
 
 

Quaderni di Dipartimento 
 
 
 
 
 

 
A simple financial market model with chartists and fundamentalists: 

market entry levels and discontinuities 
 
 
 
 
 

Fabio Tramontana 
(Università di Pavia) 

 
Frank Westerhoff 

(University of Bamberg) 
 

Laura Gardini 
(Università di Urbino) 

 
 
 
 
 
 

 
# 150 (07-11) 

 
 
 
 
 
 

Dipartimento di economia politica 
e metodi quantitativi 

Università degli studi di Pavia 
Via San Felice, 5 

I-27100 Pavia 
 
 

Luglio 2011 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6440715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A simple �nancial market model
with chartists and fundamentalists:
market entry levels and discontinuities

Fabio Tramontana
Department of Economics and Quantitative Methods,
University of Pavia, Italy, fabio.tramontana@unipv.it

Frank Westerho¤
Department of Economics, University of Bamberg, Germany

frank.westerho¤@uni-bamberg.de

Laura Gardini
Department of Economics, Society and Politics,
University of Urbino, Italy, laura.gardini@uniurb.it

Abstract

We present a simple �nancial market model with interacting chartists and
fundamentalists. Since some of these speculators only become active when a
certain misalignment level has been crossed, the dynamics are driven by a dis-
continuous piecewise linear map. The model endogenously generates bubbles
and crashes and excess volatility for a broad range of parameter values � and
thus explains some key phenomena of �nancial markets. Moreover, we provide
a complete analytical study of the model�s dynamical system. One of its sur-
prising features is that model simulations may appear to be chaotic, although
only regular dynamics can emerge.

Keywords: �nancial market crisis; bull and bear market dynamics; discontin-
uous piecewise linear maps; border-collision bifurcations; period adding scheme.

1 Introduction

Our paper seeks to add to the burgeoning literature on agent-based �nancial
market models which explain the dynamics of �nancial markets by highlighting
the trading activity of their participants. Seminal contributions in this �eld
include Day and Huang (1990), Chiarella (1992), de Grauwe et al. (1993),
Kirman (1993), Lux (1995), Brock and Hommes (1998), LeBaron et al. (1999),
Farmer and Joshi (2002) and He and Li (2008). According to this class of
models, interactions between heterogeneous and boundedly rational speculators,
relying on simple technical and fundamental trading rules, can generate complex
endogenous price dynamics, including, for instance, the emergence of bubbles
and crashes. More recent approaches are surveyed in Hommes (2006), LeBaron
(2006), Lux (2009), Chiarella et al. (2009) and Westerho¤ (2009).
A few papers in this exciting area focus on the dynamics of piecewise linear

maps. Such piecewise linear maps, which may be regarded as an approximation

1



of more complicated nonlinear maps, have the advantage that they often allow
for a deeper analytical study of the underlying dynamical system, and thus
advance our understanding of what is driving the dynamics of �nancial markets.
For examples, see the asset pricing models of Huang and Day (1993), Day (1997),
Huang et al. (2010) and Tramontana et al. (2010).
Our model, representing a stylized speculative market with interacting chartists

and fundamentalists, also has a piecewise linear structure1 . The reason for this
is that we assume that while some speculators are always active in the market,
others only become active when a certain misalignment level has been crossed.
Since we assume otherwise linear technical and fundamental trading rules, the
model consists of three disconnected branches. The inner regime is due to the
transactions of speculators who are always active; the two outer regimes depend
on the joint trading behavior of all market participants.
From a mathematical point of view, the peculiarity of our model is that al-

though numerically we can observe trajectories that may look chaotic, chaotic
behavior cannot occur. Instead, only regular dynamics are possible, as the
trajectories are either periodic or quasiperiodic. However, both cases are struc-
turally unstable, as they are never persistent under a parameter variation. It
should also be noted that discontinuous piecewise linear maps have not yet been
thoroughly studied. Despite their simplicity, they can, however, lead to surpris-
ing new insights. We hope that our paper will advance our knowledge of such
maps.
From an economic point of view, our model explains, at least partially, the

excess volatility and the disconnect puzzle � which are two of the most challeng-
ing puzzles in international �nance (see, e.g. Shiller 2005). We �nd this rather
interesting since the only assumption required for this is that, in an otherwise
linear world, there are di¤erent market entry levels for certain types of specu-
lator. This assumption, which appears quite natural to us, is already su¢cient
for creating endogenous price dynamics.
After these introductory remarks, the plan of the paper is as follows. In

section 2, we introduce our model and describe some preliminary properties of
its underlying dynamical system. In section 3, we start to investigate the model
in more detail. Since di¤erent parameter assumptions yield di¤erent maps, the
analysis stretches over sections 3 to 5. In section 6, we summarize and prove
two main results. Finally, section 7 concludes the paper.

2 A discontinuous �nancial market model

Overall, our model consists of rather standard building blocks, formalizing the
behavior of a market maker, and four types of speculator. However, a special
feature is that we assume the so-called type 1 chartists and type 1 fundamen-
talists always active in the market, whereas the so-called type 2 chartists and

1Note that there is abundant empirical evidence, summarized by Menkho¤ and Taylor
(2007), which supports the view that speculators indeed rely on technical and fundamental
trading rules.
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type 2 fundamentalists only become active when prices deviate at least a certain
minimum amount from fundamentals. Of course, the more attention a market
receives, the more extreme its prices are. On the one hand, this may trigger an
additional in�ow of chartists who perceive an exploitable bubble. On the other
hand, there may also be an additional in�ow of fundamentalists who believe
they can pro�t from a fundamental price correction.
Since our simple model concentrates on transactions of heterogeneous spec-

ulators, it can, with some liberty, be seen as a stylized representation of a stock,
commodity or foreign exchange market. The model will be presented in section
2.1. In section 2.2, we will then discuss some properties of our piecewise linear
maps, and related maps, which are helpful for understanding and appreciate the
properties of our model.

