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1 Introduction

The increasing globalization of world economies in general, and the introduction of the

Euro in particular, have raised the issue of multivariate joint modelling. Given these

stylized facts of contemporary economic systems, the assumption of joint normality can be

no longer realistic and this leads to the problem of finding a more appropriate specification

of multivariate models. Copula theory can be a solution to this problem. In fact, the

essential idea of the copula approach is that a joint distribution can be factored into

the marginals and a dependence function called copula. The dependence relationship is

entirely determined by the copula, while scaling and shape (mean, standard deviation,

skewness and kurtosis) are completely determined by the marginals.

Copulae have been successfully used in finance and we refer the interested reader to the

book by Cherubini et al. (2004) for a detailed treatment of many financial applications.

However, research work dealing with economic issues has been almost inexistent so far,

except for a recent work by Granger et al. (2006) who use a copula-VAR-X-ARCH model

to test whether a business cycle indicator influences the conditional copula of income and

consumption growth.

In this perspective, we propose here a Copula-VAR approach for industrial production

modelling and forecasting: we justify this choice because the dynamics of industrial activ-

ity is a fundamental indicator of the business cycle and the relevant information is provided

without much delay. Besides, since the introduction of the Euro has had important ef-

fects mainly on the countries joining the European Monetary Union (EMU), we focus our

analysis on EMU data, only.

The first contribution of the paper is a joint empirical analysis, by means of a copula-

VAR-X model, of French, German and Italian industrial production, in the period going

from the German reunification till the end of 2005, so that the first effects of EMU can be

assessed. The second contribution of the paper is a comparison between our copula-VAR-X

approach and the usual Normal VAR model. In this perspective, we perform forecasting

exercises considering 1-step ahead and 3-steps ahead forecasts, showing that when the

marginals are not normally distributed the copula approach yields better forecasts than

the Normal VAR modelling, and keeps the same computational tractability of the latter

approach. Besides, we remark that while the VAR estimated with OLS is a QML estimator

and provides consistent estimates, its behavior in small samples like the one considered

in this work can be rather poor. Furthermore, there are cases where QML estimators

are biased, too (see Newey and Steigerwald, 1997). Instead, imposing the multivariate

t distribution when only the marginals are leptokurtic while the dependence structure is

normal, results in biased coefficients and poor forecasting performances.

The rest of the paper is organized as follows. Section 2 presents the copula-VAR model,

while an empirical application of the general approach concerning European Industrial
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Production data is introduced in Section 3. We perform extensive forecasting exercises in

Section 4, comparing the performances of the alternative models chosen. Section 5 briefly

concludes.

2 A Copula-VAR model

Consider a general copula-Vector-Auto-Regression model, where the n endogenous vari-

ables xi,t are explained by an intercept µi, autoregressive terms of order p, and an error

term
√

hi,t ηi,t

x1,t = µ1 +
n∑

i=1,

p∑

l=1

φ1,i,l xi,t−l +
√

h1,t η1,t

...
...

... (2.1)

xn,t = µn +
n∑

i=1,

p∑

l=1

φn,i,l xi,t−l +
√

hn,t ηn,t.

Let the standardized innovations ηi,t have mean zero and variance one. Furthermore,

they have a conditional joint distribution Ht (η1,t, . . . , ηn,t; θ) with the parameters vector

θ, which can be expressed as follows, thanks to the so-called Sklar’s theorem (1959):

(η1,t, . . . , ηn,t) ∼ Ht (η1,t, . . . , ηn,t; θ) = Ct (F1,t(η1,t; α1), . . . , Fn,t(ηn,t; αn); γ) (2.2)

that is the joint distribution Ht of a vector of innovations ηi,t is the copula Ct ( · ; γ)

of the cumulative distribution functions of the innovations marginals F1,t(η1,t; α1), . . . ,

Fn,t(ηn,t; αn), where γ, α1, . . . , αn are the copula and marginals parameters, respectively.

A copula is a function that links together two or more marginal distributions to form a

multivariate joint distribution: consequently, copulae allow us to model the dependence

structure among different variables in a flexible way and, at the same time, to use marginal

distributions not necessarily identical. For example, F1,t(η1,t, ν1) may follow a Student’s

t distribution with ν1 degrees of freedom, F2,t(η2,t) a standard normal distribution, while

F3,t(η3,t; ν3) a Student’s t distribution with ν3 degrees of freedom.

