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1 Introduction

In this paper we test whether dynamic adjustment processes in cointegrated systems are finished
after a limited number of periods, or even immediately. Such a situation would be characterized
by short-lived deviations from long-run equilibria being restored rather fast subsequently to a
shock. Important examples can be found for financial variables. So, the absence of persisting
arbitrage opportunities between similar assets in flexible markets requires prices to promptly
incorporate economic disturbances. This would guarantee that the market quickly returns to
the no-arbitrage equilibrium. Another field of applications refers to control of certain target
variables by economic policy using specific instruments.

Concerning the latter point we will analyze whether central banks are able to control overnight
interest rates. Monetary authorities like the Federal Reserve Bank (Fed) or the European Central
Bank (ECB) try to keep short-term interest rates close to the announced target values. Hence, if
central banks can sufficiently control overnight rates, then overnight and target rates should be
cointegrated and deviations of the overnight rate from the target should be relatively short-lived.
In other words, the deviations may ideally be white noise or serially correlated of low maximum
order such that they are completely eliminated after few periods. We will argue that the Fed was
much more successful in controlling overnight rates than the ECB in the recent decade.

The presence of a cointegration error implies a certain serial correlation structure in the sys-
tem variables. As will be shown, immediate adjustment to equilibrium deviations is equivalent
to common serial dependence in the levels of these non-stationary variables. This represents a
special case of serial correlation common features (SCCFs) as introduced by Engle & Kozicki
(1993). An SCCF exists if a linear combination of serially correlated variables containing a
common factor does not exhibit any serial correlation itself. However, completely identical se-
rial correlation is often a too strong assumption for empirical data. Therefore, we additionally
focus on constellations that allow for delays in adjustment. Based on Gourieroux & Peaucelle
(1988, 1992), Vahid & Engle (1997) generalize SCCF to the concept of codependence for cases
where the serial correlation of the linear combination drops to zero after q lags.

In relation to variables integrated of order one, I(1), SCCF and codependence had orig-
inally been introduced for the first differences by Vahid & Engle (1993) and Vahid & Engle
(1997), respectively. Schleicher (2007) discusses in detail SCCF and codependence related to
cointegrated variables within the vector error correction model (VECM) framework. As men-
tioned above, we apply the concept of codependence to the levels of I(1) variables. Since
codependence implies that a linear combination of the variables has a (stationary) finite-order
serial correlation structure, the variables must be cointegrated. Indeed, any vector containing
the weights of such a linear combination must lie in the cointegration space. Hence, the vec-
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tor does not only eliminate the common trend but also the common cyclical movements after
q lags. Paruolo (2003) and Franchi & Paruolo (2010) contain a general treatment of common
serial dependence in non-stationary systems. We deal with an important special case, propose
testing procedures, and clarify the connection of the concept of codependent cointegrated vari-
ables to equilibrium adjustment, which motivates our application. In the same vein, we link
codependence to the so-called persistence profiles of Pesaran & Shin (1996).

Trenkler & Weber (2010) point out that (cointegrated) vector autoregressions (VARs) with
codependence restrictions are not generally identified, at least for codependence orders larger
than one. Then, maximum likelihood (ML) estimation and likelihood ratio (LR) testing can-
not be applied. Thus, we do not exclusively rely on LR tests for inferring the presence of
codependence. Instead, we show how the testing problem can be solved even if an underlying
codependent VECM cannot be identified. In detail, we consider a test for a cut-off in the serial
correlation of the cointegration error. This test is motivated by a GMM estimation approach
that has been proposed by Vahid & Engle (1997) and makes use of the VEC framework only as
an approximation of the infinite vector moving average representation.

The plan for the paper is as follows. In the next section we present the methodology com-
prising the model framework, the codependence restrictions and statistical testing. Using the
codependence approach we explore in section 3 whether the Fed and the ECB could control
overnight rates. Finally, the last section concludes.

2 Methodology

2.1 MA Representation and Level Codependence

Let the n× 1-dimensional time series variable xt be integrated of order one, I(1), such that its
first difference ∆xt is I(0). Accordingly, ∆xt has the following Wold representation, compare
e.g. Johansen (1995, Definition 3.2):

∆xt = C(L)εt, (2.1)

where C(L) =
∑∞

i=0CiL
i with L being the lag operator and

C0 = In, C(1) 6= 0, and
∞∑

j=1

j|Cj| <∞.

Moreover, the n × 1 error term vector εt is assumed to be i.i.d.(0,Ω) with positive definite
covariance matrix Ω and finite fourth moments. To simplify the exposition we do not consider
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deterministic terms. Note, however, that adding e.g. a constant vector to (2.1) will generate a
linear trend in the levels xt.

As pointed out by Vahid & Engle (1993), one can rewrite equation (2.1) as

∆xt = C(1)εt + C∗(L)∆εt, (2.2)

where C∗(z) =
C(z)− C(1)

1− z
=
∑∞

i=0C
∗
i z

i with C∗i = −
∑∞

j=i+1Cj , in particular C∗0 =

In−C(1). Then, integrating both sides of (2.2) gives the multivariate version of the Beveridge-
Nelson decomposition for xt, Beveridge & Nelson (1981),

xt = C(1)
∞∑

s=0

εt−s + C∗(L)εt. (2.3)

The matrix C(1) is assumed to have rank n − r, 0 < r < n, such that there exists an
n × r matrix β 6= 0 with β′C(1) = 0. Then, β′xt = β′C∗(L)εt =

∑∞
i=0 β

′C∗i εt−i is I(0)

and, thus, xt is cointegrated of rank r, compare Vahid & Engle (1993, Definition 1). The
cointegration matrix β = (β1, β2, . . . , βr) contains the r linearly independent cointegration
vectors βj , j = 1, 2, . . . , r. Note that these are not unique but only identified up to an invertible
transformation.

If xt is codependent of order q, then a linear combination of xt, say δ′xt, must exist that is
uncorrelated with all lags of xt beyond q, compare Vahid & Engle (1997). Hence, δ′xt must
have a finite serial correlation structure of order q. Accordingly, this linear combination has to
be stationary and, thus, the n×1 vector δ must lie in the space spanned by the cointegration vec-
tors. The latter implies that δ′C(1) = 0. In general, there may exist s ≤ r vectors that generate
codependence of k different orders in xt, compare e.g. Schleicher (2007). These considerations
give rise to the following definition.

