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RATE OF CONVERGENCE OF PREDICTIVE

DISTRIBUTIONS FOR DEPENDENT DATA

PATRIZIA BERTI, IRENE CRIMALDI, LUCA PRATELLI, AND PIETRO RIGO

Abstract. This paper deals with empirical processes of the type

Cn(B) =
√

n
{

µn(B)− P (Xn+1 ∈ B | X1, . . . , Xn)
}

,

where (Xn) is a sequence of random variables and µn = (1/n)
∑

n

i=1
δXi

the
empirical measure. Conditions for supB |Cn(B)| to converge stably (in par-

ticular, in distribution) are given, where B ranges over a suitable class of
measurable sets. These conditions apply when (Xn) is exchangeable, or, more
generally, conditionally identically distributed (in the sense of [6]). By such

conditions, in some relevant situations, one obtains that supB |Cn(B)| P→ 0, or

even that
√

n supB |Cn(B)| converges a.s.. Results of this type are useful in
Bayesian statistics.

1. Introduction and motivations

A number of real problems reduce to evaluate the predictive distribution

an(·) = P
(
Xn+1 ∈ · | X1, . . . , Xn

)

for a sequence X1, X2, . . . of random variables. Here, we focus on those situations
where an can not be calculated in closed form, and one decides to estimate it basing
on the available data X1, . . . , Xn. Related references are [1], [2], [3], [5], [6], [8],
[10], [15], [18], [20].

For notational reasons, it is convenient to work in the coordinate probability
space. Accordingly, we fix a measurable space (S,B), a probability P on (S∞,B∞),
and we let Xn be the n-th canonical projection on (S∞,B∞, P ), n ≥ 1. We also let

Gn = σ(X1, . . . , Xn) and X = (X1, X2, . . .).

Since we are concerned with predictive distributions, it is reasonable to make
some (qualitative) assumptions on them. In [6], X is said to be conditionally
identically distributed (c.i.d.) in case

E
(
IB(Xk) | Gn

)
= E

(
IB(Xn+1) | Gn

)
, a.s.,

for all B ∈ B and k > n ≥ 0,

where G0 is the trivial σ-field. Thus, at each time n ≥ 0, the future observations
(Xk : k > n) are identically distributed given the past Gn. In a sense, this is a weak
form of exchangeability. In fact, X is exchangeable if and only if it is stationary
and c.i.d., and various examples of non exchangeable c.i.d. sequences are available.

In the sequel, X = (X1, X2, . . .) is a c.i.d. sequence of random variables.
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In that case, a sound estimate of an is the empirical distribution

µn =
1

n

n∑

i=1

δXi
.

The choice of µn can be defended as follows. Let D ⊂ B and let ‖·‖ denote the sup-
norm on D. Suppose also that D is countably determined, as defined in Section 2.
(The latter is a mild condition, only needed to handle measurability issues). Then,

‖µn − an‖ = sup
B∈D

|µn(B)− an(B) | a.s.→ 0 (1)

provided (X is c.i.d. and) µn converges uniformly on D with probability 1; see

[5]. For instance, ‖µn − an‖ a.s.→ 0 whenever X is exchangeable and D a Glivenko-

Cantelli class. Or else, ‖µn − an‖ a.s.→ 0 if S = R, D = {(−∞, t] : t ∈ R}, and X1

has a discrete distribution or infǫ>0 lim infn P
(
|Xn+1 −Xn| < ǫ

)
= 0; see [4].

To sum up, under mild assumptions, µn is a consistent estimate of an (with
respect to uniform distance) for c.i.d. data. This is in line with de Finetti [10] in
the particular case of exchangeable indicators.

Taking (1) as a starting point, the next step is to investigate the convergence
rate. That is, to investigate whether αn ‖µn−an‖ converges in distribution, possibly
to a null limit, for suitable constants αn > 0. This is precisely the purpose of this
paper.

A first piece of information on the convergence rate of ‖µn − an‖ can be gained
as follows. For B ∈ B, define

µ(B) = lim sup
n

µn(B),

Wn(B) =
√

n {µn(B)− µ(B)}.

By the SLLN for c.i.d. sequences, µn(B)
a.s.→ µ(B); see [6]. Hence, for fixed n ≥ 0

and B ∈ B, one obtains

E
(
µ(B) | Gn

)
= lim

k
E
(
µk(B) | Gn

)
= lim

k

1

k

k∑

i=n+1

E
(
IB(Xi) | Gn

)

= E
(
IB(Xn+1) | Gn

)
= an(B) a.s..

In turn, this implies
√

n
{
µn(B)− an(B)

}
= E(Wn(B) | Gn) a.s., so that

‖µn − an‖ ≤
1√
n

sup
B∈D

E
(
|Wn(B)| | Gn

)
≤ 1√

n
E
(
‖Wn‖ | Gn

)
a.s..

If supn E‖Wn‖k < ∞ for some k ≥ 1, it follows that

E
{
(αn ‖µn − an‖)k

}
≤ (

αn√
n

)kE‖Wn‖k −→ 0 whenever
αn√

n
→ 0.