2.1 Our model�s building block

The �rst building block of our model describes price adjustments. Following
Day and Huang (1990), we assume a market maker mediates transactions out
of equilibrium by providing or absorbing liquidity, depending on whether the
excess demand is positive or negative. In addition to clearing the market, the
market maker quotes prices according to the following rule

Pt+1 = Pt + a
�

DC;1
t +DF;1

t +DC;2
t +DF;2

t

�

; (1)

where P is the price, a is a positive price adjustment parameter, and DC;1
t , DF;1

t ,

DC;2
t and DF;2

t are the orders of the four types of speculator. Accordingly, excess
buying drives the price up and excess selling drives it down. For simplicity, yet
without loss of generality, we set scaling parameter a equal to 1.
Chartists believe in the persistence of bull and bear markets. The orders of

type 1 chartists are therefore given by

DC;1
t = c1 (Pt  F ) ; (2)

where c1 is a positive reaction parameter and F stands for the asset�s (constant)
fundamental value. Hence type 1 chartists submit buying orders in bull markets
and selling orders in bear markets2 .
The trading behavior of fundamentalists is exactly contrary to the trading

behavior of chartists. We formalize the orders of type 1 fundamentalists by

DF;1
t = f1 (F  Pt) ; (3)

where f1 is a positive reaction parameter. Clearly, (3) generates buying orders
when the market is overvalued and generates selling orders when it is underval-
ued.

2This building block also goes back to Day and Huang (1990). Note that Boswijk et al.
(2007) and Westerho¤ and Franke (2011) report empirical support for such kind of trading
behavior.
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What type 1 chartists and type 1 fundamentalists have in common is that
they are (almost) always active. Once they perceive mispricing, they start
trading. Type 2 chartists and type 2 fundamentalists are di¤erent to them in
the sense that they only become active when the misalignment exceeds a certain
critical threshold level. The orders of type 2 chartists and type 2 fundamentalists
are therefore represented by

DC;2
t =

�

0 if jPt  F j < z
c2 (Pt  F ) if jPt  F j > z

(4)

and

DF;2
t =

�

0 if jPt  F j < z
f2 (F  Pt) if jPt  F j > z

(5)

respectively. Again, reaction parameters c2 and f2 are positive and the afore-
mentioned threshold level is given by z > 0.
It is convenient to express the model in terms of deviations from its funda-

mental value. Using auxiliary variable Xt = Pt  F and combining (1) to (5)
yields

Xt+1 =

�

(1 + c1  f1)Xt if jXj < z
(1 + c1  f1 + c2  f2)Xt if jXj > z

; (6)

which is a one-dimensional map consisting of three linear, disconnected straight
lines.

Furthermore, it is useful to introduce de�nitions S1 = c1  f1 and S2 =
c2  f2. Note �rst that S1 and S2 can take any values. A positive (negative)
value of S1 means that type 1 chartists are more (less) aggressive than type 1
fundamentalists. Of course, the same interpretation holds for S2 and type 2
speculators: a positive (negative) value of S2 now means that type 2 chartists
are more (less) aggressive than type 2 fundamentalists.
At �rst sight, it might appear peculiar that type 2 chartists and type 2

fundamentalists become active simultaneously when the distance between the
price and the fundamental value becomes larger than z and, indeed, a more
general model might allow for two di¤erent threshold levels (which would result
in a map with �ve linear branches). However, in an even simpler version of our
model we can have any positive value for S2 if we assume that there are only type
2 chartists and any negative value for S2 if we assume that there are only type
2 fundamentalists. As we shall see later on, the latter speci�cation, implying
additional fundamentalists, is particularly interesting (and economically quite
reasonable). For the moment, however, we shall stick to the more general setup
which includes both type 2 chartists and type 2 fundamentalists.
To simplify the notation even further, let us write X 0 = Xt+1 and X = Xt.

Then (6) can be expressed as

F : X 0 =

�

(1 + S1)X if jXj < z
(1 + S1 + S2)X if jXj > z

: (7)

This is the map we explore in detail in the rest of the paper.
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2.2 Some preliminary properties

First, however, it is helpful to contrast some properties of map (7) with those
of the following map

F : X 0 =

�

(1 + S1)X + E if jXj < z
(1 + S1 + S2)X if jXj > z

; (8)

where the extra parameter E can be positive or negative3 .
A �rst property is that parameter z is a scale variable. In fact, by using the

change of variable x = X=z and de�ning the aggregate parameter M = E=z;
our model in (8) becomes

F : x0 =

�

(1 + S1)x+M if jxj < 1
(1 + S1 + S2)x if jxj > 1

: (9)

That is, we have the following

Property 1. The map in (8) is topologically conjugated to the map in (9).

Note that M can be positive, negative or zero. However, the two cases with
a positive and negative sign of M are topologically conjugated to one another.
We have the following

Property 2. The map F in (9) with M < 0 is topologically conjugated with
the same map F and M > 0.

In fact, by using the change of variable y =  x, the map in (9) leads to

F : y0 =

�

(1 + S1)y  M if jyj < 1
(1 + S1 + S2)y if jyj > 1

: (10)

Clearly, the property holds also for map F in (8) with the sign of E. Hence,
model (9) can be expressed as:

F : x0 =

8

<

:

g(x) = (1 + S1 + S2)x if x <  1
f(x) = (1 + S1)x+M if  1 < x < 1
g(x) = (1 + S1 + S2)x if x > 1

; (11)

and is represented by a one-dimensional piecewise linear discontinuous map,
with two discontinuity points.
Investigating dynamics of this kind of map is quite new, and not yet fully

understood. We can therefore have some generic dynamic properties for our
class of maps, which are related to the piecewise linear structure. As we shall
see, the case with M = 0 is very special. The numerical simulations of the
observed dynamics may lead to incorrect conclusions, re�ecting a sequence of
states very close to chaotic behavior, although no chaos can occur. In fact, this
case leads to a non-chaotic map with peculiar properties, with regular dynamics,

3Note that map (8) with E 6= 0 corresponds to a �nancial market model which is studied
in Tramontana et al. (2011).
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either being periodic or quasiperiodic, and will be completely investigated in this
paper.
By contrast, when M 6= 0; the dynamic behavior generally includes attract-

ing cycles (structurally stable, as persistent for variation of each parameter in
some interval) or truly chaotic dynamics (also structurally stable or robust,
i.e. persistent under parameter variation). The most important property for
these piecewise linear maps is that the appearance of cycles cannot occur via a
fold (or tangent) bifurcation, as is usual in smooth maps. Instead, a cycle can
appear/disappear only via a border collision bifurcation. This term, initially
used in papers by Nusse and Yorke (1992, 1995), is now used extensively in the
literature of piecewise smooth systems. A cycle undergoes a border collision
bifurcation when one of its periodic points merges with a discontinuity point.

