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Abstract In this paper we provide a generalization of the standard models of
the diffusion of a new product. Consumers are heterogeneous and risk averse,
and the firm is uncertain about the demand curve: both learn from past ob-
servations. The attitude towards risk has important effects with regard to the
diffusion pattern.

In our model, downward-biased signals to consumers can prevent the suc-
cess of the product, even if its objective quality is high: a “lock-in” result. We
show in addition that the standard logistic pattern can be derived from the
model. Finally, we discuss the asymptotic behavior of the learning dynamics,
with regard to the multiplicity and the stability of equilibria, and to their
welfare properties.
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1 Introduction

High quality innovations can take a long time, or even fail, to diffuse; the op-
posite can happen with relatively low quality ones. This multiple-equilibrium
characteristic of the diffusion processes is probably a major feature of the
evolution of the economy and of its path-dependency.

Many studies of innovation diffusion concentrate mainly on its speed and
on the favouring or hampering factors (for an overall recent review of the
literature, see e.g. Hall 2005). Given the empirical S-shape of many diffusion
processes, several papers assume ab initio a logistic curve deemed to describe
the diffusion path. The parameters of this curve determine the speed and the
time of market saturation (Mahajan and Peterson 1978, 1985; Dodson Jr and
Muller 1978; Geroski 2000). The reason often presented for such a choice is
that diffusion processes resemble epidemic phenomena, which are described by
logistic functions (see Hivner et al, 2003). One limitation of these studies is
that they do not consider agents’ motivations, using aggregate models which
boil down to single equations of information contagion. Due to the ability
to fit data, such contagion models are a main ingredient of the management
literature on product diffusion1.

Some theories offer descriptions of the diffusion process that are more
agent-based: one can include here that large strand of literature, often socio-
logical in spirit, where some agent heterogeneity is assumed. These models are
based mainly on different individual abilities to resist to some social effect: the
“fundamentals” are, e.g., the individual propensities not to be displaced from
average behaviour (“bandwagon effect”: Abrahamson and Rosenkopf 1993 and
Abrahamson and Rosenkopf 1999); the proximity between agents, affecting the
strength of contagion transmission (Cowan and Jonard, 2003, 2004); or some
activation threshold representing the ability of nodes to diffuse the contagion
through a network (Lopez-Pintado and Watts, 2006).

Trying to depart from weakly micro-founded models, the economics liter-
ature has purported to ground the logistic diffusion pattern over some choice
process. Mukoyama (2006), e.g., provides a micro-foundation for Rosenberg’s
learning by using Rosenberg (1982), deemed to be one of the basic engines of
innovation diffusion. Other models are based on the theory of choice under un-
certainty: agents are endowed with subjective probability distributions on, e.g.,
the profitability of an innovation, and these distributions are updated in each
period (Jensen 1982; Feder and O’Mara 1982; Roberts and Urban 1988; Tsur
et al 1990; Chatterjee and Eliashberg 1990; Young 2005; Jackson and Yariv
2007 in the case of network games). The differences among subjective distri-
butions may generate different adoption times on the part of different agents:
then the innovation diffusion is not instantaneous, coherently with traditional

1 Generalizations have been provided by the so-called Bass-like demand models (see Bass,
1969), which include both internal and external (to the group) sources of diffusion.



3

logistic models2. One observes that, in general, these models come down to
single diffusion equations; when multiple equations are considered, the mod-
els are preferably simulated instead of being studied analytically. In addition,
the interplay between demand and supply is often neglected; some noteworthy
exceptions being Bergeman and Valimaki (1997) and Vettas (1998).

In many studies of the factors favouring or hampering diffusion, the des-
tiny of the innovation is in general uniquely predetermined by some feature
of the network (in contagion-type models), or by some objective feature of
the innovation: a “good” innovation will always spread out (see e.g. Jensen
1982, Chatterjee and Eliashberg 1990). To find models where the destiny of
an innovation is not uniquely predetermined, one should consider theories in-
corporating some form of increasing returns: if the initial number of adopters
fails to exceed a certain threshold, the new product is not successful even if
it is a high-quality one (“lock-in” phenomena: Arthur 1989 and Arthur 1994;
Amable 1992; Agliardi 1998; Aoki and Yoshikawa 2002). Notice that in these
models increasing returns are taken as an objective a priori feature of the
adoption process or of the market.

The study of product diffusion is a paradigmatic case, which can easily be
extended to the problem of the diffusion of a new technology. There exists a
large strand of literature (see the reviews in Silverberg et al 1977; Geroski 2000;
Hall and Khan 2002) on this companion issue. The baseline argument is the
same (the choice process is based on formulating expectations over cost and
benefits), although the role of complementarities, related skills and network
effects should be explicitly included. Moreover, due to the role of fundamental
uncertainty, a lock-in outcome is a natural danger, as stressed by Silverberg
et al (1977).

The present paper follows a suggestion of Malerba (2007), namely that the
information base should be carefully studied in order to grasp the essentials of
innovation diffusion. We couple consumer uncertainty, Bayesian behaviour and
heterogeneity: indeed, facing a new product consumers are uncertain about its
quality, so they maintain subjective priors on it, updating them using avail-able
information. We concentrate on this kind of heterogeneity, namely differenti-
ated personal conjectures, and not on differences in fundamental parameters
(tastes or technologies) as more usual in the literature.

We distance ourselves from previous literature in that (a) we explore the
implications of subjective conjectures and risk-aversion on the part of con-
sumers; (b) we look at both sides of the market, demand and supply, consid-
ering explicitly uncertainty on the firm side as well; and (c) we work out the
model analytically, without appealing to simulations. Although recognized by

2 Young (2009) sums up and characterizes the above literature, proposing a model tax-
onomy in terms of inertia, contagion, conformity, social learning and moving equilibria; he
concentrates on deriving the acceleration patterns implied by the different setups.
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some authors (Roberts and Urban 19883; Tsur et al 19904; Verbrugge 20005),
the first aspect has usually been neglected in the literature. Risk aversion
can imply that the consumers’ willingness to pay increases independently of
objective quality, if their subjective uncertainty declines in time: uncertainty
reduction, in turn, derives from signals of previous adoptions on the part of
other consumers. In an opposite fashion, a high subjective uncertainty might
prevent adoption and bloc the diffusion of a high-quality innovation. Hence,
this is a major endogenous positive-feedback mechanism of the dynamic learn-
ing process, a direction of analysis anticipated in Rampa (2002). We do not
pretend, of course, that risk aversion is the only explanation of all the in-
teresting phenomena relating to innovation diffusion: simply, we suggest that
it might be an important factor to be considered by scholars. Regarding the
joint analysis of demand and supply, to our knowledge, a part from the case
of Ho et al (2002) (who consider the role of capacity constraint in a Bass-like
model) and Bergeman and Valimaki (1997) and Vettas (1998) (who follow a
more orthodox approach, neglecting risk aversion), ours is the first organic
attempt to address the problem in the presence of risk aversion, and to ex-
amine equilibrium solutions, where equilibrium is deemed as a steady state
of the learning prrocess by heterogeneous agents. The setup includes a single
risk-neutral firm6 that, not knowing the form of the market demand curve,
maintains and updates a subjective conjecture about it.

By focussing on conjectural equilibria (absorbing states of a learning pro-
cess) we incorporate and discuss explicitly the role of learning, a key deter-
minant of the success of an innovation since it represents a sunk cost on the
part of adopters. Moreover, we include a discussion of the supply side effects
of learning: the firm maintains and updates a subjective conjecture about the
demand, hence modifying the price announced to buyers.

While being interested in certain properties of equilibria, our approach is
implicitly grounded on disequilibrium adjustments, since learning is its basic
engine. Hence it is robust against the critique of traditional theory raised by,
e.g., Silverberg et al (1977). They state at page 1049 of their article:

3 Roberts and Urban (1988), after positing a consumer behaviour that is quite similar to
that adopted in the present setup, fail to draw analytical implications and limit themselves
to simulations and data fitting.

4 Tsur et al (1990) assuming risk aversion in the context of infinite horizon maximization,
obtain the surprising and somehow counterfactual result that more risk-averse firms are
more inclined to adopt an innovation whose profitability is uncertain: in fact, in their setup,
choosing a new technology allows diversification, which reduces future risk.

5 Verbrugge (2000) starts from a utility which is straight-off decreasing in the variance of a
prospect, and assumes that variance decreases objectively in time due to previous adoptions.
In a sense, in that paper objective increasing returns are translated from mean to volatility.

6 The introduction of a new good implies, as usual, monopoly. In a companion paper (see
Bogliacino and Rampa, 2010), we analyze the analytical properties of conjectural equilibria
in a multiple goods extension, instead of focussing on the diffusion patterns. This allows
us to introduce into the model some features of market structure, whose role have been
underlined by part of the literature (see Hall, 2005).
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Rationality cannot be invoked to guarantee eqilibrium because the
system is not sufficiently transparent and there is no ex ante coordina-
tion mechanisms.

In our framework conjectures cannot obviously be derived by equilibrium
reasoning -our continuum of equilibria makes this procedure a non-sense. In
fact we are not interested in the literature on infinite-dimensional hierarchies
of Bayesian beliefs that arose in Game Theory to discuss rational expectations
convergence and/or rationalizability (see e.g. Nyarko 1998; Aumann and Dreze
2008). Conjectures are deemed here as initial conditions, and ’initial conditions
are initial conditions’: as argued by Hahn (1974), given conjectures have the
same dignity of orthodox given tastes.