Even if obvious, this fact is potentially useful, as

sup
n

E‖Wn‖k < ∞ for all k ≥ 1, if X is exchangeable, (2)

for various choices of D; see Remark 3. In particular, (2) holds if D is finite.
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The intriguing case, however, is αn =
√

n. For each B ∈ B and probability Q on
(S∞,B∞), write

CQ
n (B) = EQ

(
Wn(B) | Gn

)
and

Cn(B) = CP
n (B) =

√
n
{
µn(B)− an(B)

}
.

In Theorem 3.3 of [6], the asymptotic behaviour of Cn(B) is investigated for fixed
B. Here, instead, we are interested in

‖Cn‖ = sup
B∈D

|Cn(B)| = √
n ‖µn − an‖.

Our main result (Theorem 1) is the following. Fix a random probability measure
N on R and a probability Q on (S∞,B∞) such that

‖CQ
n ‖ → N stably under Q and

‖Wn‖ is uniformly integrable under both P and Q.

Then,

‖Cn‖ → N stably whenever P ≪ Q. (3)

A remarkable particular case is N = δ0. Suppose in fact that, for some Q, one has

‖CQ
n ‖

Q→ 0 and ‖Wn‖ uniformly integrable under P and Q. Then,

‖Cn‖ P→ 0 whenever P ≪ Q.

Stable convergence (in the sense of Renyi) is a stronger form of convergence in
distribution. The definition is recalled in Section 2.

In general, one cannot dispense with the uniform integrability condition. How-
ever, the latter is often true. For instance, ‖Wn‖ is uniformly integrable (under P
and Q) provided D meets (2) and X is exchangeable (under P and Q).

To make (3) concrete, a large list of reference probabilities Q is needed. Various
examples are available in the Bayesian nonparametrics framework; see e.g. [16]
and references therein. The most popular is perhaps the Ferguson-Dirichlet law,
denoted by Q0. If P = Q0, then X is exchangeable and

an(B) =
α P (X1 ∈ B) + nµn(B)

α + n
a.s. for some constant α > 0.

Since ‖µn − an‖ ≤ (α/n) when P = Q0, something more than ‖Cn‖ P→ 0 can be
expected in case P ≪ Q0. Indeed, we prove that

n ‖µn − an‖ =
√

n ‖Cn‖ converges a.s.

whenever P ≪ Q0 with a density satisfying a certain condition; see Theorem 2 and
Corollary 5.

One more example should be mentioned. Let Xn = (Yn, Zn), where Zn > 0 and

P
(
Yn+1 ∈ B | Gn

)
=

α P (Y1 ∈ B) +
∑n

i=1 Zi IB(Yi)

α +
∑n

i=1 Zi

a.s.

for some constant α > 0. Under some conditions, X is c.i.d. (but not necessarily
exchangeable), ‖Wn‖ is uniformly integrable and ‖Cn‖ converges stably. See Section
4.

The above material takes a nicer form when the condition P ≪ Q can be given
a simple characterization. This happens, for instance, if S = {x1, . . . , xk, xk+1} is
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finite, X exchangeable and P (X1 = x) > 0 for all x ∈ S. Then, P ≪ Q0 (for some
choice of Q0) if and only if

(
µ{x1}, . . . , µ{xk}

)

has an absolutely continuous distribution with respect to Lebesgue measure. In
this particular case, however, a part of our results can also be obtained through
Bernstein - von Mises theorem; see Section 3.

Finally, we make two remarks.

(i) If X is exchangeable, our results apply to Bayesian predictive inference.
Suppose in fact S is Polish and B the Borel σ-field, so that de Finetti’s theorem
applies. Then, P is a unique mixture of product probabilities on B∞ and the
mixing measure is called prior distribution in a Bayesian framework. Now, given
Q, P ≪ Q is just an assumption on the prior distribution. This is plain in the last
example where S = {x1, . . . , xk, xk+1}. In Bayesian terms, such an example can be

summarized as follows. For a multinomial statistical model, ‖Cn‖ P→ 0 if the prior
is absolutely continuous with respect to Lebesgue measure, and

√
n ‖Cn‖ converges

a.s. if the prior density satisfies a certain condition.

(ii) To our knowledge, there is no general representation for the predictive distri-
butions of an exchangeable sequence. Such a representation would be very useful.
Even if partially, results like (3) contribute to fill the gap. As an example, for fixed
B ∈ B, one obtains an(B) = µn(B) + oP ( 1√

n
) as far as X is exchangeable and

P ≪ Q for some Q such that CQ
n (B)

Q→ 0 and Wn(B) is uniformly integrable.

2. Main results

A few definitions need to be recalled. Let T be a metric space, BT the Borel
σ-field on T and (Ω,A, P ) a probability space. A random probability measure on
T is a mapping N on Ω×BT such that: (i) N(ω, ·) is a probability on BT for each
ω ∈ Ω; (ii) N(·, B) is A-measurable for each B ∈ BT . Let (Zn) be a sequence of
T -valued random variables and N a random probability measure on T . Both (Zn)
and N are defined on (Ω,A, P ). Say that Zn converges stably to N in case

P
(
Zn ∈ · | H

)
→ E

(
N(·) | H

)
weakly

for all H ∈ A such that P (H) > 0.

