Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Emotional Modulation of Temporal
Attention, an Approach based upon
Distributed Control and Concurrency

Theory

Li Su and Howard Bowman, Centre for Cognitive Negience and Cognitive
Systems Computing Laboratory, University of Kent

Philip Barnard, MRC Cognition and Brain SciencestlJdambridge

1 Introduction
Numerous studies have confirmed both the goalseturrent task and emotion, such

as personal salience, can affect the allocatioratt&#ntion (Shapiro et al., 1997).
Moreover, the interaction between cognition and mnohas been the focus of
experimental investigation from various perspediveor example, an ERP study
performed by (Flaisch et al., 2007) and a psychsipihggical experiment performed
by (Phelps et al., 2006) both confirm that emotadiects not only the processing of
the current stimulus, but also the following stimuh this respect, Barnard et al
(2005) have presented a literature review on tlenésvhat “mixed”) results of
attentional capture by emotional salience. Theyartat examining the time course
of emotional capture of attention is important talerstand the effect of emotion and
its interaction with other goal directed cognitw®cessing. Moreover, they also point
out that the state of anxiety has a dramatic imid@eon the attentional deployment to
threat related stimuli (Barnard et al., 2005). Sachinfluence of anxiety is also
observed by others (e.g. Bishop et al., 2004; Katteal., 2006). Based on this idea,
we argue that detailed theories or computationaldetsy which address the
information processing in emotion, are critical tnderstand these mixed
experimental findings and complex clinical obseiora. This is because the timing
of each processing stage is made explicit in suotiats.

A recent empirical study (Barnard et al., 2005¢gasts that threat related
material may attract attention at different poimstime compared to non-threat

related stimuli, and the time course is modulatgeddth state anxiety and semantic
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similarity (between key-distractors and targets).phrticular, they have discovered
that emotional processing may shift the blink cuaterally in the AB experiment. In

addition, other researchers have also observedasieffects of anxiety on the time
course of attentional redirection. For example,qi@®u et al., 2005; Fox et al.,

2001; Yiend and Mathews, 2001) have reported tmxiety has the effect of a

delayed disengagement of visual attention away fitmesatening stimuli. Bishop et al

(2004) have shown an interaction between anxiedyesand attentional focus on
threatening stimuli. Moreover, (Leyman et al., 200@s reported that patients with
major depressive disorders show stronger attemticangry faces when compared to
controls.

Our modelling is focused on reproducing the timaffigct reflected in lateral
shifts of the blink curve due to changes in sengasithilarity and state anxiety in the
presence of threat-related material. In this repae show how to extend the
previously published model (Su et al. 2007), whinbdels the effect of semantic
modulation in Barnard’s key-distractor AB task (Bard et al., 2004), to reproduce
the emotional modulation reported by (Barnard et2005). In the previous model,
the main factor was the semantic salience of ksgraitors, which changes the depth
of the blink. However, in this model, we also néedonsider emotion related factors,
e.g. state anxiety. Moreover, body-state may atsutribute to producing such an
effect. So, the model is extended with the bodiestabsystem (Barnard, 1985).

The report is organized as follows. We will figsgropose the basic principles
underlying the model: processing of multiple streand serial allocation of attention
and two-staged processing of semantic meaning., Maerwill explain how threat is
modelled. We also highlight three cognitive biagesanxiety: hyperactive Implic-
body loop, slow disengagement from threat, andcte processing in anxiety.
Before we show the simulation results, we will aldigscuss how salience could
modulate the speed of salience assignment. Finayshow two experiments. The
first one stresses how emotion competes with the e@gnitive task when both task
relevant and task irrelevant emotional represematioccur at the same time. The
second one demonstrates how such competition bexcoameplicated when multiple

streams compete in real-time.



2 Basic Principles of the Model

2.1 Multiple Processing Streams

In our previous model (Su et al., 2007), a pipebtreicture was implemented using
delay-lines, and was used to model sequential taskt as RSVP tasks. This model
extends such a simple pipeline structure with @altil components and feedback
loops. As shown in Figure 1, the additional botestsubsystem encodes features
from internal bodily receptors, such as cutaneowssure, temperature, olfaction,
muscle tension, pain, positions of parts of theybtastes and smells (Barnard, 1985).
SOM and VISC connect to the output of Implic. Thaye somatic and visceral
response effectors respectively, which may chahgebbdy-state (Barnard, 1985).
Another difference between this model and our previmodel is that Prop does not
only output to Sink, but also sends feedback tolitngs a result, it can be seen that

this model contains two loops, as shown in Figure 1

* Thelmplic-body loop starts from Implic, runs through SOM and VISC,rthe
the body-state subsystem, and returns to Implgnas in this loop could be
initiated by emotion-related inputs from sourcdrplic. The product of this
loop is called bodily feedback.

* Thelmplic-prop loop passes from Implic to Prop, and returns to Implice
product of this loop is called internal thoughtdback. We will explain both

loops shortly.
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Figure 1 Model of ICS central engine with body-state subsystem.