The main contributions of the paper are all derived from the characteristics
of agents priors, and are as follows. As regards lock-in theory, we show that
there is a positive probability that a high-quality innovation fails to diffuse,
due to downward-biased signals7 and, above all, to consumers’ “pessimism”:
the latter feature incorporates the second -not only first- moments of their
priors, due to risk aversion. As regards the diffusion path we show that it
might, or might not, resemble a S-shaped curve, depending on the parame-
ters of consumers’ priors. As regards finally market equilibria, we prove the
existence of a continuum of conjectural equilibria (a way of incor-porating
path-dependency), and characterize their welfare and stability properties de-
pending on the firm’s equilibrium conjecture.

The paper proceeds as follows: Section 2 sets up the model; Section 3
studies the possibility of lock-in phenomena and makes some arguments about
the speed of diffusion; Section 4 defines con-jectural equilibria and studies their
properties; Section 5 concludes and offers some hints about pos-sible future
extensions. All proofs are confined in the Appendix.

2 Setup

2.1 Quality

Consider a new product launched by a single8 firm at some initial date “0”.
There are M potential buyers (consumers) of this product who can start buy-
ing the product from date 1 onward; time is discrete.

If consumer i decides to buy a positive quantity of the product at date
t ≥ 1, she receives a random quality signal thereof, say λi,t: randomness is
due to, e.g. production and/or delivery factors. For the sake of simplicity, λ is
assumed to be a normal variable9 with true mean µT and precision (i.e. the

7 Besides being affine to other lock-in results, this is also close in spirit to the Banerjee
and Fudenberg (2004) model, where the presence of biased signals may lead to inefficient
outcomes.

8 In a companion paper, Bogliacino and Rampa (2010) provide a generalization of the
present setup to the case of many innovative firms acting in monopolistic competition.

9 Normality implies that quality might be negative (and much so): the meaning of this is
that the new product might be a “very nasty” one.
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inverse of its variance) r. We assume in addition that λit is i.i.d. in time and
among consumers, with distribution given by (2.1):

λ ∼ N(µT , r−1) (2.1)

where “∼” means “is distributed as”. Call fT (λ) the true distribution of λ.
The precision r is assumed to be known to consumers, while the mean µT

is not. This signal is publicly announced, so that each consumer can compute
the sample average λ̄t:

λ̄t =
1

Mt

∑

i∈Ct

λi,t (2.2)

where Ct is the set of consumers buying a positive quantity at date t, and
Mt ≤M is the cardinality of that set.

2.2 Consumer’s choice and learning

For any given quality λ, consumer i yields the following time-separable quasi-
linear utility from her consumption at date t ≥ 1:

U(qi,t, λ, mi,t) = (qi,t)
δ(A− e−λ) + mi,t (2.3)

where qi,t is the quantity of the new product, and mi,t is that of a “money”
(numeraire) good, consumed at that date; 0 < δ < 1, and A > 0 are common to
all consumers. This commonality assumption helps concentrating on a different
source of heterogeneity, namely conjectures, as discussed below.

The utility function (2.3) has been chosen for analytical simplicity and,
though somehow unusual10, it has some convenient properties. First of all, be-
sides utility being strictly concave in quantity, the marginal utility of quantity
increases in quality. In fact one has ∂2U/(∂q ∂λ) = Aδqδ−1e−λ > 0 (omitting
subscripts for simplicity), meaning that the consumer wishes to purchase more
if quality is higher, for given price.

Secondly, i is “risk averse” with respect to quality, a property that is most
important in the present setting. More precisely, not only total utility, but also
marginal utility is concave in quality: ∂3U/(∂q ∂λ2) = −Aδqδ−1e−λ < 0. This
suggests that a higher variance of quality tends to depress (expected) marginal
utility and hence consumption, for given price.

Consumers know that quality is normally distributed, and know its pre-
cision r, but they are uncertain about its true mean µT . Here we assume
heterogeneity among consumers. At date t ≥ 0, consumer i holds a personal
conjecture over µT , taking the form of a normal distribution:

µT ∼i,t N(µi,t, (τi,t)
−1) (2.4)

10 A utility function similar to that used in the present setup was proposed also by Roberts
and Urban (1988), who however did not explore analytically the dynamic implications of
learning and of demand-supply interaction, limiting themselves to simulations exercises.
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where “∼i,t” means “is, according to i at date t, distributed as”, and the
“hyper-parameters” µi,t and τi,t are, respectively, i’s conjectured mean and
precision at that date. Call fi,t(µ) this personal conjectured distribution.

Let y be consumer i’s income (y is constant in time and equal among
consumers), and call pt the price announced by the firm at date t. Then i’s
expected-utility maximization at date t ≥ 1 requires to solve:

max
qi,t,mi,t

Ei,t−1

[

qδ
i,t(A− e−λ) + mi,t

]

s.t. ptqi,t + mi,t = y

The expected value Ei,t−1[·] is taken w.r.t. the subjective conjecture fi,t−1(µ),
defined after expression (2.4). Notice the timing of events: in order to formulate
her demand at date t, the consumer observes the price announced at that date,
but her conjecture was formed at date t − 1, before receiving any signal on
quality at date t.

After routine calculation11, the solution to the above problem is

qi,t = p
1

(δ−1)

t

[

δ

(

A− e(2r)−1+(2τi,t−1)
−1−µi,t−1

)]
1

(1−δ)

(2.5)

together with mi,t = y − ptqi,t.

As expected the demand for the new product, besides decreasing in price
with elasticity 1

1−δ , increases with expected quality µi,t−1 and more impor-
tantly it increases with precision, i.e. decreases with variance. This is a key
result, interpreting quality risk aversion on the part of consumers. Precision,
in turn, splits into objective and subjective precision: of course the latter is
more interesting from our present point of view.

In (2.5) it must be intended that

if
(

A− e(2r)−1+(2τi,t−1)
−1−µi,t−1

)

≤ 0 then qi,t = 0 (2.6)

meaning that the consumer sets her demand equal to zero, independently of
price, if the product is judged “not worthy”, i.e. if its subjectively expected
quality is somehow too low.

In order to avoid trivial cases, namely a so “bad” objective quality distri-
bution that nobody –even knowing it with certainty– would buy any quantity,
we introduce the following

Assumption 1 (A− e(2r)−1−µT ) > 0

Of course, Assumption 1 leaves room for a null demand on the part of i at
some finite date t, depending on fi,t−1(µ), i.e. on µi,t−1 and on τi,t−1.

11 In particular, recall that if λ is a normal variable with mean µ and precision r, then
e−λ is lognormal with mean e−µ+1/2r. It follows that, if r is known and the prior over
µ is normal with hyper-parameters µi and τi, the subjectively expected value of e−λ is
e−µ+1/2r+1/2τi
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According to a standard result in consumer theory12, the condition for
having a positive demand for the money good is ∂U/∂q|q=y/p < p, that in our
case can be written as

y
δ−1

δ

[

δ

(

A− e(2r)−1+(2τi,t−1)
−1−µi,t−1

)]
1
δ

< p (2.7)

Since the eventuality that the consumer spends all her income on the new
good adds only analytical complication, and no further insight, we assume
that income is high enough to satisfy condition (2.7).

Defining

Ki,t ≡
[

δ

(

A− e(2r)−1+(2τi,t−1)
−1−µi,t−1

)]
1

(1−δ)

(2.8)

one computes the market demand at date t as follows:

QD
t = p

1
(δ−1)

t

∑

i∈Ct

Ki,t (2.9)

where Ct was defined in section 2.1.

As regards consumers’ learning, we follow standard Bayesian lines: i’s con-
jecture (2.4) must be thought of as her posterior distribution at date t (and
with our timing convention, fi,0(µ) indicates consumer’s initial prior). The
posterior at t is computed recursively starting from the posterior at t− 1, and
observing the number of buyers Mt and the quality sample average λ̄t at date
t: the latter terms were defined in expression (2.2). Given our assumptions, it
turns out (see DeGroot, 1970, chapter 11) that the updated hyper-parameters
are:

µi,t =
τi,t−1µi,t−1 + rMtλ̄t

τi,t−1 + rMt
and τi,t = τi,t−1 + rMt (2.10)

As usual, the precision hyper-parameter increases in time, provided that
at least one consumer buys a positive quantity at date t: the pace of increase
is given by the objective precision r. On the other hand, the updated mean
parameter can be written as

τi,t−1

τi,t−1+rMt
µi,t−1 + rMt

τi,t−1+rMt
λ̄t and thus can be

viewed as a weighted average between its previous value and the last observed
quality mean: the weights are, respectively, the previous value of subjective
precision and the contribution of last observation to the increase of precision
itself. It follows that i’s opinion on the true mean changes more and more slowly
as time elapses, due to the increase in precision. A high initial precision τi,0

means that i is already very confident in her opinion at very early stages, and
her rate of learning is slow.

12 Namely, a corner solution can be a consumer equilibrium only if, in the point where the
expenditure on a single good exhausts income, the marginal rate of substitution is higher
than the relative price.
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It is however well-known, i.e. due to some Law of Large Numbers, that, if
consumers keep accumulating observations (i.e. if Mt > 0, all t’s), then

Prob
[

lim
t→∞

µi,t = µT

]

= 1

This means that, if the innovation does not abort in finite time, all con-
sumers learn its true quality in the limit, with precisions diverging to infinity.
Under these circumstances, and given Assumption 1, they all buy asymp-
totically the same positive quantity for any given price announced by the

firm. Such common quantity is p
1

δ−1 K∗, where K∗ is defined starting from
expression (2.8), and setting (τi,t)

−1 = 0 and µi,t = µT for all i’s; hence, the

asymptotic market demand is Q∗(p) = p
1

δ−1 MK∗.

