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Abstract

In this paper we discuss identification of codependent VAR and VEC models. Codependence
of order q is given if a linear combination of autocorrelated variables eliminates the serial cor-
relation after q lags. Importantly, maximum likelihood estimation and corresponding likelihood
ratio testing are only possible if the codependence restrictions can be uniquely imposed. How-
ever, our study reveals that codependent VAR and VEC models are not generally identified.
Nevertheless, we show that one can guarantee identification in case of serial correlation com-
mon features, i.e. when q = 0, and for a single vector generating codependence of order q = 1.
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1 Introduction

We discuss identification of codependent vector autoregressive (VAR) and vector error correc-
tion models (VECMs). Based on Gourieroux & Peaucelle (1988, 1992), Vahid & Engle (1997)
speak of codependence of order q if the (nonzero) impulse responses of a vector of variables are
collinear after the first q periods. Thus, the according linear combination has a serial correlation
structure that drops to zero after q lags. Codependence with q = 0 is equivalent to a serial
correlation common feature (SCCF) as introduced by Engle & Kozicki (1993), where an SCCF
itself is a special case of Engle & Kozicki (1993)’s more general concept of common features.
Other related concepts are e.g. scalar component models (SCMs), see Tiao & Tsay (1989), or
polynomial serial correlation common features (PSCCFs), see Cubadda & Hecq (2001).

We are in particular interested in the imposition of codependence restrictions on VAR mod-
els, which was first discussed by Vahid & Engle (1997) and by Vahid & Engle (1993) for
SCCFs. If codependence can be uniquely imposed on a VAR, then efficient maximum likeli-
hood (ML) estimation of the codependent VAR and corresponding likelihood ratio (LR) testing
for codependence are possible. Moreover, the imposition of common cyclical features on a
VAR can lead to higher accuracy of forecasts and of estimates of impulse-response functions as
demonstrated by Vahid & Issler (2002).

Therefore, it is of interest to analyze whether codependent VARs can be uniquely iden-
tified. We will consider stable finite-order VARs as well as VEC models for variables that
are integrated of order one, I(1), compare e.g. Vahid & Engle (1993, 1997), Schleicher (2007),
Paruolo (2003) and Franchi & Paruolo (2010). The leading case will be a stable VAR of order p,
VAR(p), since it is possible to transform (non-)cointegrated I(1) systems into stable finite-order
VAR processes. We will show that codependent VARs are not generally identified. This fact
has not been discussed in detail in the literature so far to the best of our knowledge. Notwith-
standing, we can separate several important cases where identification can be guaranteed.

The plan for the paper is as follows. We first discuss identification for the setup of stationary
VAR models in the next section. Section 3 deals with codependence in case of nonstationary
variables, in particular with VECMs. The last section concludes.

2 Stable VAR Models

2.1 Model Framework and Definitions

We assume that the n-dimensional time series xt follows the VAR(p),

xt = A1xt−1 + A2xt−2 + · · ·+ Apxt−p + εt, t = 0, 1, 2, . . . , (2.1)
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where Aj , j = 1, 2, . . . , p, are (n× n) coefficient matrices and the roots of

k(z) ≡ det(A(z)) ≡ det(In − A1z − · · · − Apzp) (2.2)

are outside the unit circle. The error terms εt are i.i.d.(0,Ω) with positive definite covariance
matrix Ω and finite fourth moments. To simplify the exposition we do not consider deterministic
terms. They could be included by replacing xt with xt + µt, where µt can contain for instance
a linear trend, a constant term and seasonal dummy variables.

The initial values x0, x−1, . . . , x−p+1 can always be chosen such that xt has the linear vector
moving average (MA) representation xt = Θ(L)εt with Θ(L) =

∑∞
i=0 ΘiL

i, where L is the lag
operator with Lxt = xt−1. Here, Θ0 = In and Θi =

∑i
j=1 Θi−jAj for i = 1, 2, . . ., with Aj = 0

for j > p, see Lütkepohl (2005).
Following Vahid & Engle (1997), codependence of order q is present in xt if there exists a

nonzero n× sq matrix δ0 with

δ′0Θi = 0, for all i > q and δ′0Θq 6= 0. (2.3)

The sq vectors represented by the columns of δ0 are labeled as codependence vectors, a term
introduced by Gourieroux & Peaucelle (1988, 1992). Hence, we have δ′0xt = δ′0Θ(L)εt =

δ′(L)εt, where we assume that δ(z) = Θ′(z)δ0 =
∑q

i=0 δiz
i is a full column rank matrix

polynomial of order q. A matrix polynomial δ(z) =
∑q

i=0 δiz
i, δi ∈ Rn×sq , 0 < sq < n, is of

full column rank if δ0 and δq are of full column rank, see Franchi & Paruolo (2010). The full
rank condition on δ0 assures that the sq codependence vectors in δ0 are linearly independent,
whereas the full rank condition on δq rules out that the codependence vectors can be combined
such that a smaller order than q is obtained. The latter would imply that the codependence order
q is not minimal.