The study of copulae has originated with the seminal papers by Hoeffding (1940) and

Sklar (1959) and has seen various applications in the statistics literature. Examples in-

clude Clayton (1978), Schweizer and Wolff (1981), Genest and Rivest (1986a,b) and Genest

and Rivest (1993). However, only in the last five years or so copulae have been used in

economics and finance: see, for instance, the work of Rosenberg (1998, 2003), Bouyé et

al. (2001), Embrechts et al. (2003a,b), Patton (2004, 2005b), Fantazzini et al. (2006),

Granger et al. (2006). For more details, we refer the interested reader to the recent

methodological overviews by Joe (1997) and Nelsen (1999), while Cherubini et al. (2004)
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provide a comprehensive and detailed discussion of copula techniques for financial appli-

cations.

By applying Sklar’s theorem and using the relationship between the distribution and the

density function, we can derive the multivariate copula density c (F1(x1), . . . , Fn(xn)),

associated to a copula function C (F1(x1), . . . , Fn(xn)):

f(x1, . . . , xn) =
∂n [C(F1(x1), . . . , Fn(xn))]

∂F1(x1) · · · ∂Fn(xn)

n∏

i=1

fi(xi) = c(F1(x1), . . . , Fn(xn))
n∏

i=1

fi(xi),

(2.3)

where

c(F1(x1), . . . , Fn(xn)) =
f(x1, . . . , xn)

n∏
i=1

fi(xi)

, (2.4)

By using this procedure, we can derive the Normal-copula, whose probability density

function is:

cNormal(Φ(x1), . . . ,Φ(xn);Σ) =
fNormal(x1, . . . , xn)

n∏
i=1

fNormal
i (xi)

=

1
(2π)n/2|Σ|1/2

exp
(
− 1

2x′Σ−1x
)

n∏
i=1

1√
2π

exp
(
− 1

2x2
i

) =

=
1

|Σ|1/2
exp

(
−1

2
ζ ′(Σ−1 − I)ζ

)
, (2.5)

where ζ = (Φ−1(u1), . . . ,Φ
−1(un))′ is the vector of univariate Gaussian inverse distribution

functions, ui = Φ (xi), while Σ is the correlation matrix.

A similar procedure can be followed to derive the t-copula, which is the copula of the

multivariate Student’s t-distribution. Moreover, a model can allow for time-varying de-

pendence structure. That is, we can use a copula function with a dynamic correlation

structure (see for example Chen et al. (2004) and Patton (2004)). However, recent lit-

erature (again Chen et al. (2005) and Patton (2004)) has shown for financial data that

a simple normal copula with no dynamics is sufficient to describe the joint dependence

structure in most cases. Only when the number of considered variables is higher than 20,

statistically significant differences start to emerge and more complicated copulae than the

Normal one may be required. Fantazzini et al. (2006) found similar evidence with monthly

operational risk data. Since we work with a small number of endogenous variables and

monthly economic data, which are known to have a much simpler dependence structure

than daily financial data, we stick to a constant normal copula CNormal
t = CNormal. This

copula belongs to the class of Elliptical copulae.1 An alternative to Elliptical copulae is

given by Archimedean copulae: however, they present the serious limitation of modelling

only positive dependence (or only partial negative dependence), while their multivariate

extensions involve strict restrictions on bivariate dependence parameters. That is why we

1See Cherubini et al. (2004) for more details.
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do not consider them here.

2.1 Copula and Marginals Estimation

Let us suppose to have a set of T empirical data of n economic and financial series, and

let θ = (α1, . . . , αn; γ) be the parameters vector to estimate, where αi, i = 1, . . . , n are the

parameters of the marginal distribution Fi and γ is the vector of the copula parameters.

It follows from (2.3) that the log-likelihood function for the joint conditional distribution

Ht( · ; θ) is given by:

l(θ) =
T∑

t=1

log(c(F1(x1,t; α1), . . . , Fn(xn,t; αn); γ)) +
T∑

t=1

n∑

i=1

log fi(xi,t; αi,t). (2.6)

Hence, the log likelihood of the joint distribution is just the sum of the log likelihoods of

the margins and the log likelihood of the copula. Standard ML estimates may be obtained

by maximizing the above expression with respect to the parameters (α1, . . . , αn; γ). In

practice this can involve a large numerical optimization problem with many parameters

which can be difficult to solve. However, given the partitioning of the parameters vector

into separate parameters for each margin and parameters for the copula, one may use (2.6)

to break up the optimization problem into several small optimizations, each with fewer

parameters. This multi-step procedure is known as the method of Inference Functions for

Margins (IFM ).

