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1. Introduction 

I recently looked at some of my old lectures on Calculus o f Variations and Optimal Control 

Theory when I cleaned my room from a lot of trash. They were on the whole very standard, 

and the lion’s share of the material was probably based on a text-book by Knut Sydsaeter, 

Matematisk Analyse 2 from the 1970’s. I discovered, however, that my notes included a 

result that, at the time, could not have been borrowed from Sydsaeter; an envelope 

theorem for the derivative of the optimal value function in the calculus of variations with 

respect to parameters. I knew, of course, that I had not proved the result, and I remembered 

that I had followed  a course given by my teacher professor Tönu Puu  in the 1970;th; my 

best guess is the second half of the decade2.   

The discovery of “Puu’s Lemma” inspired me find out how the envelope theorems surfaced 

in economics. Given that what we know about envelope theorems today in economics the 

(engineering) proofs are not difficult, but this was not true at the time they were known in 

economics from result by among others Hotelling (1932), Roy (1947) and Shephard (1953).  

It is obvious how Roy and Shephard came up with their results, but I used to tell graduate 

students that I will let them pass the microeconomics exam if they can find Hotelling’s 

lemma in his article from (1932)3. The results may be viewed as corollaries of a general 

envelope theorem produced in mathematics. Mathematically an envelope is (loosely) 

                                                           
1
 With assistance from professor Erwin Diewert. Professor Thomas Aronsson Department of Economics, Umeå 

University and professorRolf Färe, Department of Economics, Oregon University, Corvallis commented previous 
versions of the document. They certainly improved the paper. 
2
 This guess is also Tönu’s  

3
 The result can be found on page 22. Do not tell your students. By the way, Paul Samuelson (1947) cites 

Hotelling (1932) without mentioning his “envelope result”. This indicates that it may be a two pipe problem. 
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defined as a curve that is touched by all members of a family of curves. There are theorems 

that in calculus give conditions for the existence of envelops to families of curves.  

Some of the first envelope theorems produced by pure mathematicians may have been 

introduced by Ernst Zermelo (1894), Jean Darboux (1894) and Adolf Kneser (1898). They 

produced them in connection with new results in the calculus of variations. 

The envelope theorem in calculus stands on its own, but the geometry is interesting for 

economic theory. It is well known that economists like Jacob Viner (1931), Roy Harrod (1931) 

and Erich Schneider (1931) used envelope properties to discuss the connection between 

short run and long run cost curves. Paul Samuelson (1947) derives the formal general proof 

of what today is called the envelope theorem, but under the headline “Displacement of 

Quantity Maximized”4. He mentions Viner’s application of it as an example. Viner had a 

draftsman that produced his graph called Dr Wong. He insisted on tangency between the 

long run envelope cost curve and the short run curve, and he was right. However, he was not 

able to convince Viner. This means that there is a well known error where a falling long run 

cost curve passes through the minimum of a short run cost curve. 

Samuelson probably believed, at the time he produced his version of the envelope theorem, 

that he was the first to show what the second order change looked like, how the difference 

between the full second order change with respect to a parameter looked like in relation to 

the partial second order change and how this difference could be signed by using the second 

order conditions (a negative definite quadratic form). The last result is the only one that was 

new.   

The first results in economics 5 on “comparative dynamics” in optimal control I have seen are 

available in a deep, not easy to read, paper by Oniki (1973), and they are based on the 

assumptions concerning the optimal control as a function of the parameters. A proof of a 

special case appears in Benveniste and Scheinkman (1979). Seierstad (1981, 1982) proved 

under what conditions the (sub)-derivatives of the optimal value function exist and what 

they look like with respect to changes in the initial and final conditions and changes in 

parameters.  When concavity is added, sub-derivatives change to derivatives.  Slightly more 

general results were produced by Malanowsk6in (1984). 

There are also, eight and nine years later, two papers in the same journal as Seierstad’s 

(1982) paper on derivatives of the value function with respect to parameters. The papers are 

written by Caputo (1990b) and La France and Barney (1991). They contain similar stuff 

although Seierstad’s paper is the more stringent. Unlike Caputo and La France and Barney, 

                                                           
4
  Samuelson (1947) pp 34-35. 

5
 There is also a result by Arrow in Arrow and Kurz (1970) based on dynamic programming that shows that the 

derivative of the value function with respect to initial conditions, calculated along an optimal path, is the 
adjoint function of the maximum principle.   
6
 See also the references therein. 