Note that δ′0xt can be regarded as linear combinations of a multivariate MA(q) process,
which are special cases of a scalar component model (SCM), see Vahid & Engle (1997). Ac-
cording to Tiao & Tsay (1989), a nonzero linear combination v′0xt of an n-dimensional process
xt follows an SCM(p,q) structure if one can write

v′0xt +

p∑
j=1

v′jxt−j = v′0εt +

q∑
j=1

h′jεt−j

for a set of n-dimensional vectors {vj}pj=1 and {hj}qj=1 with vp 6= 0 and hq 6= 0. Thus, code-
pendence of order q with respect to xt results in an SCM(0, q), where q = 0 represents the case
of an SCCF.

In general, several codependence orders, say k, can be generated by linearly independent
codependence vectors, compare e.g. Schleicher (2007). In this case, we have k nonzero n× sj
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matrices δ0,[j] with δ′0,[j]Θi = 0 for all i > j and δ′0,[j]Θj 6= 0, where j = q1, q2, . . . , qk indicates
the codependence order and sj is the number of codependence vectors with an order of qj . Each
of the matrix polynomials δ[j](z) = Θ(z)δ0,[j], that can be obtained analogously to δ(z) above,
is assumed to be of full column rank. In total there are s = sq1 + sq2 + · · ·+ sqk codependence
vectors, which we require to be linearly independent.

Analogously to the case of cointegration vectors, the linearly independent codependence
vectors in δ0,[j], j = q1, q2, . . . , qk, are only identified up to an invertible transformation. There-
fore, an identification structure has to be imposed. However, one has to pay particular attention
to the identification scheme applied to D = (δ0,[q1], δ0,[q2], . . . , δ0,[qk]) in order to maintain the
composition of the codependence orders. The typical identification schemeD∗ = [Is : D′(n−s)]

′,
where Dn−s is an (n−s)×s matrix containing the free parameters, will generally produce a set
of s linearly independent vectors generating codependence of the largest order involved. This is
the case, because the columns in D∗ are linear combinations of all columns of the unidentified
matrix D, in general. Hence, the scheme in D∗ only identifies the vector space with respect to
the largest codependence order. As a consequence, the full column rank assumption imposed
on the last parameter matrix of the polynomials δ[j](z), j = q1, q2, . . . , qk, is not necessarily sat-
isfied for a particular chosen identification structure. We will comment on appropriate schemes
for D for identified codependent VARs in the following subsections.

2.2 Identification: Single Codependence Vector

In the following, we describe the restrictions the VAR parameters have to satisfy in case of
codependence and discuss identification of a codependent VAR. To simplify the exposition we
first focus on the case of a single codependence vector associated with codependence order q.
Hence, δ0 is an n × 1 vector. In section 2.3, we discuss the general case of s codependence
vectors that may generate k ≤ s different codependence orders.

Parameter restrictions and identification are conveniently discussed by adopting the frame-
work of Schleicher (2007) to the case of VAR models. Schleicher’s (2007) approach relies on
the so-called pseudo-structural form of a state-space representation of the VECM. Here, we use
the following state-space representation based on the companion form of the VAR.

xt = JXt

Xt = AXt−1 + Ut,
(2.4)
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where

J = [In 0n×n(p−1)],

Xt = [x′t, x
′
t−1, . . . , x

′
t−p+1]

′, Ut = [ε′t 0n(p−1)×1]
′,

and

A =


A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0

0 In · · · 0 0
...

... · · · ...
...

0 0 · · · In 0


is an np× np companion matrix. Thus, A satisfies the companion form restrictions R′A = Q′

with R = [0n(p−1)×n : In(p−1)]
′ and Q = [In(p−1) : 0n(p−1)×n]′.

By iterative substitution we obtain

Xt = AXt−1 + Ut

= A2Xt−2 + Ut + AUt−1

...

= Aq+1Xt−q−1 +

q∑
j=0

AjUt−j.

Hence, codependence of order q is given if

δ′0JAq 6= 0 and (2.5)

δ′0JAq+1 = 0. (2.6)

Clearly, (2.6) implies that γ′0A
i = 0 for all i > q + 1 with γ0 = J ′δ0. Thus, further

restrictions on Ai for i > q+1 are not necessary. We define γ′i = γ′0A
i, i = 1, 2, . . .. Following

Schleicher (2007), we can write the restrictions (2.5)-(2.6) as

γ′iA = γ′i+1, 0 ≤ i < q − 1,

γ′qA = 0.
(2.7)

Note that the vectors γi, i = 0, 1, . . . , q, are linearly independent, see Schleicher (2007, Lemma
1). Thus, (2.7) translates the nonlinear codependence constraints on the VAR parameters into
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a set of linear restrictions regarding the companion form parameters in A. We further define
Υ = (γ0, γ1, · · · , γq).