According to the IFM method, the parameters of the marginal distributions are estimated

separately from the parameters of the copula. In other words, the estimation process is

divided into the following two steps:

1. Estimate the parameters αi, i = 1, . . . , n of the marginal distributions Fi using the

ML method:

α̂i = arg max li(αi) = arg max
T∑

t=1

log fi(xi,t;αi), (2.7)

where li is the log-likelihood function of the marginal distribution Fi;

2. Estimate the copula parameters γ, given the estimations performed in step 1):

γ̂ = arg max lc(γ) = arg max
T∑

t=1

log(c(F1(x1,t; α̂1), . . . , Fn(xn,t; α̂n); γ)), (2.8)

where lc is the log-likelihood function of the copula.

The IFM estimator verifies the properties of asymptotic normality:

√
T (θ̂IFM − θ0)→ N

(
0,H0

−1
B0

(
H0

−1
)′)

(2.9)
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where H0 and B0 are the expected value of the Hessian and of the variance of the Score,

respectively (see Joe 1997 and Patton 2005a, for a proof). The matrix H0
−1

B0

(
H0

−1
)′

is known as the Godambe Information matrix.

Joe (1997) compares the efficiency of the IFM method relative to full maximum likelihood

for a number of multivariate models and finds the IFM method to be highly efficient.

Therefore, we think it is safe to use the IFM method and benefit from the huge reduction

in complexity it implies for the numerical optimization.

3 An Empirical Application: Industrial Production in the

main Euro-Zone Economies

The creation of the European Monetary Union (EMU) has increased the importance of

business cycle analysis and forecast. Monetary policy is unique for all the 12 countries

belonging to EMU and is decided according to the expected future developments of prices

and output in the whole Euro area. Indeed, since monetary policy is characterised by

operation delays, it must be necessarily forward looking; it follows that a reliable forecast

on the pace of economic activity in the subsequent months is of utmost importance in

deciding the most appropriate policy stance. As well known, the most commonly used and

reliable high-frequency indicator of the business cycle is the industrial production index.2

In this section therefore we build a copula-VAR model for describing the dynamics of the

monthly seasonally-adjusted industrial production index in the three main countries of

EMU, i.e. France, Germany and Italy.3

We follow Stock and Watson’s (1998) suggestion to test for unit roots in the variables

under scrutiny, as well as to use data-dependent lag-length selection criteria. A careful

analysis of the levels and of the first log-differences of the industrial production series,

reported in Figure 1 and in Table 1, shows that non-stationarity is the main feature of the

variables over the observation period 1990:01 - 2005:12.4 We considered various criteria for

selecting the most appropriate lag order of our copula-VAR models:5 the optimal choice

resulted to be a model with three lags. Besides a trace test showed no cointegration at

the 5 % confidence level.

We consider Student’s t marginals and a normal copula since Jarque-Bera tests on the

original Industrial Production series reject normality for all three cases.

With reference to the model structure, recent literature has shown that in explaining

past behavior, but especially in making out-of-sample forecasts, models including not

2Industrial production forecasts can be subsequently translated into more meaningful and operationally
useful GDP forecasts by using bridge models; see. Baffigi, Golinelli and Parigi (2004).

3As well known, these 3 countries account for about three fourths of the industrial production of the
whole Euro area.

4We use the Augmented Dickey-Fuller and Dickey-Fuller Test with GLS Detrending (DF-GLS) by Elliott
et al. (1996).

5See Lütkepohl (1991) for a detailed discussion of the argument.
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Figure 1: Endogenous variables

Levels First differences
France ADF -0.08 -20.41**

DF-GLS 0.71 -20.27**
Germany ADF -0.04 -18.72**

DF-GLS 1.00 -17.82*
Italy ADF -1.18 -8.17**

DF-GLS -0.28 -7.36**
(*) Significant at the 5% level.
(**) Significant at the 1% level.

Table 1: Unit root Tests for Industrial Production series.

No. of coint. rel. Trace stat. 0.05 critical val. prob.
0 20.66 29.80 0.38
1 6.33 15.49 0.66
2 2.38 3.84 0.12

Table 2: Trace test for cointegration

only autoregressive terms, but also structural explanatory variables and leading indicators

are characterized by a definite superior performance.6 Hence, we use all these variables

together in our empirical model, which is fully specified in eqs. (3.1)-(3.3), and where the

variables in upper case letters have the following meaning:7

6See, as an example of this result, Bodo, Golinelli and Parigi (2000).
7The last letter at the end of each variable indicates the country to which we are referring; thus F, G

and I stand respectively for France, Germany and Italy. All data used in the empirical application have
been retrieved from the Eurostat online database.
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• IP = industrial production index;

• ICI = industrial confidence indicator. Business confidence indicators are commonly

recognized as significant leading indicators of industrial output. A different lead-

ing indicator might have been represented by the index of production expectations

months ahead. It can be checked however that these two series are highly correlated

and are therefore interchangeable for our purposes. Confidence indicators, moreover,

show a slightly better performance in explaining and forecasting industrial output;

• SPREAD = spread between the long term and the short term nominal interest rate.