Similar to (Le Doux, 1996), Implic-body and Implcop loops in our model
also work at different speeds. Our model is abstranature, so it cannot be directly
mapped to Le Doux’s dual route. However, the Impligp loop is similar to Le
Doux’s “high road” that receives emotional signfatsm the sensory thalamus, passes
it to sensory cortex, and then sends it to the alalgg We assume that the Implic-
prop loop is slow because it is evolutionarily meeeent and requires high-level
cognitive processing. More importantly, it has lied capacity because both Implic
and Prop require the buffer to access semantic imgaire. only one subsystem can
access meaning at the same time. To some extenbniblic-prop loop may also be
characterised as a controlled process (Hasher amksZ 1979; Shiffrin and
Schneider, 1977). The Implic-body loop is similar lte Doux’s “low road” that
transmits emotional signals directly from the sepsthalamus to the amygdala,
which is believed by Le Doux to be the centre ofogaomal processing (Le Doux,
1996). We assume that the Implic-body loop is fastause it is evolutionarily
(relatively) ancient, and mainly requires low-levyatocessing. In particular, the
capacity of this process is not limited, in thessethat the body-state subsystem does
not require the buffer to monitor the changes mhbdy. So, such processes may be
characterised as automatic (Hasher and Zacks, I®ffrin and Schneider, 1977).
We argued that propositional processing is relgtigéow, since it needs to extract

“definitive” referential meaning. This is reflectég the fact that the processing speed



in Prop is slower on average and has more varidahas,it may potentially have long
processing delays.

Note, our model does not make explicit assumptimmdow subsystems are
mapped to brain areas. So, it should not be redaadean implementation of Le
Doux’s (1996) theory. In fact, subsystems in ourdeiaan only be related to such a
neural network (Le Doux, 1996) in explaining theedfic experimental findings
discussed in this report. Another issue regardiegQoux’s theory of emotional
networks in the brain is that most evidence isvaelifrom animal studies. Hence,

whether or not such a theory is generalisable todms is an open question.

2.2 Serial Allocation of Attention

The mechanism for attentional engagement in thislehes similar to the model
described in the previous model (Su et al., 200@at is, it is only when attention is
engaged at a subsystem that it can assess thecsatiéitems passing through it. In
the current model, there could be multiple inpueains in a subsystem, for example
Implic has three inputs: from the visual systeronfrthe body-state subsystem and
from Prop. We assume that it is only when attenisoengaged at a particular stream
of input within a subsystem that the informationtivat stream can be assessed for
salience. Furthermore, we assume that attentiomiglgrbe engaged at one subsystem
and only at one stream of input at a time. Consattyyehe system cannot access the
salience of a stream while it is accessing theeseé of another at the same time. We
can see that these constraints are generalisedtfremprevious model, and they will
play an important role in generating blinks in tmedel. As in the previous model,
when attention is engaged at a subsystem or anstre@ say that it is buffered
(Barnard, 1999). Although items pass concurrenitly, all items throughout the
system are moved on one place on each time stefutifier mechanism ensures that
central attentional resources are allocated sgriéliis is because salience assignment
can only be performed if the appropriate streamnpiut within a subsystem is

buffered, and only one stream can be bufferediatea

2.3 Two-stages

A number of theoretical explanations and indeed maational models of the AB
have been proposed; see (Bowman and Wyble, 2009 feview. Like (Chun and

Potter, 1995), we have argued elsewhere for a tagesmodel (Barnard et al., 2004;



Barnard and Bowman, 2004), but this time recadbtois exclusively on semantic
analysis and executive processing. In particul®arrfard and Bowman, 2004)
modelled the key-distractor blink task using a stage model. In the context of
modelling distributed control, we implemented theoistage model as a dialogue
between two levels of meaning. In the first stagegeneric level of semantic
representation is monitored and initially used &edmine if an incoming item is
salient in the context of the specified task. lisifound to be so, then, in the second
stage, the specific referential meaning of the wisrdubjected to detailed semantic
scrutiny. In this stage a word’s meaning is activelaluated in relation to the
required referential properties of the target catgglf this reveals a match, then the
target is encoded for later report. The first afsh stages is somewhat akin to first
taking a ‘glance” at generic meaning, with the second akin to tglkarcloser fook” at
the relationship between the meaning of the incgnii@m and the target category.
These two stages are implemented in two distinotagéic subsystems proposed
within a multi-level model for cognition and ematiaheimplicational subsystem or
Implic (which supports the first stage) and ghepositional subsystem or Prop (which
supports the second) (Barnard, 1999), as shownigaré 1. Note, these two
subsystems are components in the central engitieed€S model (Barnard, 1999).
These two subsystems process qualitatively distyjmes of meaning. One,
implicational meaning, is holistic, abstract ancesoatic, and is where affect is
represented and experienced (Barnard, 1999). Ther o$ classically “rational”,
being based upon propositional representation aptuces referentially specific
semantic properties and relationships. The exclsahgtveen two levels of meaning
reflect distributed executive functions rather thamgentral executive
control/lhomunculus. In the context of the task Qeioonsidered here, these

subsystems can be distinguished as follows:

* Implicational Subsystem. This performs the broad “categorical” analysis of
items, which might be related to Chun and Potters stage of processing,
by detecting the presence of targets accordingh&r toroad categorical
features. In the context of this report, we willlthe representations built at
this subsystem implicational and we will talk inrmes of implicationally
salient items, i.e. those that “pass the implicatlosubsystem test”. The
implicational subsystem implements the idea intoedlearlier of a “glance”.