From the results of Franchi & Paruolo (2010, Theorem 3.2), the upper bound for q, say
qmax, is equal to (n − 1)p; compare also Theorem 1 given in the next section and its proof
in the Appendix. The upper bound qmax is clearly larger than the one that would be obtained
if one applies the argumentation of Schleicher (2007, Lemma 1) to the setup of a VAR. The
approach of Schleicher (2007) relies on the assumption that the columns of Υ, describing the
codependence restrictions, and the columns of the matrix R, describing the companion restric-
tions, are jointly linearly independent.1 However, codependence and companion restrictions
can be linearly dependent as discussed below.

The fact that the sets of vectors describing the codependence restrictions and the vectors
capturing the companion restrictions can be linearly dependent already indicates that uniquely
identified codependent VARs may not be obtained in general. In the following, we discuss this
issue in more detail by referring to the pseudo-structural form of the VAR.

To set up a pseudo-structural form representation, let us summarize the restrictions from
(2.7) by Υ′A = Υ0′ with Υ0 = (γ1, γ2, . . . , γq, 0np×1) being an np × (q + 1)-dimensional
matrix. Remember that A satisfiesR′A = Q′. Moreover, one has to add, if necessary, equations
representing free parameters in A, compare Schleicher (2007). These may be expressed by
R′PA = P ′, where RP and P will be defined later on for appropriate cases. If we define
Ψ = [Υ : R : RP ]′ and Φ = [Υ0 : Q : RP ]′, then the system ΨA = Φ underlying the pseudo-
structural form is obtained. Hence, the reduced form parameters in A can be recovered from
the structural form parameters in Ψ and Φ if Ψ is invertible.

A unique and invertible Ψ requires that the columns of M = [Υ : R] are linearly indepen-
dent. As pointed out above, this is not automatically guaranteed. In fact, if q ≥ n, it is easily
seen that the columns in M have to be linearly dependent such that the vectors γj , j = 0, . . . , q,
in Υ together with a subset of the companion restrictions generate some of the remaining com-
panion restriction(s). Furthermore, linear dependence can also occur for q < n as numerical
examples confirm.

It is possible to characterize the linear dependence of the columns in M by restrictions on
the MA coefficient matrices. First, note that the last (n − 1)p rows of R represent an identity
matrix and the first n rows of R are a zero matrix. Hence, the columns of Υ and R are linearly
dependent if the columns of the first n rows of Υ linearly depend on each other. In other

1The problem in Schleicher (2007, Lemma 1) is the following. Let θ1, θ2, . . . , θk be a set of 1 × n linearly
independent vectors. Moreover, each of these vectors is (individually) linear independent from an m × n matrix
M with rank m < n. In contrast to the assumption underlying Schleicher (2007, Lemma 1), this setup does not
imply that the vectors θ1, θ2, . . . , θk and the rows of M are jointly linearly independent.
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words, due to the structure of R one only needs to consider the first n rows of Υ to study
linear dependence of the columns in M . Since the upper-left n × n block of Ai is equal to
Θi, i = 1, 2, . . ., and since γ′i = γ′0A

i, the first n rows of Υ are given by Υδ = (δ0, δ1, . . . , δq),
where δ′i = δ′0Θi, i = 0, 1, . . . , q, are the n×1 parameter matrices of the matrix polynomial δ(z)

defined above. Remember that we have sq = 1 in the current setup such that δ(z) is actually a
vector polynomial.

Thus, if δ′0Θi, i = 0, 1, . . . , q, linearly depend on each other, then the columns of M are
linearly dependent. Hence, if the codependence vector δ0 also imposes restrictions on the first
q MA coefficient matrices described by linear dependence of δ′0Θi, i = 0, 1, . . . , q, then the
companion and codependence restrictions linearly depend on each other. As a consequence, the
matrix Ψ, as defined above, is not of full rank and therefore not invertible.

There emerge at least two questions. First, are there setups in which the columns of M =

[Υ : R] cannot be linearly dependent? Second, if there is linear dependence, can one uniquely
impose a dependence structure such that an adjusted full rank matrix Ψ can be obtained?

With respect to the first question it turns out that linear dependence is always ruled out for
q = 0 and q = 1. In the former case of an SCCF, Υ consists only of γ0 which is independent
of R. In the latter case of codependence of order q = 1, we have Υ = [γ0 : γ1]

′, so that
dependency between Υ and R would only be present if δ′0A1 = cδ′0 for some c ∈ R. Note that
γ1 = [δ′0A1 : δ′0A2 : · · · : δ′0Ap]

′ and γ′1A = 0. Using δ′0A1 = cδ′0, the latter zero constraints
can be expressed as cδ′0 + δ′0A2 = cδ′0A2 + δ′0A3 = · · · = cδ′0Ap−1 + δ′0Ap = cδ′0Ap = 0. From
here it is easy to see that this leads to an SCCF setup, what contradicts the assumption γ′0A 6= 0

underlying codependence of order one. For 1 < q < n both scenarios with linear dependence
and independence of the columns in M , i.e. of companion and codependence restrictions, are
possible.