Definition 1. Let xt be an n-dimensional I(1) process with cointegrating rank r, 0 < r < n,
that has the representation (2.3). Let s be the maximal number of linearly independent n × 1

vectors collected in k nonzero n× sj matrices δ0,j , j = q1, q2, . . . , qk, with δ′0,jC(1) = 0 for all
j, s = sq1 + sq2 + · · ·+ sqk

≤ r, q1 < q2 < · · · < qk, and

δ′0,jC
∗
i = 0 for all i > j and δ′0,jC

∗
j 6= 0, (2.4)

where rk(δ′0,jCj) = sj for all j = q1, q2, . . . , qk. Then xt is codependent of orders (q1, q2, . . . , qk).

Some remarks on Definition 1 are in order. The s vectors represented by the columns of
D0 = [δ0,q1 : δ0,q2 : · · · : δ0,qk

] are labeled as codependence vectors, a term introduced by
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Gourieroux & Peaucelle (1988, 1992). The assumption rk(δ′0,jCj) = sj for all j = q1, q2, . . . , qk

rules out that codependence vectors associated with the same order can be linearly combined
such that a smaller order than their common codependence order is obtained. Therefore, the
full row rank assumption on δ′0,jCj for all j = q1, q2, . . . , qk implies (i) that (q1, q2, . . . , qk) rep-
resents the full set of minimal codependence orders and (ii) that the numbers of codependence
vectors for each order, sq1 , sq2 , . . . , sqk

, are maximal in the sense that no sj can be increased by
lowering si for j < i. From now on, the terminology set of minimal codependence orders will
refer to both implications (i) and (ii).

Clearly, Definition 1 implies that δ′0,jxt = δ′0,jC
∗(L)εt = δ′j(L)εt =

∑j
i=0 δ

′
i,jεt−i, where

δi,j = C∗′i δ0,j .1 We will label any vector which achieves such a finite-order serial correlation
structure with respect to xt as a codependence vector even if it is not a vector associated with
the set of minimal codependence orders. The reasons are that any such vector must be a lin-
ear combination of the codependence vectors covered by Definition 1 and that the association
of a certain vector with the minimal orders also depends on the specific identification structure
applied toD0. Note that the vectors in δ0,j , j = q1, q2, . . . , qk, are only identified up to an invert-
ible transformation. Moreover, the design of an identification scheme for D0 that maintains the
composition of the different codependence orders may not be a trivial task, compare Trenkler
& Weber (2010). We will comment on the issue of identification regarding the codependence
vectors at several instances.

To distinguish codependence in levels from codependence in first differences of I(1) vari-
ables, we introduce the terminology of level codependence of order q, abbreviated as LCO(q).
Accordingly, a vector generating level codependence of order q will be labeled as LCO(q) vec-
tor. If q = 0, a level serial correlation common feature (LSCCF) is present and the correspond-
ing codependence vector(s) are named LSCCF vector(s).

In the following, we link the established framework to different approaches in the literature.
1. For a single codependence order setup, Definition 1 is a special case of the codependence

setup considered by Paruolo (2003) and Franchi & Paruolo (2010) in relation to cointegrated
vector I(1) process that have a VAR(p) representation. Let xt follow such a cointegrated I(1)-
VAR(p) processes as defined in the next subsection and be β⊥ the orthogonal complement to β.
Then, Yt ≡ (x′tβ : ∆x′tβ⊥)′ follows a stable VAR(p), as shown by Paruolo (2003) and Franchi
& Paruolo (2010). They consider linear combinations of the form b′Yt with the n × s matrix
b ≡ (b′0 : b1)

′ in order to analyze codependence. Thus, Definition 1 refers to the special case
b1 = 0 but in relation to I(1) processes with general MA representation. Moreover, Definition

1The full row rank assumption on δ′0,jCj together with the linear independence of the codependence vectors
ensures that the polynomials δ′j(L), j = q1, q2, . . . , qk, are of full-column rank in the sense of Franchi & Paruolo
(2010).
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1 simultaneously covers the case of several codependence orders.
2. If a vector δ satisfies (2.4) for j = q, then we have δ′xt =

∑q
i=0 δ

′C∗i εt−i. Hence, δ′xt

can be regarded as a linear combination of a multivariate MA(q) process,2 which is a special
case of a scalar component model (SCM), see Vahid & Engle (1997). According to Tiao & Tsay
(1989), a non-zero linear combination v′0xt of an n-dimensional process xt follows an SCM(p,q)
structure, if one can write

v′0xt +

p∑
j=1

v′jxt−j = v′0εt +

q∑
j=1

h′jεt−j

for a set of n-dimensional vectors {vj}pj=1 and {hj}qj=1 with vp 6= 0 and hq 6= 0. Thus, code-
pendence of order q with respect to xt results in an SCM(0, q), where q = 0 represents the case
of an SCCF.

3. To analyze common and codependent cycles with respect to the first differences of I(1)

variables, Vahid & Engle (1993, 1997) used the following common trend representation of
Stock & Watson (1988), which can be obtained from (2.3):

xt = γτt + ct

τt = τt−1 + ϕ′εt

where γ and ϕ are n× (n−r) parameter matrices with C(1) = γϕ′ such that τt = ϕ′
∑∞

s=0 εt−s

are linear combinations of n− r random walks representing the trend part and ct = C∗(L)εt is
the cyclical part.

Vahid & Engle (1993) show that an SCCF with respect to ∆xt leads to a common cycle,
i.e. an SCCF vector δ with δ′∆xt = δ′εt eliminates the cycles such that δ′ct = 0. Vahid & Engle
(1997) generalize this result. If ∆xt is codependent of order q with a codependence vector δ′

so that δ′∆xt is an SCM(0, q), then δ′ct is an SCM(0, q − 1). Thus, there exists a codependent
cycle of order q − 1. Schleicher (2007) extended the work of Vahid & Engle (1993, 1997) by
analyzing codependence regarding ∆xt within the VECM framework.