* Propositional Subsystem. This builds upon the implicational representation
generated from the glance in order to constructukh (propositional)
identification of the item under consideration, whiis sufficient to test
whether the meaning of the incoming item meetstéis& specification and
should therefore be reported. We will describe genhmat “pass the
propositional test” as propositionally salient. The this more detailed level
of semantics is required to test the specific mféal meaning of an incoming

item against the specification of the target catggo

There is significant evidence that a good dedhwhan semantic processing
relies upon propositionally impoverished represgona. It is this evidence that gives
the clearest justification for the existence ofigtidct implicational level of meaning.
In particular, semantic errors make clear that sonss we only have (referentially
non-specific) semantigist information available to us, e.g. false memorkReddiger
and McDermott, 1995) and the Noah illusion (Ericksand Mattson, 1981). With
respect to the latter, when comprehending sentenuadicipants often miss a
semantic inconsistency if it does not dramaticaibnflict with the gist of the
sentence, e.g., in a Noah specific sentence, ssitH@av many animals of each kind
did Moses take on the Ark?” most people respond™teven though they know,
when pressed, that it was Noah, not Moses, who tbekanimals on the Ark.
Substitution of Moses for Noah often fails to beticed, while substitution with
Nixon, or even Adam, is noticed. This is presumdidgause both Moses and Noah
fit the generic (implicational) schema “aged malblibal figure”, but Nixon and
Adam do not.

In addition, Gaillard et al (2006) recently remattthat in a subliminal priming
study, semantic gist information was available ewemen participants failed to
correctly name masked emotional words. Specificaflyerror, words semantically
related to target words were often reported (eagget “war”, response “danger”;
target “bomb”, response “death”). This suggests dkailability of implicational
meaning and the absence of veridical propositianakning. In addition, deep
dyslexia (Coltheart et al, 1987), in which suffergenerate incorrect referents (e.qg.
reading “lion” as “tiger”), can be regarded as akea of broadly intact extraction of
implicational meaning and significantly impairedridsution of precise propositional

meaning.



As outlined earlier, the implicational and propmsial subsystems perform
their corresponding salience assessments as itassstprough them in the pipeline.
We will talk in terms of the overall delay-line asdbsystem delay-lines. The former
of which describes the complete end-to-end pipefirten the visual to the response
subsystems, while the latter is used to descrileepitrtion of the overall pipeline

passing through a component subsystem, e.g. tippgitmnal delay-line.

3 Modelling Threat

3.1 Levels of Threat-related Markers

In ICS, Implic is the centre for emotional procegs{Barnard, 1999), so it is the key
to modelling emotional influences of attention. previously explained, Implic may
have three sources of threat-related markers @uoreling to the three input arrows

to Implic in Figure 1), and they can be classifieim two levels.

1. The first one is external stimuli, e.g. the thregdated information passed from
the visual system (Source) to Implic. We argue sheth stimuli contain first
order threat-related markers because they aretlgiredracted from sensory
inputs. In general, animals have the ability toraott first order threatening
information from the environment, and it has bersguad that such ability is
hard-wired through evolution. Such information aets cues of potential
danger, so it is important for almost all animatgluding humans to survive
in a changeable environment. Hence, threateningrnmdtion needs to be
rapidly extracted directly from sensory inputs. Hwer, first order threat-
related markers are abstract and holistic comparéte second order markers
that are generated from Prop. Taking Le Doux’s fasnexample, a rope that
has the shape of a snake may be interpreted byclagpla potential threat.
However, typically it would not be interpreted bsop as a potential threat.

As the first order threat related markers couldasctues of potential
danger, animals need to respond to these cues r@padrp themselves to
handle the potential danger. Whatever they chamgeto escape or defend, it
requires some sort of bodily change, as arise faoset of signals sent to the
body via SOM and/or VISC. The results of these aignmay be fear

responses, such as increase in the heart ratel ptessure and muscle tension



or freezing behaviour, so the animal is ready toouattack when the danger
actually arrives. There is evidence that suggéstsatening information could
be extracted as early as Implic, consequently ngusodily responses. For
example, Ohman et al (1994) have shown that, casdp@ normals, phobics
have larger skin conductance responses to maskeddiated pictures, such
as snakes, even when they were unaware of theiepiaion.

2. In addition, the body-state subsystem is continlyonsonitoring changes
within the body. Once it has detected changesigitats these changes to
Implic; such a signal has similarities to what &lled a somatic marker
(Bechara and Damasio, 2004). Body-state feedbaxkh@ Implic-body loop
may also server as a source of threat. We assuahéthstrength of signals in
this loop increases with both the level of thread atate anxiety. The body-
state feedbacks are also first order threat relatackers because they are
extracted from (bodily) sensory inputs.