2.3 Firm’s choice and learning

The firm launching the new product is the monopolist of this product, and it
bears a constant marginal cost equal to c.

Not knowing the minds of potential buyers, the firm must conjecture a de-
mand curve for the new product. We assume that it conjectures a linear mar-
ket demand function. Apart from being a good approximation to any demand
function and, obviously, simplifying our analysis, this linearity assumption cor-
responds to a common practice of applied theorists and observers when facing
new data, namely resorting to OLS, at least as a first step. More importantly:
it will become clear in the sequel that our main results, namely the existence of
a continuum of equilibria (Proposition 2) and their local (in)stability (Propo-
sition 5), do not depend on this particular assumption. In practice, the firm
believes that, for any value of a, b and p, the conditional distribution of the
quantity demanded Q is a normal variable with given precision, say 1 for
simplicity, and mean Q = a− bp.

The firm, being uncertain about the values of a and b, maintains the hy-
pothesis that their distribution is a normal bivariate: the mean and the preci-
sion hyper-parameters of this distribution at date t are as follows13:

mt =

(

αt

βt

)

and Γt =

(

γ1,t γ12,t

γ12,t γ2,t

)

where αt, βt, γ1,t and γ2,t are positive. Since the firm has surely no reason
to conjecture any particular initial value for the correlation among the two
mean hyper-parameters, we assume γ12,0 = 0. For notational easiness we put
γ1,0 ≡ γ1 and γ2,0 ≡ γ2. Call fF,t(a, b) firm’s conjecture at date t.

13 This is a special case, deriving from our assumption that the conditional distribution of
Q given a, b and p has known precision equal to 1; if this precision were different from 1,
matrix Γt would be multiplied by its value. Things could be generalized, but this would be
immaterial for our results, since firm’s expected profit does not depend on precisions.
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This given, for any price pt to be announced at date t, the firm expects the
following market demand:

EF,t−1(Qt|pt) = αt−1 − βt−1pt

where EF,t−1[·] is taken w.r.t. fF,t−1(a, b). Notice, again, the timing: the firm
announces the price before the resulting actual demand is observed, hence uses
its (t− 1)-conjecture, formed observing demand at time (t− 1).

The firm chooses the price so as to maximize expected profit, EF,t−1(Qt|pt)·
(pt − c). Therefore, the price announced at date t is:

pt =
αt−1

2βt−1
+

c

2
=

αt−1 + cβt−1

2βt−1
(2.11)

and the resulting expected demand, Qe
t (pt), is

Qe
t (pt) =

αt−1 − cβt−1

2
(2.12)

It must of course be the case that αt/βt > c, otherwise the firm would not
find it profitable to sell anything.

We assume that the firm can meet all the demand that is coming at this
price; if demand is lower than expected, the firm can either curtail production
“just-in-time” or freely dispose of the excess supply.

Let us turn to learning. After actual demand (see expression (2.9) above)
QD

t is observed at t ≥ 1, the firm updates the posterior distribution following
Bayesian rules. Define the row vector14 x′t ≡

[

1 −pt

]

; given our assumptions,
one has (see DeGroot, 1970, chapter 11):

mt =
[

Γt−1 + xtx
′
t

]−1[

Γt−1mt−1 + xtQ
D
t

]

(2.13)

and
Γt =

[

Γt−1 + xtx
′
t

]

(2.14)

Expression (2.14) says that, being xtx
′
t a semi-positive definite matrix,

precision always “increases”15 in time. (2.13) can also be written as

mt =
[

Γt−1 + xtx
′
t

]−1[

(Γt−1 + xtx
′
t − xtx

′
t)mt−1 + xtQ

D
t

]

=

= [Γt−1 + xtx
′
t

]−1[

(Γt−1 + xtx
′
t)mt−1 + xt(Q

D
t − x′tmt−1)

]

=

= mt−1 +
[

Γt−1 + xtx
′
t

]−1[

xt(Q
D
t − x′tmt−1)

]

(2.15)

meaning that the updated parameters mt are equal to their previous values,
plus a term involving the “prediction error” appearing in round brackets of

14 In OLS terms, the two elements appearing in vector xt are the “regressors” of the
equation QD

t = αt − βtpt, which is estimated recursively.
15 In terms of the positive-definite-matrix ordering. As a consequence, since γ1 and γ2 are

positive, Γt is non-singular at all t.
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(2.15)16, “deflated” by the updated precision. Once more, then, we find that
the firm’s subjective opinion about the parameters to be estimated changes
more and more slowly as time elapses, so that it converges asymptotically
somewhere17. We cannot, however, assume that the firm’s opinion converges
to any “true” value: as regards this point, see to section 4 below.

2.4 The learning dynamical system

The updating of posteriors on the part of agents gives rise to a dynamical
system, whose evolution describes the diffusion path of the new product. We
wish to write this system in a compact way, convenient for subsequent uses.

Define first µ′t =
[

µ1,t . . . µM,t

]

and τ ′t =
[

τ1,t . . . τM,t

]

, the vectors of all

consumers’ hyper-parameters at date t. Put in addition γ′t =
[

γ1,t γ12,t γ12,t γ2,t

]

,

the vectorization of matrix Γ t. Define finally the vector y′t =
[

µ′t τ
′
t m

′
t γ

′
t

]

.
Thus, as shown in Appendix A, one can posit the following system of (2M +6)
first order difference equations:

yt = F (yt−1) (2.16)

which completely describes the diffusion dynamics.

3 Failures and diffusion

We address now the problem of diffusion. First, our interest is focused on
factors that might hamper the diffusion of a product, albeit of good quality.
Second, we explore the implications of our model as regards the logistic pattern
of diffusion, considered as a stylized fact by many.

3.1 Lock-in

We ended Section 2.2 stating that if consumers keep accumulating observa-
tions their conjectures will converge to the true quality mean. However, it is
clear that in any period the sample quality mean λ̄t can be biased. We claim
that a downward-biased signal can hamper the diffusion through the shrink-
ing of the set of buyers, or can even drive aggregate demand to zero. Indeed,
when heterogeneity is modeled as a difference in individual models, the pat-
tern of learning depends both on initial conditions and on the particular set
of information emerging on the path followed by the system. If some source of
positive feedbacks exists, then a single piece of downward-biased information
might drive agents to rationally and definitively choose to be non-buyers, even
if the true quality is high. In the present setup, positive feedbacks derive from

16 Notice that x′tmt−1 in round brackets is expected demand Qe
t (pt), as defined by (2.12).

17 This happens if consumers’ demand stays bounded, i.e. if the price does not go to zero,
which is guaranteed by c > 0.
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the following two factors: first, the bayesian setting implies that precisions
increase through time and reinforce existing opinions, whatever they are; sec-
ond, if optimism (resp. pessimism) prevails, then a sustained number of buyers
(resp. non-buyers) tends to feed everyone’s opinion with a large (resp. poor)
sample, this raising (resp. lowering) the probability that the true quality is
discovered.

The lock-in literature stresses that the success/failure of an innovation is
not decided in advance according to some fundamental parameter, e.g. the
true quality mean: it may happen that a good product does not diffuse, or
that a worse one does. We integrate this theory exploring the possibility that
subjective factors may generate the result: a pessimistic initial constellation
of conjectures can prevent diffusion, or, alternatively, the evolution of indi-
vidual conjectures under downward-biased signals can harm it. This offers a
new micro-foundation for the lock-in issue, grounded on rational choice under
uncertainty and risk aversion: this foundation might complement those relying
on some assumption of increasing returns, adopted e.g. in the famous Arthur’s
1989 paper.

All technicalities supporting the points that follow are relegated to Ap-
pendix B. First, it is easily shown that “failure” is irreversible, that is Mt = 0
implies Mt+1 = 0 (see Lemma 1). Second, we order consumers on the basis
of an “optimism scale”, induced by the index ϑj,t = τj,t(µj,t − (2τj,t)

−1 −B),
where B = (2r)−1 − lnA. Notice that, coherently with risk-aversion, “opti-
mism” does not depend on the subjective mean parameter only, but also on
the precision one. ϑj,t−1 ≤ 0 implies a null demand on the part of j at date t
(see expression B.1 in Appendix B); in addition lower values of ϑj,t−1 imply a
higher possibility of remaining, or becoming, a non-buyer at t+1 (see Remarks
B.1). Third, conditions are derived under which the set of buyers shrinks or
even vanishes, given the existing degree of optimism: these conditions boil
down to the realization of a low enough sample quality mean (see Lemmata
2, 3 and 4). Fourth, call ϑ+

t−1 the optimism index of the most optimist buyer,

which is necessarily positive: if ϑ+
t turns negative then the most optimist is

pushed out of the market at date t+1, dragging all other buyers with her. This,
as said above, implies irreversible failure (ideally, one can imagine a succession
of sample means that withdraw single buyers from the market sequentially in
time; but the logic is the same: if aggregate demand reaches zero, because the
most optimist buyer changes her status, then it remains zero forever).

The following Proposition evaluates the probability that failure takes place
at date t + 1, given that demand is positive at date t, and given ϑ+

t−1; in
addition, it indicates how this probability depends on the number of buyers.

Proposition 1 Suppose that demand is positive at any time t, that is ϑ+
t−1 >

0. Then the probability that demand becomes null at time t+1 is:

Pr(Failure) =

∫ −ϑ+
t−1

−∞

1√
2πMtr

exp

(

− (v −Mtr(µT −B))2

2(Mtr)

)

dv > 0

This probability is increasing in Mt as long as Mt <
ϑ+

t−1

r(µT−B)
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Proof See Appendix B.

