
choice of a training data set. Two ways to overcome this difficulty are the
intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes
factor (FBF) by O’Hagan (1995). Here we focus on the latter. Let 0 < b < 1
be a quantity depending on the sample size n, and define

wk(y; b) =

∫

fk(y | θk)p(θk)dθk
∫

f b
k(y | θk)p(θk)dθk

,
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where f b
k(y | θk) is the sampling density raised to the b-th power, pk(θk) is the

prior, and the integrals are assumed to be finite and nonzero. Informally, we
refer to wk(y; b) as the fractional marginal likelihood for the k-th model.

The FBF (in favour ofM1) is then given by FBF10(y; b) = w1(y; b)/w0(y; b).
It is easy to see that the FBF is an ordinary BF computed from the “likeli-

hood” f
(1−b)
k (y|θk) and a data-dependent prior proportional to pk(θk)f b

k(y|θk),
i.e., a posterior based on a fraction b of the likelihood; usually b will be small,
so that the dependence on the data of the prior will be weak. Consistency of
the FBF is achieved as long as b → 0 for n → ∞. O’Hagan (1995, sect. 6)
suggests three possible choices for b: i) b = n0/n, where n0 is the minimal
(integer) training sample size for which the fractional marginal likelihood is
well defined; ii) b = max{n0,

√
n}/n; iii) b = max{n0, log n}/n. Choice i) is

suggested as the standard option, when robustness issues are of little concern,
while ii) is recommended when robustness is a serious concern, with iii) rep-
resenting an intermediate option. One of the attractive properties of the FBF
is its simplicity of implementation: with exponential families and conjugate
priors its expression is typically available in closed-form.

2.3. Directed Acyclic Graph Models

Graphical models represent a powerful statistical tool in multivariate analysis,
yielding dependence models that can be easily visualized and communicated;
see Lauritzen (1996). Here, we are concerned with comparing graphical mod-
els in order to learn the dependence structure of a set of variables {U1, . . . , Uq},
using a Bayesian approach. This entails assigning a prior distribution on the
space of models, together with a parameter prior within each model; we dis-
cuss the latter issue only, because our focus is on parameter priors.

There are several classes of graphs of direct use in statistics, among which
undirected graphs, directed acyclic graphs (DAGs) and chain graphs are well-
known. In this paper we concentrate on DAG models, assuming that there
exists a priori a total ordering of the variables involved (e.g., temporal).
Furthermore, we take the distribution of the random variables to be jointly
normal.

Let D = (V,E) be a DAG, where V = {1, . . . , q} is a set of vertices and
E ⊆ V × V is a set of directed edges. We assume that the total ordering of
the variables forms a well-numbering of the vertices according to D, so that, if
there is a directed path from vertex i to vertex j in D, then i < j. ForW ⊆ V ,
denote by UW the set of all variables Uj with j ∈W . The Gaussian graphical
model corresponding to D is the family of all q-variate normal distributions
such that, if there is no edge i→ j in D, then Uj is conditionally independent
of Ui given all variables U{1,...,j}\{i,j}. We denote this DAG model as MD.
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Notice that the joint density of (U1, . . . , Uq) can then be written as

f(u1, . . . , uq |β, γ) =
q
∏

j=1

f(uj |upa(j);βj , γj), (1)

where pa(j) denotes the parents of j in D, i.e., all vertices preceding j such
that each of them is joined by a directed edge to j. Since each conditional
distribution in (1) is a univariate normal, the vector parameter βj represents
the regression coefficients in the conditional expectation of Uj given Upa(j),
namely (1, u′pa(j))βj , while γj is the corresponding conditional precision (in-

verse of variance). By convention, the first element of the vector βj is the
intercept βj0, while the remaining elements are written as βjk with k ∈ pa(j).
If E(Uj) = 0 for all j, then βj0 = 0, j = 1, . . . , q, and the intercept can be
dropped, so that βj has dimension |pa(j)|.