Clearly, if Zn → N stably, then Zn converges in distribution to the probability law
E
(
N(·)

)
(just let H = Ω). Stable convergence has been introduced by Renyi in [17]

and subsequently investigated by various authors. See [9] for more information.
Next, say that D ⊂ B is countably determined in case, for some fixed countable

subclass D0 ⊂ D, one obtains supB∈D0
|ν1(B) − ν2(B)| = supB∈D|ν1(B) − ν2(B)|

for every couple ν1, ν2 of probabilities on B. A sufficient condition is that, for some
countable D0 ⊂ D, and for every ǫ > 0, B ∈ D and probability ν on B, there
is B0 ∈ D0 satisfying ν

(
B∆B0

)
< ǫ. Most classes D involved in applications are

countably determined. For instance, D = {(−∞, t] : t ∈ R
k} and D = {closed

balls} are countably determined if S = R
k and B the Borel σ-field. Or else, D = B

is countably determined if B is countably generated.
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We are now in a position to state our main result. Let N be a random probability
measure on R, defined on the measurable space (S∞,B∞), and let Q be a probability
on (S∞,B∞).

Theorem 1. Let D be countably determined. Suppose ‖CQ
n ‖ → N stably under Q,

and
(
‖Wn‖ : n ≥ 1

)
is uniformly integrable under P and Q. Then,

‖Cn‖ =
√

n ‖µn − an‖ → N stably whenever P ≪ Q.

Proof. Since D is countably determined, there are no measurability problems in
taking supB∈D. In particular, ‖Wn‖ and ‖Cn‖ are random variables and ‖Cn‖ is

Gn-measurable. Let f be a version of dP
dQ

and Un = f − EQ

(
f | Gn

)
. Then,

Cn(B) = E
(
Wn(B) | Gn

)
=

EQ

(
f Wn(B) | Gn

)

EQ(f | Gn)

= CQ
n (B) +

EQ

(
Un Wn(B) | Gn

)

EQ

(
f | Gn

) , P -a.s., for each B ∈ B.

Letting Mn =
EQ

(
|Un| ‖Wn‖|Gn

)

EQ

(
f |Gn

) and taking supB∈D, it follows that

‖CQ
n ‖ − Mn ≤ ‖Cn‖ ≤ ‖CQ

n ‖ + Mn, P -a.s..

We first assume f bounded. Since ‖CQ
n ‖ → N stably under Q, given a bounded

random variable Z on (S∞,B∞), one obtains
∫

φ
(
‖CQ

n ‖
)
Z dQ −→

∫
N(φ) Z dQ,

for each bounded continuous φ : R → R, where N(φ) =

∫
φ(x) N(·, dx).

Letting Z = f IH/P (H), with H ∈ B∞ and P (H) > 0, it follows that ‖CQ
n ‖ → N

stably under P . Therefore, it suffices to prove EMn → 0. Given ǫ > 0, since ‖Wn‖
is uniformly integrable under Q, there is c > 0 such that

EQ

{
‖Wn‖ I{‖Wn‖>c}

}
<

ǫ

sup f
for all n.

Since Mn is Gn-measurable,

EMn = EQ

(
f Mn

)
= EQ

(
EQ(f | Gn) Mn

)
= EQ

(
|Un| ‖Wn‖

)

≤ c EQ|Un| + (sup f) EQ

(
‖Wn‖ I{‖Wn‖>c}

)

< c EQ|Un| + ǫ for all n.

Therefore, the martingale convergence theorem implies

lim sup
n

EMn ≤ c lim sup
n

EQ|Un| + ǫ = ǫ.

This concludes the proof when f is bounded.
Next, let f be any density. Fix k > 0 such that P (f ≤ k) > 0 and define

K = {f ≤ k} and PK(·) = P (· | K). Then, PK has the bounded density f IK/P (K)
with respect to Q. By what already proved, ‖CPk

n ‖ → N stably under PK , where

CPk
n (B) = EPK

(
Wn(B) | Gn

)
=

E
{
IK Wn(B) | Gn

}

E(IK | Gn)
, PK-a.s..
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Letting Rn = IK − E(IK | Gn), it follows that

E
{
IK ‖Cn − CPk

n ‖
}

= E
{
IK sup

B∈D

∣∣∣
E
{
Rn Wn(B) | Gn

}

E(IK | Gn)

∣∣∣
}

≤ E
{
IK

E
{
|Rn| ‖Wn‖ | Gn

}

E(IK | Gn)

}
= E

{
|Rn| ‖Wn‖}

≤ c E|Rn| + E
{
‖Wn‖ I{‖Wn‖>c}

}
for all c > 0.

Since E|Rn| → 0 and ‖Wn‖ is uniformly integrable under P , arguing as above
implies

EPK

∣∣∣ ‖Cn‖ − ‖CPk
n ‖

∣∣∣ ≤
E
{
IK ‖Cn − CPk

n ‖
}

P (K)
−→ 0.