Even if map (9) can generate cycles with periodic points in two or three of
its partitions, there are only two functions involved, so that the eigenvalue of
a cycle depends only on the number of periodic points in which functions f(x)
and g(x) are applied. Moreover, the �ip bifurcations are not the usual ones (we
recall that for smooth maps it is associated with the appearance of a stable cycle
of double period). In piecewise linear maps only degenerate �ip bifurcations can
occur, so that at the bifurcation value a whole segment of cycles of double
period exists, stable but not asymptotically stable. The dynamic e¤ects, after
the bifurcation, are not uniquely de�ned. It is possible to have several kinds
of dynamics, but often this bifurcation leads to chaotic sets, that is to cyclic
chaotic intervals (see Sushko and Gardini, 2010). Thus the following property
holds:

Property 3. A structurally stable cycle of map F in (9) can appear/disappear
only via a border collision bifurcation. The eigenvalue of a cycle having p peri-
odic points in the middle region ( jxj < 1) and q outside ( jxj > 1) is given by
� = (1 + S1)p(1 + S1 + S2)q: Only degenerate-type �ip bifurcations can occur.

Moreover, another property of map (9) is also immediate, and excludes cases
which are unfeasible in the applied context, as leading to divergent trajectories.
We know from property 3 that when both slopes of functions f(x) and g(x)
are in modulus higher than 1, then all of the possible cycles are unstable, as
j�j > 1: In these cases, a piecewise linear map can only have chaotic dynamics
(when bounded trajectories exist) or divergent trajectories. However, due to
the particular structure of our map, when j1 + S1j > 1 and j1 + S1 + S2j > 1,
we cannot have bounded dynamics because function g(x) is linear. This implies
that whatever the dynamics in the range jxj < 1, where the map is a¢ne, in a
�nite number of iterations any not �xed trajectory enters the region with jxj > 1;
where it depends on the iterations of an expanding linear function (g(x); the
graph of which is through the origin). The length of the interval bounded by
0 and xt can therefore only increase at each step. The unique possible existing
cycle is thus an unstable �xed point. Hence we have proved the following

Property 4. Consider map F in (9) with j1+S1j > 1 and j1+S1+S2j > 1:
Then any initial condition di¤erent to the unstable �xed point (if existing) has
a divergent trajectory.

6



Economically, j1+S1j > 1means either that type 1 chartists are slightly more
aggressive than type 1 fundamentalists (S1 > 0) or that type 1 fundamentalists
are considerably more aggressive than type 1 chartists (S1 <  2). Moreover,
j1 + S1 + S2j > 1 may be interpreted in the sense that the joint impact of
type 1 and type 2 chartists dominates, at least slightly, over the joint impact of
type 1 and type 2 fundamentalists or that the joint impact of type 1 and type
2 fundamentalists is much stronger than the joint impact of type 1 and type
2 chartists. We learn from this, furthermore, that not only chartists but also
fundamentalists can contribute to market instability.
In the statement of property 3 we considered structurally stable cycles, which

can occur only for M 6= 0: Depending on the values of the parameters, as such
positive or negative slopes of functions f and g, we can have di¤erent dynamic
properties. The possible outcomes associated with M 6= 0 will be investigated
in a di¤erent paper, while the dynamics existing when M = 0 is the object
of the present study. As already remarked, the case M = 0 is special as only
structurally unstable dynamics, either periodic or quasiperiodic, can exist.

3 Non-chaotic regime at M = 0

Let us consider map F in (11), for the particular case M = 0; say F0 (which
corresponds to map F in (7) after the change of variable x = X=z):

F0 : x0 =

�

f(x) = (1 + S1)x if jxj < 1
g(x) = (1 + S1 + S2)x if jxj > 1

(12)

and keeping all of the possible values for the slopes of functions f(x) and g(x);
that is (1 + S1) and (1 + S1 + S2) can be positive or negative and in modulus
higher or smaller than 1. We can therefore consider the regions in the parameter
space (S1; S2), as summarized in Fig. 1.
Before proceeding to comment on behavior in the parameter space, let us

remark on one further property speci�c to this case M = 0, which holds in the
phase space of variable x. Performing the change of variable y =  x, the map
is transformed into itself:

y0 =

�

f(y) = (1 + S1)y if jyj < 1
g(y) = (1 + S1 + S2)by if jyj > 1

(13)

which means that the phase space is symmetric with respect to the origin. That
is: either a trajectory is symmetric with respect to the origin or the symmetric
one also exists. This is particularly true for a periodic orbit. We have therefore
proved the following

Property 5. Map F0 is invariant with respect to the change of variable
y =  x: Thus a periodic orbit (x1; x2; :::xn) either has points symmetric with
respect to the origin or ( x1; x2; ::: xn) is also a periodic orbit.
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Fig. 1 Two-dimensional parameter space (S1; S2) at M = 0: The regions are
bounded by straight lines S1 = 0; S1 =  2; S2 =  S1; S2 =  S1  2: Line

S2 =  S1  1 leads only to a qualitative change.

Let us now consider the parameter space. In Fig. 1 the regions with divergent
dynamics are those already introduced in Property 4; those associated with the
stability of the �xed point in origin O = (0; 0) are described in the following

Property 6. Consider map F0 with j1 + S
1j < 1: For j1 + S1 + S2j < 1

�xed point O in the origin is globally attracting. For j1 + S1 + S2j > 1 �xed
point O is attracting, with basin of attraction B(O) =] 1; 1[; while any i.c. x
with jxj > 1 has a divergent trajectory .