Let us assume that q ≤ 1 such that the columns ofM have to be linearly independent. Then,
if q + 1 < n, the free parameters can be introduced by R′PA = P ′ as indicated above, except
for the case n = 2 and q = 1 where this is not necessary. The np× (n− q − 1) matrix RP has
to be designed such that Ψ is of full rank. This is always possible, but the choice of Rp depends
on the normalization of the codependence vector. E.g. if the first element of δ0 is normalized
to one, then Rp = [0(n−1)×1 : In−1 : 0(n−1)×n(p−1)]

′ ensures full column rank of Ψ in case of
an SCCF (q = 0). For q = 1, one of the second to n-th columns of the just defined Rp has to
be set to zero. Full rank of Ψ is guaranteed for at least one of these choices because otherwise
δ′1 = δ′0A1 and δ′0 are linearly dependent what is a contradiction.2 Using the above definitions
of Ψ and Φ one obtains the identified pseudo-structural form representation for the state-space

2In case of inadequate normalization numerical problems during optimization are likely to occur. However,
there always exists at least one appropriate variant.
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system (2.4)

xt = JXt

ΨXt = ΦXt−1 + ΨUt.
(2.8)

The reduced form parameters are then obtained via A = Ψ−1Φ from the structural form
parameters in Ψ and Φ since Ψ has full rank. We also see that there are n(p− 1) + 1 restrictions
underlying the pseudo-structural model because A contains pn2 reduced form parameters but
there are only [(n − 1) + qnp + (n − q − 1)np] structural form parameters in Υ, Υ0 and P
assuming that the first element in δ0 is normalized to one.

Regarding the second question, it should be noted that linear dependence in the columns of
M can be caused by different dependence structures in the columns of the first n rows of Υ.
Hence, a matrix Ψ that is adjusted in order to eliminate a particular type of linear dependence
structure can turn out to be of reduced rank if the specific dependence structure considered is
incorrect. In other words, the pseudo-structural model is generally not identified if the imposed
dependence structure is wrong.

As mentioned above, for 1 < q < n, setups with and without linear dependence of com-
panion and codependence restrictions can occur. If one makes the explicit assumption that the
columns in M are linearly independent, then the pseudo-structural form is identified. Linear
dependence means that δ0 generates additional restrictions regarding the MA coefficient matri-
ces besides the codependence restrictions. However, ignoring theses restrictions in our setup is
not harmless. If the columns of M are linear dependent, then M has no longer full column rank
and the pseudo-structural form (2.8) is not identified. This is just a consequence of the fact that
the additional restrictions on δ′0Θi, i = 0, 1, . . . , q, are not independent from the codependence
restrictions (2.7).

2.3 Identification: Multiple Codependence Vectors

For the general case of s codependence vectors with potentially k ≤ s different codependence
orders the foregoing discussion applies accordingly. Let δ0,1, δ0,2, . . . , δ0,s be the s codepen-
dence vectors associated with the codependence orders qj , j = 1, 2, . . . , s. Hence, several
codependence vectors may relate to the same codependence order. Accordingly, we do not
summarize vectors with the same order in one matrix as done in section 2.1 when introducing
the setup of k different codependence orders. This is done for notational convenience.

Each of the codependence vectors will satisfy a corresponding version of (2.5) and (2.6)
and induces a corresponding set of restrictions as in (2.7). Regarding the latter, we define
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γ0,j = J ′δ0,j and γ′i,j = γ′0,jA
i, j = 1, 2, . . . , s. Moreover, we now use Υ = [Υ1 : Υ2 : · · · : Υs],

where Υj = (γ0,j, γ1,j, · · · , γqj ,j), j = 1, 2, . . . , s.
Although γ0,1, γ0,2, . . . , γ0,s do not linear depend on each other and the columns in Υj are

linearly independent for fixed j as well, the columns in Υ are not generally linear independent.
Note that this is in contrast to the claim in Schleicher (2007, Proof of Theorem 1) for the case of
a VECM. Numerical examples with linear dependence can be easily found. Thus, in contrast to
the case of a single codependence vector, a reduced column rank structure in M = [Υ : R] can
also occur even without considering the companion restrictions captured by the matrixR. How-
ever, if the columns of Υ are linearly dependent, then also the upper parts of the columns, made
of the first n rows, linearly depend on each other. Analogously to the case s = 1, this results in
linear dependence of companion and codependence restrictions. Also analogously to the case
s = 1, the first n rows of the columns in Υ can be expressed as δ′0,jΘi, j = 1, 2, . . . , s and
i = 0, 1, . . . , qj . Hence, if δ′0,jΘi, j = 1, 2, . . . , s and i = 0, 1, . . . , qj , are linearly dependent,
then codependence and companion restrictions linearly depend on each other. Accordingly, the
matrix Ψ = [Υ : R : RP ]′ is not of full column rank and the corresponding structural model is
not identified.