3 
 

Seierstad did not focus on derivatives with respect to parameters, but as we will see below 

parameters can be looked upon as “petrified” state variables.   

With respect to the Calculus of Variations Caputo (1990a) has also contributed a paper on 

comparative dynamics via envelope methods. I am not sure that there exist many similar 

papers in the literature.   He seems, however, not to have seen Seierstad and Sydsaeter 

(1987) who have contributed with complete proofs of the differentiability of the optimal 

value function with respect to initial and final conditions and endpoint  time7. 

 

2. Families of curves and their envelopes in mathematical text-books8 

By a family of curves one typically means an infinite set of curves. Each individual curve has 

attached to it a number as a parameter. If we stick to plane curves we can write the family as 

( , , ) 0f x y          

An envelope of this curve family can be defined as: 

Definition: The family of curves ( ) has an envelope ( ), ( )x h y g   , iff for each 0 

the point 0 0( ), ( )h g  of the curve ( ), ( )x h y g    lies on the curve 0( , , ) 0f x y    and 

both curves have the same tangent line there.  

The curve  

cos sin 1x y     

has the unit circle  

cos , sinx y    

as an envelope. But how can we prove this? The following theorem can provide some help  

Theorem 1: Assume that   

(i) 1( , , ), ( ), ( )f x y h g C     

(ii) 2 2

1 2( ) ( ) 0f f   

(iii) ' 2 ' 2( ) ( ) 0h g   

(iv) ( ( ), ( ), ) 0f h g     

                                                           
7
 See Chapter 1, where the results are produced as exercises for the reader. 

8
 The textbooks I have consulted are Widder(1961), Courant and John (volume 2 1974) and Rudin (1976). The 

latter did not mention envelopes    
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(v) ( ( ), ( ), ) 0f h g      

Then the family ( ) has the curve ( ), ( )x h y g    as an envelope 

Condition (i) means that the functions are continuously differentiable, (ii) and (iii) guarantees 

that tangents exist and (iv,) (v) are the identities that can be used to find the shape of the 

envelope.  

Our example can now be solved by the following equation system 

cos sin 1

sin cos 0

x y

x y x

 



 

  
 

which yields the unit circle as an envelope.   

However, the Theorem does give sufficient but not necessary conditions. The theorem gives 

us a simple method to determine the functions g and h .  Sometimes one can end up in 

degenerate cases. Say we have a curve family that looks like the one below 

a) ( , , ) ( ) 0f x y r y f x rx     

b) (0) 0f  , 1( )f x C . 

The slope condition (v) gives 0x  , which substituted into a gives 0y  , which will not give 

us any tangency condition that makes it work [(ii) and (iii) are not fulfilled].  

However, if we rewrite a) in the following alternative manner 

( ) ( , )f x rx x r     

We can interpret it as a profit (value) function,  is profit, ( )f x is the production function, 

with x  as an input, and the parameter r is the price of one unit of the input. Assume that 

( )x r is the profit maximizing input, and the optimal profit function is  

( ( ), ) ( )x r r r       

We can now use the inequality 0( , ) ( ( ), )x r x r r   , where 0x is a fixed input vector, to 

prove that the optimal profit function is the envelope of the r-family of profit functions.  

Typically, for each 0x x , there is an 0r , such that the profit is maximized. In other words, 

the function  

0 0 0( ) ( ) ( , )g r r x r    
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is minimized. The first order condition reads 
0 0 0 0

0( ) ( , ) ( )
0

d r x r d r
x

dr r dr

  
   


which 

tells us that the optimal value function is an envelope for the family of value functions 

(fulfills the definition of an envelope), i.e. they have the same tangent condition. I other 

words, it helps to move to optimization when you look for envelope theorems. Theorem 1 

above is a general way to find out if an envelope exists 

3. The Austrian outlaws and the envelope theorem in economics 

In this section, we will show how the envelope theorem may first have been introduced by 

economists rather than pure mathematicians. The two who did it were two Austrian cousins, 

Rudolp Auspitz and Richard Lieben, who, as Niehans (1990) writes,” succeeded where 

Menger had failed, namely in providing the theory of price with an analytical apparatus”. 