3. FRACTIONAL BAYES FACTOR BASED ON MOMENT PRIORS

We present in this section our proposal for a new Bayesian testing procedure,
based on combining the advantages of the FBF with those of the moment
prior, in order to obtain an objective method with enhanced learning be-
haviour. We now detail our procedure for the problem of comparing Gaussian
DAG models.

Because of the recursive structure of the likelihood (1), it is natural to
assume that p(β, γ) satisfies the assumption of global parameter independence:
p(β, γ) =

∏

j p(βj , γj); see Geiger and Heckerman (2002). A natural default

prior is then pD(βj , γj) ∝ γ−1
j . Now consider two Gaussian DAG models

M0 = MD0 and M1 = MD1 with the same vertex ordering and with M0

nested in M1. For each vertex j, let Lj be the subset of the parents pointing
to j in D1 but not in D0. We define the moment prior (of order h) for vertex
j, under M1, as

pM1 (βj , γj) ∝ γ−1
j

∏

l∈Lj

β2h
jl , (2)

where h is a positive integer. Notice that h = 0 gives back the starting default
prior. The overall moment prior will be obtained by multiplying together the
priors (2):

pM1 (β, γ) =

q
∏

j=1

pM1 (βj , γj) ∝
q
∏

j=1







γ−1
j

∏

l∈Lj

β2h
jl







. (3)

To compute the FBF based on the moment prior (3), we need the expression
for the fractional marginal likelihood pertaining to vertex j both under model
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M0 and under model M1. The former is standard, because it is based on the
default prior, while the latter is provided in the theorem below (whose proof
is deferred to the Appendix to ease the flow of ideas). Notice that, to simplify
notation, we omit in the statement the subscript j; thus we use y instead of
yj , while β and γ stand for βj and γj .

Theorem 1 For a DAG model M1, consider a vertex likelihood f(y | ypa;β, γ),
which is an n-variate normal distribution with expectation Xβ and variance
matrix γ−1In, where X is an n× p matrix whose columns contain the obser-
vations on the parent variables (adding as first column the vector 1n whenever
appropriate). For the comparison of M1 with respect to a nested DAG model
M0, assume a vertex moment prior pM1 (β, γ) ∝ γ−1

∏

l∈L β2h
l , where L ⊆ pa

is the subset of the parents pointing to the vertex in D1 but not in D0. Then,
the vertex fractional marginal likelihood based on the moment prior is

w1(y |X, b) =
(

πbS2
)−n(1−b)

2

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(n−p−2i

2 )(S2)i

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(nb−p−2i

2 )(S2)i
, (4)

where 0 < b < 1 is the sample size dependent fraction satisfying nb > p+2h|L|,
and H

(h)
i (µ,Σ) is defined in formula (6) of the Appendix. From a purely

formal viewpoint, the expression of β̂ is that of the usual OLS estimate, while
that of S2 corresponds to the residual sum of squares; the analogy is merely
formal because the matrix X contains observations on stochastic variables,
namely those associated to the parents of the vertex under consideration.

Using Theorem 1, we can conclude that the fractional marginal likelihood
based on the moment prior is w1(y; b) =

∏q
j=1 w1(yj |Xj , b), where each in-

dividual factor w1(yj |Xj , b) is as in (4). It is important to realise that the
quantity w1(y; b) is contingent upon the choice of the specific nested DAG
model M0 used for the comparison: this determines the nature of the sets
Lj ⊆ paj used in constructing the moment prior. The FBF of M1 against M0

is now given by the ratio of the two fractional marginal likelihoods:

FBF10(y; b) =
w1(y; b)

w0(y; b)
=

q
∏

j=1

w1(yj |X1j , b)

w0(yj |X0j , b)
=

q
∏

j=1

FBF
(j)
10 (yj ;X1j , b), (5)

where each individual w1(yj |X1j , b) is computed using formula (4), while each
individual w0(yj |X0j , b) is directly available using standard calculations for
the FBF in the normal linear model (O’Hagan and Forster, 2004; sect. 11.40)
and in principle it can also be deduced from (4) upon setting h = 0 throughout.