It is interesting to highlight one potential setup implied by linear dependence of δ′0,jΘi,
j = 1, 2, . . . , s and i = 0, 1, . . . , qj . If two codependence vectors, say δ0,1 and δ0,2, generate the
same codependence order q, then linear dependence of δ′0,1Θq and δ′0,2Θq means that a linear
combination of δ0,1 and δ0,2 results in codependence with an order of at most q − 1. This
case was ruled out by the assumption that the corresponding matrix polynomial δ[q](z) is of
full column rank. Hence, an identified codependent VAR, which, in fact, does not allow for
linear dependence of δ′0,jΘi, j = 1, 2, . . . , s and i = 0, 1, . . . , qj , satisfies the full column rank
assumption regarding δ[qj ](z), j = 1, 2, . . . , k.

Similar to the single codependence vector case, several dependence structures in M may
exist for a particular combination of codependence orders. Hence, it is in general not possible
to impose a unique dependence structure for a particular set of codependence orders. However,
there are a two setups for which linear independence of the columns in M , i.e. identification
of the pseudo-structural form, is guaranteed. First of all, the pseudo-structural form is always
identified if all s ≤ n codependence vectors satisfy an SCCF setup. In this case, the s columns
of the matrix Υ are equal to γ0,1, γ0,2, . . . γ0,s, respectively, which are jointly independent from
the columns in R. Therefore, the columns in M have to be linearly independent.

A second, always identified, setup is described by one codependence vector, say the first one,
generating an order of q1 = 1, while the other s−1 < n−1 vectors induce SCCFs. The argument
runs as for the case s = 1 using the additional fact that γ′0,jA = 0 for j = 2, 3, . . . , s. This is
the only setup with codependence of order one that is always identified. Consider, e.g., the case
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s = 2 with q1 = q2 = 1 and, thus, Υ = (γ0,1, γ1,1, γ0,2, γ1,2). Define δ′1,1 = δ′0,1A1 = δ′0,1Θ1

and δ′1,2 = δ′0,2A1 = δ′0,2Θ1 as the first n rows of γ1,1 and γ1,2, respectively. Then, the linear
combination δ′1,2 = c1δ

′
0,1 + c2δ

′
0,2 + c3δ

′
1,1 can exist with a nonzero vector c = (c1, c2, c3) so

that the columns in M = [Υ : R] are linearly dependent. The situation does not change if a
codependence order of one is jointly considered with orders larger than one.

In order to determine the number of restrictions underlying the identified VAR setups, an
appropriate identification scheme has to be applied to D = (δ0,1, δ0,2, . . . , δ0,s). If only SCCFs
or a single codependence vector associated with order one are considered, then the identifying
structure D∗ = [Is : D′(n−s)]

′ can be used. In contrast to the general setup discussed in section
2, only vectors related to the same codependence order, either q = 0 or q = 1, are involved.
Therefore, no linear combinations of vectors of different codependence orders occur so that the
full column rank assumption on the relevant finite-order matrix polynomial is satisfied. Using
the definition of D∗, i.e. the corresponding identified versions of δ0,j , say δ∗0,j , j = 1, 2, . . . , s,
one obtains the identified vectors γ∗0,j = J ′δ∗0,j .

If s SCCFs are considered, then s(n − s) parameters are contained in the identified (code-
pendence) vectors γ∗0,1, γ

∗
0,2, . . . , γ

∗
0,s. Moreover, there are np(n− s) free parameters in P such

that the structural form has n2p− s(n(p− 1) + s) parameters. Setting s = 1, the same number
of structural parameters is obtained in the case of a single LCO(1) vector: n− 1 parameters in
γ∗0,1, np parameters in γ∗1,1 due to codependence of of order one, and np(n − 2) parameters in
P . By contrast, the reduced form has n2p parameters. Therefore, s(n(p − 1) + s) restrictions
underlie the pseudo-structural form of a codependent VAR with 1 ≤ s ≤ n SCCFs or s = 1

vector associated with codependence order one.
If s0 = s − 1 SCCF vectors δ0,1, δ0,2, . . . , δ0,s0 are combined with the codependence vector

δ0,s of order one, then the identification scheme

D∗∗ =

[
Is0 0s0×1

D0 (1 : D′1)
′

]

is sufficient to ensure uniqueness, where D0 and D1 are (n − s0) × s0 and (n − s0 − 1) × 1

matrices of free parameters, respectively. In fact, the first s0 columns only have to be identified
with respect to the SCCF vectors, and the last column is then chosen to be linearly independent
of the first block. D∗∗ contains (n−s0)(s0 +1)−1 = s(n−s)+(s−1) parameters, s−1 more
than in D∗ above, where only a single codependence order is involved. Therefore, the pseudo-
structural form of a codependent VAR with s− 1 SCCF vectors and one vector associated with
codependence order one is characterized by s(n(p− 1) + s)− (s− 1) restrictions.