Thus, if xt satisfies the LCO(q) constraints for δ such that δ′xt is an SCM(0,q), then δ′∆xt =

δ′xt − δ′xt−1 follows an SCM(0,q + 1). Accordingly, a codependence vector with respect to
the first differences of I(1) variables might also be related to codependence structures in the
levels. Moreover, it follows that δ′ct is an SCM(0,q). Hence, the vector δ, which lies in the
cointegration space, does not only eliminate the common trend but also produces a codependent
cycle of order q.3

2Note that δ′xt can be given a univariate MA(q∗) representation with q∗ ≤ q according to Lütkepohl (2005,
Proposition 11.1). However, the error term in this representation does not equal δ′εt.

3A codependence vector δ lying in the cointegration space has to satisfy additional restrictions compared to the
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Finally, note that the SCCF and codependence setup with respect to the first differences
of cointegrated I(1) variables analyzed by Vahid & Engle (1993) and Schleicher (2007) is an-
other special case of the codependence framework considered by Paruolo (2003) and Franchi &
Paruolo (2010). Here, the restriction b0 = 0 is assumed and the codependence vectors studied
in Vahid & Engle (1993) and Schleicher (2007) are linear combinations of β⊥.

4. The adjustment properties implied by level codependence relate our framework to Pe-
saran & Shin (1996). They propose the persistence profile approach to analyze the dynamics
of adjustment towards the cointegration equilibrium. Persistence profiles represent the effect of
systems-wide shocks on the cointegration relations over time. For the case of a single cointe-
gration relation we can define the persistence profile of zt = β′xt in our notation as

Hz(j) =
β′C∗j ΩC∗′j β

β′Ωβ
, for j = 0, 1, 2, . . . . (2.5)

If only a single cointegration vector is assumed, Hz(j) can be interpreted as the square of
the impulse response function of zt to a unit composite shock in the error ut = β′εt. From (2.5)
it is clear that an LCO(q) constraint requires the persistence profiles Hz(j) to be zero for j >
q. Using an (approximating) VAR representation for xt, Pesaran & Shin (1996) provided the
limiting distributions of the ML estimators ofHz(j) for each j individually. Hence, significance
testing is done pointwise as it is standard in the literature on impulse response analysis. In
contrast, the test procedures in section 2.3 aim at testing the joint hypothesis Hz(j) = 0 for all
j > q.

Concerning the last approach of Pesaran & Shin (1996) it is important to note that their
original focus is not on codependence itself but on equilibrium adjustment. A similar moti-
vation underlies our application that addresses the adjustment dynamics of interest rates to-
wards their cointegration relation. To be precise, we want to analyze whether adjustment to-
wards equilibria is finished after a finite number of periods. Formally, a cointegration error
β′jxt =

∑∞
i=0 β

′
jC
∗
i εt−i, j = 1, . . . , r, would then have a finite-order serial correlation structure.

Thereby, we have in mind that the cointegration matrix is identified in an economically mean-
ingful way such that cointegration vectors have an appropriate definition. Therefore, we explore
directly whether a cointegration vector βj is also a codependence vector. In other words, we are
testing for codependence conditional on a set of potential codependence vectors given by the
cointegration vectors. Hence, we only consider cointegration vectors with their specific identi-
fying structure for D0, which, otherwise, had to be identified directly. Concretely, we say that

type of codependence vectors analyzed in Vahid & Engle (1997) or Schleicher (2007). In detail, it must produce
a specific SCM structure with respect to ∆xt that can be rewritten as δ′∆xt = δ′∆εt + δ′C∗1∆εt−1 + · · · +
δ′C∗qj

∆εt−qj
. Moreover, δ′xt does not need to be I(1) if δ is a codependence vector with respect to ∆xt in

contrast to the statement in Schleicher (2007, Appendix A).
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βj generates codependence of order qj with respect to xt, if

β′jC
∗
i = 0 for all i > qj and β′jC

∗
qj
6= 0.

Obviously, the condition β′jC(1) = 0 is automatically satisfied.
Note that it can turn out that the cointegration vectors do not capture the set of minimal

codependence orders. This would be the case if combining several βj produces smaller code-
pendence orders. Then, (some of) the codependence vectors generating the minimal codepen-
dence orders represent linear combinations of the cointegration vectors. Clearly, this cannot
happen but for cointegration vectors associated with identical codependence orders according
to the corresponding discussion of Definition 1. Thus, it follows that the concepts of level code-
pendence and codependence conditional on the set of codependence vectors given by β coincide
if no qj ≥ 1 results from two or more cointegration vectors. Two special cases in this respect
are immediate equilibrium adjustment (i.e., LSCCF) and r = 1 as given in our application.

2.2 VAR Representation and Level Codependence

It is quite common to approximate the MA representation of xt by a finite-order VAR process or
to directly assume that xt follows a VAR process in order to analyze SCCF and codependence,
see e.g. Vahid & Engle (1993, 1997), Paruolo (2003), Schleicher (2007), Franchi & Paruolo
(2010). However, Trenkler & Weber (2010) showed that codependent VAR models are not gen-
erally identified. In fact, only restrictions due to codependence of order one generated by at
most one codependence vector and SCCF restrictions can be uniquely imposed on a VAR. This
applies both to stationary and (cointegrated) I(1) systems and, therefore, also to VECMs typi-
cally used in case of cointegration. Hence, the VAR framework is of limited use for analyzing
general codependence restrictions. Accordingly, ML estimation of codependent VARs and con-
ventional LR testing for codependence cannot be applied but in few special cases. Therefore,
we only briefly discuss the VAR model setup in relation to the LSCCF and LCO(1) frameworks.