Notice that FBF10(y; b) is a product of FBFs pertaining to single vertices:

FBF
(j)
10 (yj ;X1j , b). In addition, it is well-known, and immediate to realise,
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that in order to compute the quantity FBFM
10 (y; b) one requires only those

FBFs referring to vertices with different parent structures under the two DAGs

D1 and D0; otherwise FBF
(j)
10 (yj ;X1j , b) is identically one.

3.1. Asymptotics

The proof in Dawid (1999) suggests that FBF10(y
(n); b) = Op(n

−(h+1)
∑

j |Lj |/2),

if M0 holds, while BF01(y
(n)) = e−Kn+Op(

√
n), for some K > 0, if M1

holds. However, Dawid’s argument is not directly applicable, because the
FBF uses a data dependent prior. Nevertheless, the intuition is correct,
and the same result can be obtained directly (at least when nb is held con-
stant) from (4) and (5). Assuming that M0 holds, one first writes S

2
1/S

2
0 =

exp{(S2
1 −S2

0)/S
2
0 +op((S

2
1 −S2

0)/S
2
0)} in w1(y |X1, b)/w0(y |X0, b), focussing

on a single vertex, and acknowledges that (S2
1/S

2
0)

n converges in law to the
exponential transform of an F distribution. Then, the Gamma function is ap-
proximated by Stirling’s formula, and one notices that nβ̂2

l converges in law
to a χ2 distribution, for all l ∈ L. Working out the details, and considering
all vertices together, the desired result is achieved. On the other hand, if M1

holds, the factor S2
0/S

2
1 converges in probability to a value lesser than one

and the exponential behaviour is obtained, as the remaining factor is dealt
with by means of Stirling’s formula.

4. EXAMPLES

We illustrate our method by means of two examples. The first one relates
to a three-vertex DAG: we show the learning behaviour of our FBF based
on moment priors, and its discriminatory power, as a function of a simply
interpretable parameter; we also apply our results to a real data set. The sec-
ond example concerns a seven-variable real data set on the issue of publishing
productivity, which has been previously analysed in the literature and thus
allows some comparison with alternative methods.

4.1. Three-Variable DAG Models

Let (X,Z, Y ) be three random variables jointly distributed according to a
normal distribution. We can think of Y as a response variable, while X and
Z are potential explanatory variables. Assume that X precedes Z, so that
the total ordering of the three variables is X,Z, Y . In the sequel, we shall
provide a concrete example, where X is Age, Z is Weight and Y is Systolic
blood pressure. A typical hypothesis of interest is Y⊥⊥X |Z, so that the effect
of X on Y vanishes when we condition on Z; this is represented by the DAG
D0 in Figure 1, whereas the DAG D1 in the same figure represents the full
model with no conditional independencies.

Assume now, for simplicity, that each variable has expectation zero and
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D0

Y

Z

X

D1

Y

Z

X

Figure 1: Full and reduced DAG for the three-variable example.

variance one, and let the correlation matrix be given by

X Y Z

X
Y
Z





1 r a
r 1 s
a s 1





with r, s and a constrained by positive definiteness. Then, the partial corre-
lation between X and Y given Z is given by

ρXY |Z =
a− rs√

1− r2
√
1− s2

.

To fix ideas let r = s = 0.5, so that the only free parameter is a, and the
condition of positive definiteness on the correlation matrix leads to −0.5 <
a < 1. Notice that ρXY |Z = (4a−1)/3, which is free to vary over the interval
(−1, 1).