To sum up, an identified pseudo-structural form can only be obtained if companion and
codependence restrictions are linearly independent. The codependence vectors impose addi-
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tional restrictions on the MA coefficient matrices in case of linear dependence of companion
and codependence restrictions. Algebraically, linear dependence of companion and codepen-
dence restrictions results in linear dependence among the columns of the first n rows of M
of which the entries are nonlinear functions of the VAR parameters. Hence, such dependence
introduces nonlinear constraints on the companion matrix. Accordingly, the advantage of the
companion form, which lies in translating the nonlinear VAR parameter restrictions implied by
codependence into linear restrictions on the companion matrix, disappears. Therefore, it is not
surprising that an identified pseudo-structural representation cannot be obtained in general if
companion and codependence restrictions are linearly dependent. In fact, the set of identified
structural models is rather limited. Only setups with SCCFs (q = 0), codependence of order
one generated by a single codependence vector, or a combination of these two are always iden-
tified. In case of SCCF, the restrictions can be directly imposed on the VAR parameters and are,
therefore, linear. Accordingly, a unique imposition of the restrictions is easily achieved.

Nevertheless, from an applied point of view, the VAR framework is of limited use for an-
alyzing general codependence restrictions since identification is rarely given. Accordingly, the
scope of ML estimation of codependent VARs and conventional LR testing for codependence
is narrowed to a few, albeit potentially important, special cases.

3 VEC Models

We now assume that xt is I(1) and potentially cointegrated. Defining Π = −(In−A1−· · ·−Ap)
and Γj = −(Aj+1 + · · · + Ap), j = 1, . . . , p − 1, we can re-write (2.1) in the vector error
correction form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . . (3.1)

The relationship of the VAR and VECM representations can be compactly described by A(z) =

In −A1z − · · · −Apzp = In∆−Πz − Γ1∆z − · · · − Γp−1∆z
p−1. The error term assumptions

of section 2 still apply. We make the following new assumption, compare e.g. Johansen (1995).

Assumption 1.

(a) The roots of k(z) in (2.2) are either |z| > 1 or z = 1.

(b) The matrix Π has reduced rank r < n, i.e. the matrix Π can be written as Π = αβ′, where
α and β are n× r matrices with rk(α) = rk(β) = r.
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(c) The matrix α′⊥Γβ⊥ has full rank, where Γ = In −
∑p−1

j=1 Γj and where α⊥ and β⊥ are the
orthogonal complements to α and β.

Given Assumption 1, xt is I(1) and the cointegrating rank is equal to r. Hence, we obtain
the Granger representation, see Johansen (1995, Theorem 4.2),

xt = C

t∑
s=1

εs + C(L)εt + a0,

where C = β⊥(α′⊥Γβ⊥)−1α′⊥ and a0 is the initial condition.
If the variables are not cointegrated, i.e. if r = 0, then (3.1) reduces to a VAR(p − 1) for

∆xt and α⊥ = β⊥ = In. Hence, codependence can be analyzed in terms of ∆xt using the
VAR(p − 1) representation. Thus, the definition in (2.3) for codependence of order q and the
results on identification obtained in the previous section apply accordingly. Note in this respect
that s(n(p−2) + s) or s(n(p−2) + s)− (s−1) restrictions underlie an identified VAR for ∆xt

depending on whether only vectors associated with the same codependence order are considered
or whether SCCF vectors are combined with a vector generating codependence of order one.
Codependence in terms of the first differences of I(1) variables has been studied e.g. in Vahid
& Engle (1997).

If the variables in xt are cointegrated with r > 0, then the framework of Paruolo (2003)
and Franchi & Paruolo (2010) can be applied. They show that Yt ≡ (x′tβ : ∆x′tβ⊥)′ follows
the stable VAR(p) process Yt = Ã1Yt−1 + Ã2Yt−2 + · · · + ÃpYt−p + εot , with εot = (β : β⊥)′εt,
if Assumption 1 holds.3 The VAR parameters in Ã1, Ã2, . . . , Ãp are nonlinear functions of the
VECM parameters in (3.1) as well as β⊥, see e.g. Paruolo (2003, Appendix A).

Paruolo (2003) considers SCCFs in Yt and provides an extensive discussion on ML inference
regarding the corresponding model setup. Franchi & Paruolo (2010) characterize codependence
structures with respect to Yt. Yt is codependent of order q if there exists a nonzero (n×sq) matrix
δ ≡ (δ′(0) : δ(1))

′ with δ′Yt = δ′(L)εot and δ(z) =
∑q

i=0 δiz
i, δi ∈ Rn×sq , 0 < sq < n, being

again a full column rank matrix polynomial of order q.
As pointed out by Paruolo (2003), the matrix δ may only select elements either from β′xt

(δ(0) 6= 0, δ(1) = 0) or from β′⊥∆xt (δ(0) = 0, δ(1) 6= 0). The latter case refers to codependence
in ∆xt generated by codependence vectors of the form δβ⊥ = β⊥δ(1) that are orthogonal to
the cointegration matrix β. This is exactly the setup studied by Schleicher (2007) and Vahid &
Engle (1993). The former case of δ(0) 6= 0 and δ(1) = 0 has been discussed in Paruolo (2003)
and studied by Trenkler & Weber (2010). For the case of a single cointegration vector (r = 1),