Therefore, ‖Cn‖ → N stably under PK . Finally, fix H ∈ B∞, P (H) > 0, and a
bounded continuous function φ : R → R. Then P (H ∩K) = P

(
H ∩ {f ≤ k}

)
> 0,

for k large enough, and

P (H)
∣∣∣E

(
φ(‖Cn‖) | H

)
− E

(
N(φ) | H

) ∣∣∣

≤ 2 sup|φ|P (f > k) +
∣∣∣E

(
φ(‖Cn‖) | H ∩K

)
− E

(
N(φ) | H ∩K

) ∣∣∣ .

Since E
(
φ(‖Cn‖) | H ∩K

)
→ E

(
N(φ) | H ∩K

)
as n →∞, and P (f > k) → 0 as

k →∞, this concludes the proof.
�

We next deal with the particular case Q = Q0, where Q0 is a Ferguson-Dirichlet
law on (S∞,B∞). If P ≪ Q0 with a density satisfying a certain condition, the
convergence rate of ‖µn − an‖ can be remarkably improved.

Theorem 2. Suppose D is countably determined and supn EQ0
‖Wn‖2 < ∞. Then,√

n ‖Cn‖ = n ‖µn − an‖ converges a.s. provided P ≪ Q0 and

EQ0
(f2)− EQ0

{
EQ0

(f | Gn)2
}

= O (
1

n
), for some version f of

dP

dQ0

.

Proof. Let Dn(B) =
√

nCn(B). Then, ‖Dn‖ is Gn-measurable (as D is countably
determined) and

E
(
‖Dn+1‖ | Gn

)
= E

(
sup
B∈D

∣∣∣
n+1∑

i=1

IB(Xi)− (n + 1)E(µ(B) | Gn+1)
∣∣∣ | Gn

)

≥ sup
B∈D

∣∣∣E
(n+1∑

i=1

IB(Xi) | Gn)− (n + 1)E
(
µ(B) | Gn

)∣∣∣

= sup
B∈D

∣∣∣
n∑

i=1

IB(Xi)− nE(µ(B) | Gn)
∣∣∣ = ‖Dn‖ a.s..

Since ‖Dn‖ is a Gn-submartingale, it suffices to prove that supn E‖Dn‖ < ∞.
Let Un = f − E0(f | Gn), where E0 stands for EQ0

. By assumption, there are
c1, c2 > 0 such that

E0‖Wn‖2 ≤ c1, nE0U
2
n = n

{
E0(f

2)− E0(E0(f | Gn)2)
}
≤ c2 for all n.
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As noted in Section 1, since Q0 is a Ferguson-Dirichlet law, there is α > 0 such
that √

n ‖CQ0

n ‖ =
√

n sup
B∈D

∣∣∣E0(Wn(B) | Gn)
∣∣∣ ≤ α for all n.

Define Mn =
E0

(
|Un| ‖Wn‖|Gn

)

E0

(
f |Gn

) and recall that ‖Cn‖ ≤ ‖CQ0

n ‖+ Mn, P -a.s.; see the

proof of Theorem 1. Then, for all n, one obtains

E‖Dn‖ =
√

nE‖Cn‖ ≤
√

n
(
E‖CQ0

n ‖+ EMn

)
≤ α +

√
nE0

(
f Mn

)

= α +
√

nE0

(
|Un| ‖Wn‖

)
≤ α +

√
n
√

E0U2
n E0‖Wn‖2

≤ α +
√

c1 nE0U2
n ≤ α +

√
c1 c2.

�

Finally, we specify a point raised in Section 1.

Remark 3. There is a long list of (countably determined) choices of D such that

sup
n

E‖Wn‖k ≤ c(k), for all k ≥ 1, if X is i.i.d.,

where c(k) is some universal constant; see e.g. Subsections 2.14.1 and 2.14.2 of
[21]. Fix one such D, k ≥ 1, and suppose S is Polish and B the Borel σ-field. If
X is exchangeable, de Finetti’s theorem yields E(‖Wn‖k | T ) ≤ c(k) a.s. for all n,
where T is the tail σ-field of X. Hence, E‖Wn‖k = E

{
E(‖Wn‖k | T )

}
≤ c(k) for

all n. This proves inequality (2).

3. Exchangeable data with finite state space

When X is exchangeable and S finite, there is some overlapping between Theo-
rem 1 and a result of Bernstein and von Mises.

3.1. Connections with Bernstein - von Mises theorem. For each θ in an
open set Θ ⊂ R

k, let Pθ be a product probability on (S∞,B∞) (that is, X is i.i.d.
under Pθ). Suppose the map θ 7→ Pθ(B) is Borel measurable for fixed B ∈ B∞.
Given a (prior) probability π on the Borel subsets of Θ, define

P (B) =

∫
Pθ(B) π(dθ), B ∈ B∞.