If a = rs = 0.25, then ρXY |Z = 0 and thus Y⊥⊥X |Z (and conversely) so
that there is no edge between X and Y ; this provides the reduced, or null,
model M0 corresponding to the DAG D0. On the other hand, if a 6= rs, then
the full modelM1 corresponding to the DAG D1 holds. Clearly, the only local
likelihood that matters for the comparison of M1 and M0 is the conditional
distribution of Y given (X,Z), which is normal with conditional expectation
(a−rs)/(1−r2)X+(s−ar)/(1−r2)Z = (4a/3)X+[2(1−a)/3]Z. As a typical
value of a such that M1 holds, we consider a = 5/8 = 0.625, corresponding to
ρXY |Z = 0.5 (an intermediate situation).
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Figure 2 reports the posterior probability ofM0 as a function of the sample
size n; here and in the following we assume equal prior probabilities for the
two models under comparison. Results are available for each combination
of a = 0.25 and a = 0.625, and for three choices of FBF: the standard one
(corresponding to h = 0) and two FBFs based on moment priors (with h = 1
and h = 2). It is assumed that the data produce, for each n, the same
correlation matrix Ra, say, as in the population (after having fixed r = s =
0.5). In this way, we are able to capture more neatly the effect of the sample
size n. Recall from Theorem 1 that the fraction b must satisfy the condition
nb > p + 2h|L|. Here, since the variables have expectation zero, p = 2 is
the number of parents of Y in the larger model, and |L| = 1, because we
only consider dropping one edge, namely X → Y ; hence, the condition is
nb > 2 + 2h, which we round to the next integer, thus taking nb = 3 + 2h.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n

P
(M

0
|R

a
, 
h
) h = 0 a = 0.25

h = 0 a = 0.625

h = 1 a = 0.25

h = 1 a = 0.625

h = 2 a = 0.25

h = 2 a = 0.625

Figure 2: Learning behaviour. The horizontal grey lines refer to possible deci-

sion thresholds at levels 1%, 5%, 25%, 50%, 75%, 95%, 99%.

One can see from Figure 2 that, whenM0 holds (solid symbols), learning is
much faster under the FBF based on moment priors than it is under the usual
FBF. In fact, under the latter, the rate of growth of the learning curve is so
slow that even after 100 observations the 95% threshold is not attained; this
should be compared with n = 14 under the moment prior (with h = 1). On
the other hand, when M1 holds (hollow symbols), the ordinary FBF performs
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better; yet the decline of the curve under the two moment priors is rapid
enough to reach a conclusion (e.g., by hitting the 5% threshold at n = 45
when h = 1). We regard Figure 2 as an important piece of evidence in favour
of our method, and one that suggests h = 1 as a better compromise between
learning under M0 and learning under M1.

In Figure 3 we study the ability to discriminate between the two models for
three FBFs: the standard one (h = 0) and two based on actual moment priors
(h = 1 and h = 2). Assuming n = 50, this is done by plotting the posterior
probability of M1 as a function of the free parameter a over its whole range
of variability (−0.5 < a < 1). Recall that a = 0.25 corresponds to conditional
independence (model M0) and that the farther away a is from this threshold
the farther away is the sampling distribution fromM0. It is apparent that the
ordinary FBF (solid line) is not able to provide enough evidence against M1,
when M0 is true, because the minimum value for the posterior probability of
M1 is about 10%, while it is less than 1% for the other two curves. Clearly, the
better performance of the moment priors at a = 0.25 produces a lower value
for the posterior probability of M1 also for a 6= 0.25, and thus technically
belonging to M1. However, by the time a ≤ −0.11 or a ≥ 0.61, when h = 1,
this posterior probability has attained the 95% threshold. Only substantive
knowledge in the area can tell whether this type of discrimination is strong
enough for the given sample size. We do believe, however, that plots like
Figure 2 and Figure 3 represent a valid tool for assessing the appropriateness
of the testing procedure under consideration, and one which may lead to a
further refinement on the value of the fraction b to meet other subject-matter
requirements.

We conclude this subsection by analysing a data set also discussed in
Wermuth (1993). The data refer to n = 98 healthy male adults. For each
individual, the variables (Age, Weight, Systolic blood pressure) were recorded.
Table 1 reports some summary statistics. It is apparent that the partial
correlation between Age and Systolic blood pressure given Weight is very
small (-0.007), thus suggesting a model of conditional independence. This
model is indeed confirmed by each of the FBFs we consider. Specifically, we
obtain that the posterior probability of M0 is 0.9244 (h=0), 0.9983 (h = 1)
and 0.9999 (h = 2) in the three cases. Assuming prior odds equal to one, we
could convert the Jeffreys’ scale for the Bayes factor (Robert, 2001, p. 228)
into the corresponding one for the posterior probability of M1. It would then
appear that, under the moment prior, there is decisive evidence against M1,
whereas this evidence is only strong under the local prior.