In fact, if j1 + S1 + S2j < 1, then any initial condition in the range jxj > 1
has a trajectory which, in a few iterations, enters range jxj < 1 from which the
trajectory converges to the origin. This leads to the red region in Fig. 1, while
the dynamics in the other regions of the vertical strip of Fig. 1 are associated
with j1+S1+S2j > 1: In such a case, any initial condition in the range jxj < 1
has a trajectory which converges to the origin, as it is locally stable and the
map is linear in that region, while any initial condition in range jxj > 1; due to
the structure of the piecewise linear map, has a trajectory which is divergent.�

Similar to before, these cases can be interpreted economically. For instance,
the unique �xed point of the model, where the price is equal to its fundamental
value, is globally stable if type 1 fundamentalists are more aggressive than type
1 chartists, but also not too aggressive ( 2 < S1 < 0) and also if the joint
impact of both types of fundamentalists is stronger, yet not very much stronger
(S1 + S2 has to remain larger than -2), than the joint impact of both types of
chartist.

The particular cases with (1 + S1) = 1 and (1 + S1) =  1; that is S1 = 0
and S1 =  2; are degenerate bifurcations (as described in Sushko and Gardini
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(2010)). For S1 = 0 there is segment ]  1; 1[ �lled with �xed points; for
S1 =  2 segment ]  1; 1[ is �lled with period 2 cycles. At these degenerate
bifurcations, the existing cycles are stable but not asymptotically stable (i.e.
they do not attract the trajectories of nearby points). After the bifurcation,
for j1 + S1j > 1; the result depends on the modulus of (1 + S1 + S2): As we
have seen, for j1 + S1 + S2j > 1 only divergent dynamics can occur, while for
j1 + S1 + S2j < 1 an invariant absorbing interval J exists, given by:

J = [f( 1); f(1)] = [ (1 + S1); (1 + S1)]; if (1 + S1) > 1 (14)

J = [f(1); f( 1)] = [(1 + S1); (1 + S1)]; if (1 + S1) <  1;

attracting the trajectories of all points of the phase space outside J (and from
which a trajectory cannot escape). Thus the dynamics cannot be divergent.
It follows that the particular cases left to our analysis are exactly those in

the green regions of Fig. 1, which is the main object of our work. As visible
from Fig. 1, the regions under investigation are really four di¤erent regions,
associated with di¤erent values of the slopes of functions f(x) and g(x): For
S1 > 0, these include the two cases

H1(i) : (1 + S1) > 1; 0 < (1 + S1 + S2) < 1; increasing/increasing (15)

H1(ii) : (1 + S1) > 1;  1 < (1 + S1 + S2) < 0; increasing/decreasing,

while for S1 <  2, these include the two cases

H2(i) : (1 + S1) <  1; 0 < (1 + S1 + S2) < 1; decreasing/increasing(16)

H2(ii) : (1 + S1) <  1;  1 < (1 + S1 + S2) < 0; decreasing/decreasing.

Again, these four regions have a simple economic interpretation. For in-
stance, case H1(i) states that type 1 chartists are more aggressive than type 1
fundamentalists, but that the joint impact of both types of fundamentalist is
stronger than the joint impact of both types of chartist. The di¤erence between
case H1(i) and case H1(ii) is that the joint impact of both types of fundamen-
talist is stronger in case H1(ii), yet also not too much stronger (S

1 + S2 has to
remain above -2). Obviously, the main di¤erence between the two H1 cases and
the two H2 cases is then that the H2 cases imply that type 1 fundamentalists
are so aggressive that they destabilize the steady state within the inner regime.
Global stability will, however, still be maintained as long as j1 + S1 + S2j < 1.
Given the assumption S1 <  2, it is then clear that aggressive type 2 chartists
are required to prevent price explosions.
In the next sections, we shall fully explain cases H1(i) and H1(ii), which will

also be used to explain cases H2: Let us �rst introduce the peculiar property of
our model described by map F0; which is stated in the following

Property (S). Consider map F0 with j1 + S
1j > 1 and j1 + S1 + S2j < 1:

Then the following equalities hold :

(S) : f � g(1) = g � f(1) ; f � g( 1) = g � f( 1): (17)

9



In fact, this property can be immediately veri�ed from the de�nition of map
F0 given in (12): we have g � f(1) = (1 + S1 + S2)(1 + S1) and f � g(1) =
(1 + S1)(1 + S1 + S2) as well as g � f( 1) =  (1 + S1 + S2)(1 + S1) and
f � g( 1) =  (1 + S1)(1 + S1 + S2); so that the properties in (17) hold.�

Property (S) is an important property because it leads to a stability regime
which is, however, structurally unstable, that is: any small change in any pa-
rameter of the model leads to a di¤erent dynamic behavior. The important
dynamic property of map F in this case M = 0 is exactly this Property (S)
which, as we shall see, implies that an invariant set I exists, and each point
of I has a unique rank-1 preimage in the set I itself. This property (that
each point of I has a unique rank-1 preimage in the set I itself) is exactly the
property of a linear rotation on a circle and, depending on a suitable rotation
number, which in our case is associated with the values of parameters S1 and
S2; a trajectory may be either periodic (in which case all of the points of the
interval I are periodic of the same period), or quasiperiodic and dense in the
interval I. In case H1(i) (increasing/increasing), considered in the next section,
there are two disjoint invariant absorbing intervals: IR and IL. In case H1(ii)
(increasing/decreasing), considered thereafter, the invariant set I will be the
union of two intervals.

Let us analyze the conditions leading to periodic dynamics. Let x be a point
belonging to the absorbing set I of map F0, di¤erent to a discontinuity point.
Then it can be a periodic point of �rst period n if n is the minimum integer
such that Fn0 (x) = x: Let p be the number of periodic points of the n cycle in
the region jxj < 1 and q in the region jxj > 1, (p+ q) = n. Then we have

Fn0 (x) = (1 + S
1)p(1 + S1 + S2)qx: (18)

It follows that the condition of periodic orbit, (1 + S1)p(1 + S1 + S2)qx = x;
can be satis�ed by a point x 6= 0 i¤ the eigenvalue � = (1 + S1)p(1 + S1 + S2)q

of the cycle satis�es the following equation

(1 + S1)p(1 + S1 + S2)q = 1; (19)

and thus the eigenvalue is � = 1: We have so proved the following

Property 7. Consider map F0 with j1 + S
1j > 1 and j1 + S1 + S2j < 1.