This result asserts that the probability of failure is always positive, that is,
initial conditions or a set of specific initial events may lead to path-dependency,
similarly to other pieces of lock-in literature. However, differently from that
literature, here the result depends substantially on the degree of optimism
of consumers, more precisely on their subjective uncertainty coupled with risk
aversion, and not on objective technological factors. In fact, besides being
decreasing in the true quality mean, as expected, the probability of failure
is decreasing in ϑ+

t−1 as well. Recalling that ϑ+
t−1 incorporates the buyer’s

uncertainty (measured inversely by τj,t−1), this is a major result showing the
role played by risk aversion in preventing the diffusion of a (high-quality) new
product.

Interestingly, the second part of Proposition 1 is a further point of depar-
ture from traditional lock-in literature, where a higher number of adopters is
always favourable to product diffusion, given increasing return. In our case the
opposite may happen, and the reason is fairly intuitive: if the sample mean
λ̄t is low enough to turn optimist consumers into pessimist ones, this will
be more effective if the biased sample mean is supported by a higher num-

ber of observations (see formulae 2.10). The condition Mt <
ϑ+

t−1

r(µT−B) says in

addition that such effect –that is, a greater number of buyers increases the
probability of failure– is more permanent if the most optimist buyer is highly
optimist, and/or if the objective precision r is low. However, if the number
of buyers gets higher than a certain threshold, an opposite and obvious effect
takes place: namely, that the probability of a very downward-biased sample
mean, and hence of failure, decreases.

3.2 Product diffusion

We proved that a new product, though of high quality, can fail to diffuse due to
low consumers’ initial expectations and/or to downward-biased samples. We
assume now that the product does diffuse, and discuss the “transient dynam-
ics”, enquiring whether our model can predict the oft-observed S-shaped diffu-
sion curve. Our attempt is to analyze the microfundamentals of such S-shaped
curve in terms of consumers’ priors and in particular of their risk aversion. The
latter implies that time, through the provision of information, increases indi-
vidual precisions, and hence favors diffusion. At the same time, the speed of
diffusion depends both on the learning rate, which again is determined by in-
dividual precisions, and on the constellation of individual conjectures, namely
how far they are from the true mean.

Since the speed of consumer learning (the time-change of µi,t) goes to
zero as time goes to infinity, any increasing18 diffusion curve turns concave

18 Obviously, one cannot exclude a decreasing diffusion path, if consumers’ expectations
are over-optimistic at the outset. Along lines similar to those of section 3.1, one could also
prove that in this case there is a positive probability that market demand increases in the
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in the limit, for given price. Hence, in order to have a S-shaped curve it
is enough to check that the rate of growth of market demand increases or
at least stays constant during some early stages. The growth rate of market
demand, in turn, is a weighted average of individual demands’ rates (with a null
weight given to cases satisfying (2.6)): so it is enough to show that individual
demands can be S-shaped. Obviously, individual demand could accelerate if
the price went down: but, to grasp the bulk of the problem, we consider a fixed
price19. To get rid of quality noise, we reason in expected-value terms, w.r.t. the
distribution fT (λ): consumers observe µT at each date. This is a standard
procedure in logistic models. In addition, we assume that the number of buyers
stays constant: if this number were to increase, and if individual demands were
S-shaped in tome, the same would happen for aggregate demand all the more
so.

Consider individual demand (2.5) and omit the subscript i for brevity:
given the price, its growth rate is proportional to that of (A − ezt), having
defined zt ≡ (2r)−1 + (2τt)

−1 − µt. The rate of growth of (A− ezt) is

ezt − ezt+1

A− ezt
=

1− e∆zt+1

A
ezt
− 1

(3.1)

having defined ∆zt+1 ≡ zt+1 − zt; its denominator is positiveand increasingin
time along increasing diffusion paths, implying ∆zt < 0, ∀t. Hence, in order
that the growth rate (3.1) increases or stay constant during some stages, as
required for an S-shape, the numerator must increase substantially, which we
write as 1−e∆zt+1 >> 1−e∆zt , or ∆zt+1 << ∆zt < 0. Now using our learning
expression (2.10) and setting λ̄t = µT , after some manipulations we obtain

∆zt+1 =
rM

τt+1

(

µt − µT −
1

2τt

)

(3.2)

where M is the constant number of buyers. Hence the condition ∆zt+1 <<

∆zt < 0 is equivalent to rM
τt+1

(

µt − µT − 1
2τt

)

<< rM
τt

(

µt−1 − µT − 1
2τt−1

)

<

0. since the precision parameter τt grows monotonically during learning, a
sufficient condition for that is µt − µt−1 << 1

τt
− 1

τt+1
. Now, using once more

the learning expressions (2.10) and some simple algebra, in the end we get the
growth rate (3.1) increases if:

µt−1 − µT << − 1

τt+1
< 0 (3.3)

For having an S-shaped diffusion curve, condition (3.3) should be satisfied for
some periods at least. Its interpretation is quite straightforward: on the one

early stages; however, it must sooner or later converge down to Q∗(p), as defined at the end
of section 2.2. Here we concentrate on increasing paths.
19 In our setting the firm has no incentive to follow a moving-price policy, lowering the

price in the first stages to capture buyers: in fact individual demands remain null if (2.6)
holds, even for very low prices. In addition, our setup ignores competition, an otherwise
major source of decreasing price and hence diffusion.
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(c) µ0 = 0.4 and τ0 = 10

Fig. 1: Some numerical examples of the of evolution of individual demand.

hand, buyers should conjecture initially a mean quality well below the true one,
i.e. they should be mean-pessimist at the outset. On the other hand, condition
(3.3) is not satisfied if τt−1 is too low, that is if buyers’ conjectures are held with
low precision, meaning high uncertainty: this means that buyers, besides being
mean-pessimist, must be confident enough in their initial conjectures. There
is an important reason why the precision should not be too low: from the
learning expressions (2.10) we know that if the precision is low with respect to
rM , the updated mean parameter is displaced heavily from its previous value,
and under the present assumption λ̄t = µT it would converge very quickly to
µT , inducing a steep increase in demand. This would prevent a convex branch
of the diffusion curve, that requires instead low initial increases.

The above arguments are given support by Figures 1a and 1b, where we set
the following parameter values: p = r = A = 1, δ = 0.7, µT = 4, and τ0 = 70.
We calculate total demand for 100 periods under the two cases µ0 = 0.4 and
µ0 = 1: as expected, the former case gives rise to a S-shaped curve, while the
latter one does not. Figure 1c shows in addition that, if we reduce the initial
precision τ0 from 70 to 10 while keeping µ0 = 0.4, the initial speed of learning
increases, preventing the curve from being convex in the early stages.
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Some comments are in order. As suggested by Geroski (2000), the emphasis
on S-shaped diffusion curve is probably overrated, e.g. most of the innovations
fails and the empirical evidence on logistic pattern may be the result of sample
selection bias. “Any serious model of diffusion -he claimed- ought to include
failure as a possible outcome” (Geroski 2000:618). We have this piece of expla-
nation, indeed. Moreover, we also agree that is all the informational cascade
and the individual decision process -not just the aggregate pattern- that should
be explained, and our model goes also in this direction.

Having said that and focusing on the pattern of diffusion, we can try to
give some insight of the economic meaning of our reasoning, comparing it with
the most important building block of the literature on diffusion, namely the
epidemiologic model.

The standard epidemiologic model can be summed up in the following
equation20:

q(t) = N(1 + φ exp(−βNt))−1 (3.4)

where N is the number of potential adopters, φ is a parameter that depends
on initial conditions and β is the parameter that governs the word-of-mouth
spreading, basically the probability that a non user is reached. The lower the
latter, the slower the diffusion process. It is immediate to see that the beta
play a role similar to that of individual precision in our setup: the lower the
latter, the higher the pace of adjustment. As a result, our result may be read
as providing a foundation for the speed of the word-of-mouth. The intriguing
part is that, as Geroski (2000) claims, word of mouth is much more a matter
of persuasion than just spreading news, thus our setup capture this idea in a
thorough way: the higher the individual precision, the higher the effort to be
convinced, the slower the diffusion path.

Another necessary remark concerns the asymmetry between the convex and
the concave part, namely the fact that the second part of the diffusion process
is slower. It has been argued that this is a stylized fact (see again Geroski
2000 for empirical evidence). As we said above, in Bayesian modelling, such
as in our case, this fact emerges naturally, since individual precisions increase
linearly in time and the speed of adjustment must decrease eventually.

4 Conjectural equilibria and their stability

4.1 Characterization of conjectural equilibria

We turn now to the problem of the long run behavior of our dynamical system
(2.16), assuming that the innovation does not abort in early stages. To this
end we introduce the following

Definition 1 (Conjectural equilibrium) A conjectural equilibrium (CE) is
a (M + 1)-vector ct ≡

[

q1,t . . . qM,t pt

]

of consumers’ and firm’s choices such
that ct+1 = ct, all t, under the operation of dynamical system (2.16).

20 Of course there are more complicated versions, see Geroski (2000) and Young (2009) for
a discussion.
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The reason why we use the term “conjectural” will become clear in a
while. Let us explore first the conditions to be met in order that individual
choices form a CE. On the one hand, consumers’ demands qi,t remain con-
stant in time if both hyper-parameters of their posteriors, together with price,
are constant. Therefore, given consumer’s learning mechanism (2.10), in order
to have constant demands for given price one must consider the limiting case
fi,∞(·) ≡ limt→∞fi,t(·), for all i’s: the precision diverges to infinity, and the be-

lieved mean has reached µT . Therefore market demand is Q∗(p) = p
1

δ−1 MK∗,
as defined at the end of section 2.2.