The long term interest rate is the return on 10-years Government bonds; the short

term interest rate is the 3-months return on monetary markets;

• XR = excess return on equities, defined as the difference between the percentage

change in the share prices index and the short run interest rate;8

• LTRIR = long term real interest rate, defined as the difference between the long

term rate and the corresponding annual rate of change of producer prices.

The model also includes the following dummy variables:

• DUMGERUN (=1 in 1990 and 1991), to capture the boom in German industrial

activity after the process of German unification;

• DUMEMU (=1 after 1999), to capture the effects of the creation of EMU;

• DUMIT96 (=1 in 1996), to capture the effects of countercyclical activity in Italy,

due to the effects of the Lira appreciation before its return into the EMS.

∆log(IPF )t = µF +
3∑

i=1

φi,F ∆log(IPF )t−i +
3∑

i=1

φi,F ∆log(IPG)t−i +
3∑

i=1

φi,F ∆log(IPI)t−i +

+α1,F ∆log(ICIGt−1) + α2,F ∆log(ICIGt−2) + α3,F ∆log(ICIIt−1) + α4,F ∆log(ICIIt−2) +

+α5,F XRFt−3 + α6,F XRIt−2 + α7,F ∆(LTRIRIt−6) + α8,F ∆SPREADIt−3 +

+α9,F DUMGERUN + α10,F DUMEMU + α11,F DUMIT96 +
√

h1 η1,t, (3.1)

∆ log(IPG)t = µG +

3∑

i=1

φi,G∆log(IPF )t−i +

3∑

i=1

φi,G∆log(IPG)t−i +

3∑

i=1

φi,G∆log(IPI)t−i +

+α1,G∆log(ICIGt−1) + α2,G∆log(ICIGt−2) + α3,G∆log(ICIIt−1) + α4,G∆log(ICIIt−2) +

+α5,GXRFt−3 + α6,GXRIt−2 + α7,G∆(LTRIRIt−6) + α8,G∆SPREADIt−3 +

+α9,GDUMGERUN + α10,GDUMEMU + α11,GDUMIT96 +
√

h1 η1,t, (3.2)

8Excess returns are more significant than simple share price indices in the estimates; see also Bradley
and Jansen (2004).
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∆log(IPI)t = µI +

3∑

i=1

φl,I∆log(IPF )t−l +

3∑

i=1

φl,I∆log(IPG)t−l +

3∑

i=1

φl,I∆log(IPI)t−l +

+α1,I∆log(ICIGt−1) + α2,I∆log(ICIGt−2) + α3,I∆log(ICIIt−1) + α4,I∆log(ICIIt−2) +

+α5,IXRFt−3 + α6,IXRIt−2 + α7,I∆(LTRIRIt−6) + α8,I∆SPREADIt−3 +

+α9,IDUMGERUN + α10,IDUMEMU + α11,IDUMIT96 +
√

h1 η1,t, (3.3)

(η1,t, . . . , ηn,t) ∼ C
Normal (t1,t(η1,t; ν1), t2,t(η2,t; ν2), t3,t(η3,t; ν3);Σ) ,

As Bodo, Golinelli and Parigi (2000) show, a useful explanatory variable for output be-

haviour in the Euro area might be represented by the US industrial production index.

Actually, in our estimates, this variable turns out to be significant only for Italy and

moreover both marginally and with no lag. Therefore, despite the fact that the US index

is usually published one month ahead of European data, its use would reduce the forecast-

ing horizon of the model by one month, with no substantial improvement in the results.

Furthermore, Marchetti and Parigi (2004) show that, in the case of Italy, a useful indicator

of industrial production might be represented by electricity consumption. Despite that in-

dication, this variable has however the same disadvantage of being a coincident indicator,

thus reducing the forecasting horizon of the estimates; moreover electricity consumption

data of the same kind are not available for France and Germany. Finally, it might be

noticed that despite its economic relevance, the price of oil does not result significant in

influencing the dynamics of industrial activity in the period under consideration.

We report in Table 3 the estimation output for a copula-VAR model with Student’s t

marginals and lagged exogenous variables.