Then x is a periodic point of an n cycle i¤ (19) holds, where p is the number of
periodic points of the n cycle in region jxj < 1 and q in the region jxj > 1, with
(p+ q) = n, and the eigenvalue of the cycle is � = (1+S1)p(1+S1+S2)q = 1:

On the other hand, the fact that the eigenvalue is equal to 1 means that the
cycle is stable but not attracting, and in the piecewise linear case this can only
occur for all points of an interval. That is, map F0 necessarily satis�es condition
Fn0 (x) = x for all points x of a suitable interval, invariant for F

n
0 , all points of

which are periodic of the same period and with the same symbol sequence (i.e.
with the same sequence of applied functions f(x) and g(x)). Examples shall be
given in the following sections, where the di¤erent cases are considered.
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4 Dynamics in case H1(i); increasing/increasing

Let us consider here the e¤ects of Property (S) for the dynamics when the map
has the two functions f(x) and g(x), both with positive slopes (1+S1) > 1 and
0 < (1 + S1 + S2) < 1, as qualitatively shown in Fig. 2a.
Under such assumptions, the map leads to two coexisting absorbing intervals,

and thus we necessarily have bistability. In fact, any initial condition in region
x > 0 will forever be in that region, entering the absorbing interval IR =
[g(1); f(1)] in a �nite number of iterations, from which it cannot escape. Thus
it attracts the points in B(IR) =]0;+1[, which is its basin of attraction. The
restriction of map F0 to absorbing interval I

R is given by

FR : x0 =

�

f(x) = (1 + S1)x if g(1) < x < 1
g(x) = (1 + S1 + S2)x if 1 < x < f(1)

; (20)

where g(1) = (1 + S1 + S2) 2 (0; 1) and f(1) = (1 + S1) > 1:

Fig. 2 Map F0 in case H1(i) at S
1 = 0:75 and S2 =  0:9940711 is shown in (a):

Similarly, any initial condition in region x < 0 will forever be in that region,
entering the absorbing interval IL = [f( 1); g( 1)] in a �nite number of itera-
tions, from which it cannot escape, and it attracts the points in B(IL) =] 1; 0[.
The restriction of map F0 to absorbing interval I

L is given by

FL : x0 =

�

g(x) = (1 + S1 + S2)x if f( 1) < x <  1
f(x) = (1 + S1)x if  1 < x < g( 1)

; (21)

where f( 1) =  (1 + S1) <  1 and g( 1) =  (1 + S1 + S2) 2 ( 1; 0):
Which kind of dynamics, then, can we have inside the two invariant absorb-

ing intervals? Since no divergent trajectory can occur, we can argue that an
initial condition in the intervals leads to some attracting set. However, this is
not the case. An attracting set (or attractor) is de�ned as some invariant set
for which a neighborhood exists whose points converge to the attractor. But
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this cannot occur in our map, due to the existence of property (S). In fact,
it is known (as shown in Keener 1980, see also Gardini et al. 2010) that in
the case of a piecewise smooth increasing discontinuous map, the property in
(17) leads to a map which is conjugated with a linear rotation. This means
that, depending on the values of S1 and S2, a suitable rotation number may be
de�ned, which may be rational or irrational. For a rational rotation number,
all points of absorbing intervals IR=L are periodic (and all of the same period).
For an irrational rotation number, all points of absorbing intervals IR=L have
quasiperiodic trajectories dense in absorbing intervals IR=L, but are not chaotic.
Thus no true attracting set can exist, but the dynamics are regular: when there
are periodic orbits, these are stable but not attracting. This is also the case
when there are quasiperiodic trajectories. Moreover, these dynamics are struc-
turally unstable, as they depend on a rational or irrational rotation number,
which cannot persist when varying the parameters.
An example of periodic orbits is shown in Fig. 2 for case H1(i) at S

1 = 0:75
and S2 =  0:9940711 (the reason why this value arises is explained below). At
these parameter values, all points of invariant intervals IR and IL are periodic
of period 3 (see Fig. 2a). The third iterate of the map is shown in Fig. 2b. It
consists in several branches, one of which belongs to the diagonal on invariant
interval IR, and a second branch on the diagonal on interval IL:
The main result for our map is that this dynamic property is always true,

independent of the values of the slopes, in the regions marked with (S) in Fig. 1.
That is, for map F0 in which we are interested, this kind of non-chaotic regime,
characterized by structurally unstable orbits (either periodic or quasiperiodic),
is persistent for both parameters in cases H1(i and ii) and cases H2(i and ii);
previously de�ned.
Let us consider here a few more properties on the organization of the exist-

ing cycles. Property 7, in the previous section, states when a cycle can exist.
However, is it possible to �nd the exact values of p and q that give us the cycles?
And is it possible to somehow organize their existence regions (which are curves
in the two-dimensional parameter plane (S1; S2))?

In case H1(i), we can follow the same technique used in the case of attracting
cycles when the so-called period adding scheme works. Indeed, as shown in
Gardini et al. 2010, the intersection of the existing periodicity regions with the
locus (S) of the stable (but not attracting) regime where Property (S) holds
is a set of points in the locus which still follows the adding mechanism. We
can therefore reason similarly in our case. It is clear that, in order to have the
sequence of a so-called maximal cycle in interval IR; say with symbol sequence
fgk, we have to look for a periodic point that can be obtained as a �xed point
of composite function gk � f(x); solving of the equation gk � f(x) = x: For their
existence we have to determine all parameters S1 and S2 which satisfy, for any
k � 1;

fgk : (1 + S1)(1 + S1 + S2)k = 1: (22)
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Thus we have curves in the parameter plane (S1, S2) given by:

S2 =  (1 + S1) +
1

(1 + S1)1=k
; (23)

a few of which (for k = 1; :::; 10) are drawn in Fig. 3a. For k = 2 we have
the 3 cycles. For S1 = 0:75, therefore, we have computed from (23) the value
S2 =  0:9940711; used to draw the example in Fig. 2.
Following the adding mechanism, we can �nd two families of in�nite curves

associated with cycles of second level of complexity between any two consecutive
curves associated with maximal cycles, or cycles of �rst level of complexity. For
example, we have the following pair of families of in�nite curves (both for any
m � 1) between the two curves fgk and fgk+1 :