3. Prop extracts meaning from the outputs of Implicrekt-related components
can also be interpreted further at proposition&elle Then, threat related
markers might be fedback to Implic to enhance theerpretation of
implicational meaning. This mechanism sets up aesarfor comprehension
of meaning. (Similar mechanisms may also play apontant role in normal
reading, where the meaning is continuously extth@ed refined via this
Implic-prop loop (Teasdale and Barnard, 1993). dmmal reading though the
stimuli arrive at a much slower rate than in RS¥WfRking it much easier for
the context to help the reader to understand tHeseguent text.) The
propositional feedback is called a second ordeatimelated marker.

Thus, Implic encodes an abstract schematic reptasen for affect using all
three sources, i.e. threat may emerge from firgieroisensory inputs, body-state
changes and second order internal thoughts.

The distinction between first and second ordesdhrelated markers could be
compared with Bechara and Damasio’s (2004) notibrpronary and secondary
inducers. “Primary inducers are innate or learnéichudi, which exist in the
environment or are learnt from experience. Secgnidaucers, on the other hand, are
generated by the recall of memories or thoughtsuiatiee primary inducers.” They

further argued that the primary inducers could bggéred by activation of the



amygdala, but the ventromedial prefrontal cortexnécessary for generating the
secondary inducers. Although Bechara and Damasie Hdferent definitions from

us (in particular, we do not make detailed assumngtiabout which brain areas are
responsible for generating these markers), it canseen that both definitions
distinguish two levels of threat markers by the rdegof processing. In their
definition, the ventromedial prefrontal cortex iscessary for generating the
secondary inducers. In our definition, Prop is 8saeey for producing second order
threat-related markers, although it does not necdgssuggest that Prop can be

mapped to ventromedial prefrontal cortex and Impdin be mapped to the amygdala.

3.2 Measurement of Threat-related Information

As in our previous model (Su et al., 2007), sencastmilarity is measured using
Latent Semantic Analysis (LSA) (Landauer and Dum&@97) in the current model.
Moreover, we use LSA to measure threat-relatediesxguse such an approach was
also used in Barnard’'s emotional AB experimentsriiBed et al, 2005). That is, a
word is seen as high threat if its distance totatgeneric threatening words in LSA
space is less than a predefined threshold. Otherwis seen as low threat.

4 Cognitive Bias in Anxiety

4.1 Hyperactive Implic-body Loop

In our model, we assume that only high state arsxindividuals produce significant
body-state feedbacks that can interfere with atieat focus when they encounter
highly threatening stimuli. Thus, anxiety could tnedelled as a hyperactive Implic-
body loop. That is, we assume that only in the cddeghly anxious individuals, the
first order emotional markers from the visual sgsigenerate an increased activation
at the Implic-body loop. However, such stimuli a sufficient to trigger activation
in the Implic-body loop in the case of low anxiandividuals. Moreover, it is only
when the stimuli are attended (i.e. being propos#lily processed in our model) that
the second order markers could be generated by, Brapthen both high and low
anxious individuals may have increased activatiorthie Implic-prop loop. Such
assumptions are supported by neurophysiologicairfgs (fMRI, Bishop et al.,
2004), which has shown that anxiety may interadh veittention to threat related

stimuli. In their experiment, both high and low &us people showed increased



amygdala activation for fearful faces vs. neuteadels when the faces were attended.
However, only high anxious people showed increaseygdala activation for fearful

faces vs. neutral faces when the faces were unlatten

4.2 Slow Disengament from Threat

In our previous model (Su et al., 2007), the delyuffer movement does not change
systematically according to the salience level t@ms. (Although the buffer
movement delay in our previous model may varydigsribution remains the same for
all different key-distractor and target combinasgnThis is because there was no
significant difference in the time course of thenklcurves, and indeed, only blink
depth was modulated. However, it is necessary tsider the effects of anxiety on
the delay of buffer movement in this model, sinbe main effect of emotion and
anxiety state is on the time course of the blink/es.

A large number of studies have reported that arsiodividuals may fail to or
delay disengaging from threat-related material. Ewample, anxious people take
longer to disengage their attention from threadtesl facial expressions (Fox et al,
2001; Georgiou et al, 2005) or pictures (Yiend &ndthews, 2001) compared to
neutral or happy stimuli. However, low anxious peaghowed no such effect. Thus,
for anxious individuals, we assume that the bufdsra moving focus of attention, is
slower at disengaging away from a subsystem if shiéisystem is processing threat
words. This is achieved by shifting the mean de&puffer movement. We assume
that it takes 1.3 times longer for high anxious gdeahan low anxious people to

switch the buffer in both directions.