In the equation for France the only specifically significant exogenous variable is constituted

by the excess return on equities, with a lead of 3 months on the industrial production

index. The sign is positive as expected, since an increasing excess return should provide

an indication of an upsurge of economic activity in the immediate near future. No index

of industrial confidence, instead, appears significant in predicting the dynamics of French

industrial production; this effect is then somehow caught and replaced by the interaction

with other countries’ variables, particularly the Italian and German confidence indicators.

As to Germany , the dynamics of the industrial production index depends positively, as

predicted, upon firms’ confidence, with a lag of 1 and 2 months. Besides, two dummies ap-

pear significant: a first one, meant to capture the boom in economic activity following the

process of reunification (boom which appears countercyclical with respect to other coun-

tries experience), and a second one, that records the positive effects on German exports,

and thus on industrial activity, of the creation of the European Monetary Union.

The dynamics of the Italian industrial production index depends positively, as predicted,

upon firms’ confidence, with a lag of 1 and 3 months. Also the excess return on Italian

equities, with a lead of 2 months, appears to provide some information about the dynamics

8



France Germany Italy

Constant 0.0015 Constant -0.0019 Constant 0.0044*
∆ log(Ipi(-1)) 0.0369 ∆ log(Ipi(-1)) 0.1643 ∆ log(Ipi(-1)) -0.0790
∆ log(Ipi(-2)) 0.2081** ∆ log(Ipi(-2)) -0.0039 ∆ log(Ipi(-2)) 0.0143
∆ log(Ipi(-3)) 0.1672* ∆ log(Ipi(-3)) 0.0426 ∆ log(Ipi(-3)) -0.2680**
∆ log(Ipf(-1)) -0.6075** ∆ log(Ipf(-1)) 0.1734 ∆ log(Ipf(-1)) -0.1524*
∆ log(Ipf(-2)) -0.3037** ∆ log(Ipf(-2)) 0.3513** ∆ log(Ipf(-2)) -0.0533
∆ log(Ipf(-3)) -0.0953 ∆ log(Ipf(-3)) 0.3321** ∆ log(Ipf(-3)) -0.0033
∆ log(Ipg(-1)) 0.0132 ∆ log(Ipg(-1)) -0.5141** ∆ log(Ipg(-1)) 0.0236
∆ log(Ipg(-2)) -0.0171 ∆ log(Ipg(-2)) -0.3375** ∆ log(Ipg(-2)) -0.0176
∆ log(Ipg(-3)) 0.0215 ∆ log(Ipg(-3)) -0.0999 ∆ log(Ipg(-3)) 0.1204*
∆ log(ICIG(-1)) 0.0653* ∆ log(ICIG(-1)) 0.1365** ∆ log(ICIG(-1)) 0.0322
∆ log(ICIG(-2)) 0.0921** ∆ log(ICIG(-2)) 0.01144* ∆ log(ICIG(-2)) 0.0339
∆ log(ICII(-1)) -0.0019 ∆ log(ICII(-1)) -0.0511 ∆ log(ICII(-1)) 0.0497*
∆ log(ICII(-3)) -0.0065 ∆ log(ICII(-3)) -0.0556 ∆ log(ICII(-3)) 0.0517*
XRF(-3) 0.0003* XRF(-3) 0.0002 XRF(-3) 0.0001
XRI(-2) 0.0000 XRI(-2) -0.0001 XRI(-2) 0.0002*
∆(LTRIRI(-6)) -0.0014 ∆(LTRIRI(-6)) -0.0021 ∆(LTRIRI(-6)) -0.0034**
∆(SpreadI(-3)) -0.0005 ∆(SpreadI(-3)) 0.0005 ∆(SpreadI(-3)) 0.0033*
DUMGERUN 0.0030 DUMGERUN 0.0092** DUMGERUN 0.0004
DUMEMU 0.0015 DUMEMU 0.0049** DUMEMU -0.0039**
DUMIT96 0.0037 DUMIT96 0.0045 DUMIT96 -0.0052*
Degrees Of Fredom 4.79** Degrees Of Fredom 5.42* Degrees Of Fredom 9.16
LB(12) Std. Res. 0.29 LB(12) Std. Res. 0.57 LB(12) Std. Res. 0.71
LB(12) Std.Res. Sq. 0.99 LB(12) Std. Res.Sq. 0.97 LB(12) Std. Res.Sq. 0.19

(*) Significant at the 5% level; (**) Significant at the 1% level.

Table 3: Copula-VAR model with Student’s t marginals and lagged exogenous variables.

1 0.1484** 0.2859**
0.1484** 1 0.1420**
0.2859** 0.1420** 1

(**) Significant at the 1% level.