Both were born in Vienna and both died there, but none of them belonged to the Viennese 

School which was dominated by among others Carl Menger, Eugen von Böhm- Bawerk , 

Fridriech Wieser  and Gustav Schmoller.  While Menger and others were occupied by “Der 

Metodenstreit”, the outsiders Auzspitz and Lieben produced the only Austrian 19;th century 

contribution to mathematical economics; one of the outstanding contributions during the 

last two decades of the century . Both of them had studied mathematics. Auspitz did not 

finish his degree. He moved into business and founded one of the first sugar refineries in 

Austria only 26 years old. After studying mathematics and engineering sciences Lieben also 

moved into business as a banker. As amateurs they produced a book on price theory 

(Untersuchungen über die Theorie des Preises) in 1889, that, as Schmidt (2004) has 

discovered contains a mathematical derivation of the envelope theorem and also some 

diagrammatic exercises with cost curves that beats Viner’s 50 years later. 

The derivation in Untersuchungen is followed in the paper by Schmidt (2004) who 

discovered the contribution by the two Austrians , but I will follow Samuelson’s derivation in 

Foundations of Economic Analysis, which may seem marginally more general. Let 

1( ,..... , )nz f x x        (1) 

And assume that the function is twice continuously differentiable. The reader may think of 

(1) as a profit function. There are many ways to prove the envelope theorem, but to stick to 

Auspitz and Lieben (1889) and Samuelson (1947), although the proof above may seem more 

elegant. 

Assume an interior maximum which means that the first order conditions can be written  

As 

1( .... , ) 0i n

i

z
f x x

x



 


 i=1…n    (2) 
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The optimal value function can be written 

1( ( ),..... ( ), )nz f x x         (3) 

Then 

1

0
n

i
i

i

xdz z
f f f

d
 

  

 



 
    

 
    (4) 

The second equality follows from equation (2). Equation (4) tells us that the total change 

(the total derivative) of the optimal value function with respect to  equals what you would 

get if the x vector is kept constant (the partial derivative).   

The higher order change is obtained by totally differentiation of equation (4). One obtains 

 
22

2 2
1 1 1

( )n n n
i i i i

i i

i i i

x x d f xd z
f f f

d d
 

    



  

  
   

  
   =

1

n
i

i

i

x
f f 







   (5) 

This is exactly the formula derived by both Samuelson and, more interestingly, Auspitz and 

Lieben. The higher order change when the x vector is kept constant gives  

2

2

z
f







      (6) 

Hence9,       

2

2

d z

d




2

2

z






=

1

0
n

i
i

i

x
f 







     (7)

      

Loosely speaking this tells us that the envelope curve must be locally less concave than the 

unrestricted curve.  Samuelson proof of the result in equation (7) is based on a strict semi-

definiteness of the quadratic form under maximum. Auspitz and Lieben claim something 

similar. 

 We cannot criticize Hotelling, Viner and followers for not citing the two Germans, because 

they very likely did not know of “Untersuchungen”. Auspitz and Lieben seem to be outlaws 

in relation to the Austrian School, and their book was written in German, which at the time 

was not standard knowledge in an Anglo-American tradition. However, Irving Fisher claims 

that he was strongly inspired by the content in Untersuchungen when he wrote his 

Mathematical Investigations (1892).  in the Theory of Value and Prices (1928) Edgeworth 

mentions Untersuchungen and he even reviewed it for Nature 1889. He in particular notes 

                                                           
9
 This is proved by Samuelson by using the quadractic form of the Hessian matrix. 
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the presence of envelope curves10. In other words, they were also 42 years ahead of Harrod, 

Schneider and Viner in this respect.   

Hotelling’s (1932) use of envelope properties is connected to a result by F.Y. Edgeworth  

(1925) called Edgeworth’s Taxation Paradox. He produced an example of a monopolistic 

railway company supplying two classes of passenger services at different prices and, 

unhindered by government interference, setting ticket prices so that profit is maximized. 