3The matrix β⊥ can be replaced by an arbitrary matrix c⊥ of the same dimension as β⊥, such that c′⊥β⊥ is
square and of full rank, compare Franchi & Paruolo (2010).
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δ(0) is a scalar and codependence is directly linked to the cointegration relation β′xt. Thus,
the cointegration vector β represents a codependence vector. If β′xt is codependent of order q,
i.e. if it has an SCM(0, q) representation, then a one-time shock to the cointegration error has
no effect after q periods. Hence, codependence in β′xt refers to the adjustment dynamics of the
system towards the cointegration equilibrium. The latter interpretation may also be applied in
case of r > 1 since δβ = βδ(0) also represents a set of cointegration vectors. Whether (some
of) the considered cointegration vectors or linear combinations of the cointegration matrix gen-
erate codependence of a certain order q is a matter of the identification scheme applied to the
cointegration matrix.

Since Yt has a stable VAR(p) representation, one can again apply the framework of the
previous section, now with respect to Yt, in order to define and analyze codependence for coin-
tegrated VECMs. Accordingly, only SCCF setups and the case of a single codependence vector
associated with q = 1 are uniquely identified. The identified VECMs are characterized by
s(n(p− 2) + r + s) restrictions for setups with a single codependence order of q = 0 or q = 1,
or by s(n(p− 2) + r + s)− (s− 1) restrictions in case of joint consideration of codependence
vectors with q = 0 and q = 1. To see this, note first that Ãp = (Ãp,0 : 0n×(n−r)), where Ãp is
partitioned according to the two components in Yt, compare Franchi & Paruolo (2010, Propo-
sition 5.1). Hence, β′⊥∆xt enters the process only with up to p − 1 lags, i.e. the coefficients
regarding β′⊥∆xt−p are zero in Ap. Accordingly, the reduced form has n(n − r) parameters
less compared to an unrestricted VAR(p) model. By contrast, the number of parameters of the
structural form is only reduced by (n − s)(n − r) given the pseudo-structural form represen-
tation of the previous section. As a consequence, one obtains the aforementioned numbers of
restrictions.

If the focus is on codependence order zero, one can use the framework of Paruolo (2003) to
test for SCCFs and estimate the weights in the linear combinations of Yt that generate the SC-
CFs. This can be conveniently done using reduced rank techniques. Furthermore, it is possible
to test restrictions on δ, e.g. δ(0) = 0 or δ(1) = 0. Note that replacing β by a superconsistent
estimate does not change the asymptotic properties of the aforementioned inference procedures,
see Paruolo (2003). For the case of q = 1 one has to rely on nonlinear ML inference since the
underlying restrictions are no longer linear in the VAR parameters.

Finally, we present in Theorem 1 the upper bounds for the codependence order q in relation
to the VAR for Yt. We also consider the special cases of r = n and r = 0 that refer to the setups
of section 2 and the non-cointegrated VAR, respectively. To the best of our knowledge, most of
the upper bounds given in Theorem 1 have not been explicitly stated in the literature. A proof
of Theorem 1 can be found in the Appendix.
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Theorem 1. Let xt be an n-dimensional VAR(p) process as generated by (2.1) for which As-
sumption 1 holds such that Yt ≡ (x′tβ : ∆x′tβ⊥)′ follows a stable VAR(p). Moreover, it is
assumed that β = 0 and β⊥ = In if r = 0 and that β = In and β⊥ = 0 if r = n. Then,
(i) the maximum codependence order with respect to linear combinations of Yt is given by
qmax = (n−1)p−(n−r−1) for r < n and qmax = (n−1)p for r = n; (ii) the maximum code-
pendence order with respect to linear combinations of β′xt is given by qβmax = (n−1)p−(n−r)
for r > 0; (iii) the maximum codependence order with respect to linear combinations of β′⊥xt
is given by qβ⊥max = (n− 1)p− (n− r − 1) for r < n. �

4 Conclusions

This paper has investigated identification issues for the case of codependence in VARs and
VECMs. Practical relevance comes from the fact that ML estimation and LR testing are only
possible if the codependence restrictions can be uniquely imposed.

We have shown that codependent VARs are not generally identified. We applied a linear
representation of the codependence restrictions based on a companion form of the VAR. How-
ever, it was clarified that the vectors describing the codependence restrictions and the vectors
capturing the restrictions on the companion matrix can be linearly dependent. This fact impairs
identification, as was further elaborated in a pseudo-structural form of the model.

Importantly, linear dependence is always ruled out for codependence orders zero (i.e., SCCF)
and one. For models featuring multiple codependence vectors we showed that this holds only if
all vectors generate SCCFs or at most one of them generates codependence of order one. More-
over, we provided upper bounds for the order of codependence both in VAR and VEC models.
These facts should be recognized in future applied and theoretical work on codependence. One
such example is given by Trenkler & Weber (2010), who discuss LR and GMM testing and
apply the concept to US short-term interest rate data.