On the other hand, the price remains constant in time if firm’s mean hyper-
parameters, mt, do not change: in this case we need not consider the asymp-
totic case limt→∞fF,t(·), because firm’s choice does not depend on the preci-
sion matrix Γ t. From expression (2.15) we know that mt, in turn, does not
change if and only if the firm’s expectation of market demand is fulfilled, i.e. if
QD

t = Qe
t = xt

′mt−1. If this condition is satisfied the price and, hence, con-
sumers’ demand stay constant, so that firm’s expectation keeps being fulfilled.

Recalling definitions given in section 2 above (see also footnote 16), the
CE condition QD

t = Qe
t can be expressed as follows:

(

α∗ + cβ∗

2β∗

)
1

δ−1

MK∗ =
α∗ − cβ∗

2
(4.1)

together with fi,t(·) = fi,∞(·), all i’s (asterisks denote equilibrium values).

Proposition 2 The set of CE forms a continuum in the space of firm’s pa-
rameters.

Proof See Appendix C

It is now apparent why we speak of conjectural equilibrium. Indeed (4.1)
defines a whole one-dimensional manifold (a curve) in the (α, β) space (of
course, not all mathematical solutions to (4.1) are economically sound). That
is, we have a continuum of CE’s, depending on different configurations of the
firm’s (fulfilled) conjecture: there is not a unique position where our dynamical
system can stay in the long run. CE’s differ among themselves as regards price
and quantity, not the number of buyers nor perceived quality: the latter are
equal to M and µT in all equilibria.

Interestingly enough, this result is not dependent on the linear assump-
tion we take for the firm conjectured demand. Any two-parameter conjectured
demand would lead to our result, indeed, namely a one dimensional contin-
uum. More generally, any k-dimensional conjectured demand would lead to a
(k−1)-dimensional manifold. One might go further: going to complete learning
of consumer (τj =∞, ∀j), and assuming r is common knowledge, the optimal
total demand of consumers is QD

t = Q(p; A, δ), where A and δ are parame-
ters. The firm might even conjecture a constant elasticity demand, however it
is uncertain over two parameters and our result is still there.21

21 One could also raise the objection of whether one should not model the firm as collect-
ing information on all individual demand functions, in order to parallel consumers’ ability
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As one may suspect, although in any CE the firm maximizes expected prof-
its (given its conjecture), these profits may not be at their maximum level, as
computed using the true demand curve: call Maximum True Profit Equilib-
rium, MTPE, this particular CE. An important feature of MTPE is tangency
between the two demand curves. In fact, solving its problem, the firm prices
where the Lerner Index p−c

p is equal to the inverse of the elasticity of demand.

Therefore MTPE requires p−c
p = 1

εT
= 1

εC
, where εT and εC are the true and

the conjectured elasticities. It turns out that, given a conjecture (α, β), the in-
verse of the conjectured-demand elasticity is decreasing in price: 1

εC
= α

β p −1;

on the other side, the inverse of the true elasticity is constant: 1
εT

= 1− δ. In
Figure 2 we see that there can exist only one point of intersection between the
three curves (the Lerner Index, and the two inverse-elasticity curves, of which
the conjectured one is parametrized by α and β).

Since the MTPE couple (p∗, q∗) belongs to both the true and the con-
jectured demand (see equation 4.1), equality of elasticities implies tangency
between the two curves. For given c and δ, the point where true profits are
maximized is obviously unique: hence we can find just one α and one β such
that the linear conjectured demand is tangent to the hyperbole. Ergo, if a
MTPE exists, it is unique. The following Proposition holds:

Proposition 3 An MTPE exists.

Proof See Appendix C.

Another interesting property of our setup is that we can make welfare
analysis along the CE manifold defined by (4.1). As we discussed in Section 2.2,
we avoid here all the problems related with income effects, so we can use the
sum of Consumer and Producer Surplus as a measure of welfare, following the
standard partial equilibrium approach. The welfare effects of changes of the
CE parameters (α, β) are completely captured by price.

The following proposition holds:

Proposition 4 The CE can be Pareto ranked.

Proof See Appendix C

This proposition shows that along the CE manifold the conjectured demand
becomes more and more elastic as α and β increase. Hence the firm has a
reduced ability to extract surplus, and it is forced to approach a competitive
result. Said differently, since price decreases as α and β increase (see the proof
of Corollary 2 in Appendix C), the surplus increases.

to collect information on all individual quality signals. A short reflection shows however
that this would lead to a further overparametrization of the model, implying the need of
estimating M independent demand functions, thus enlarging the set of equilibria as defined
in this proposition.
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Price

1/eT

Lerner Index

1/ec

Fig. 2: The elasticity rule: the Lerner Index, the inverse-elasticity of true de-
mand, and one possible inverse-elasticity of equilibrium conjectured demand,
all as functions of price.

4.2 Stability analysis: Does learning select superior equilibria?

If, at any date, the system is in one of the states defined by (4.1), together
with fi,t(·) = fi,∞(·), it will stay there forever. We want to address now the
problem of stability : more precisely, we study local stability, i.e. ask whether
an equilibrium can be reached starting from initial conditions “nearby” it.
This requires evaluating the jacobian of system (2.16) at an equilibrium at a
certain date t, namely

J∗F,t =
[∂yt+1

∂yt

]

∣

∣fi,∞,α∗,β∗,t
(4.2)

and checking that none of its eigenvalues exceeds 1 in absolute value.
Although the study of the stability properties is standard in dynamical

analysis, we have also a major justification in terms of welfare properties:
this is motivated by our Proposition 4 above, namely, we ask whether small
“trembles” around a CE, inducing a dynamic learning process, are able to push
the system away from Pareto-inferior equilubria, thus softening indeterminacy.

As it always happens in the presence of multiple equilibria, the asymp-
totic state of the system is sensitive to initial conditions: to each different
initial condition there corresponds a different asymptotic state. In our present
case, consumers’ conjectures being fixed at their limiting positions fi,∞(·), the
relevant initial condition is the firm’s prior22.

Indeed it turns out that the local stability of a CE depends heavily on the
firm’s prior, besides depending on the elasticity of the true demand, as the
following Proposition shows.

22 If we considered any possible initial condition, i.e. fi,t(·) 6= fi,∞(·), the asymptotic
state would of course depend also on the path followed by learning, that is on the sample
realizations of quality. However, since in our setting consumers are bound to learn the true
quality asymptotically, this would add nothing interesting about stability of equilibria.
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Proposition 5 A CE is locally unstable under the learning dynamics -more
technically, out of the (2M+6) eigenvalues of J∗F,t, one can exceed 1 in absolute
value, and more precisely can be lower than −1, all the others being positive-
if the following conditions are satisfied:
(i) the prior precision of the α parameter, γ1, is low;
(ii) the prior precision of the β parameter, γ2, is lower than γ1;
(iii) t is small, that is the firm is the early stages of learning;
(iv) the elasticity of the true demand, εT , is high relative to that conjectured
by the firm, εC .

Proof See Appendix C

We conclude that, even though the firm’s prior were located near a CE, under
the conditions of Proposition 5 the learning dynamics would push the variables
away from that equilibrium (in an oscillating fashion, given negativity of the
unstable eigenvalue) if the firm is highly uncertain at the outset and uncer-
tainty is embodied in low values of prior precisions. In particular, instability
is reinforced by a high firm’s uncertainty about by the steepness of demand.
In addition, instability is greater for high elasticity values of the true demand,
meaning that consumers react strongly (more strongly than the firm expects)
to price changes. Coherently with time bringing about an increase in preci-
sions, instability decreases in t: if the system were to pass nearby the same
CE at a subsequent date, variables would no longer be pushed away from it.

Proposition 5 relates to local stability, i.e. linear approximations: hence
these results would be confirmed even if we used a non-linear conjectured
demand function, as anticipated at the beginning of subsection 2.3.

From the proof of Proposition 5, it is apparent that we are speaking of
Lyapunov, not asymptotic, stability. In fact, the very presence of a continuum
of equilibria implies that moving away from a CE along the direction defined
by (4.1) causes neither divergence from the new CE nor convergence to the
previous one. This is explained in Lemma 6 of Appendix C.

Figure 3 gives an example of an unstable CE. We locate the system nearby
this CE at time t = 1, and let the system run, taking µi,t = µTRUE = λ̄t to
simulate consumers’ certainty. The parameter values are: t = 1, µTRUE = 5,
c = 0, r = 1, M = 10, A = 1, δ = 0.95, γ1 = 1, and γ2 = 0.0001. The unstable
eigenvalue is −23.99. It is apparent that, after initial divergence, the system
becomes more stable in time, as predicted by our previous arguments.

Interestingly, the MTPE is stable: this is proved by Corollary C.1 in
Appendix C.

In addition, Corollary C.2 in Appendix C proves that for low t and high
firm’s uncertainty, when α and β decrease (increase) along the CE-manifold
equilibria become more unstable (stable). We already know that, along the
same directions on the CE-manifold, conjectured demand becomes less (more)
elastic and welfare decreases (increases): therefore local stability and efficiency
are related.