Table 4: Normal copula - Correlation matrix.

of industrial activity. The spread between the long and the short term interest rate also

appears to be a good leading indicator of the pace of economic activity in the case of

the Italian economy: the sign is positive, as expected, indicating that an opening spread

supplies information about a likely upsurge in business cycle trends. The long term real

interest rate, with a lag of six months, appears to have a significant negative effect on

industrial output, as expected: in the case of Italy, this effect may be a consequence of the

high level of firms’ external indebtedness, mainly used to finance their investment plans.

Finally, in the Italian case, two dummies appear significant in explaining the dynamics of

industrial production: a first one, in an opposite way with respect to Germany, indicates

the negative effects of the creation of EMU on exports and production (mainly through

the loss of competitiveness); a second one, instead, is meant to capture the countercyclical

negative effects on industrial activity of the appreciation of the Lira in 1996, subsequent

to the strong depreciation of 1995 and targeted to the goal of re-entering the EMS in

November 1996 and joining EMU two years later.

Besides, we note that for all three countries the current growth rate of industrial activity
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depends negatively upon its own lagged rates and positively upon foreign lagged IP growth

rates: such evidence is probably attributable to the beneficial effects of the deepening

process of European economic integration and interdependence that has taken place after

1990.

3.1 Specification Tests of Marginals and Copula Models

The Ljung-Box tests on the standardized residuals in levels and squares reported in Table

3 highlight no misspecification in the conditional mean and variance.

We tested the goodness-of-fit of the models employed for the conditional marginal distri-

butions by using the specification tests discussed in Granger et al. (2006): we used the

Kolmogorov-Smirnov test for density specification, together with the “Hit” test in order to

test jointly for the adequacy of the dynamics and the density specifications in the marginal

distribution models. The latter test divides the support of the density into regions, Ri,

and then applies interval forecast evaluation techniques to each region separately, and then

to all regions jointly. Following Granger et al. (2006), we break the support of the three

probability integral transforms t1,t(η1,t; ν1), t2,t(η2,t; ν2), and t3,t(η3,t; ν3) into 5 regions:

[0,0.1], (0.1,0.25], (0.25,0.75], (0.75,0.9] and (0.9,1]. We then construct “hit” variables for

each region and marginal series, as Hitt1i,t = 1{t1,t(η1,t) ∈ Ri} , Hitt2i,t = 1{t2,t(η2,t) ∈ Ri}
and Hitt3i,t = 1{t3,t(η3,t) ∈ Ri}, which take the value 1 if the realized value is in the re-

gion, and 0 otherwise. Under the null of correct specification, each of these Hit variables

should be iid Bernoulli(U −L), where L and U are the lower and upper boundaries of the

region. To test individual regions we estimate a logistic regression of the hit variables on

a constant and variables that should, if the model is well specified, have no influence on

the hit variable. We used the first three lags of the three hit variables for the same region

(i.e., Hitt1i,t−i, Hitt2i,t−i, and Hitt3i,t−i, with i = 1, 2, 3) to capture serial correlation9. Under

the null hypothesis that the density models are well specified the test statistic is a χ2
10

random variable. To test all regions jointly we estimated a multinomial logit model, with

the same specifications for each region as for the individual tests. The test statistic for

the joint test is a χ2
40 under the null hypothesis. The p-values for each test statistic are

presented in Table 5.

All the three marginals passed the joint tests and all individual region tests at the 0.05 level,

thus highlighting that the three marginals are correctly specified. Testing for marginal dis-

tribution model misspecification is a critical step in constructing multivariate distribution

models using copulas, since if we use a misspecified model for the marginal distributions,

then the probability integral transforms will not be Uniform(0, 1), and so any copula

model will automatically be misspecified.

We finally performed a goodness-of-fit test of our parametric Normal copula model by

9We also tried adding other lagged variables as well as exogenous variables. None of these changes
affected the final conclusion.
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Region t1,t(η1,t; ν1); t2,t(η2,t; ν2) t3,t(η3,t; ν3)
[0,0.1] 0.32 0.10 0.25

(0.1,0.25 0.93 0.98 0.85
(0.25,0.75 0.84 0.13 0.89
(0.75,0.9] 0.08 0.45 0.89

(0.9,1] 0.16 0.89 0.05

Joint Test 0.37 0.35 0.93

KS Test 0.99 0.72 0.84

Table 5: Tests of the marginal distribution models (p-values)

using the second test proposed in Chen et al. (2004)10, which is based on the multivariate

probability integral transform and kernel density estimation of univariate density func-

tions. The normal copula is not rejected with a p-value of 0.66. This result confirmed an

(unreported) estimation of the t-copula whose degrees of freedom were equal to 32, which

is no more distinguishable from a normal copula.