(fgk)mfgk+1 : (1 + S1)1+m(1 + S1 + S2)k+1+mk = 1 (24)

: S2 =  (1 + S1) + 1=(1 + S1)(1+m)=(k+1+mk)

fgk(fgk+1)m : (1 + S1)1+m(1 + S1 + S2)k+m(1+k) = 1 (25)

: S2 =  (1 + S1) + 1=(1 + S1)(1+m)=(k+m+mk):

A few of these curves are shown in Fig. 3b for k = 1; :::; 10 and m = 1; 2; 3. In
Fig. 3c the curves of Fig. 3a,b are shown together (inside each pair of green
curves of Fig. 3a we have those in blue and red from equations (24) and (25)).
Similarly, we can continue for any level of complexity: between any two con-

secutive curves, with symbol sequence A and B; of the same level of complexity,
we can compute two families of in�nitely many curves, with symbol sequence
(A)nB and A(B)n, for any n � 1:

Exchanging f and g, we obtain a maximal cycle existing in interval IR; with
di¤erent symbol sequence, gfk. A periodic point can be obtained as a �xed
point of function fk � g(x). We therefore have to determine all parameters S1

and S2 such that, for any k � 1 :

gfk : (1 + S1 + S2)(1 + S1)k = 1 (26)

and two families of curves of cycles of second complexity level are given, for any
m � 1; by:

gfk(gfk+1)m : (1 + S1 + S2)1+m(1 + S1)k+m(1+k) = 1 (27)

: S2 =  (1 + S1) + 1=(1 + S1)(k+m+mk)=(1+m)

(gfk)mgfk+1 : (1 + S1 + S2)1+m(1 + S1)k+1+mk = 1 (28)

: S2 =  (1 + S1) + 1=(1 + S1)(k+1+mk)=(1+m)

and so on for any level. A few of the curves in (26) are drawn in region (i) in
Fig. 3d for k = 1; :::; 10: In Fig. 3e the curves from equations (27) and (28)
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are drawn for k = 1; :::; 10 and m = 1; 2; 3; in Fig.3f the curves of Fig.3 d,e are
shown together.
Under assumption H1(i); the in�nitely many curves for which parameters

(S1, S2) are associated with periodic orbits are dense in that region. However,
if we numerically compute a bifurcation diagram, we observe a �gure as shown
in Fig. 4, where variable x is reported as a function of S2 at S1 = 0:75 �xed.
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Fig. 3 Curves drawn analytically in regions H1(i) and H1(ii); as explained in the
text, associated with periodic orbits of �rst and second complexity level.
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Fig. 4 One-dimensional bifurcation diagram for map F0 showing x as a function of
S2 in both regions H1(i) and H1(ii):

For S1 = 0:75 �xed, the region corresponding to assumptionH1(i) is the interval
 1:75 < S2 <  0:75: There we have two disjoint and coexisting invariant
absorbing intervals IR (in black in Fig. 4) and IL (in red in Fig. 4). The
numerical results are qualitatively similar to those which can be obtained in a
chaotic regime. However, no chaotic regime can exist here. Since there are either
periodic points or quasiperiodic trajectories at all the parameters values, and
due to the fact that both the values of periodic orbits and quasiperiodic orbits
are dense in the interval, we can numerically observe mainly a quasiperiodic
orbit.

Fig. 5 Map F0 in case H1(i) at S
1 = 0:75 and S2 =  1:5 is shown in (a): (b) shows

versus time behavior of two coexisting trajectories at the same parameters as in (a).

We notice that the versus time trajectory may also be misleading. It may be
considered chaotic, although this cannot be the case. An example is shown in
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Fig. 5. Fig. 5b shows the versus time behaviors of two coexisting trajectories,
one in absorbing interval IR and the other in absorbing interval IL:

5 The other regions

Fig. 3 also shows the curves described above, drawn re�ected in region H1(ii).
That is, if parameter (S1; S2) belongs to a curve in region H1(i), then also the
parameter which is symmetric with respect to curve S2 =  (1+S1) necessarily
belongs to a curve in region H1(ii) associated with a periodic orbit of F0.
We can also generalize the reasoning, saying that all curves existing in region

H1(i; ii) with (1 + S
1) > 1 must also have the symmetric curves in region

(1 + S1) <  1; in H2(i; ii), associated with periodic orbits.
To show this, let us de�ne slopes a = (1 + S1) and b = (1 + S1 + S2): Then

let us consider parameters (a; b) corresponding to a point (S1; S2) belonging to
a curve in region H1(i). Then also parameters (a; b) necessarily belong to a
curve associated with a periodic orbit of F0; in region H1(ii). In fact, we know
that

apb
q
= 1 (29)

for some suitable integers p and q. Then if q is even, we also have

ap( b)q = 1; (30)

in which case the symmetric curve is associated with a cycle of the same period
(n = p+ q). Otherwise, if q is odd, we have ap( b)q =  1 and

a2p( b)2q = 1; (31)

which means that the symmetric curve corresponds to a cycle of double period
(2n = 2(p+ q)).
For example, in the case of the 3-cycle shown in Fig. 2 at (a; b) = (1:75; 0:7559289),

we have p = 1 and q = 2, which is even. Thus we must also have 3-cycles at
(a; b) = (1:75; 0:7559289); corresponding to a curve in region H1(ii), as is in
fact shown in Fig. 6.
To parameters (a; b) = (1:75; 0:829826534) corresponds a curve in the region

H1(i) (from (22) with k = 3). The region is associated with 4-cycles with
p = 1 and q = 3 which is odd (see Fig.7a), and it follows that at (a; b) =
(1:75; 0:829826534) corresponds a curve in the region H1(ii) and we must
have 8-cycles, as is in fact shown in Fig. 7b.
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Fig. 6 Map F0 in case H1(ii) at a = (1 + S
1) = 1:75 and

b = (1 + S1 + S2) =  0:7559289: In (a) all points are periodic of period 3. (b) also
shows map F 30 which has two intervals on the diagonal.

Fig. 7 Map F0 in case H1(i) at a = (1 + S
1) = 1:75 and

b = (1 + S1 + S2) = 0:829826534 with 4-cycles and F 40 are shown in (a). In (b) at
parameters (a; b), corresponding to a point in H1(ii), there exist all 8-cycles, and

F 80 is shown.