If the coefficient matrices in (2.3) satisfy specific restrictions, xt follows the VAR(p)

xt = A1xt−1 + A2xt−2 + · · ·+ Apxt−p + εt, (2.6)

where Aj , j = 1, 2, . . . , p, are (n × n) coefficient matrices and the error term εt satisfies the
same assumptions as above. Defining Π = −(In−A1−· · ·−Ap) and Γj = −(Aj+1+· · ·+Ap),
j = 1, . . . , p− 1, we can re-write (2.6) in the vector error correction form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . . (2.7)
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The relationship of the VAR and VECM representations can be compactly described by A(z) =

In − A1z − · · · − Apz
p = In∆ − Πz − Γ1∆z − · · · − Γp−1∆z

p−1. Typically, the following
assumptions are made in this context, compare e.g. Johansen (1995, Theorem 4.2): The roots
of A(z) are either |z| > 1 or z = 1. The matrix Π has reduced rank r < n, i.e. the matrix Π can
be written as Π = αβ′, where α and β are n× r matrices with rk(α) = rk(β) = r. Finally, the
matrix α′⊥Γβ⊥ has full rank, where Γ = In−

∑p−1
j=1 Γj and where α⊥ and β⊥ are the orthogonal

complements to α and β.
Then, we have a special case of (2.3) with C(1) = β⊥(α′⊥Γβ⊥)−1α′⊥ and the coefficients of

C∗(L) given by the recursive formula

∆C∗i = ΠC∗i−1 +

p−1∑
j=1

Γj∆C
∗
i−j, i = 1, 2, . . . , (2.8)

with C∗−1 = · · · = C∗−p+1 = −C(1), see Hansen (2005, Theorem 1).
We directly focus on the cointegration vectors βj , j = 1, 2, . . . , r, being the potential set

of codependence vector when describing the restrictions on the VECM implied by level code-
pendence. For an LSCCF generated by a cointegration vector βj , i.e. for qj = 0, one can
easily deduce from the VECM (2.7) that β′jΠ = −β′j and β′jΓj = 01×n for j = 1, . . . , p − 1

is required. This makes up n(p − 1) + r restrictions per vector. Note that β′jΠ = −β′j im-
plies that β′jα is a (1 × r) vector of which the j-th entry is equal to −1 while the other en-
tries are equal to 0. In the LCO(1) case one can refer to the recursion (2.8) in order to derive
the restrictions on the VECM parameters. First, note that (2.8) can be equivalently written as
∆C∗i = C∗i−1Π +

∑p−1
j=1 ∆C∗i−jΓj, i = 1, 2, . . .. Then, tedious algebra shows that LCO(1) im-

plies β′j(Π + Γ1)
2 + β′jΓ1Π = β′j(Π + Γ1 + I)Γ1 + β′jΓ2 = β′j(Π + Γ1 + I)Γ2 + β′jΓ3 =

· · · = β′j(Π + Γ1 + I)Γp−2 + β′jΓp−1 = β′j(Π + Γ1 + I)Γp−1 = 0. Obviously, the parameter
restrictions underlying an LCO(1)-VECM are nonlinear. In general, it is more convenient to use
a state-space representation based on the companion form of the VECM in order to describe the
restrictions on the VECM parameters, compare Schleicher (2007). It follows from Trenkler &
Weber (2010), that we have again n(p− 1) + r constraints associated with LCO(1) noting that
the codependence vector is known in our framework.4

We make two final remarks on codependent VECMs. First, the VECM framework is only
valid if the above discussed restrictions on (2.3) hold. If they are not exactly fulfilled, the VECM
may nonetheless serve as an approximation of the true process (2.3). Second, the upper bound
for the LCO order in a VECM is given by qmax = (n − 1)p − (n − r), compare Trenkler &
Weber (2010, Theorem 1). Note, however, that a VECM with such a codependence order is
typically not identified, unless qmax ≤ 1.

4For joint imposition of several codependence vectors on a VECM see section 2.3.3.
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2.3 Testing Approaches

As regards the definition of level codependence we have treated the cointegration matrix β as
given. In applied work, however, β is unknown and has to be replaced by some estimator. We
assume in the following that a superconsistent estimator β̂, e.g. a reduced rank estimator based
on the VECM (2.7), is available. This ensures that the limiting distributions of the considered
test statistics do not change, i.e. inference can be conducted as if β were known; compare the
references given below.

Accordingly, the test procedures considered in all the following three subsections are con-
ditional on the estimator β̂. Of course, the tests can also be applied conditional on some pre-
specified cointegration matrix. Such a setup is typically justified in cases of strong (economic)
priors and statistical evidence for a particular cointegration vector. This applies e.g. to arbitrage
implying a cointegration vector β = (1,−1)′ if a bivariate setup is considered. Another ex-
ample is the controllability of overnight interest rates by central banks as analyzed in section
3.

In the following, we discuss GMM and LR tests for codependence conditional on β repre-
senting the set of codependence vectors. Subsequently, a general test procedure for detecting
the set of minimal codependence orders is described.

2.3.1 GMM-type Test

If xt is level codependent of order qj due to the cointegration vector βj , then zt,j = β′jxt should
be uncorrelated with all its lags beyond qj . Assuming that ∆xt follows the VECM (2.7), it is suf-
ficient to focus on zero correlations between zt,j and Xt−qj−1 = (zt−qj−1,∆x

′
t−qj−1,∆x

′
t−qj−2,

. . . ,∆x′t−qj−p+1)
′, where zt = β′xt. This statement follows because β′xt = (Ir + β′α)β′xt−1 +∑p−1

i=1 β
′Γi∆xt−i + β′εt. In their corresponding frameworks, Vahid & Engle (1997) and Schle-

icher (2007) have used such zero correlations as moment conditions for GMM estimation of the
codependence vector. Based on the GMM approach, overidentifying restrictions can then be
tested.

We do not apply the GMM principle to estimate β since a superconsistent estimator β̂ is
needed and assumed to be available. However, we use the corresponding test approach in order
to test for a cut-off in the serial correlation of the cointegration errors after qj lags. Following
Vahid & Engle (1997) and Schleicher (2007), we test the null hypothesis

H0 : g(βj) = E(zt,jXt−qj−1) = 0[(n(p−1)+r)×1] (2.9)

by considering the statistic
ZT = gT (β̂j)

′PT (β̂j)gT (β̂j), (2.10)
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with gT (β̂j) = 1√
T−p−qj

∑T
t=p+qj+1 ẑt,jX̂t−qj−1, where ẑt,j = β̂′jxt and X̂t is the same as Xt

with zt replaced by ẑt = β̂′xt. Moreover, PT (β̂j) =
(
σ̂2
(

1
T−p−qj

∑T
t=p+qj+1 X̂t−qj−1X̂

′
t−qj−1

)
+∑qj

i=1 γ̂i

(
1

T−p−qj

∑T
t=p+qj+i+1(X̂t−qj−1X̂

′
t−qj−1−i + X̂t−qj−1−iX̂

′
t−qj−1)

))−1

, which is the
weighting matrix with σ̂2 and γ̂i being consistent estimators of the variance and autocovari-
ances of zt.