4.3 Selective Processing in Anxiety

How we prioritise our attention to difference stiimies at the heart of any model of
attention and emotion. In the context of this répibis most important to model how
task relevant processes compete with emotionalegess. Previous work by (Wyble
et al., 2005; Wyble et al., in press) has modefleriemotional Stroop task. In their
model, emotional processing and cognitive procgssompete through winner-take-
all inhibition. The result of such competition imetional interference on the main
task of colour naming.
Our model takes a similar approach, with the cditipe occurring between

different input streams (at Implic). That is, tad&mand orients the model to detect



the semantic salience of words. In this respedh lsaliency would enhance task
relevant processing, i.e. the input stream fronvibeal system may be more likely to
be buffered. However, threat related markers madsd attract attention, e.g. when
anxiety enhances the activity in the Implic-bodydo generating threat-related
markers at Implic. Consequently, the input streesmfthe body-state subsystem may
be more likely to be buffered. The second orderkerar from Prop would have a
similar effect as the first order markers. Howevenvill become clear that in the
model, the actual interaction between task releV@aimantic) processing and
emotional processing is more complicated, sincermétion is passed concurrently in
multiple streams and with feedbacks. We assumeitdras are processed on a first-
come-first-served basis. Moreover, when the syssecommitted to an item, it cannot
process the subsequent items until it finishes ggsiag the previous item. Thus,

relative timing in each stream is critical for itetto capture attention.

5 Salience Assignment and Buffer Movement
As we have explained previously, anxiety may affaet disengagement of attention.

This is reflected by slow buffer movement for highxious people in our model.
Another factor that may influence the delay of buffnovement is the semantic
salience of words. This has been supported by abeumf studies. For example,
Chun and Potter (1995) have shown that increadiegdiscriminability of T2 (by
masking T2 by a symbol instead of a digit) may eéase T2 performance, but
increasing the discriminability of T1 (in the samiay) may reduce the duration of the
blink. They have argued that easily discriminafirigcould speed up the initiation of
the second stage, and the second stage couldaiguete sooner. Thus, blinks will
be shorter. A related effect has been shown by @gblal (2005), who have shown
that a strong T1 results in an earlier and shdoliek, but a weak T1 results in a later
and longer blink. Easy and hard T1ls are determinetheir recognition rate. Short
blink durations may be due to the rapid recoveoynfthe processing of a strong T1.
We argue that salience of words may influence timk In a similar fashion as
the discriminability of T1 in Chun and Potter’s tage model, or the strength of T1 in
Bowman and Wyble’s STST model (Bowman and Wybl€70That is, we assume
that the buffer moves quicker when the key-distnacs high salience and slower
when it is low salience. Such assumptions allowntioelel to produce a similar effect
as that observed by (Chun and Potter, 1995; BowananWyble, 2007), i.e. a short



and earlier blink for high salience words and aglamd later blink for low salience
words. (But see also for contradictory findingsagino et al., 1997.)

The intuitions behind our assumptions are as fdldvigh salience words may
be implicationally interpreted faster than low eatie words, because Implic
classifies words into different categories basechow close these words are to the
centre of a word category. High salient words Wwdlve advantages because they are
close to the centre, thus it takes less time toddewhich category the word belongs
to. By the same token, low salient words may takeyér to be processed at Implic.
However, Prop works differently from Implic, i.et maintains a collection of
semantic referents for words. In order to assigrpgsitional salience, Prop has to
search for sufficient referents before a decisian be made. High salient words will
again have advantages, because they are closeettathpet template and their
semantic referents are clearly “signposted” (Batretr al, 2005). As a result, Prop
may take less time to decide whether a word isrgeteor not for the high salient
words. However, low salient words are distant fithia target template and lack ready
semantic referents. Thus, Prop will take longeffitd sufficient referents. In this
model, we assume that the buffer moves quicker.Bytilhes in the high semantic

salient condition than in the low semantic salridition.

6 Simulation Results

6.1 Experiment 1

This section shows how the model reproduces Exgerirh of (Barnard et al., 2005),
in which targets are job words, background itenmes @ature words, and the key-
distractors can be one of three sorts:

1. The same category as the background items,
2. Neurtal words that are different category from lgaokind and target items,
3. Physical threat words belonging to a different gatg from background and

target items.

Note, in this experiment, key-distractors aresernhantically related to targets,
so they are task irrelevant. (Please refer to (&aret al., 2005) for detailed

description of the experimental procedure.) Theeexpental results show that threat-



related words only briefly capture the attentionhajh state anxious individuals, at
around lag-4, as shown in Figure 2 (b). Howevegufg 2 (a&c) shows that threat-
related words do not capture attention for low ansiindividual$ when the stimuli
are task irrelevant.

When comparing the blink caused by emotion withdtedard AB, we can
find that the typical AB has consistent lag-1 spariollowed by a blink at lag-2, 3,
and 4 (Raymond et al.,, 1992). However, the blinkseal by emotion shows a
somewhat different pattern, i.e. the blink is lafaround lag-4) and narrower, as
shown in Figure 2 (b). According to the model, thter blink may suggest that the
physical threat words are not implicationally safjeand not being propositionally
evaluated, as in the standard AB tasks, becausghtyscal threat words used in this
experiment share little semantic properties witlyets. Moreover, the weakness of
physical threat wordswithout semantic relevance to the task may natuséicient to
capture attention as seen in the cocktail partgceffSo, the model explains the later

blink by threat markers that arrive at Implic delastages.