When the railway company has to pay a tax on each first class ticket it may happen that both 

the first and the second class tickets are decreased in profit maximum. Hotelling generalizes 

this result by proving rigorously what mechanisms are involved, both under monopoly and 

perfect competition. For the case of perfect competition he shows how a marginal change in 

taxation results in a first and second order change, where the first order change disappears, 

since demands equal supplies in general equilibrium. The second order change consists of 

the so called Harberger triangles that were reinvented long after Hotelling’s cost-benefit 

analysis of taxation.  

Rene Roy’s identity was produced in Roy (1947) and the proof of the result is in line with 

Auspitz and Lieben in that he uses the first order conditions of utility maximization. He also 

cites Irving Fisher as an example of an author of early mathematical economics. Fisher was, 

as mentioned above, inspired by Auspitz and Lieben, but he probably did not get stuck on 

the envelope side of their book. 

Ronald Shephard’s Lemma appears on page 13 in Shephard (1953) and follows from results 

from convex theory and by an old theorem by Minkowski (1911), but it is also derived from a 

distance function approach. 

One cannot help to reflect over why so many economists, typically independent of each 

other, have ended up proving the same result over and over again, and getting credit in 

terms of their own name attached to the result. My reflections have so far not ended up in 

any complete answer, but the following story by Erwin Diewert explains how Shephards 

lemma surfaced11: 

I was a Ph.D student at Berkeley, 1964-1968 (got my degree in 1969) so I did indeed 

overlap with Shephard at that time but I did not take any courses from him.  I did see 

him occasionally in the Econometrics Workshop, which I attended for the 4 years I 

was at Berkeley so I knew who he was.  

I had a summer job in Ottawa in 1967 for the Department of Manpower and 

Immigration, trying to predict the demand for different types of labour.  I was not 

happy with the Leontief type production functions that they were estimating at the 

time so I thought that I would generalize the functional form to allow for substitution. 

The demand function I estimated had the following functional form for input 1 say: 

                                                           
10

Niehans (1990) and Schmidt (2004)  
11

 E.mail communication with Erwin Diewert. 
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(1)     1 1

1 11 12 2 1 1 1{ .... }n nx a a p p a p p y      

where  

1x demand for input 1; 

 np = nth input price         

 y output  

I presented my empirical results on Manpower demand in Canada using the above 

functional form in the econometric workshop. Dan McFadden was in the audience 

and said to me: “Erwin, your demand functions are not integrable!”  I had no idea 

what he was talking about but he told me to read his 1966 Berkeley working paper on 

duality theory as well as Shephard’s 1953 book, which I did.  And I realized that if I 

simply took the square roots of the input price ratios on the right hand side of the 

demand equations of the form (1), then my demand functions would be integrable 

(with symmetric conditions imposed) and thus was born the Generalized Leontief 

production and cost functions. In my reading of Shephard’s 1953 book, I realized that 

he provided a proof of “Shephard’s Lemma” starting from the cost function (as 

opposed to Hicks in Value and Capital, who started with the production or utility 

function and derived the result). So I named Shephard’s result “Shephard’s Lemma” 

in my first Berkeley discussion paper on the Generalized Leontief Production 

Function (later published in the Journal of Political Economy in 1971) and in my 1969 

thesis.  So I was certainly influenced by Shephard but at that stage, it was only by 

reading his book. I went on and did my thesis on flexible functional forms under the 

direction of McFadden.  

 Later on during the 1970s and 1980s, our paths crossed at the Index number 

workshops that Wolfgang Eichhorn held in Karlsruhe. At first Shephard did not much 

like me (he thought that I was stealing his stuff) but later on, he realized that my 

papers were making him more famous than ever and we got along quite well.  

 So that is my story on the origins of the term “Shephard’s Lemma”. 

 4. Calculus of Variations and Envelope Theorems  

The calculus of variations was initiated by Galileo Galilei (1564-1642)and Johann Bernoulli 

(1667-1748). Galilei was thinking about the brachistochrone problem, “the slide of quickest 

decent without friction”. He did not solve it himself. It was Johann Bernoulli that settled the 

problem in 1696. He showed that the optimal curve is a cycloid; a circle shaped curve that is 

mapped from a fixed point on the periphery of a circle when the circle rotates. A quarter of a 

century later Bernouili proposed to his student Leonard Euler to take up the task of finding 

general methods to solve similar problems. This started the calculus of variations. In 1759 

Euler received a letter from the young Lagrange that contained a proof of necessary 
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conditions which also involved the germ of the multiplier rule for a calculus of variations 

problem with constraints. Euler wrote back and told Lagrange that he also had done 

progress but would refrain from publishing his results until Lagrange had published his. That 

is scientific generosity!   