The GMM statistic (2.10) has an asymptotic χ2-distribution with n(p − 1) + r degrees of
freedom. Note in this respect that using a superconsistent estimator β̂ ensures that PT (β̂j) is
a consistent estimator of (limT→∞ E(gT (βj)gT (βj)

′/T ))−1, compare also Brüggemann, Lütke-
pohl & Saikkonen (2006).

As already pointed out by Schleicher (2007), the choice of the instrument set Xt makes the
GMM test depend on the VECM framework. In other words, this approach can only be inter-
preted as a test for LCO(qj) or, to be more precise, the null hypothesis (2.9) only represents
the LCO(qj) constraints if the VECM provides a correct representation of ∆xt. This link has
two important implications. First, the upper bound for the codependence order should also be
applied with respect to the GMM test. Second, if the VECM is only regarded as an approx-
imation of the process ∆xt, then the null hypothesis g(βj) = 0[(n(p−1)+1)×1] is only covering
a subset of the restrictions implied by LCO(qj). Nevertheless, evidence against LCO(qj) can
still be collected since rejection of g(βj) = 0[(n(p−1)+r)×1] implies also rejection of the LCO(qj)
constraints. In this respect, the GMM-type test is a useful procedure, even if the VECM is only
an approximation of the MA process for ∆xt.

2.3.2 LR Test

If an identified codependent VECM is used we can apply the LR principle to test the null of
LCO(q). That is, we estimate the unrestricted and restricted model by (nonlinear) ML and take
twice the log-likelihood difference. In line with section 2.2, the LR test statistic is asymptot-
ically χ2-distributed with n(p − 1) + r degrees of freedom if a single codependence vector is
considered. As already mentioned, only VEC models with an LSCCF or LCO(1) are uniquely
identified for single codependence vector setups. Moreover, it is possible to uniquely impose
several LSCCFs, potentially combined with one LCO(1) vector. Therefore, the applicability of
the LR test is limited to these cases. Situations with a joint imposition of several codependence
vectors are discussed in the next subsection.

If the focus is on LSCCFs, one can use the framework of Paruolo (2003, Section 6) to es-
timate the restricted VECM. The estimation is based on reduced rank techniques taking into
account the restriction that only β′xt is involved in the LSCCF constraints. This requires to
accordingly restrict the matrix b in Paruolo (2003, Section 6) that generates the LSCCFs. Alter-
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natively, one may numerically maximize the likelihood function of the VECM (2.7). The latter
approach has to be chosen in case of estimating VECMs with LCO(1) due to the nonlinear pa-
rameter restrictions. Therefore, we decided to use numerical methods in order to estimate the
restricted VECM for both the LSCCF and LCO(1) setups. Due to the results in Paruolo (2003),
replacing β by a superconsistent estimator does not change the asymptotic distribution of the
LR test statistic. Moreover, in the case of a pre-specified cointegration matrix, the LSCCF re-
strictions on the VECM parameters could also be tested by F - or Wald-tests, which have their
usual asymptotic distributions.

Finally, we make some comparing remarks on the GMM and LR tests. The GMM test
can be used in situations where the LR test cannot be applied due to non-identification of the
VECM. Furthermore, the GMM test alleviates the sensitivity to model misspecification and
circumvents the potentially demanding numerical optimization under the LR null hypothesis,
see Schleicher (2007). Nevertheless, we have a preference for applying the LR test for identified
model setups. This is due to the results of the simulation study in Schleicher (2007), which
indicates an obvious advantage of the LR over the GMM test in terms of small sample power.

2.3.3 Test for Minimal Codependence Orders

As mentioned in section 2.1, using the cointegration vectors as a set of potential codependence
vectors does not necessarily obtain the set of minimal codependence orders. If the latter is
of interest, one can apply the sequential GMM test procedures outlined below. We note that
the application of such a test procedure is not necessary for empirical setups with a single
cointegration vector as considered in the next section. Obviously, in a single cointegration
vector case the cointegration vector is a codependence vector of minimal order if the process
xt is codependent. Moreover, if the focus is on the analysis of the adjustment dynamics in a
multiple cointegration vector case, one does not need to use the sequential test procedure either.
It is then sufficient to refer to the GMM and LR tests discussed in the previous sections 2.3.1
and 2.3.2.

The codependence vectors introduced by Definition 1 have to be linear combinations of the
cointegration vectors. Hence, one has to test for the existence of these linear combinations in
order to determine the set of minimal codependence orders. Note that there can be up to r such
linear combinations of the cointegration vectors. In the following, we first present a sequen-
tial GMM test procedure that can be generally applied. Afterwards, we discuss the (limited)
usefulness of an LR test approach to detect the set of minimal codependence orders.

In contrast to section 2.3.1, we now consider linear combinations of β′xt in the relevant
moment conditions. Let γ be the r× s matrix containing the weights of the linear combinations
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generating the set of minimal codependence orders. Then, the columns of D0 = βγ represent
the corresponding s ≤ r level codependence vectors. Since the parameters in γ are unknown,
they have to be estimated in the GMM approach. Therefore, one has to subtract the number
of unknown parameters in γ from the number of tested moment conditions in order to obtain
the number of degrees of freedom of the corresponding GMM tests. In other words, we are
now considering a typical test for overidentifying restrictions based on estimated parameters
compared to the test setup in section 2.3.1, where all parameters are given. Note in this respect,
that we again condition on some superconsistent estimator β̂ or some pre-specified cointegration
matrix β. Hence, the error-correction term β′xt−1 or the estimator of it is regarded as given.