Roughly speaking, Bernstein - von Mises (BVM) theorem can be stated as fol-
lows. Suppose π is absolutely continuous with respect to Lebesgue measure and the
statistical model (Pθ : θ ∈ Θ) is suitably ”smooth” (we refer to [13] for a detailed
exposition of what ”smooth” means). For each n, suppose θ admits a (consistent)

maximum likelihood estimator θ̂n. Further, suppose the prior π possesses the first
moment and denote θ∗n the posterior mean of θ. Then,

√
n
(
θ̂n − θ∗n

) Pθ0−→ 0

for each θ0 ∈ Θ such that the density of π is strictly positive and continuous at θ0.
Actually, BVM-theorem yields much more than asserted, what reported above

being just the corollary connected to this paper. We refer to [13] and [14] for more
information and historical notes. See also [18].
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Assuming a smooth, finite-dimensional statistical model is fundamental; see e.g.
[11]. Indeed, BVM-theorem does not apply when the only information is X ex-
changeable (or even c.i.d.) and P ≪ Q for some reference probability Q. One
exception, however, is S finite.

Let us suppose

S = {x1, . . . , xk, xk+1}, X exchangeable, P (X1 = x) > 0

for all x ∈ S, and D = B = power set of S.

Also, let λ denote Lebesgue measure on R
k and π the probability distribution of

θ =
(
µ{x1}, . . . , µ{xk}

)
.

As noted in Section 1, π ≪ λ if and only if P ≪ Q0 for some choice of Q0. Since
D is finite and X exchangeable under P and Q0, then ‖Wn‖ is uniformly integrable

under P and Q0. Thus, Theorem 1 yields ‖Cn‖ P→ 0 whenever π ≪ λ. On the other
hand, π is the prior distribution for this problem. The underlying statistical model
is smooth and finite-dimensional (it is just a multinomial model). Further, for each
n, the maximum likelihood estimator and the posterior mean of θ are, respectively,

θ̂n =
(
µn{x1}, . . . , µn{xk}

)
, θ∗n =

(
an{x1}, . . . , an{xk}

)
.

Thus, BVM-theorem implies ‖Cn‖ P→ 0 as far as π ≪ λ and the density of π is
continuous on the complement of a π-null set.

To sum up, in this particular case, the same conclusions as Theorem 1 can be
drawn from BVM-theorem. Unlike the latter, however, Theorem 1 does not require
any condition on the density of π.

3.2. Some consequences of Theorems 1 and 2. In this subsection, we focus
on S = {0, 1}. Thus, D = B = power set of S and λ is Lebesgue measure on R. Let
N (0, a) denote the one-dimensional Gaussian law with mean 0 and variance a ≥ 0
(where N (0, 0) = δ0). Our first result allows π to have a discrete part.

Corollary 4. With S = {0, 1}, let π be the probability distribution of µ{1} and

∆ = {θ ∈ [0, 1] : π{θ} > 0}, A = {ω ∈ S∞ : µ(ω, {1}) ∈ ∆}.
Define the random probability measure N on R as

N = (1− IA) δ0 + IAN
(
0, µ{1}(1− µ{1})

)
.

If X is exchangeable and π does not have a singular continuous part, then

Cn{1} → N stably and ‖Cn‖ → N ◦ h−1 stably

where h(x) = |x|, x ∈ R, is the modulus function.

Proof. By standard arguments, the Corollary holds when π(∆) ∈ (0, 1) provided it
holds when π(∆) = 0 and π(∆) = 1. Let π(∆) = 0. Then π ≪ λ, as π does not
have a singular continuous part, and the Corollary follows from Theorem 1. Thus,
it can be assumed π(∆) = 1. Since Cn{0} = −Cn{1}, ‖Cn‖ = |Cn{1}| and the
modulus function is continuous, it suffices to prove that Cn{1} → N stably.

Next, exchangeability of X implies Wn{1} → N
(
0, µ{1}(1− µ{1})

)
stably; see

e.g. Theorem 3.1 of [6]. Since π(∆) = 1, then N = N
(
0, µ{1}(1 − µ{1})

)
a.s..

Hence, it is enough to show that E|Cn{1} −Wn{1} | → 0.
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Fix ǫ > 0 and let Mn = Wn{1}. Since X is exchangeable, Mn is uniformly
integrable. Therefore, there is c > 0 such that

sup
n

E
(
|Mn| I{|Mn|>c}

)
<

ǫ

4
.

Define φ(x) = x if |x| ≤ c, φ(x) = c if x > c, and φ(x) = −c if x < −c. Since
Cn{1} = E(Mn | Gn) a.s., it follows that

E|Cn{1} −Wn{1} | ≤ E
∣∣∣E(Mn | Gn)− E(φ(Mn) | Gn)

∣∣∣+

+E
∣∣∣E(φ(Mn) | Gn)− φ(Mn)

∣∣∣ + E|φ(Mn)−Mn |

≤ E
∣∣∣E(φ(Mn) | Gn)− φ(Mn)

∣∣∣ + 4E
(
|Mn| I{|Mn|>c}

)

< E
∣∣∣E(φ(Mn) | Gn)− φ(Mn)

∣∣∣ + ǫ for all n.