To be honest I have not even skimmed the literature on the calculus of variations after Euler, 

but I doubt there is any envelope result until the dissertation by Ernst Zermerlo in 1894.It is, 

however , not easy to understand. I have tried to read Zermerlo’s thesis, and it was by no 

means easy. However, as far as I can understand, he was up to finding necessary conditions 

for an optimal path. The envelope theorem comes as the closing key result of the thesis. The 

problem looks very much the same as what a general calculus of variations problem looks 

like today. He starts from Weierstrass12 who was standing on the axis of Euler and Lagrange. 

The diagram below is an illustration of the theorem. 

 

Figure 1: Illustration of Zermerlo’s envelope theorem.  

The bold curve is an envelope to the optimal solution curve a and u is a curve that starts at 0 

on the optimal curve and joins the envelope in point 4. The optimal curve starts at 1 and 

ends at 2, and at 3 it is a tangent to the envelope. The optimal value function is given by

12J 
2

1

( ( ), ( ), ; )

t

t

F y t y t t k dt

 . Zermerlo proves that the variation 043 from 03 vanishes when 

the Value functions are integrated in the following manner 

3

4

043 03 ( ) 0J J E d





     

                                                           
12

 Karl Weierstrass (1815-1897) German mathematician who did important contribution to real analysis and the 
calculus of variations. He introduced uniform convergence into mathematics. He also showed that there exists 
a closed graph that has no tangent at any point. A Brownian motion process is one example. I am not sure that 
Bachelier (1900) and Einstein (1905) discovered that.   

0

1

4

3

2

Envelope

u

a
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This means that  

10432 12J J  

 

The disturbed part of the optimal path does not matter. The details are available in 

Zermerlo13 (1894), but I do not recommend economists to spend too much time on them. 

My guess is that the theorem is related to the same class of results as the Fundamental 

Theorem of the Calculus of Variations14.  It is, however, not clear to me how Zermerlo’s 

theorem can help to find the optimal path. He comments his accomplishment in the 

following manner (author’s translation from German). 

“This result is essentially a generalization of a property of a catenary first discovered by mr 

Lindelöf (Moigno and Lindelöf, Lecons di Calcul Differential e Integral IV Calcul de Variations) 

covering the contents of surfaces of revolution yds by which two surfaces have separated 

tangents in terms of envelopes . On the other hand, it lacks me so far a simple criterion for 

the existence of a general envelope from the assumed properties.”    

The function ( )E  is a construction of Weierstrass that is non negative but zero in this 

particular situation. A catenary is the curve that an idealized hanging chain or cable assumes 

when supported at its ends and acted only by its weight. A surface of revolution is a surface 

in Euclidian space created by rotating a curve around a straight line.  

5. Optimal Control Theory 

The envelope theorems in optimal control theory are in principle of the same character as 

the static ones. The “classical result” must, in a sense, have been known already by William 

Rowan Hamilton, who15 in 1833 reformulated classical mechanics into Hamilton dynamics. 

He built on a previous reformulation of Joseph Lagrange from 1788. The Hamilton equations 

provide a new and equivalent method of looking at classical mechanics. They are not simpler 

to solve but provide new insights. I do not know physics, so I will give the economic 

interpretation of the Hamilton equations by starting from a Ramsey problem16. Ramsey’s 

version was an optimal intertemporal saving problem that he solved in spite of the fact that 

                                                           
13

 Zermerlo was not the only one that produced envelope theorems in the calculus of variations. Darboux 
 (1894) and Knerser (1898) were two others. Zermerlo is today quite well known among game theorists. He was 
the first to discuss whether chess has a solution in Zermerlo (1913).  His theorem says that either white or black 
has a winning strategy or both can force a draw. The proof had some blemishes, pointed out by König (1927) 
and the proof was rectified by both of them. There are two paragraphs in König (1927) where Zermerlo,s way 
to fix his proof is shown. See Larson (2008).    
14

 See e.g. Seierstad and Sydsaeter (1987) chapter 1. 
15

 He is also well known for his four dimensional complex number theory (quarternions) and his drinking habits. 
He died from gaut 63 years old.  
16

 Developed by Frank Plumpton Ramsey (1928)  
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the value function was unbounded17.   The following optimization problem is, except for the 

upper integration level of the value function, a version of Ramsey’s original problem. 