The GMM test sequence works as follows. First, one tests the null hypothesis of s0
0 = 1

LSCCF vector: H0 : s0
0 = 1, i.e. one tests whether one appropriate linear combination of β

exists. If the according null hypothesis is not rejected, then one continues to test forH0 : s0
0 = 2

against no LSCCF vector and so forth untilH0 is rejected the first time. Let γ0 denote the version
of γ considered under H0, then the null hypotheses tested in this sequence can be formally
represented by

H0 : g(γ0, β) = E
(
vec
(
γ0′zt ⊗Xt−1

))
= 0[(s0

0(n(p−1)+r))×1], (2.11)

where the instrument set Xt−1 is as defined in section 2.3.1. The corresponding GMM statistics
are appropriately adjusted versions of (2.10). We note, however, that the application of these
statistics requires to impose an identifying structure on γ0. Here, we apply γ0 = [Is0

0
: γ0′

0 ]′,
where γ0

0 is an (r − s0
0) × s0

0 matrix of free parameters to be estimated. Hence, the GMM test
statistic for (2.11) is χ2 distributed with s0

0(n(p − 1) + s0
0) = s0

0(n(p − 1) + r) − s0
0(r − s0

0)

degrees of freedom.
Let s0 be the largest number of LSCCF vectors that is not rejected. If s0 < r, one continues

to test for the number of LCO(1) vectors. Since the s0 LSCCF vectors are also LCO(1) vectors,
it is sufficient to start with the null hypothesis of s0

1 = s0 + 1 LCO(1) vectors, H0 : s0
1 = s0 + 1,

against the alternative s0
1 = 0. If this null hypothesis is not rejected, the sequence continues with

s0
1 = s0 + 2, s0

1 = s0 + 3 and so forth according to the LSCCF setup. One has to pay particular
attention to the identification scheme applied to γ0 in order to maintain the combination of
LSCCF and LCO(1) vectors under H0. Results from Trenkler & Weber (2010) suggest to use

γ0 =

Is0 0s0×(s0
1−s0)

γ0
0

(
Is0

1−s0
: γ0′

1

)′
 ,

where γ0
1 is an (r− s0

1)× (s0
1− s0) matrix and γ0

1 is as defined above. Accordingly, γ0 contains
s0(s

0
1−s0)+s0

1(r−s0
1) free parameters. Thus, the corresponding GMM test forH0 : s0

1 = s0+1,
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which explicitly takes into account that there are s0 LSCCF vectors, has s0
1(n(p − 1) + s0

1) −
s0(s

0
1 − s0) degrees of freedom. The null hypotheses can be written as

H0 : g(γ0, β) = E

(
vec

[
γ0′

[s0]zt ⊗Xt−1

γ0′
[s1

0−s0]
zt ⊗Xt−2

])
= 0[(s0

1(n(p−1)+r))×1],

where γ[s0] and γ[s1
0−s0] represent the first s0 and last s1

0 − s0 columns of γ0, respectively.
If s1 is the largest number of LCO(1) vectors which is not rejected, then the test sequence

continues if s1 < r in the same spirit as above. Thus, when a larger codependence order is
reached one uses explicitly the information that a specific number of codependence vectors of
lower orders has not been rejected beforehand. According to the previous discussion, this both
refers to the identification scheme applied to γ0 and the determination of the degrees of freedom
as well as to number of codependence vectors tested first under H0 for a new codependence
order. This test sequence stops if r codependence vectors are not rejected or if the upper bound
qmax = (n − 1)p − (n − r) for the LCO order within a VECM is reached. The latter stopping
criterion follows from the discussion in section 2.3.1.5

We now turn to the discussion of a potential LR test sequence. Since only LSCCF vectors
and at most one LCO(1) vector can be uniquely imposed on a VECM, it is generally not pos-
sible to impose all codependence vectors generating the set of minimal codependence orders.
Only the setups with r LSCCF vectors or r − 1 LSCCF vectors and one LCO(1) vector tested
underH0 are known to be cases that cover the full set of minimal codependence orders. If s < r

codependence vectors are imposed, then there may be up to r− s additional vectors that induce
further LCO(1) restrictions or orders beyond one. However, these cases cannot be uniquely
considered within a VECM and can, therefore, not be tested for by applying an LR test. Hence,
there can exist uncertainty concerning the full set of minimal codependence orders. Neverthe-
less, one may wish test for a subset of the minimal codependence orders or for the special cases
just mentioned using a sequential LR test approach.

The LR test sequence proceeds as the corresponding GMM test sequence. However, it may
stop earlier due to restrictions mentioned in the previous paragraph. The alternative hypothesis
never imposes codependence restrictions on the VECM. Hence, the VECM is estimated unre-
strictedly via standard ML under the alternative in order to obtain the unrestricted log-likelihood
value. Under the null hypothesis one has to jointly impose the relevant number of LSCCF vec-
tors and, potentially, one LCO(1) vector. Due to conditioning on β or on a superconsistent
estimate β̂, it is again sufficient to estimate the matrix γ containing the weights of the relevant

5As an alternative to the GMM test, one may use a test based on canonical correlations that was suggested by
Tiao & Tsay (1989). However, this procedure does not allow to impose the specific composition of codependence
orders tested under the null hypothesis. Therefore, we do not consider the procedure of Tiao & Tsay (1989).
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linear combinations of β instead of estimating the corresponding codependence vectors. The
VECM has to be estimated by nonlinear ML under H0 in order to compute the restricted log-
likelihood value. As for the single codependence vector case discussed in section 2.3.1, one
can follow Paruolo (2003) to estimate VECMs on which only LSCCFs are imposed or one uses
a nonlinear numerical estimation approach. The latter has to be chosen if an LCO(1) vector
is involved. Based on the restricted and unrestricted log-likelihood values, the corresponding
LR statistic is formulated in the usual way. The LR statistics are asymptotically χ2 distributed.
Since the same identification scheme as for the GMM tests is applied to γ under H0, one also
obtains the same number of degrees of freedom as above, compare also Trenkler & Weber
(2010) in this respect.

3 Can Central Banks Control Overnight Rates?

Herein, we examine to which extent overnight money market rates are controllable by monetary
policy makers. For this purpose, the LSCCF and LCO concept and the proposed statistical tests
are applied. We look in turn at the world’s most prominent central banks, the Fed and the ECB.

3.1 Federal Reserve Bank

Over decades, the Fed has developed an institutional framework for effectuating its monetary
policy. An important change occurred in February 1994: Since then, the Fed has announced
changes in the federal funds target rate immediately after the decision. Such transparency is
likely to contribute to low persistence of deviations of the federal funds rate from its target, see
Nautz & Schmidt (2009). The same presumably holds true for the forward-looking assessment
of inflationary pressure and economic slowdown, which complements the Federal Open Market
Committee (FOMC) statements since January 2000.