4.2. Publishing Productivity

This data set is part of a larger study aimed at investigating the interrela-
tionship among variables potentially related to publishing productivity among
academics. The data were discussed in Spirtes, Glymour and Scheines (2000,
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Figure 3: Discriminatory power. The horizontal grey lines refer to possible
decision thresholds at levels 1%, 5%, 25%, 50%, 75%, 95%, 99%.

Table 1: Observed marginal correlations (lower half) and partial correlations
(upper half) for n = 98 healthy male adults.

Variable X (Age) Z (Weight) Y (Systolic blood pressure)
X (Age) 1.000 0.369 −0.007
Z (Weight) 0.390 1.000 0.348
Y (Systolic blood pressure) 0.139 0.371 1.000

Example 5.8.1) and also analysed in Drton and Perlman (2008), using a fre-
quentist simultaneous testing procedure named SIN. The sample comprises
n = 162 subjects and seven variables, which we write in the order considered
by Drton and Perlman (2008): 1. subject’s sex (Sex); 2. score of the subject’s
ability (Ability); 3. measure of the quality of the graduate program attended
(GPQ); 4. preliminary measure of productivity (PreProd); 5. quality of the
first job (QFJ); 6. publication rate (Pubs); 7. citation rate (Cites). Table 2
reports some summary statistics.The SIN method (at simultaneous level 0.05) selected the DAG D0 in
Figure 4, whereas stepwise backward selection (at individual level 0.05) using
the MIM software package (Edwards, 2000) yielded the super-graph on D1

in the same figure (which includes the additional edges Ability → Pubs and
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Table 2: Observed marginal correlations (lower half) and pairwise partial cor-
relations given the rest of the variables that do not follow the pair in the given

ordering (upper half) for n = 162 academics.

Sex Ability GPQ PreProd QFJ Pubs Cites
Sex 1.00 −0.10 0.08 0.06 0.10 0.45 −0.09
Ability −0.10 1.00 0.62 0.25 −0.02 0.17 0.07
GPQ 0.00 0.62 1.00 −0.09 0.23 −0.07 0.07
PreProd 0.03 0.25 0.09 1.00 0.05 0.14 0.26
QFJ 0.10 0.16 0.28 0.07 1.00 0.39 0.16
Pubs 0.43 0.18 0.15 0.19 0.41 1.00 0.43
Cites 0.13 0.29 0.25 0.34 0.37 0.55 1.00

QFJ→ Cites). We decided to compare the two models using the three FBFs
with h = 0, 1, 2, and obtained the following values for the posterior probability
ofM0: 0.2907 (h = 0), 0.9814 (h = 1) and 0.9999 (h = 2). Hence, FBFs based
on non-local priors support the simplification operated by SIN, with respect
to MIM, while the ordinary FBF gives a different result.

D0

Cites

PubsPreProd

QFJ Sex

GPQ

Ability

D1

Cites

Pubs

QFJ

PreProd

Ability

Sex

GPQ

Figure 4: Full and reduced DAG for the publishing productivity example.

We also compared the SIN model with all simpler models obtained by
removing individual edges from it. The results are reported in Table 3. It is
apparent that the FBFs based on moment priors with h = 1 (as well as the
ordinary ones) do not suggest any further simplification, whereas letting h = 2
suggests removing Ability → PreProd (and GPQ → QFJ). This provides us
with some evidence that moment priors with h = 1 do not favour overly simple
models.
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Table 3: Posterior probabilities of models obtained by removing individual edges from D0.