Write ∆ = {a1, a2, . . .} and Mn,j =
√

n (µn{1} − aj). Since σ(Mn,j) ⊂ Gn and
P (µ{1} ∈ ∆) = π(∆) = 1, one also obtains

E
∣∣∣E(φ(Mn) | Gn)− φ(Mn)

∣∣∣ =
∑

j

E
∣∣∣E

(
φ(Mn,j) I{µ{1}=aj} | Gn

)
− φ(Mn,j) I{µ{1}=aj}

∣∣∣

=
∑

j

E
∣∣∣φ(Mn,j)

{
P (µ{1} = aj | Gn)− I{µ{1}=aj}

} ∣∣∣

≤ c

m∑

j=1

E
∣∣∣P (µ{1} = aj | Gn)− I{µ{1}=aj}

∣∣∣ + 2 c
∑

j>m

π{aj} for all m, n.

By the martingale convergence theorem, E
∣∣∣P (µ{1} = aj | Gn)− I{µ{1}=aj}

∣∣∣→ 0,

as n →∞, for each j. Thus,

lim sup
n

E|Cn{1} −Wn{1} | ≤ ǫ + 2 c
∑

j>m

π{aj} for all m.

Taking the limit as m →∞ concludes the proof. �

If π is singular continuous, we conjecture that Cn{1} converges stably to a non
null limit. But we have not a proof.

In the next result, a real function g on (0, 1) is said to be almost Lipschitz in
case x 7→ g(x)xa(1− x)b is Lipschitz on (0, 1) for some reals a, b < 1.

Corollary 5. Suppose S = {0, 1}, X is exchangeable and π is the probability
distribution of µ{1}. If π admits an almost Lipschitz density with respect to λ,
then

√
n ‖Cn‖ converges a.s. to a real random variable.

Proof. Let V = µ{1}. By assumption, there are a, b < 1 and a version g of dπ
dλ

such

that φ(θ) = g(θ)θa(1− θ)b is Lipschitz on (0, 1). For each u1, u2 > 0, we can take
Q0 such that V has a beta-distribution with parameters u1, u2 under Q0. Let Q0

be such that V has a beta-distribution with parameters u1 = 1− a and u2 = 1− b
under Q0. Then, for any n ≥ 1 and x1, . . . , xn ∈ {0, 1}, one obtains

P
(
X1 = x1, . . . , Xn = xn

)
=

∫ 1

0

θr(1− θ)n−r π(dθ) =

∫ 1

0

θr−a(1− θ)n−r−b φ(θ) dθ

= c

∫
V r(1− V )n−r φ(V ) dQ0 where r =

n∑

i=1

xi and c > 0 is a constant.
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Let h = c φ. Then, h is Lipschitz and f = h(V ) is a version of dP
dQ0

.

Let Vn = E0(V | Gn), where E0 stands for EQ0
. Since h is Lipschitz,

| f − E0(f | Gn) | ≤ |h(V )− h(Vn)| + E0

(
|h(V )− h(Vn)| | Gn

)

≤ d |V − Vn| + dE0

(
|V − Vn| | Gn

)

where d is the Lipschitz constant of h. Since E0‖CQ0

n ‖2 ≤ E0‖Wn‖2 and
√

n |V − Vn| = |CQ0

n {1} −Wn{1} | ≤ ‖CQ0

n ‖+ ‖Wn‖,
it follows that

E0(f
2)− E0

(
E0(f | Gn)2

)
= E0

{
(f − E0(f | Gn))2

}
≤ 4 d2 E0

{
(V − Vn)2

}

≤ 4 d2

n
E0

{
( ‖CQ0

n ‖+ ‖Wn‖ )2
}
≤ 16 d2

n
E0‖Wn‖2.

Since supn E0 ‖Wn‖2 < ∞, then E0(f
2)−E0

(
E0(f | Gn)2

)
= O(1/n). An applica-

tion of Theorem 2 concludes the proof. �

Corollaries 4 and 5 deal with S = {0, 1} but similar results can be proved for
any finite S. See also [12] and [19].

4. Generalized Polya urns

In this section, basing on Examples 1.3 and 3.5 of [6], the asymptotic behaviour
of ‖Cn‖ is investigated for a certain c.i.d. sequence.

Let (Y,BY) be a measurable space, B+ the Borel σ-field on (0,∞) and

S = Y × (0,∞), B = BY ⊗ B+, Xn = (Yn, Zn), where

Yn(ω) = yn, Zn(ω) = zn for all ω = (y1, z1, y2, z2, . . .) ∈ S∞.

Given a law P on B∞, it is assumed that

P
(
Yn+1 ∈ B | Gn

)
=

α P (Y1 ∈ B) +
∑n

i=1 Zi IB(Yi)

α +
∑n

i=1 Zi

a.s., n ≥ 1, (4)

P
(
Zn+1 ∈ C | X1, . . . , Xn, Yn+1

)
= P (Z1 ∈ C) a.s., n ≥ 0, (5)

for some constant α > 0 and all B ∈ BY and C ∈ B+. Note that (Zn) is i.i.d. and
Zn+1 is independent of (Y1, Z1, . . . , Yn, Zn, Yn+1) for all n ≥ 0.