Appendix: Proof of Theorem 1

Let us start by considering a stable n-dimensional VAR process zt of order p,

A(L)zt = εt,

where εt satisfies the same assumptions as in section 2. The autoregressive matrix polynomial is
given byA(z) = In−A1z−A2z

2−· · ·−Apzp. Then, let k(z) ≡ detA(z) andK(z) ≡ adjA(z)

be respectively the characteristic and adjoint polynomials with respect to A(z). As noted by
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Franchi & Paruolo (2010, Section 2), k(z) and K(z) may have common factors such that one
can obtain so-called minimal characteristic and adjoint polynomials g(z) andG(z), respectively.

Now, let δ′zt = δ′(L)εt where δ(L) is a full rank matrix polynomial of order q such that zt
is codependent of order q. Franchi & Paruolo (2010, Theorem 3.2) show that 0 ≤ q ≤ dG − dg,
where dG and dg are the orders of G(z) and g(z), respectively. Since the maximum value for
dG is n(p − 1) and the minimum value for dg is zero, one obtains qmax = n(p − 1) as upper
bound for the codependence order q. This confirms part (i) of Theorem 1 for r = n since
Yt reduces to xt, which is a stable VAR(p) process in case of r = n. Note that the upper
bound qmax = n(p− 1) can only be achieved if k(z) and K(z) have no common factors, i.e. if
k(z) = g(z) and K(z) = G(z), and if A(z) is unimodular, i.e. dg = 0.

As pointed out in section 3, Franchi & Paruolo (2010, Proposition 5.1) showed that Yt ≡
(x′tβ : ∆x′tβ⊥)′ follows a stable VAR(p) process if Assumption 1 holds for xt. Let the corre-
sponding autoregressive matrix polynomial be Ã(z) = In − Ã1z − Ã2z

2 − · · · − Ãpzp and let
G̃(z) and g̃(z) be the minimal characteristic and adjoint polynomials with respect to Ã(z). As
also mentioned in section 3, Ãp = (Ãp,0 : 0n×(n−r)) such that β′⊥∆xt enters the process only
with up to p− 1 lags. This fact has an impact on the maximum polynomial orders of the first r
and last n − r rows of G̃(z). Let these two maximum orders be labeled as dr

G̃,max
and dn−r

G̃,max
,

respectively. As can be easily verified, drG,max = (n − 1)p − (n − r), assuming r > 0, and
dn−rG,max = (n− 1)p− (n− r − 1), assuming r < n.

Since Yt is a stable VAR process, we can apply the inequality 0 ≤ q ≤ dG̃ − dg̃, where
d̃G and d̃g are the orders of G̃(z) and g̃(z), respectively. If only linear combinations of β′xt,
i.e. the first r rows of Yt, are of interest, then it suffices to consider the maximum order of
the first r rows of G̃(z), i.e. dr

G̃,max
, in order to determine the maximum codependence order.

Thus, the maximum codependence order with respect to linear combinations of β′xt is given
by qβmax = (n − 1)p − (n − r) assuming that r > 0. This proves part (ii) of Theorem 1.
Similarly, we obtain qβ⊥max = (n − 1)p − (n − r − 1) as the maximum codependence order for
linear combinations of β′⊥xt assuming that r < n, which shows part (iii). Since general linear
combinations of Yt may involve β′⊥xt, i.e. may include some of the last n − r rows of Yt, we
have qmax = (n − 1)p − (n − r − 1) as maximal codependence order for linear combinations
of Yt for r < n. This proves part (i) for r < n and completes the proof. �
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parité du pouvoir d’achat, Review d’Analyse Economique 68: 283–304.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,
Oxford University Press, Oxford.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Berlin: Springer-
Verlag.

Paruolo, P. (2003). Common dynamics in I(1) VAR systems, Discussion Paper 2003/35, De-
partment of Economics, University of Insubria.

Schleicher, C. (2007). Codependence in cointegrated autoregressive models, Journal of Applied
Econometrics 22: 137–159.

Tiao, G. C. & Tsay, R. S. (1989). Model specification in multivariate time series (with discus-
sion), Journal of the Royal Statistical Society, Series B 51: 157–213.

Trenkler, C. & Weber, E. (2010). Testing for codependence of non-stationary variables, Working
Papers in Business, Economics and Management Information Systems 446, University of
Regensburg.

Vahid, F. & Engle, R. F. (1993). Common trends and common cycles, Journal of Applied
Econometrics 8: 341–360.

Vahid, F. & Engle, R. F. (1997). Codependent cycles, Journal of Econometrics 80: 199–221.

Vahid, F. & Issler, J. V. (2002). The importance of common cyclical features in VAR analysis:
a Monte-Carlo study, Journal of Econometrics 109: 341–363.

15


	paper_identification.pdf
	Introduction
	Stable VAR Models
	Model Framework and Definitions
	Identification: Single Codependence Vector
	Identification: Multiple Codependence Vectors

	VEC Models
	Conclusions