Edge Removed h = 0 h = 1 h = 2
Ability → GPQ 2.21E-16 4.63E-16 1.40E-15
Ability → PreProd 8.33E-02 4.15E-01 8.62E-01
GPQ → QFJ 2.26E-02 1.30E-01 5.32E-01
Sex → Pubs 1.55E-06 5.02E-06 2.20E-05
QFJ → Pubs 7.84E-06 2.73E-05 1.28E-04
PreProd → Cites 1.66E-02 9.43E-02 4.34E-01
Pubs → Cites 1.07E-10 2.64E-10 9.13E-10

5. DISCUSSION

In this paper we have presented a novel approach for the comparison of Gaus-
sian DAG models within an objective Bayes framework. For a given total
ordering of the variables, we write the joint density under an assumed DAG
model as a product of recursive conditional normal distributions; in this way
the absence of an edge from a potential parent of a vertex in the DAG is
mirrored in the value zero taken on by the corresponding regression coeffi-
cient. For each DAG-model we assume global parameter independence for
the parameter prior, and assign a standard default improper prior on each
vertex regression coefficient and conditional variance. In order to compare
two nested models, we turn the default prior under the larger model into a
moment prior, and then apply the fractional Bayes factor methodology. We
demonstrate that the learning behaviour of our method outperforms the tra-
ditional fractional Bayes factor when the smaller model holds; moreover, when
the larger model holds, the learning behaviour is only marginally worse, for
small samples, but rapidly becomes comparable as the sample size grows.

A further, important, area of application, which was not explicitly touched
on in this paper, is that of model search. We believe that our methodology
can be successfully applied in this context, with the help of a suitable search
algorithm over the space of all models. Since our approach is based on a pair-
wise comparison of nested models, some form of encompassing is required, if
an MCMC strategy is adopted; see, in the context of variable selection, Liang
et al. (2008) using mixtures of g-priors, or Casella and Moreno (2006) using
intrinsic priors. An alternative option is to use a Feature-Inclusion Stochastic
Search, as implemented in Scott and Carvalho (2006) for undirected decom-
posable graphical models. The underlying parameter priors for this search
algorithm will be path-based pairwise moment priors; see Berger and Molina
(2005) in the context of variable selection using g-priors. Preliminary results
indicate that our method compares favourably with lasso and adaptive lasso
techniques to identify DAG-models having a fixed ordering of the variables as
reported recently in Shojaie and Michailidis (2010).
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APPENDIX

Lemma. Let U = (U1, . . . , Up) ∼ Np(µ,Σ), where µ′ = (µ1, . . . , µp) and
Σ = [σlm]; l,m = 1, . . . , p. Fix d ≤ p and a positive integer h; then

E

[

d
∏

l=1

U2h
l

]

=
hd
∑

i=0

1

2i
H

(h)
i (µ,Σ),

where

H
(h)
i (µ,Σ) =

∑

j∈Jh(i)

d
∏

l=1

(2h)!

d
∏

m=1

σjlm
lm

jlm!

d
∏

l=1

µ
j⋆l
l

j⋆l !
, (6)

having defined

j⋆l = 2h−
d

∑

m=1

jlm −
d

∑

m=1

jml

and

Jh(i) =

{

j :
d

∑

l=1

d
∑

m=1

jlm = i & ∀l : j⋆l ≥ 0

}

.

Remark. In formula (6) we have used the convention 00 = 1. Notice that

H
(h)
i (µ, aΣ) = aiH

(h)
i (µ,Σ),

i.e., H
(h)
i (µ, ·) is homogeneous of order i. Although, for simplicity, we state

the result for the first d components of U , it clearly holds for any d components
of U .

Proof. The moment generating function of U (d) = (U1, . . . , Ud) is given by

E

[

exp
{

t′U (d)
}]

= exp

{

d
∑

ℓ=1

tℓµℓ +
1

2

d
∑

ℓ=1

d
∑

m=1

tℓΣℓmtm

}

=
∞
∑

n=0

1

n!

(

d
∑

ℓ=1

tℓµℓ +
1

2

d
∑

ℓ=1

d
∑

m=1

tℓΣℓmtm

)n

=

∞
∑

n=0

n
∑

i=0

(t′µ)n−i(t′Σt)i

2ii!(n− i)!