! In this report, low anxious refers to low stateians since trait anxiety has no effect in these
experiments (Barnard et al., 2005).

2 A single exposure of a threat word is a relatiweak threat compared to, for example, one’s life
being threatened by a gunman.
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Figure 2 Target report accuracy by serial position in the following conditions: (a) Human - Low
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state anxious, high threat related stimuli.

As we have discussed, blinks observed in the siigte condition could not be
caused by the buffer moving to Prop, because the tourse would not match. So,
we argue that the blink (if it occurs) could onlg ldue to emotional processing
triggered by threat related markers. In order sdimguish the sort of blink shown in
Figure 2 (b) and other blinks, we call this typebbhk anemotional blink and call the
blink considered in the previous modelsemantic blink (Su et al., 2007). As
discussed previously, there are three sourcesreétthelated information. The first
order threat markers from the visual system dgpnaduce blinks because they do not
cause an attention switch to other subsystems har ohput streams. So, only the
body-state feedback and the second order thredtemsafrom Prop could produce
emotional blinks. As previously discussed, in thl@gperiment, words are not
propositionally processed, so the emotional bliak only be caused by body-state

feedback. Moreover, it is assumed that only hightestanxious people produce



significant body-state feedback for the sort of kv@eatening materials considered
here resulting in an interference with attentiofealus. Hence, the simulation result
shows that the emotional blinks can only be foundligh state individuals at around
lag-4, as shown in Figure 2 (d). The model prodstet emotional blinks as follows:

1. A threat related key-distractor passes from thaialissystem (Source) to
Implic.

2. Threat-related information (first order threat m&xd is extracted at Implic.
For (and only for) high state anxious people, sigfit SOM and VISC signals
are initiated to generate body-state processing.

3. When the changes in the body are detected by thly-ftate subsystem,
feedback (containing first order threat markersl)l e sent to Implic. We
assume that such feedback occurs at around 100slafier the onset of the
key-distractor and remains for no longer than 1Q0ms

4. Implic detects the body-state feedback and switcties buffer from
monitoring the visual system input stream to chegkhe event at the body-
state input stream. Hence, targets arriving froemvisual input stream might
be missed and emotional blinks would occur.

5. When the buffer returns to the visual input stresdtar a brief check of body-
state, the blink recovers. Note, we assume thdtking of the buffer within a
single subsystem takes less time than between iff@vetht subsystems. This
is why emotional blinks in this experiment are parer.

6. Less anxious people do not show blinks due torikenisitivity of the Implic-
body loop as explained previously.

In summary, when weak threat is competing withrtten task, the buffer in
less anxious individuals tends to stay at the irgitgam of the main task, i.e. the
visual system. However, anxiety may enhance thdidAnody loop shifting attention
to the input of emotional markers from the bodyestaubsystem. In the next
experiment, the semantic salience of the key-digiras increased. We can predict
that when salience has reached a certain leveh kigh anxious individuals could
overcome the emotional interference. Moreover, ékensive semantic processing
may also introduce a second order threat markeichwinay cause interference with

the main task at a later stage via the Prop-inpbp.



6.2 Experiment 2

Experiment 2 in (Barnard et al., 2005) is similar Experiment 1 explained

previously, but it uses four types of key-distrasto

High salient high threat

Low salient high threat

High salient low threat

Low salient low threat

All key-distractors are human related words, tleven low salient key-
distractors may be salient enough to capture aenbo, most key-distractors would
be both implicationally and propositionally procedgsand would produce normal
semantic blinks if the emotional interference isdged. We are interested in how
semantic processing interacts with emotional prsiogsover time and whether
emotional and semantic blinks could co-occur. I$ l@en reported that the most
significant lateral shift of the blink curve occuosly in the high threat condition
(Barnard et al., 2005). As shown in Figure 3 (a&o dynamic of attentional capture
is a function of both anxiety states and semaratiesce.

We argue that emotional processing and goal @desemantic (cognitive)
processing might compete for limited attentionaloreces. In this setting, the goal
directed processing might be dominant, since thedistractors are all high salient
human related words. Both high and low state arsxiodividuals would see key-
distractors as implicationally salient and procissn propositionally. On detecting a
salient key-distractor, the buffer will be committeo moving to Prop at 60ms from
the onset of the key-distractor. Thus, from thigpof time, Implic cannot respond to
the threat feedback from body-state (if there ig) dar both high and low anxious
individuals when such feedback arrives at Implio, 8motional blinks could not
occur at this point.