The Fed requires commercial banks to hold a certain average amount of reserves during
each maintenance period of two weeks. Therefore, we argue that a natural frequency for the
empirical analysis is provided by biweekly data. In this, while the maintenance periods end
on the so-called Settlement Wednesdays, we measure the interest rates on the Wednesdays in
between. Doing so has the further advantage to avoid dealing with predictable day-of-the-
week effects or the Settlement Wednesday tightness (see Hamilton 1996), which is rendered
innocuous by sampling at the midpoints of the maintenance periods. The sample is chosen as
06/28/2000-12/03/2008, where the starting point ensures consistency with the European case
discussed below. The end date is determined by the fact that the Fed replaced its target rate by
a target range (initially from 0 to 0.25) on 16 December 2008; thereafter, the federal funds rate
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stayed within the range, but not particularly close neither to the upper or lower limit nor to the
midpoint. In total, we have 221 observations. Figure 1 shows the federal funds and the target
rate as well as the policy spread.
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Figure 1. Federal funds rate (solid line), target rate (dotted line) and spread (dashed line)

Evidently, the overnight rate closely follows the target, so that the spread reveals no long-
lasting swings. The correlogram of the spread can be seen in Figure 2. The spread yields mostly
small serial correlations that would be judged insignificant applying the asymptotic standard
error 1/

√
T . However, the first two autocorrelations do not seem to be necessarily negligible.

Therefore, as discussed above, testing within the underlying VECM is preferred in order to
jointly consider all relevant lags.

The VECM for the federal funds rate it and the target rate i∗t is specified with a restricted
constant and four lags in first differences, as suggested by the AIC and HQ criteria. For a
definition of these information criteria see e.g. Lütkepohl (2005). The Johansen trace test easily
confirms cointegration with a test statistic of 35.27 (p-value = 0.02%). The Portmanteau test
for non-autocorrelated residuals, compare Lütkepohl (2005), is clearly insignificant at all lags.
Thus, the model seems to be adequate in the sense of picking up the complete dynamics from
the data. In contrast, reducing the lag length would leave pronounced autocorrelation in the
residuals. Concerning the cointegration vector, we have a strong theoretical prior for β =

(1 − 1)′. Empirically, this restriction is not rejected given an LR p-value of 27.6%. This
test was repeated after the LSCCF restrictions had been imposed, with the same result. The
estimated VECM takes the following form:

15



Figure 2. Autocorrelations of federal funds spread

(
∆it
∆i∗t

)
=

−0.766
(0.225)

0.168
(0.140)

(it−1 − i∗t−1 + 0.023
(0.014)

) +

0.042
(0.204)

−0.036
(0.215)

0.025
(0.127)

−0.126
(0.134)

(∆it−1

∆i∗t−1

)
+

 0.047
(0.177)

0.213
(0.189)

−0.070
(0.110)

0.170
(0.118)

(∆it−2

∆i∗t−2

)

+

0.072
(0.148)

0.236
(0.168)

0.021
(0.092)

0.295
(0.105)

(∆it−3

∆i∗t−3

)
+

0.060
(0.108)

0.147
(0.137)

0.113
(0.067)

0.195
(0.085)

(∆it−4

∆i∗t−4

)
+

(
û1t

û2t

)

In this model, LSCCF would be given if β′α = −1 and β′Γj = 0, j = 1, . . . , 4, com-
pare section 2.2. Indeed, the difference of the adjustment coefficients, α2 − α1, lies near one.
Among the parameters in the short-run dynamics, there are pairs that are more and some that
are less equal. Even though most single coefficients are estimated relatively imprecisely, the
model has been carefully specified and is unlikely to provide an incorrect representation of the
true data generating process (as far as any model can be correct, of course). Rather, the large
standard errors are more a consequence of natural multicollinearity in VARs than signs of true
expendability. In sum, the impression from institutional facts, visual inspection and preliminary
statistical analysis suggests a close controllability of the federal funds rate by the Fed. Indeed,
applying the nine LSCCF restrictions to the VECM, the likelihood does not shrink dramatically.
The p-value of the according LR test with nine degrees of freedom amounts to 34.1%. More-
over, the corresponding GMM test results in a p-value of 17.9%. Therefore, we can conclude
that on average, deviations of the federal funds rate from the target are corrected at least within
one maintenance period. The Fed was obviously able to control the short end of the money
market.
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3.2 European Central Bank

We now turn to the European case, where we also allude to critical points connected to model
specification and codependence testing. The ECB provides liquidity to the European banking
sector through weekly main refinancing operations (MROs). The relevant market and target
rates are the Euro Overnight Index Average (Eonia) and the minimum bid rate (MBR). Since
June 2000, the date chosen as our starting point, the MROs are conducted as variable rate ten-
ders, see Hassler & Nautz (2008).6 Furthermore, the ECB shortened the MRO maturity from
two weeks to one week in March 2004. The considerable rise in spread persistence, as estab-
lished by Hassler & Nautz (2008), could then be explained by higher costs and risk of refinanc-
ing. Consequently, we split the European data into two sub-samples in order to accommodate
a potential structural break. These sub-samples have 97 (June 2000 - February 2004) and 124
(March 2004 - December 2008) observations, respectively. We keep the frequency of the US
data. Figure 3 plots the Eonia and the MBR as well as the European spread.
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Figure 3. Eonia (solid line), minimum bid rate (dotted line) and spread (dashed line)

Even though the spreads are still small compared to the level of the interest rates, the devia-
tions do not feature the white-noise character from the US case. Backing the visual impression,
Figure 4 presents the autocorrelations for both sub-samples.

6On 15 October 2008 the ECB switched to fixed rate tenders. So, the last few, but indecisive, MBR observations
in our sample effectively equal the fixed rate. The end point is chosen as in the US case for reasons of comparability.
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Panel A: 1st sub-sample: June 2000 - February 2004

Panel B: 2nd sub-sample: March 2000 - December 2008

Figure 4. Autocorrelations of Eonia Spread

Most serial correlations of the spread are rather negligible. However, lag four in the first
and various lags in the second sub-period cast the LSCCF hypothesis into doubt. In the second
period, Hassler & Nautz (2008) have established fractional integration (long memory) for the
spread using daily data. In general, long-memory behavior should not change when sampling at
different frequencies (e.g. Chambers 1998). Indeed, Panel B of Figure 4 reveals a typical pattern
of persistent serial correlations, even if most of them individually do not reach significance due
to the relatively low number of observations.