4 Forecasting Exercises

In this section we perform some forecasting exercises about the monthly growth rates of

IP series in order to assess the goodness of our approach. The competing models are the

following ones:

1. A copula-VAR model with constant normal copula and Student’s t marginals;

2. A standard VAR model estimated with OLS;

3. A VAR model with a multivariate Student’s t distribution;

4. A simple ARMA(1,1) model.

We remark that the multivariate Student’s t distribution is a particular restriction on

equation (2.2) that imposes a t-copula and Student’s t marginals with the same degrees of

freedom: imposing such a restriction when it is not the case results in biased coefficients.

We use the observations ranging between 1990:01 and 2002:12 as the first initialization

sample, while those from 2003:01 till 2005:12 are used to perform 1-step ahead and 3-steps

ahead forecasts. A summary of the forecasting performances is reported in Table 6 -7.

The two tables show that the copula-VAR model yields better forecasting statistics than

the competing models for 1-step ahead and 3-step ahead forecasts with regards to France

and Germany, while this is not the case for Italy: this result can be explained if we consider

that the former two countries present the most leptokurtic distributions, as shown in table

3. Besides, while the OLS estimator is a QML estimator and provides consistent estimates,

10The first test can be used only with bivariate copulas.
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Model RMSE MAE

France Germany Italy France Germany Italy

COPULA-VAR 0.936 0.992 0.732 0.837 0.928 0.759
NORMAL-VAR 1.010 1.027 0.733 0.862 0.938 0.753
STUDENT’S T VAR 1.046 1.013 0.789 0.881 0.905 0.802
ARMA 1.056 1.009 0.719 0.908 0.913 0.755

Table 6: One month ahead forecast

Model RMSE MAE

France Germany Italy France Germany Italy

COPULA-VAR 1.047 1.121 1.348 0.862 0.935 1.099
NORMAL-VAR 1.132 1.179 1.366 0.824 0.945 1.145
STUDENT’S T VAR 1.161 1.246 1.380 0.840 1.000 1.143
ARMA 1.208 1.246 1.151 0.950 0.995 0.936

Table 7: Three months ahead forecast

its behavior in small samples like ours can be rather poor. Furthermore, there are cases

where QML estimators are biased, too (see Newey and Steigerwald, 1997). Instead, it is

interesting to notice the poor performance of the VAR model estimated with a multivariate

t distribution, thus highlighting that such a restriction is not adequate.

In order to compare the predictive accuracy of our models, we perform the Hansen and

Lunde’s (2005) and Hansen’s (2005) Superior Predictive Ability (SPA) test, which com-

pares the performances of two or more forecasting models. The forecasts are evaluated

using a loss function like the MAE and the RMSE. The best forecasting model is the model

that produces the smallest expected loss. The SPA test compares for the best standardized

forecasting performance relative to a benchmark model, and the null hypothesis is that

none of the competing models is better than the benchmark.

Let L(Yt; Ŷt) denote the loss if one had made the prediction, Ŷt, when the realized value

turned out to be Yt. The performance of model k relative to the benchmark model (at

time t), can be defined as:

Xk(t) = L(Yt, Ŷ0t)− L(Yt, Ŷkt), k = 1, . . . , l; t = 1, . . . , n.

The question of interest is whether any of the models k = 1, . . . , l is better than the bench-

mark model. To analyze this question Hansen (2005) formulates the testable hypothesis

that the benchmark model is the best forecasting model. This hypothesis can be expressed

parametrically as

µk = E [Xk(t)] ≤ 0, k = 1, . . . , l.

For notational convenience, Hansen (2005) defines an l-dimensional vector µ by

µ =




µ1

...

µl


 = E




X1(t)
...

Xl(t)



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Since a positive value of µk corresponds to model k being better than the benchmark,

Hansen (2005) wants to test the hypothesis H0 : µk ≤ 0 for k = 1, . . . l. Therefore, the

equivalent vector formulation is

H0 : µ ≤ 0

One way to test this hypothesis is to consider the test statistic

T sm
n = max

k

n1/2X̄k

σ̂k

where

X̄k =
1

n

n∑

t=1

Xk(t), σ̂2
k = v̂ar(n1/2X̄k).

The latter is estimated by using the bootstrap method. The superscript “sm” refers to

standardized maximum. Under the regularity condition, Hansen (2005) shows that

T sm
n = max

k

X̄k

σ̂k

p→max
k

µk

σk

which is greater than zero if and only if µk > 0 for some k. So one can test H0 using the

test statistic T sm
n . The only remaining problem is to derive the distribution of T sm

n under

the assumption of a true null hypothesis. Testing multiple inequalities is more complicated

than testing equalities (or a single inequality) because the distribution is not unique under

the null hypothesis. Nevertheless, a consistent estimate of the p-value can be obtained by

using a bootstrap procedure, as well as an upper and a lower bound11.