However, human data has shown a potential latensiacy blink that might
follow the first semantic blink, as shown in Figuse(a&c). We argue that in our
model, such secondary blinks could only be causedhb threat-related feedback
from Prop. As we have previously explained, sucloppsitional feedback is

generated by the slow Implic-prop loop, thus itveas much later than body-state



feedback, which is generated by the fast Implicsbdaop. In this model, the
propositional feedback could occur from around 49Qm560ms after the onset of
high-threat key-distractors. A secondary emotiobdhk may occur if Implic

responds to propositional feedback, the depth ef lthnk is modulated by the

probability of Implic catching such feedback, whigk will discuss now.
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Figure 3 (a) Human - high salient condition; (b) Simulation - high salient condition; (c) Human -
low salient condition; (d) Simulation - low salient condition.

We explain how the model blinks in the followingufadifferent conditions.

* For the low state anxious individuals and high samally salient key-
distractor condition, shown as a solid line in Feg8 (a), the curve starts with
a brief initial semantic blink. Then, it is followéy a longer second blink. As
previously discussed, the high salient key-distnashould be processed at

Prop, so we can identify that the second blink niigstaused by the threat-



related propositional feedback. The emotional bimkhis condition is more
pronounced than in the other three conditions.réason is that high semantic
salience enables a rapid switch of the buffer betwsubsystems, as we have
discussed in the previous sections. So, the fnstasitic blink is brief, and the
buffer returns to Implic in time to capture thedat-related feedback from
Prop.

For the high state anxious individuals and high asioally salient key-
distractor condition, shown as a dotted line inuFég3 (a), the curve starts
with a sharp and long initial semantic blink. Thesea small second blink at
later lags. This is because of the slow disengagewofeattention from threat
by highly anxious individuals, i.e. the buffer stay Implic and Prop for a
longer time and their first blinks are longer ttihnse for less anxious people.
In other words, the blink is incidentally extendey threat and high state
anxiety. As a result, they are more likely to miise threat-related feedback
from Prop. So, in our model the second blink is mueduced. We can see
that the second blink is almost invisible in thertaun data. We argue that such
shallow blinks in late lags are more difficult te discovered by the current
experimental setup, since noise in the system ase® as the lag increases.
That is, the key-distractor initiates the blinketéfore the blink onset is
accurately timed locked to the key-distractor. Bgttime progresses from this
time locked onset, temporal noise increases.

For the low state anxious people and low semaiicallient key-distractor
condition, shown as a solid line in Figure 3 (e tturve is similar to the
standard AB curves except that the model showsrg steallow secondary
blink. This is because the buffer moves slightigwsdr for low salient key-
distractors. And, low anxious people do not gemremaifficient body-state
feedback to interfere with the on-going task. This, buffer moves to Prop,
and stays there for an extended period to evatbatpropositional meaning as
we have explained in Section 5. Similar to the jmes condition, the blink is
incidentally extended, and propositional feedbacKkikely to be missed at
Implic. Hence, such a shallow and late blink is edded in noise and difficult
to find in human data.



» For the high state anxious people and low semadiytisalient key-distractor
condition, shown as a dotted line in Figure 3 {bg curve starts with a slow
onset and long initial semantic blink. There iat® significant second blink
at later lags. This is because of the slow diseag@nt of attention for highly
anxious individuals and low semantic similarity.tims condition, the buffer
moves much slowly than in the other three cond#i@®o, the model produces
both lag-1 and lag-2 sparing. The blink also hagery long duration. The
propositional feedback is likely to be missed ims tbondition, so no clear
second blink was found up to lag-10 in both simalatnd human data.

7 Comparison between Other Theories
There are several well-known theories that addthssinformation processing of

emotion and anxiety. In comparison with our moded, now consider these existing
models, e.g. the somatic marker theory (Damasi®4 )l 3he Evaluative Map Network
or EMNET (Mathews et al., 1997; Mathews and Maabsht 1998), a connectionist
model of the emotional Stroop task (Wyble et al piess), and neuroscience findings
on the amygdala (Le Doux, 1996).

The somatic marker hypothesis argues for the nstudribody loop” and “as if
body loop”. These loops differ from each other byether or not the body is engaged
in the emotional processing. Our model also redlscich distinctions, i.e. the Implic-
body loop contains the body-state subsystem whéelmplic-prop loop does not. In
this respect, the threat marker from the Implicybtmbp could be seen as a somatic
marker. The threat marker from the Implic-prop laeflects internal thought. In the
context of this report, we stress the ability oflsunarkers in directing attention, i.e.
both kinds of markers could potentially cause th#ds to move away from the main
task. Hence, the cognitive task (recalling job vedrés competing with emotional
processing for limited attentional resources.

Another well-known theory for emotion-cognition cpetition is EMNET,
which also influenced us. The main components ilNEENV are a pair of competing
modules. One is processing target relevant reptasems, and the other is processing
emotional distractor representations. These two utesdinhibit each other in a
competition for limited attentional resources. Atleng to targets facilitates the
performance of the main task, but attending toraisbrs interferes with the main

task. They have argued that effortful task demawdidc enhance the target



representations and make it win the competitiorusT lattention is captured by target
representations. However, anxiety may increase témelency of automatic and
unconscious processing of emotional meaning. Caresdty, attention may also be
captured by distractor representations. Our mogtdnels EMNET by considering
two levels of meaning, and attention to be distedubetween them. Perhaps, the
most significant difference between our model aMNET is the fact that we have
modelled richer feedbacks between body-state anddwels of meaning. As a result,
more complex interaction would occur when stimuhidathreat markers are
synchronised by the feedback loops. Moreover, IcAptidy and Implic-prop loops in
our model have different delays. Hence, our modeldipts that the relative
competitive power between semanticly salient stirant emotional markers rely not
only on their absolute strength but also their tooarses.