In real problems, the Zn should be viewed as weights while the Yn describe the
phenomenon of interest. As an example, consider an urn containing white and
black balls. At each time n ≥ 1, a ball is drawn and then replaced together with
Zn more balls of the same colour. Let Yn be the indicator of the event {white ball at
time n} and suppose Zn is chosen according to a fixed distribution on the integers,
independently of (Y1, Z1, . . . , Yn−1, Zn−1, Yn). Then, the predictive distributions of
X are given by (4)-(5). Note also that the probability law of (Yn) is Ferguson-
Dirichlet in case Zn = 1 for all n.

It is not hard to prove that X is c.i.d.. We state this fact as a lemma.

Lemma 6. The sequence X assessed according to (4)-(5) is c.i.d..

Proof. Fix k > n ≥ 0 and A ∈ BY ⊗ B+. By a monotone class argument, it can
be assumed A = B × C where B ∈ BY and C ∈ B+. Further, it can be assumed
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k = n+2. Let n = 0 and G0 the trivial σ-field. Since X2 ∼ X1 (as it is easily seen),
E
(
IB(Y2) IC(Z2) | G0

)
= E

(
IB(Y1) IC(Z1) | G0

)
a.s.. If n ≥ 1, define

G∗n = σ(X1, . . . , Xn, Zn+1).

On noting that E
(
IB(Yn+1) | G∗n

)
= E

(
IB(Yn+1) | Gn

)
a.s., one obtains

E
(
IB(Yn+2) | G∗n

)
= E

{
E(IB(Yn+2) | Gn+1) | G∗n

}

=
α P (Y1 ∈ B) +

∑n
i=1 Zi IB(Yi) + Zn+1E(IB(Yn+1) | G∗n)

α +
∑n+1

i=1 Zi

=
(α +

∑n
i=1 Zi) E(IB(Yn+1) | Gn) + Zn+1E(IB(Yn+1) | Gn)

α +
∑n+1

i=1 Zi

.

= E(IB(Yn+1) | Gn) = E(IB(Yn+1) | G∗n) a.s..

Finally, since Gn ⊂ G∗n, the previous equality implies

E
(
IB(Yn+2) IC(Zn+2) | Gn

)
= P (Z1 ∈ C) E

{
E(IB(Yn+2) | G∗n) | Gn

}

= P (Z1 ∈ C) E
{

E(IB(Yn+1) | G∗n) | Gn

}
= E

(
IB(Yn+1) IC(Zn+1) | Gn

)
a.s..

Therefore, X is c.i.d.. �

Usually, one is interested in predicting Yn more than Zn. Thus, in the sequel,
we focus on P (Yn+1 ∈ B | Gn). For each B ∈ BY , we write

Cn(B) = Cn

(
B × (0,∞)

)
, an(B) = an

(
B × (0,∞)

)
= P (Yn+1 ∈ B | Gn),

and so on.
In Example 3.5 of [6], assuming EZ2

1 < ∞, it is shown that

Cn(B) → N (0, σ2
B) stably, where σ2

B =
var(Z1)

(EZ1)2
µ(B) (1− µ(B)).

Here, we prove that Cn converges stably when regarded as a map Cn : S∞ → l∞(D),
where l∞(D) is the space of real bounded functions on D equipped with uniform
distance; see Section 1.5 of [21]. In particular, stable convergence of Cn as a random
element of l∞(D) implies stable convergence of ‖Cn‖ = supB∈D|Cn(B)|.

Intuitively, the stable limit of Cn (when it exists) is connected to Brownian
bridge. Let B1, B2, . . . be pairwise disjoint elements of BY and

D = {Bk × (0,∞) : k ≥ 1}, T0 = 0, Tk =

k∑

i=1

µ(Bi).

Also, let G be a standard Brownian bridge process on some probability space
(Ω0,A0, P0). For fixed ω ∈ S∞,

L(ω, Bk) =

√
var(Z1)

EZ1

{
G(Tk(ω))−G(Tk−1(ω))

}

is a real random variable on (Ω0,A0, P0). Since the Bk are pairwise disjoint and G
has continuous paths, L(ω, Bk) → 0 as k →∞. So, it makes sense to define M(ω, ·)
as the probability distribution of L(ω) = (L(ω, B1), L(ω, B2), . . .), that is,

M(ω, A) = P0

(
L(ω) ∈ A) for each Borel set A ⊂ l∞(D).

Similarly, let N(ω, ·) be the probability distribution of supk≥1|L(ω, Bk)|, i.e.,

N(ω, A) = P0

(
sup
k≥1

|L(ω, Bk)| ∈ A
)

for each Borel set A ⊂ R.
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Theorem 7. Suppose B1, B2, . . . ∈ BY are pairwise disjoint and D, M , N are
defined as above. Let X be assessed according to (4)-(5) with a ≤ Z1 ≤ b a.s. for
some constants 0 < a < b. Then

sup
n

E‖Wn‖2 ≤ c
√

P
(
Y1 ∈ ∪kBk

)
, (6)

for some constant c independent of the Bk, and Cn → M stably (in the metric
space l∞(D)). In particular, ‖Cn‖ → N stably.