=
∞
∑

n=0

n
∑

i=0

1

2i

[

∑

kℓ

d
∏

ℓ=1

(tℓµℓ)
kℓ

kℓ!

]





∑

jℓm

d
∏

ℓ=1

d
∏

m=1

(tℓΣℓmtm)
jℓm

jℓm!



 ,
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where the summations over jℓm and kℓ are restricted to j11+j12+· · ·+jd(d−1)+
jdd = i and k1+ · · ·+kd = n− i, respectively. The desired raw moment is the
coefficient of t2h1 · · · t2hd in the above expansion multiplied by ((2h)!)d. This
gives µ2h

1 · · ·µ2h
d plus all terms obtained by replacing one or more factors µℓµm

with Σℓm, that is, by letting kℓ = j⋆ℓ . The function H
(h)
i (µ,Σ) groups the

terms with a given amount i of the overall exponent 2hd assigned to elements
of Σ, and is thus homogenous of order i; the index set Jh(i) identifies the
possible values of j for given i.

Proof of Theorem 1. The generic vertex sampling density is

f(y|X;β, γ) =
( γ

π

)n/2

exp
{

−γ

2
||y −Xβ||22

}

.

The corresponding moment prior is

pM1 (β, γ) ∝ γ−1
∏

l∈L
β2h
l .

Let

I(y;X, b) =

∫ ∫

( γ

π

)nb/2

exp

{

−bγ

2
||y −Xβ||22

}

γ−1
∏

l∈L
β2h
l dβ dγ.

Then, the fractional marginal likelihood is w1(y; b) = I(y;X, 1)/I(y;X, b).
Consider now I(y;X, b). This can be written as

I(y;X, b) = (2π)nb/2
∫

γ
nb
2 −1 exp

{

−bγ
2
S2

}

J(y;X, b) dγ,

with

S2 = ||y −Xβ̂||22, β̂ = (X ′X)−1X ′y,

and

J(y;X, b) =

∫

exp

{

−bγ

2
||X(β − β̂)||22

}

∏

l∈L
β2h
l dβ

=

(

2π

γb

)p/2

|X ′X|−1/2
E

[

∏

l∈L
β2h
l

]

,

where p is one plus the cardinality of pa (in the general case where the expected
value µ of the q-variate normal population is different from zero) or just the
cardinality of pa (if µ = 0 so that all local intercepts are zero); the expectation

is taken with respect to the p-variate normal Np(β̂, γ
−1b−1(X ′X)−1).
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Letting |L| be the cardinality of the set L, and using the result of the
Lemma, we obtain

J(y;X, b) =

(

2π

γb

)p/2

|X ′X|−1/2

h|L|
∑

i=0

(

1

2bγ

)i

H
(h)
i (β̂, (X ′X)−1),

where H
(h)
i (µ,Σ) is defined in (6). As a consequence we can write

I(y;X, b) = (2π)
p−nb

2 b−
p
2 |X ′X|−1/2·

·∑h|L|
i=0

(

1
2b

)i
H

(h)
i (β̂, (X ′X)−1)

∫

γ
nb−p

2 −i−1 exp{− bγ
2 S2} dγ.

(7)

The integral in (7) exists provided nb > p+ 2h|L| and in that case we obtain

I(y;X, b) = (2π)
p−nb

2 b−
p
2 |X ′X|−1/2·

·∑h|L|
i=0 H

(h)
i (β̂, (X ′X)−1)Γ(nb−p

2 − i)
(

bS2

2

)

p−nb
2

(

S2

4

)i

= π
p−nb

2 b−
nb
2 |X ′X|−1/2(S2)

p−nb
2 ·

·∑h|L|
i=0

1
4iH

(h)
i (β̂, (X ′X)−1)Γ(nb−p−2i

2 )(S2)i.

Finally we obtain

w1(y; b) =
I(y;X, 1)

I(y;X, b)

=
(

πbS2
)−n(1−b)

2

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(n−p−2i

2 )(S2)i

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(nb−p−2i

2 )(S2)i
.(8)