Wyble et al (in press) have proposed a neural orétwodel of the emotional
Stroop task, in which emotional words slow the oceses to subsequent neutral
words in the next trial. This finding is consistemtth our model in terms of the
generally slowed effect of emotion. Moreover, tlféyble et al., in press) modelled
the competition between cognition and emotion mfttrm of inhibitory competition
between cognitive and emotional parts of the amtagingulate cortex (ACC). Such
an approach is also similar to our model in respecdifferent input streams
competing for the buffer at Implic.

Regarding the time course of emotional stimuli,Reux (1996) has argued
for a two-pathways model of fear conditioning. Iis tmodel, information about
threatening stimuli (either conditioned or uncoiwgtied) can be fed into the amygdala
via two routes. Importantly, these two routes watklifferent speeds, i.e.

« The “low road” is subcortical, that is, sensoryutgpgo through the thalamus
and project to the amygdala directly. It was argthet this pathway is fast
but it only supports crude representations of tirawdus. Thus, it can only
extract representations that roughly encode whiategory the stimulus
belongs to.

* In the “high road”, sensory inputs are first pragss at the thalamus, and then
continue to sensory cortex, where a more complatdysis is performed.



Finally, the results are fedback to the amygdalas Toute is relatively slow,

but provides more complete and sophisticated reptasons of the stimulus.

Note, pathways described by (Le Doux, 1996) weentified from animals,
thus whether the same pathways exist in humansimenmetly debated. Now ,we
discuss the relationship between Le Doux’s moddl @ Implic-body and Implic-
prop loops. We have argued that they are consistdrandling two routes that differ
in speeds, but there is no accurate mapping betwe&n areas identified in Le
Doux’s model and our ICS model. However, neuroimgg{LaBar et al., 1998;
Buchel et al., 1998) and studies on either amygdalaippocampus lesion patients
(Bechara et al., 1995; LaBar et al., 1995) haveessigd possible neural substrates for
such separate pathways in humans.

8 Conclusion
Our model reproduces the human data in Experimgntitithe fit is not very accurate

in Experiment 2, i.e. we only capture the genaraktcourse of the data but not the
detailed performance. Nonetheless, the model isaldé because it allows both
semantic and emotional processing to be expressadsingle framework, and their
interaction to be investigated in the context of ABperiments. Although, in the

current form, a number of assumptions made inrtfoslel are not fully justified by

experimental findings, it remains an interestingpdthesis for the potential

mechanism underlying the emotional AB. For example, have assumed that the
speed of processing for high salient stimuli igdashan that for low salient stimuli.

However, to our knowledge, there is no direct ewade that supports such an
assumption. The current model is based on someettdiindings (e.g. Chun and

Potter, 1995; Wyble et al.,, 2005), which suggebktt imore visually salient T1s

generate a reduced blink. We think a potential ogktto validate (or falsify) our

assumptions is to relate our model to electrophggical data, which may give us
more accurate timing constraints.

With respect to the interaction between emotion aongnition, the general
effect of emotion on the AB has been extensivelyglistd, but related computational
theories of the emotional AB are not readily avua#gain the literature. Some
successful computational models of emotion relylearning algorithms discovered

by neuroscientists, e.g. reinforcement learning rifdgue et al., 1996; Schultz et al.,



1997). Others argue for competition between emotou cognitive processing
(Wyble et al., in press; Mathews et al., 1997; Math and Machintosh, 1998). Our
model is closer to the latter, and argues for cditipe between cognition and
emotion, i.e. emotional salience can attract thdéfebuand thereby impairing
(cognitive) task oriented processing. Like manyeotimodels, the distribution of
attention also depends on the relative strengtiask relavent stimuli and emotional
interference. For example, as previously explaiméten highly salient (task relevant)
stimuli arrive at Implic, they can capture attentanly if weak emotional markers are
present from the body-state subsystem. Howevennmalel differs from others, since
stimuli also compete in time. This is achieved g buffer movement dynamic. That
is, when a weak emotional marker triggers the bufienove, any following highly
salient stimuli may be missed, since the buffer Ib@sn engaged to switch. In this
respect, the interaction between cognitive and emal processing is much richer in
our model, allowing temporal properties of mentalgesses to affect the allocation of
attention. This provides a new perspective and aleetion of the relationship
between cognition and emotion.

In summary, although our model of the emotional @y partially reproduces
the human data (Barnard et al., 2005), it proviglesnitial step towards integrating
semantic and emotional processing in a unified adatnal framework. We believe
that it may be refined in the future to accuratelgcount for emotional AB

phenomena.
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