Let Q1 denote the probability law of a sequence X satisfying (4)-(5) and a ≤
Z1 ≤ b a.s.. In view of Theorem 7, Q1 can play the role of Q in Theorem 1. That is,
for an arbitrary c.i.d. sequence X with distribution P , one has ‖Cn‖ → N stably
provided P ≪ Q1 and ‖Wn‖ is uniformly integrable under P . The condition of
pairwise disjoint Bk is actually rather strong. However, it holds in at least two
relevant situations: when a single set B is involved and when S = {x1, x2, . . .} is
countable and Bk = {xk} for all k.

Proof of Theorem 7. This proof involves some simple but long calculations. Ac-
cordingly, we just give a sketch of the proof and we refer to [7] for details.

Since X is c.i.d., for fixed B ∈ BY one has an(B) = E
(
µ(B) | Gn

)
a.s.. Hence,

(an(B) : n ≥ 1) is a Gn-martingale with an(B)
a.s.→ µ(B), and this implies

E
{

(an+1(B)− µ(B))2
}

= E
{ (∑

j>n

(aj(B)− aj+1(B))
)2}

=
∑

j>n

E
{(

aj(B)− aj+1(B)
)2}

.

Replacing aj(B) by (4) and using that a ≤ Zi ≤ b a.s. for all i, a long but

straightforward calculation yields
∑

j>n E
{(

aj(B) − aj+1(B)
)2} ≤ c1

n
P (Y1 ∈ B)

where c1 is a constant independent of B. It follows that

E‖an+1 − µ‖2 = E
{

sup
k

(
an+1(Bk)− µ(Bk)

)2} ≤
∑

k

E
{(

an+1(Bk)− µ(Bk)
)2}

=
∑

k

∑

j>n

E
{(

aj(Bk)− aj+1(Bk)
)2} ≤ c1

n

∑

k

P (Y1 ∈ Bk)

=
c1

n
P
(
Y1 ∈ ∪kBk

)
as the Bk are pairwise disjoint.

Precisely as above, after some algebra, one obtains

E‖µn − an+1‖2 ≤
c2

n

√
P
(
Y1 ∈ ∪kBk

)

for some constant c2 independent of B1, B2, . . .. Therefore,

E‖Wn‖2 = nE‖µn−µ‖2 ≤ 2nE‖µn−an+1‖2 + 2nE‖an+1−µ‖2 ≤ c
√

P
(
Y1 ∈ ∪kBk

)

where c = 2 (c1 + c2). This proves inequality (6).
It remains to prove that Cn → M stably (in the metric space l∞(D)). For each

m ≥ 1, let Σm be the m×m matrix with elements

σk,j =
var(Z1)

(EZ1)2
(
µ(Bk ∩Bj)− µ(Bk)µ(Bj)

)
, k, j = 1, . . . , m.

By Theorems 1.5.4 and 1.5.6 of [21], for Cn → M stably, it is enough that
(i)-(Finite dimensional convergence):

(
Cn(B1), . . . , Cn(Bm)

)
→ Nm

(
0, Σm

)
stably for each m ≥ 1,
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where Nm

(
0, Σm

)
is the m-dimensional Gaussian law with mean 0 and covariance

matrix Σm;
(ii)-(Asymptotic tightness): For each ǫ, δ > 0, there is m ≥ 1 such that

lim sup
n

P
(

sup
r,s>m

|Cn(Br)− Cn(Bs)| > ǫ
)
< δ.

Fix m ≥ 1, b1, . . . , bm ∈ R, and define Rn =
∑m

k=1 bkIBk
(Yn). Since (Rn : n ≥ 1)

is c.i.d., arguing exactly as in Example 3.5 of [6], one obtains

m∑

k=1

bk Cn(Bk) =

∑n
i=1

{
Ri − E(Rn+1 | Gn)

}
√

n
−→ N

(
0,

∑

k,j

bkbjσk,j

)
stably.

Since b1, . . . , bm are arbitrary, (i) holds. To check (ii), given ǫ, δ > 0, take m such
that

P
(
Y1 ∈ ∪r>mBr

)
<

(ǫ2 δ

4 c

)2

where c is the constant involved in (6). By what already proved,

P
(

sup
r,s>m

|Cn(Br)− Cn(Bs)| > ǫ
)
≤ P

(
2 sup

r>m
|Cn(Br)| > ǫ

)

≤ P
(
2 E

(
sup
r>m

|Wn(Br)| | Gn

)
> ǫ

)
≤ 4

ǫ2
E
{

sup
r>m

Wn(Br)
2
}

≤ 4 c

ǫ2

√
P
(
Y1 ∈ ∪r>mBr

)
< δ.

Thus, (ii) holds, and this concludes the proof. �
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