The last observation seems to suggest a positive answer to the title of
this subsection. However, the arguments and the proof of Proposition 5 show
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Fig. 3: Shocking the system at an unstable equilibrium. The bold line is the
equilibrium manifold, the thin line the trajectory of the firm shocked at an
initial equilibrium.

that the inefficient equilibria are indeed stable if the firm is more confident in
its conjecture and/or, more importantly, if enough time has elapsed already.
Hence, we cannot conclude that less efficient equilibria are fragile with respect
to learning, as if “evolution selected the best”: the passing of time increases
with the firm’s subjective precision, and any CE becomes locally stable.

5 Conclusions and extensions

In this paper we have explored the market for a new product, formalizing the
aspects of uncertainty that such a market involves: unknown quality on the
demand side, unknown demand on the firm side. We have dealt explicitly with
the heterogeneity issue: agents are endowed with different conjectures at the
outset. Finally, on the demand side, we construed a setup to investigate the
role played by risk aversion.

The main contributions of this paper relate to: (a) the “lock-in” theory,
since we find conditions on subjective priors such that a biased signal can block
the diffusion of a good product; (b) the study of the diffusion pattern, since
our model provides a micro-foundation for the S -shaped curve, but also shows
the not-so-general character of this feature; (c) the equilibrium properties of
the market, since coupling the two sides of the market generates a continuum
of conjectural equilibria, with different welfare and stability properties.

Some generalizations are fairly natural and can be mentioned as directions
for future work. First, the assumption that quality signals are publicly ob-
servable can be removed, introducing a cost for information acquisition. This
may add a further source of lock-in, similar in spirit to the two-armed-bandit
literature (see Rothschild, 1982): if the expected gain from new information is
lower than its cost, agents can stop learning and get stuck into a bad choice.
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Second, one might consider the possibility that the perceived quality de-
pends on price, a point sometimes stressed by marketing researchers. One then
expects that the true demand becomes more rigid and, as shown in Section 4
above, the set of stable conjectural equilibria is enlarged.

Third, the firm might be assumed to bear some initial investment cost,
with the need to break even at some fixed date (due e.g. to capital market
imperfections): if prior conjectures are pessimistic and if the diffusion curve is
initially convex (see Section 3.2), a low demand in early stages may harm the
success of the product, due to the firm’s bankruptcy.

Fourth, one could assume that the information through which consumers
update their posteriors is the quantity demanded, not only of the number of
buyers. At a first sight, this would bring an important effect into the picture:
indeed, even if the number of buyers is high, it might however happen that
quantity demanded il low and this fact might prevent diffusion, a phenomenon
which is not captured by our present model.
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Appendix

A Derivation of system (2.16)

As regards consumers, expression (2.10) summarizes completely their learning. In order to
represent firm’s learning conveniently, start from expression (2.15) and notice that from the
definition of vector xt one derives

xtx
′
t =

»

1 −pt

−pt p2t

–

We know from (2.11) that the price announced by the firm at date t depends on the pa-
rameters mt−1, whence xt = xt(mt−1): one can thus write the term within the first square
brackets of (2.15), i.e. the matrix to be inverted, as

h

Γ t−1 + xtx
′
t

i

=

"

Γ t−1 +

»

1 −pt

−pt p2t

–

#

≡ A(Γ t−1,mt−1) (A.1)

On the other side, the term appearing within the second square brackets of (2.15) is the
product of the column vector xt and the scalar (QD

t −x′tmt−1); then one checks easily that
it can be written as

h

xt(Q
D
t − x′tmt−1)

i

=

»

1 0
0 pt

– »

(QD
t − x′tmt−1)

−(QD
t − x′tmt−1)

–

From (2.8) and (2.9) we know that market demand QD
t depends on pt(mt−1) and on the

posteriors of all consumers at date (t− 1). Therefore, defining

µ′t−1 =
ˆ

µ1,t−1 . . . µM,t−1

˜

and τ ′t−1 =
ˆ

τ1,t−1 . . . τM,t−1

˜

one can write QD
t = QD

t (mt−1,µt−1,τt−1).
Collecting all the above material, (2.15) becomes

mt = mt−1 +C(Γ t−1,mt−1) · g(mt−1,µt−1,τt−1) (A.2)

where

C(Γ t−1,mt−1) ≡
h

A(Γ t−1,mt−1)
i−1

B(mt−1), B(mt−1) ≡
»

1 0
0 pt(mt−1)

–

and

g(mt−1,µt−1,τt−1) ≡
»

(QD
t (·)− x′tmt−1)

−(QD
t (·)− x′tmt−1)

–

C(·) is a 2 by 2 matrix, and g(·) is a column 2–vector. Now define

γt = vec(Γ t) =
ˆ

γ1,t γ12,t γ12,t γ2,t
˜

Therefore, the updating of firm’s precisions can be written as follows:

γt = γt−1 + v(mt−1) (A.3)

where

v(mt−1) ≡ vec(xtx
′
t) =

ˆ

1 − pt(mt−1) − pt(mt−1) p2t (mt−1)
˜′



26

Collecting (2.10), (A.2) and (A.3), and replacing Γ with γ wherever it appears, we are
eventually in a position of writing the learning dynamical system as follows:

µi,t =
τi,t−1µi,t−1 + rMtλ̄t

τi,t−1 + rMt
i = 1, . . . ,M (A.4)

τi,t = τi,t−1 + rMt i = 1, . . . ,M (A.5)

mt = mt−1 +C(γt−1,mt−1) · g(mt−1,µt−1,τt−1) (A.6)

γt = γt−1 + v(mt−1) (A.7)

Expressions (A.4)–(A.7) describe a system of (2M + 6) first-order difference equations.
Defining the (2M + 6)-vector y′t =

ˆ

µ′t τ
′
t m

′
t γ

′
t

˜

, we end up with the following notation:

yt = F (yt−1)

i.e. our expression (2.16).

B Proof of Proposition 1

Consider condition (2.6) for zero demand. Taking logarithms and defining

B ≡ (2r)−1 − lnA and xj,t ≡ µj,t − (2τj,t)
−1

we rewrite the condition for a null demand of consumer j at date t as

j /∈ Ct ⇔ xj,t−1 ≤ B (B.1)

The set Ct, whose cardinality is Mt, was defined in section 2.1. Recall that demand at date
t depends on the posterior formed at date t− 1.

Consider now consumer’s learning rule (2.10). Given our definition of xj,t, with some
manipulation that rule can be transformed into

xj,t =
τj,t−1

τj,t−1 + rMt
xj,t−1 +

rMt

τj,t−1 + rMt
λ̄t (B.2)

where λ̄t, defined in section 2.1, is the quality sample mean. We assume that, if no quality
is observed (i.e. Mt = 0), λ̄t is conventionally set equal to the previous value of the hyper-
parameter.

The proof of Proposition 1 goes through some steps. First of all we have a simple result,
stating that failure is irreversible.

Lemma 1 (Mt = 0) ⇒ (Mt+s = 0) for all positive integers s.

Proof Trivial: Mt = 0 means that (B.1) holds for all j’s. But (Mt = 0) and (B.2), taken
together, imply xj,t = xj,t−1: hence (B.1) holds for all j’s at (t+1) as well, that is Mt+1 = 0.
The Lemma follows by induction.

We enquire next the condition under which consumer j does not buy anything at date
t+ 1, i.e. j /∈ Ct+1. We offer the following

Lemma 2 One has j /∈ Ct+1 if and only if

λ̄t ≤ B − 1

rMt
τj,t−1(xj,t−1 −B) (B.3)

Proof j /∈ Ct+1 means that (B.1) holds at date (t+ 1), namely xj,t ≤ B. Using (B.2), this
requirement leads to

τj,t−1xj,t−1 + rMtλ̄t ≤ B(τj,t−1 + rMt)

Rearranging terms, one obtains (B.3).
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Some remarks are in order.

Remarks B.1

(a) Condition (B.3) is valid for both adopters and non-adopters at date t, that is indepen-
dently of whether j belongs to Ct or not. The difference between the two lies in the sign of
the term (xj,t−1 −B) appearing in (B.3): for adopters it is positive, while it is negative for
non-adopters, meaning that (B.3) is obviously harder to be satisfied for (previous) adopters.
(b) The quantity τj,t−1(xj,t−1 −B) appearing in (B.3) can be seen as a sort of “optimism
indicator” on the part of consumer j, to be interpreted with sign as a propensity to adopt
or not in the future. In fact, a negative value of (xj,t−1 − B) –meaning non-adoption– to-
gether with a high value of τj,t−1 –meaning as we know a slow learning rate– makes (B.3)
fairly easy to be satisfied: j remains most probably a non-adopter. The opposite is true for
positive values of (xj,t−1−B), together with high values of τj,t−1: j remains most probably
an adopter. Finally, smaller values of τj,t−1, for given negative (resp. positive) values of
(xj,t−1 − B), lower (resp. raise) the upper bound for λ̄t in the non-adoption (resp. adop-
tion) case, that is, they lower (resp. raise) the possibility of remaining (resp. becoming) a
non-adopter.
(c) If the number of adopters Mt decreases, the upper bound for λ̄t in (B.3) decreases for
adopters, and increases for non-adopters; that is, it is harder for both to change status.

Taking advantage of Remark (b) above, define ϑj,t ≡ τj,t(xj,t−B), and recall that ϑj,t

is positive only for adopters. This variable can be used to define a “optimism” ordering ≺ϑ,t

of consumers, such that
i ≺ϑ,t j ⇔ ϑi,t < ϑj,t (B.4)

Define now j∗(t) such that (j∗(t) ∈ Ct) ∧ (∀j, ϑj,t ≥ 0 : j∗(t) ≺ϑ,t j): j
∗(t) is the least

optimist consumer still buying a positive quantity at t + 1. Define also j+(t) as the most
optimist consumer, i.e. such that ∄j : j+(t) ≺ϑ,t j.