The results produced by Hansen’s SPA test with the RMSE as the loss function are

presented in Tables 8-9.

FRANCE GERMANY ITALY

Benchmark Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

COPULA-VAR 0.5822 0.5822 0.9883 0.8159 0.9201 0.9201 0.5587 0.5815 0.6804
NORMAL-VAR 0.0811 0.0811 0.1625 0.5449 0.5449 0.5449 0.7108 0.7108 0.8023
STUDENT’S T VAR 0.0719 0.083 0.083 0.5909 0.6361 0.6361 0.0629 0.0629 0.0629
ARMA 0.0283 0.0283 0.0283 0.4905 0.5026 0.5026 0.5312 0.6079 0.6782

Table 8: Hansen Tests between all models for ∆ log(IP ) 1-step ahead forecasts.

FRANCE GERMANY ITALY

Benchmark Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

COPULA-VAR 0.5328 0.5328 0.9061 0.8401 0.8401 0.9916 0.1282 0.1282 0.2135
NORMAL-VAR 0.2429 0.2429 0.3968 0.2394 0.2842 0.3757 0.1434 0.1672 0.1672
STUDENT’S T VAR 0.2713 0.3164 0.3164 0.1289 0.1294 0.1294 0.0839 0.0839 0.0839
ARMA 0.0173 0.0173 0.0173 0.2816 0.2816 0.2816 0.5328 0.5328 0.9159

Table 9: Hansen Tests between all models for ∆ log(IP ) 3-steps ahead forecasts.

11The authors would like to thank Peter Hansen for supplying the Ox code that calculates the SPA test
statistics and associated p-values.
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The reported Hansen’s SPA-consistent p-values show whether there is evidence against

the hypothesis that the benchmark model is the best forecasting one. A low p-value (less

that 0.10) means that the benchmark model is inferior to one or more of the competing

models: the empirical results seem to highlight that the sample being analyzed does not

yield evidence that any of the benchmarks can be outperformed, except for the case of

France with 1-step ahead forecasts where only the copula model cannot be outperformed,

and the multivariate t distribution with France and Italy. This confirms our previous

discussion with forecasting performances reported in tables 6 -7.

Therefore, we can conclude that, overall, our forecasting exercises highlight the fact that

a copula-VAR approach is a valuable tool when we deal with small samples and some (if

not all) of the considered variables are strongly leptokurtic. Besides, differently from the

multivariate t distribution, we remark that the copula approach keeps the computational

tractability of a standard normal-VAR estimated with OLS, thanks to the 2-steps proce-

dure described in section 2.1 which allows for the separate estimation of the parameters

of the marginal distributions from the parameters of the copula.

5 Conclusions

This paper proposed a copula-VAR approach for the joint modelling of industrial produc-

tion in the main EMU countries with a multivariate distribution different from the normal

one. The empirical analysis examined French, German and Italian Industrial Production

data. We found strong evidence that confidence variables are important leading indicators

of industrial output for all three economies, while the long term real interest rate and the

spread between long and short term interest rates were found to be marginally significant

for Italy, only. Besides, the analysis highlighted the negative effects of the creation of EMU

on Italian exports and production, and the opposite positive effects on German industrial

activity, instead.

The forecasting exercises showed that a copula-VAR approach yields better forecasts when

the considered marginals are strongly leptokurtic and we deal with small samples. Besides,

such an approach allows for computational tractability thanks to 2-steps estimation pro-

cedures. While the VAR model estimated with OLS is a QML estimator and provides

consistent estimates, its behavior in small samples like the one considered in this work can

be rather poor. Furthermore, there are cases where QML estimators are biased, too (see

Newey and Steigerwald, 1997). Instead, imposing the multivariate t distribution when

only the marginals are leptokurtic while the dependence structure is normal, results in

biased coefficients and poor forecasting performances.

Our approach may be applied to a wide variety of situations that go beyond the specific

empirical framework examined in this work. An avenue of future research would be to

consider much longer datasets, starting from the end of World War II or even earlier. The
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use of dynamic copulae, not considered here, could be of help in explaining the time-varying

interdependencies between European and world economies, in general. A second avenue of

research could be an analysis conducted at the micro level in order to better understand

the opposite impact of the introduction of EMU on Italian and German industrial activity.
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