For the first sub-period VECM, all information criteria suggest a lag length of zero, i.e. p =

1. One cointegrating relation is significant with a trace statistic of 74.90, and the β = (1 − 1)′

restriction passes with a p-value of 25.8%. The resulting model is
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(
∆it
∆i∗t

)
=

−1.059
(0.125)

−0.026
(0.070)

(it − i∗t − 0.068
(0.017)

) +

(
û1t

û2t

)
.

One can assert at first sight that the LSCCF restriction α1 − α2 = −1 is empirically ac-
ceptable. Indeed, the LR and GMM tests produce p-values of 75.6% and 75.2%, respectively.
However, the Portmanteau test for no residual autocorrelation is significant from lag nine on-
wards. That is, despite the unanimous decision of all information criteria, the model seems to
be misspecified. Presumably, the VECM with no lags in first differences, VECM(0), has not
taken into account the 30% autocorrelation on the fourth lag of the spread (Figure 4, Panel A).

This last conjecture can be supported when estimating a VECM(3), equivalent to VAR(4),
which yields good Portmanteau results. The seven LSCCF constraints in this model cannot be
rejected with p-values of 19.2% for the LR test and 25.7% for the GMM test. Nevertheless, the
bulk of the coefficients introduced by the higher model order is insignificant and superfluous,
as it is but the fourth VAR lag that matters for the Eonia dynamics. Indeed, the second and third
lag can be excluded from the VAR by conventional Wald tests. This reduces the number of
restrictions coming from LSCCF by four - two for each excluded 2× 2 matrix. When applying
the LR test with 7 − 4 = 3 restrictions to the VECM derived from the accordingly restricted
VAR(4), we obtain a p-value of 2.8%.7 This suggests that the fully general VECM(3) had
inflated the number of degrees of freedom, lowering the power of the LR test. In conclusion, it
is an advantage to have a closed modeling framework and a clear-cut test at hand, but correct
model specification and power issues are to be carefully dealt with.

In the second sub-period, both AIC and HQ choose two lags. The Portmanteau tests are
quite favorable until lag 22, but for a few tens of lags from 23 upwards, the p-values do not reach
more than 3% to 4%. The trace statistic of 31.67 is clearly significant, whereas the evidence
against β = (1,−1) is somewhat stronger than before with a p-value of 1.5%. Nonetheless,
we proceed with β2 = −1, because restricting the freely estimated parameter of −0.975 is not
going to affect the LSCCF test outcome. The VECM results as

(
∆it
∆i∗t

)
=

−0.531
(0.227)

0.036
(0.153)

(it− i∗t − 0.029
(0.011)

) +

−0.259
(0.219)

0.598
(0.256)

−0.119
(0.147)

0.166
(0.172)

(∆it−1

∆i∗t−1

)
+

0.275
(0.191)

0.148
(0.280)

0.200
(0.128)

0.029
(0.188)

(∆it−2

∆i∗t−2

)
+

(
û1t

û2t

)
.

As might be suspected in view of the estimates for the adjustment coefficients, both the
LSCCF-LR and LSCCF-GMM tests reject the null hypothesis, implying five degrees of free-
dom, with p-values close to zero. However, Figure 4, Panel B might suggest that this rejection

7The GMM test cannot be adjusted to the restricted VAR model.
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is primarily triggered by the significant autocorrelations at lag one and two. In other words,
the adjustment process would be finished in the third period. However, a VECM with LCO(2)
is not uniquely identified, as noted in section 2.2. Accordingly, an LR test cannot be applied.
Applying an LR test for LCO(1) instead leads to a clear rejection with a p-value close to zero.
The same result is obtained using the GMM-type test. Notwithstanding, the latter test can also
be used to test for level codependence order of two. Again we have to reject the null hypothesis
due to a p-value of 2.4%.

Hence, the tests seem to pick up the later non-negligible autocorrelations in the EONIA
spread, judging them as evidence against serial correlation of maximal finite order 1 or 2. In-
deed, exactly this decision was to be expected, recalling the long-memory result of Hassler &
Nautz (2008). Thus, our test succeeds in discriminating between different degrees of interest
rate controllability both through different countries and time periods. The change in the oper-
ational conduct of monetary policy seems to have impaired interest rate controllability by the
ECB.

4 Conclusions

While cointegration denotes the commonality of non-stationary components among different
variables, we combine it with the concept of common serial correlation. Time series obeying
the according restrictions move in parallel in the sense that a specific linear combination is free
of any autocorrelation structure. Concerning cointegration adjustment, this implies that any de-
viation from the equilibrium is corrected within a single period. In order to allow cointegration
relations to be restored only with a delay of q periods, the framework is extended to codepen-
dence. We discuss the close connection of this concept to equilibrium adjustment, the subject
of interest.

For both LSCCF and codependence, we derive the constraints to be fulfilled in VECMs. Re-
garding statistical inference, we propose LR testing for codependent VECMs that are identified.
In non-identified cases, we consider a flexible GMM test for a cut-off in the serial correlation
of the cointegration error. For both methods a test sequence is discussed to detect the set of
minimal orders of codependence among multiple variables.

Important applications of the developed framework arise whenever economic reasoning sug-
gests that variables stay in close contact over time. Such a development may be generated by
processes of financial arbitrage. In our empirical section, we examine the question of control-
lability of interest rates by central banks. In particular, we examine whether the Fed and the
ECB succeeded in making overnight money market rates closely follow their target rates. Re-
sults for the US are quite favorable in this regard, since LR and GMM tests yield no evidence

20



against the LSCCF hypothesis. The European case delivers contrary results, even though in the
2000-2004 sub-period, an LSCCF might be present. However, since a change in the operational
monetary policy framework in 2004, neither LSCCF nor the weaker concept of codependence
can be empirically confirmed.

In conclusion, this paper offers both an innovative and a cautious perspective: On the one
hand, common serial correlation in levels provides an intuitive and useful enhancement of the
literatures of common cycles, cointegration and adjustment speed. On the other hand, we criti-
cally evaluate the scope of VECM-based common serial correlation analyses, pointing at con-
ceptual and empirical problems. Nevertheless, based on appropriate statistical tools as proposed
in this study, we believe that an appreciable potential of the underlying methodology can be ex-
ploited in future research.
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