All this given, we can easily derive the following Lemmata 3 and 4.

Lemma 3 Suppose Ct 6= ∅: then Ct+1 ⊂ Ct (strictly) if and only if (B.3) holds for
j = j∗(t− 1), or for some j such that j∗(t− 1) ≺ϑ,t−1 j.

Lemma 4 Suppose Ct 6= ∅: then Ct+1 = ∅ if and only if (B.3) holds for j = j+(t− 1).

Proof Lemma 3 is a straightforward implication of condition (B.3), considering the ordering
(B.4) and the definition of j∗(t−1). Lemma 4 is a corollary of Lemma 3 and of the definition
of j+(t− 1).

Lemma 3 asserts that the set of buyers can contract in time; Lemma 4 says that this
set can become empty, implying Mt+1 = 0 and hence irreversible failure. We want now to
evaluate the probability that this last event occurs. To this end, define ϑ+

t−1 ≡ ϑj+(t−1),t−1,
the optimism indicator of the most optimist consumer.

Proposition 1 Suppose that demand is positive at any time t, that is ϑ+
t−1 > 0. Then the

probability that demand becomes null at time t+1 is:

Pr(Failure) =

Z −ϑ+
t−1

−∞

1√
2πMt r

exp

„

− (v −Mtr(µT −B))2

2(Mt r)

«

dv > 0 (B.5)

Proof Given Lemma 4 the failure event corresponds to:

λ̄t ≤ B − 1

Mtr
ϑ+

t−1

which can be rearranged as:
Mtr(λ̄t −B) ≤ −ϑ+

t−1 (B.6)

Individual signals λj,t are distributed as i.i.d. N(µT , r
−1), so –Mt being the sample size–

one has λ̄t ∼ N(µT , (Mt r)−1). Then Mtr(λ̄t − B) ∼ N(Mtr(µT − B),Mt r). The proba-
bility of condition (B.6) is thus the integral (B.5), and positivity follows from the normality
assumption. This concludes the proof of the first part of the Proposition.
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Given the argument after (B.6) in the Proof of Proposition 1, one has:

Pr(Failure) = Φ(
−ϑ+

t−1 −Mtr(µT −B)
√
Mt r

)

where Φ(·) is the Cumulative Density Function of z ∼ N(0, 1). Hence, the probability of
failure is increasing in Mt if the argument of Φ(·) has the same property.

Write the argument of Φ(·) as
−ϑ+

t−1√
Mtr

−
√
Mtr(µT − B): recall that ϑ+

t−1 > 0 if some

optimist consumer exists at date t− 1, and that Assumption 1 implies (µT −B) > 0. Define

w ≡
√
Mtr > 0, and u =

−ϑ+
t−1

w
−w(µT −B): u is the argument of Φ(·). The derivative of u

w.r.t. w is equal to
ϑ+

t−1

w2 − (µT −B): this derivative is positive if w2 <
ϑ+

t−1

(µT−B)
. Given the

definition of w, it follows finally that u, and hence the probability of failure, is increasing in

Mt if Mt <
ϑ+

t−1

r(µT−B)
. QED

C Proof of Proposition 2-5 and of Corollaries C.1-2

Proposition 2 The set of CE forms a continuum in the space of firm’s parameters.

Proof It is a straightforward implication of (4.1). QED.

Proposition 3 A MTPE exists.

Proof As argued in the text, the condition for maximum profits is p−c
p

= 1
ǫT

. Hence

maximum true profits require p∗∗ = c
δ
, while the firm maximizes conjectured profits at

p∗ = α
2β

+ c
2
. Equating the two terms leads to α = c

“

2−δ
δ

”

β. Substituting this into (4.1),

we get
„

c(2− δ)

2δ
+
c

2

« 1
δ−1

MK∗ =
cβ(2− δ)

2δ
− cδ

2

and after some manipulation

β =

„

c

δ

«
2−δ
δ−1

MK∗ > 0 =⇒ α = c

„

2− δ

δ

«

β > 0

which proves existence of an economically meaningful MTPE. QED.

The following proposition holds:

Proposition 4 The CE can be Pareto ranked.

Proof It is not easy to to find an explicit solution to the curve defined by (4.1). One can
however characterize its linear approximation: defining g(α, β) = 0 by subtraction of the
r.h.s. from the l.h.s. of (4.1), one finds that the partial derivatives of g w.r.t. α and β have
opposite signs: see Appendix C, expression (C.5), for details. Then, by the implicit function
theorem, one derives that the equilibrium relation between α and β is increasing. QED

The proof of Proposition 5 requires passing through some steps.

Recalling (A.4)–(A.7) of Appendix A, the jacobian of system (2.16) is

JF =









ˆ ∂µi,t

∂µj,t−1

˜ ˆ ∂µi,t

∂τj,t−1

˜

0M,2 0M,4

0M,M IM 0M,2 0M,4
ˆ ∂mk,t

∂µj,t−1

˜ ˆ ∂mk,t

∂τj,t−1

˜ ˆ ∂mk,t

∂ml,t−1

˜ ˆ ∂mk,t

∂γs,t−1

˜

04,M 04,M

ˆ ∂γs,t

∂mk,t−1

˜

I4









≡
[

J1,1 J1,2

J2,1 J2,2

]
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where: i, j = 1, . . . ,M ; k, l = 1, 2; s = 1, . . . , 4; Im is the identity matrix of size m; and 0m,n

is a m by n null matrix.
Now we evaluate this jacobian matrix in a conjectural equilibrium (as defined in section

4), J∗F,t, and investigate its eigenvalues. The proof of Proposition 5 requires some steps,

which we formalize through Lemmata (5)–(7).

Lemma 5 The first 2M +4 eigenvalues of J∗F,t are equal to 1; the remaining two ones are

those of
h

∂mk,t

∂ml,t−1

i

.

Proof JF is clearly decomposable, so its eigenvalues are those of J1,1 (2M in number)
and those of J2,2 (six in number). J1,1 is decomposable as well, and its eigenvalues are

the eigenvalues of IM , i.e. M ones, plus those of

»

∂µi,t

∂µj,t−1

–

, i, j = 1, . . . ,M . Consider now

expressions (A.4) and (A.5), and recall that in a conjectural equilibrium one has Mt = M and

fi,t(·) = fi,∞(·), as explained in section 4. We have thus
∂µi,t

∂µi,t−1
=

τi,t−1

τi,t
, and

∂µi,t

∂µj,t−1
= 0

for i 6= j, so that

»

∂µi,t

∂µj,t−1

–

is a diagonal matrix. Letting t→∞, all precisions τi,t diverge

to infinity, and hence
τi,t−1

τi,t
converges to 1 from below, ∀i. All eigenvalues of

»

∂µi,t

∂µj,t−1

–

are

thus equal to one.

Let us pass to J2,2, and consider its “north-east” block
h

∂mk,t

∂γs,t−1

i

. Collecting the definition

in (A.1), those after (A.2), and equation (A.6), one can write that block in matrix form as:

∂C(·)
∂γt−1

g(·) +C(·) ∂g(·)
∂γt−1

The first term of last expression is null owing to the definition of equilibrium: in fact, from
the definition of g(·) after (A.2), and from the equilibrium condition discussed with reference
to expression (4.1), one gets g(·) = 0 at equilibrium. The second term of the last expression
is null because g(·) does not depend on γt−1. Hence, the “north-east” block of J2,2 is null,

and J2,2 is decomposable into
h

∂mk,t

∂ml,t−1

i

and I4.

Therefore, four of its eigenvalues are equal to 1, while the last two are those of
h

∂mk,t

∂ml,t−1

i

.

The Lemma is proved.

The meaning of the M + 4 unitary eigenvalues, relating to IM and I4, is that consumers’
and firm’s precisions do not converge (indeed they diverge to infinity), without however
impeding the convergence of the mean parameters µi,t and mt−1. The other M eigenvalues,
converging to 1 from below, mean that parameters µi,t get closer and closer to their limiting
value µT at a decreasing speed.

It follows that stability depends entirely on the eigenvalues of

"

∂mk,t

∂ml,t−1

i

. We have the

following result.

Lemma 6 (i) One of the two eigenvalues of
h

∂mk,t

∂ml,t−1

i

is equal to 1;

(ii) the eigenvector associated with the above unitary eigenvalue is the linear approxima-
tion to the equilibrium manifold, defined by equation (4.1), at the (α, β) point defining a
conjectural equilibrium;

(iii) the other eigenvalue of
h

∂mk,t

∂ml,t−1

i

is equal to 1 plus the trace of matrix C(·) ∂g(·)
∂mt−1

.

Proof (i) We write
h

∂mk,t

∂ml,t−1

i

in matrix form, which is easily checked to be

»

∂mk,t

∂ml,t−1

–

= I2 +
∂C(·)
∂mt−1

g(·) +C(·) ∂g(·)
∂mt−1

= I2 +C(·) ∂g(·)
∂mt−1
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The last passage derives again from being g(·) = 0 in equilibrium. Hence the two eigenvalues

of
h

∂mk,t

∂ml,t−1

i

are equal to 1 plus the eigenvalues of C(·) ∂g(·)
∂mt−1

. Consider now matrix
∂g(·)

∂mt−1
.

As g(·) if clearly of the form
ˆ

v −v
˜′

, matrix
∂g(·)

∂mt−1
is singular. Therefore C(·) ∂g(·)

∂mt−1
is

singular as well, so that one of its eigenvalues is zero, and thus one one the eigenvalues of
h

∂mk,t

∂ml,t−1

i

is equal to 1.