Similarly, if p is even, we also have

( a)pb
q
= 1; (32)

in which case the symmetric curve in region H2(i) is associated with a cycle of
the same period (n = p+ q). Otherwise, if p is odd we have ( a)pb

q
=  1 and

( a)2pb
2q
= 1; (33)

which means that the symmetric curve in region H2(i) corresponds to a cycle
of double period (2n = 2(p+ q)).
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While considering the symmetric point in region H2(ii); we necessarily have

( a)p( b)q = 1 (34)

when p and q are both even or both odd, in which case we have cycles of the same
period, and when p and q are one odd and one even, from ( a)p( b)q =  1,
then we have

( a)2p( b)2q = 1, (35)

in which case it corresponds to cycles of double period.
An example is shown in Fig. 8. Considering the 4-cycle in Fig. 7a, at

(a; b) = (1:75; 0:829826534); belonging to a curve in region H1(i) associated with
4-cycles with p = 1 and q = 3, at ( a; b) = ( 1:75; 0:829826534), corresponding
to a point in H2(i), we must have 8-cycles, as is in fact shown in Fig. 8a. At
( a; b) = ( 1:75; 0:829826534), corresponding to a point in H2(ii), we must
have 4-cycles, as shown in Fig. 8b.

Fig. 8 Map F0 in case ( a; b) = ( 1:75; 0:829826534), corresponding to a point in
H2(i); shows all 8-cycles in (a), as well as F

8
0 . In (b), in the case

( a; b) = ( 1:75; 0:829826534), corresponding to a point in H2(ii); we have all
4-cycles, and F 40 is shown.

It is clear from the remarks given here that the curves associated with periodic
orbits existing in region H1(i) (where the curves are dense) also exist in all other
regions. Further details will be given in the next subsections.

5.1 Dynamics in case H1(ii); increasing/decreasing

While the results associated with the case under assumptions H1(i) has already
been proved in the literature, we do not have similar results for case H1(ii)
(nor for H2(i; ii)): However, as already suggested in the previous section, the
dynamics are exactly the same as those described in the increasing/increasing
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case, and we can analytically write the curves for which we can �nd all periodic
orbits and of any level of complexity. Let us consider here the parameters
which satisfy conditions H1(ii): Then the property in (17) still holds, meaning
that even if the map has increasing and decreasing branches (see Fig. 9), it is
uniquely invertible in the invariant absorbing set, given by

I = [f( 1); g(1)] [ [f(1); g( 1)]: (36)

As a consequence of Property (S), in set I the map has either all periodic
points dense in I or quasiperiodic trajectories dense in I. A numerically ob-
tained bifurcation diagram is shown in Fig. 4 at S1 = 0:75 �xed, in the region
corresponding to assumption H1(ii), which is the interval  2:75 < S

2 <  1:75:
Although the �gure suggests chaotic behavior, it is not. We can determine
the curves associated with periodic orbits. In fact, regarding the structure of
the existing cycles, we can see that in this case, in a periodic orbit function
g(x) is necessarily applied an even number of times. Thus on the curves of
region H1(ii), which are symmetric of those of region H1(i), either the period
is the same (if the number of applications of g is even (i.e. if q is even in

apb
q
= (1 + S1)

p
(1 + S1 + S2)

q
= 1) or it corresponds to a cycle of double

period (as already shown in the previous section).

Fig. 9 Map F0 in case H1(ii) at S
1 = 0:75 and S2 =  1:9 is shown in (a): (b)

shows versus time trajectories of x at the same parameter values as in (a), in the
absorbing interval I de�ned in (36).

5.2 Dynamics in cases H2(i; ii)

The dynamics in the case of assumptions H2(i; ii) are similar, since they can
be reduced to those of cases H1(i; ii) using the second iterate of the map. In
fact, let us consider values (1 + S1) <  1. Then a rank-1 preimage of the
discontinuity points x = 1 and x =  1 exists for the function in the range
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jxj < 1 . Explicitly, the preimages are given by

 1 < xl =
1

(1 + S1)
< 0; 0 < xr =

 1

(1 + S1)
< 1;

satisfying f(xl) = 1 and f(xr) =  1: Clearly, these two points are discontinuity
points for the second iteration (F0)

2 of the map which, in interval xl < x < xr,
is de�ned by a linear increasing function (i.e. with positive slope):

f2(x) = (1 + S1)2x:

Then considering case H2(i); for the second iteration (F0)
2 on the right and

left side of interval (xl; xr), we have to apply f once and g once; so that the
result is a negative sloped function de�ned outside interval xl < x < xr: In
fact, the main point is that the second iterate (F0)

2 is a continuous function in
points x = 1 and x =  1, as we can immediately verify by direct computation
or, stated di¤erently, as a consequence of Property (S). This leads us to a
map (F0)

2, which is topologically conjugated to the case increasing/decreasing
already considered in case H1(ii); with discontinuity points in xl and xr in place
of  1 and 1, respectively, and slopes given by (1 + S1)2 > 0 and (1 + S1)(1 +
S1 + S2) < 0 in place of (1 + S1) and (1 + S1 + S2); respectively.
An example is shown in Fig. 10a. However, we notice that although the

versus time dynamics of map (F0)
2 when non periodic is qualitatively similar

to that in Fig. 9b, the versus time dynamics of map F0 is di¤erent, as shown in
Fig. 10b.

Fig. 10 Map F0 in case H2(i) at S
1 =  2:5 and S2 = 1:9s shown in (a): (b) shows

versus time trajectories of x at the same parameter values as in (a), in the absorbing
interval I .

By contrast, considering case H2(ii); for the second iteration (F0)
2 nothing

changes in interval (xl; xr), where the function is f
2(x). While when now we

apply, outside that interval, f once and g once; the result is a positive sloped
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function, and the second iterate (F0)
2 is a continuous function in the points

x = 1 and x =  1, as we can immediately verify by direct computation, or as
a consequence of Property (S). Function (F0)

2 is therefore now topologically
conjugated to that already considered in case H1(i); with discontinuity points
in xl and xr in place of  1 and 1, respectively, and slopes given by (1+S

1)2 > 0
and (1+S1)(1+S1+S2) > 0 in place of (1+S1) and (1+S1+S2); respectively.
That is, we have two coexisting invariant absorbing intervals, one in region x > 0
and the other in region x < 0, see Fig.11a. However, for map F0 there is always
a unique absorbing interval I, and the states jump from the positive region to
the negative one, and vice versa. An example of the versus time trajectory is
shown in Fig. 11b.