(ii) Since all vectors are eigenvectors of I2, the eigenvector of
h

∂mk,t

∂ml,t−1

i

associated with

this unitary eigenvalue is the same as the eigenvector of C(·) ∂g(·)
∂mt−1

associated with its null

eigenvalue. Take the equilibrium condition (4.1), and write it as

g(α, β) ≡
„

α+ cβ

2β

« 1
δ−1

MK − α− cβ

2
= 0 (C.1)

It is clear that the last expression is the first element of vector g(·) (and, changing the

sign, it is its second element). Therefore the eigenvector of of C(·) ∂g(·)
∂mt−1

associated with its

null eigenvalue is nothing else than the vector orthogonal to the gradient of g(α, β). By the
implicit function theorem, hence, this eigenvector is the tangent vector to the equilibrium
curve implicitly defined by (C.1).

(iii) As one of the eigenvalues of C(·) ∂g(·)
∂mt−1

is zero, the other eigenvalue must be equal to its

trace. It follows that the second eigenvalue of
h

∂mk,t

∂ml,t−1

i

is equal to 1+ trace
“

C(·) ∂g(·)
∂mt−1

”

.

This completes the proof of the Lemma.

The meaning of the unitary eigenvalue of part (i) of last Lemma, and that of the associated
eigenvector of part (ii), is related to the very existence of a continuum of equilibria: any
local displacement of variables from an equilibrium along this continuum (locally, along
the eigenvector) causes neither divergence from the new position, nor convergence to the
previous one (due to the unitary eigenvalue).

We pass finally to the analysis of the last eigenvalue of J∗F,t, call it θ.

Lemma 7 (a) θ is lower than 1; (b) θ can be lower than −1.

Proof Part (a).

Owing to part (iii) of Lemma 6, this means proving that trace
“

C(·) ∂g(·)
∂mt−1

”

< 0. We rewrite

C(·) and
∂g(·)

∂mt−1
starting from the definitions given in Appendix A, omitting asterisks,

arguments and time subscripts for simplicity. Recall that we are evaluating jacobian matrices
in a conjectural equilibrium at time t (the system variables have been in that equilibrium
from date 1 to date t).

As regards matrix C, one checks that it is equal to

»

γ1 + t −tp
−tp γ2 + tp2

–−1 »

1 0
0 p

–

: simply

recurse (A.1) back to date 0 with constant price p, use definitions after (A.2), and recall the
definition of γ1 and γ2 from section 2.3. We can thus write

C =

"

»

1 0
0 p

–−1 »

γ1 + t −tp
−tp γ2 + tp2

–

#−1

=

»

γ1 + t −tp
−t γ2

p
+ tp

–−1

and hence, from the formula of the inverse of a 2 by 2 matrix,

C =
1

(γ1 + t)
` γ2

p
+ tp

´

− t2p

» γ2
p

+ tp tp

t γ1 + t

–

(C.2)

Call d the fraction in last line: one easily checks that d =
p

γ1γ2+t(γ2+γ1p2) > 0.

Consider
∂g(·)

∂mt−1
: it can be written as

∂g(·)
∂mt−1

=

»

∂g/∂α ∂g/∂β
−∂g/∂α −∂g/∂β

–

(C.3)
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g(·) was defined in (C.1) and the signs derive from the comments thereafter.

Now, go back to trace
“

C(·) ∂g(·)
∂mt−1

”

. Considering (C.2), (C.3) and the definition of d, with

some passages we get

trace
“

C(·) ∂g(·)
∂mt−1

”

= d ·
“γ2

p

∂g

∂α
− γ1

∂g

∂β

”

(C.4)

As regards the derivatives in (C.4), recalling that (C.1) implies MKp1/(1−δ) = (α− cβ)/2
and that p = (α+ cβ)/2β, after routine calculation one arrives at

∂g

∂α
= −1

2

„

1 +
1

1− δ

α− cβ

α+ cβ

«

< 0 and
∂g

∂β
=

1

2

„

c+
1

1− δ

α− cβ

α+ cβ

α

β

«

> 0 (C.5)

The signs depend on the observation made after the Equation (2.12) of section 2.3. Substi-
tuting such signs in (C.4) proves part (a) of the Lemma.

Part (b).
Looking at the terms appearing in (C.5), one recognizes that 1

1−δ
is the elasticity of true

demand, call it εT , while α−cβ
α+cβ

is the inverse of the elasticity of conjectured demand at

equilibrium, call it εC . We introduce now the following definitions: s ≡ ǫT
ǫC

and ν ≡ γ1
γ2

.

Substitute (C.5) in (C.4); using the last definitions, some passages (in particular, note
that one can write c = 2p− α/β) lead to the following expression

trace
“

C(·) ∂g(·)
∂mt−1

”

= −1

2

1 + 2νp2 + s+ νpα
β

(s− 1)

γ1 + t(1 + νp2)
(C.6)

It is clear that for low values of γ1 and t, and for high values of s and ν, (C.6) can well be
lower than −2.
Part (b) of the Lemma is thus proved.

As a limiting case, consider a very low value of γ1, and t = 1: then in the fraction appearing
in (C.6) the numerator exceeds the denominator by an amount which is approximately equal
to νp2+s+νp(α/β)(s−1), and their ratio can well be grater than 4 for high values of s and ν.

Proof The proof of Proposition 5 is obvious, collecting Lemmata (5)–(7). In particular,
a high value of s means that the true elasticity εT is greater than the conjectured one εC ;
and a high value of ν means that the the prior precision γ2 of the parameter β is lower than
the prior precision γ1 of the parameter α.

Corollary 1 The MTPE is stable.

Proof Trivial. In such an equilibrium ǫT = ǫC , i.e. s = 1; substituting this into (C.6) we
get:

trace
“

C(·) ∂g(·)
∂mt−1

”

= − 1 + νp2

γ1 + t(1 + νp2)
> −1

and, using part (iii) of Lemma 6, 0 < θ < 1.

Corollary 2 For small values of t and γ1, if α and β decrease along the CE-manifold
defined by (4.1), CE’s become more unstable.

Proof We need some preliminaries. As we know, by the implicit function theorem applied
to (4.1), the CE-manifold is an increasing curve. Indeed, by using (C.5):

dα

dβ
=
c+ ǫT α

ǫC β

1 + ǫT
ǫC

> 0 (C.7)
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Henceforth, the total derivative symbol means movements along the CE-manifold.
First, we prove that as α and β increase along along the CE-manifold, the α

β
ratio

decreases. In fact, the following implication is obvious:

0 >
dα

β

dβ
=

1

β

dα

dβ
− α

β2
⇐⇒ dα

dβ
<
α

β
(C.8)

Using (C.7), then, the inequalities in (C.8) are equivalent to

c+
ǫT α

ǫC β
<
α

β
+
ǫT α

ǫC β

which in turn does hold true by the assumption α/β > c (see footnote 14).

Next, rewrite the price set by the firm, and the ratio s, as functions of α
β

, that is p =
α
β

+c

2

and s = ǫt
ǫC

= ǫT
α
β
−c

α
β

+c
. By simple algebra one has: dp

d α
β

= 1
2
> 0 and ds

d α
β

= ǫT
2c

“

α
β

+c
”2 > 0.

We have thus shown the following properties:

dα
β

dβ
< 0,

dp

dα
β

> 0,
ds

dα
β

> 0 (C.9)

We pass now to the proof of the Corollary. Inspection of (C.6) reveals that for s ≤ 2
CE’s are stable; in addition, high values of t and γ1 reinforce stability. Therefore, in order
to find unstable CEs we must set low values of these parameters, along with s > 2: hence,
we take t = 1 and γ1 = 0.5. Substituting these values in (C.6), with some manipulation we
can write it as:

trace
“

C(·) ∂g(·)
∂mt−1

”

= −1−

“

νpα
β

”

(s− 1)

1 + 2(1 + νp2)
+

1

1 + 2(1 + νp2)
(C.10)

α
β

is decreasing in α and β, by the first inequality in (C.9). Proving the Corollary is

thus equivalent to showing that the derivative of (C.10) w.r.t. α
β

is negative.

Using the second inequality in (C.9), we see that the last addendum of (C.10) is indeed
decreasing in α

β
, so we can focus on the second addendum.

Define f
“

α
β

”

≡
“

νpα
β

”

(s − 1) and g
“

α
β

”

≡ 1 + 2(1 + νp2). Hence, the derivative of

−
“

νp α
β

”

(s−1)

1+2(1+νp2)
with respect to α

β
is negative if and only if

f ′(·)
f(·) >

g′(·)
g(·) .

By simple algebra:

f ′(α
β

)

f(α
β

)
=

ds
d α

β

“

νpα
β

”

+ (s− 1)
“

ν α
2β

+ νp
”

“

νpα
β

”

(s− 1)
>
ν α

2β
+ νp

νpα
β

=
ν(2p− c

2
)

νpα
β

The inequality comes from ds
d α

β
> 0, the third expression in (C.9), together with s > 2; the

last passage comes from the definition of the price set by the firm.
Again by simple algebra:

g′(α
β

)

g(α
β

)
=

2νp

3 + 2νp2

We have thus to check
ν(2p− c

2
)

“

νp α
β

” > 2νp
3+2νp2 , which after some passages becomes:

4p+ 4νp3 − 3c

2
− cνp2 > 2νp2

α

β
= 2νp(2p2 − pc)
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In the last passage we used again the definition of the optimal firm’s price. Hence, one
requires:

4p− 3c

2
+ cνp2 > 0

which is clearly true, being p > c.