Fig. 11 Map F0 in case H2(ii) at S
1 =  2:5 and S2 = 1:1 is shown in (a): (b)

shows versus time trajectories of x at the same parameter values as in (a), in the
absorbing interval I .

6 Main results

Our main results are summarized in this section.

Property 8. Consider map F0 with j1 + S
1j > 1 and j1 + S1 + S2j < 1;

then all of the trajectories enter an invariant absorbing interval I, inside which
we can have either all periodic orbits or all quasiperiodic trajectories.

Proof.
Under our assumptions, the dynamics of the map cannot be divergent,

and the asymptotic dynamics are con�ned in invariant absorbing intervals. In
case H1(i) we have two invariant absorbing intervals I

R = [g(1); f(1)] and
IL = [f( 1); g( 1)]; in case H1(ii) the invariant absorbing interval is I =
[f( 1); g(1)][ [f(1); g( 1)]: Case H2(i; ii) is reduced to H1(i; ii) for the second
iterate of the map. We recall that in a piecewise-linear map, the ! limit set of
a point x (i.e. the limit set of the trajectory of a point x) can only be a periodic
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orbit or a quasiperiodic orbit dense in some intervals or cyclical chaotic intervals
(see Sharkovsky et al. 1997). Our map shows that Property (S) is satis�ed,
from which we know that each point of the invariant absorbing interval has only
one rank-1 preimage in the interval itself, thus chaos cannot exist (since nonin-
vertibility is as a necessary condition for chaos). It follows that as ! limit set
we can have only periodic orbits or quasiperiodic orbits. As for any point x in
the invariant absorbing interval, we have

Fn0 (x) = (1 + S
1)p(1 + S1 + S2)qx;

where p is the number of points in region jxj < 1; q is the number of points in
region jxj > 1 and n = p+ q. It follows that when a suitable pair of integers p
and q satisfy (1 + S1)p(1 + S1 + S2)q = 1; then x is a periodic point of period
n, with eigenvalue 1, and this must necessarily occur for all points x of suitable
intervals (due to the linearity of the components). When integers p and q are
such that this does not occur, then the trajectories are quasiperiodic.�

We then know from Property 7 when periodic orbits can occur. We have
also learned from the discussion on the possible dynamics in the di¤erent regions
performed in the previous sections, how to obtain the curves associated with
the di¤erent cycles as, starting from the cycles of �rst complexity level, we can
obtain all curves of cycles of any complexity level, following the standard adding
mechanism. We can therefore state the following

Property 9. Consider map F0 with j1 + S
1j > 1 and j1 + S1 + S2j < 1.

Then, using the adding scheme, we can write all analytic curves in parameter
plane (S1, S2) for all periodic orbits of any level of complexity. In any case, for
suitable integers p and q, they can all be written as follows:

(1 + S1)p(1 + S1 + S2)q = 1:

7 Conclusions

In this paper we study a simple �nancial market model in which interactions be-
tween heterogeneous speculators can generate endogenous price dynamics. For
two reasons, the model has a discontinuous piecewise linear shape: �rst, specu-
lators (essentially) rely on linear technical and fundamental trading strategies.
Second, while some of them are always active, others stop trading if the mis-
alignment in the market drops below a certain threshold value. One advantage
of the model�s functional form is that it allows an in-depth and complete analyt-
ical investigation of its properties. We �nd, for instance, that the model cannot
produce chaotic motions � although the dynamics appear to be chaotic. More-
over, the model�s periodic or quasiperiodic dynamics is structurally unstable,
which means that any small change in any parameter of the model leads to a
di¤erent dynamic behavior. Since our knowledge about discontinuous piecewise
linear maps is not yet very deep, we hope that our analysis is also useful for the
investigation of similar dynamical systems.
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From an economic point of view, we would like to stress that it is quite
remarkable that a simple model such as ours can help us to explain the emer-
gence of bubbles and crashes and the high asset price volatility, as observed in
many real �nancial markets. Within our model, bounded endogenous dynamics
require that its steady state is unstable. As we have seen, this can be caused
by either too aggressive chartists or by too aggressive fundamentalists. Further
away from the steady state, the model has, of course, to be stable. Again, this
can, in principle, be caused by both the market entry of additional chartists or
additional fundamentalists. Additional chartists are bene�cial for market sta-
bility if the steady state is destabilized by too aggressive fundamentalists while
additional fundamentalists are needed for market stability if the steady state is
unstable due to the trading behavior of too aggressive chartists.
Our model may be extended in various directions. First, one could assume

more complex demand functions and/or more market entry levels. For instance,
one could allow chartists to explicitly extrapolate past price trends, which would
increase the dimension of our model (the simplest case would be given by a two-
dimensional system in which chartists condition their orders on the last observ-
able price change. Alternatively, one could consider di¤erent market entry levels
for chartists and fundamentalists. As a result, the model would then still be
piecewise linear, but instead of having three linear branches, it would have �ve.
Second, one could � and this should clearly be done in the future � try to bring
our model (as well as related models) closer to the data. So far, our model
is able to mimic certain properties of �nancial markets, such as bubbles and
crashes and excess volatility, in a qualitative manner. An interesting question
is thus whether our model, bu¤eted with some kind of dynamic noise, can also
reproduce such salient features in a quantitative way. Finally, it could be inter-
esting to explore our model�s policy implications in more detail. According to
conventional wisdom, it is essentially the behavior of chartists which destabilizes
�nancial markets; reducing their trading activity is what is required to obtain
calmer markets. Yet, as our model shows, the trading activity of chartists can
also contribute to market stability. Causalities acting inside �nancial markets
are apparently more complicated than one is tempted to believe, indicating that
more research in this direction is needed to improve our understanding of how
�nancial markets function.
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