0
( )

0

( ), ( ), ; )

T

c t
Max f t t t dt x( c     (8) 

subject to 

 

( , ; )f t x x(t),c(t)     (9) 

0)0( xx       (10) 

freeT )(x      (11) 

Here, 0x is the value of the vector of stocks at the starting time, and the last condition in (11) 

means that there are no restrictions on the stocks at the time horizon. The vector )c(t is a 

consumption vector, t is a time variable and  is a parameter (vector).  

The first “envelope result” follows from Hamilton himself. From the maximum principle we 

can write the optimized Hamiltonian as  

0( ) ( ( ), ( ( ; ), ; ) ( ; ) ( ( ; ) ( ( ; ), ; )H t f t x t t t f t c t t         *
x c λ x x  (12) 

where ( ; )t λ is a vector of co-state variables.  We can rewrite (12), since “consumption is 

optimized” out, in the following manner 

( ( ; ), ( ; ), ; )H H t t t     x λ     (13) 

Assuming differentiability with respect to time yields 

dH H H H

dt t

     
  

  
x λ

x λ
    (14) 

Using (9) for 
H 




x
λ

 and the optimality condition for the co-state 
H

 


λ
x

 we obtain 

                                                           
17

 The reason was that he did not like discounting due to ethical reasons. 
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dH H

dt t

 



      (15) 

i.e. the total derivative of the Hamiltonian equals the partial derivative of the Hamiltonian

      

The value of the Hamiltonian in H-mechanics describes the total value of the energy of the 

system. 

For a closed system, equation (15) is the sum of the kinetic and potential energy in the 

system that are governed by the Hamiltonian equations 

H

H











 



x
x

λ
λ

      (16) 

 

 Where ( )tλ are called generalized momenta, and ( )tx are called generalized coordinates. If 

the system is conservative, the Hamiltonian will be constant over time ( 0
dH

dt
 ). In 

economics we typically use discounting. Given that ( )x f  is independent of t this means 

that 

 0 ( ) tdH H
f e

dt t


 


   


     (17) 

This can be integrated to yield    

  

0( ) ( ; ) ( )

T

s

t

H t f s e ds H T          (18) 

For the typical case in a Ramsey world,T  and lim ( ) 0
T

H T


 .  This means that the 

optimal value function of the optimal control problem is proportional to the maximized 

Hamiltonian. The factor of proportionality is the discount rate . A now well known result 

proved by Martin Weitzman in (1976). As we will show it also follows directly by the 

Hamilton-Bellman-Jacobi equation (HJB). 

The “envelope property” in equation (15) follows (as usual) from the fact that 0
H 


c

for 

all t along an optimal path. 
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6. The Maximum Principle and Cost Benefit analysis 

Cost Benefit analysis is certainly an economic technique that has been improved by envelope 

results. The first time this was done is probably Hotelling’s discussion of Edgeworth’s 

taxation paradox, where he uses that excess demand in general equilibrium is zero implying 

that all the terms of first degree vanishes in the tax rates, to come up with his result.  

Here we will show how cost benefit analysis is done in a dynamic context using envelope 

properties. 

Let us start by rewriting the optimal value function above in the following manner18 

0

( , , ; )

{ ( ( , ), ( , ), ; ) ( , )[ ( ( , ), ( , ); ) ( , )]}

( ( , ), ( , ), ( , ), ; ) ( ) ( ) ( ) ( ) ( ) ( )

t

T

s

t

T T

t t

V t T

f x s s s e s f s s s ds

H s s s s ds t t T T s s ds





       

   

     

  



  

  



 

x

c λ x c x

x c λ λ x λ x λ x

 (19) 

   

 To obtain the third line partial integration has been used. We can now differentiate the 

value function with respect to the lower integration level, the upper integration level and 

the capital stock at time t, 
( ) tt x x .   

We start with the derivative of the lower integration level to get 

( ) ( ) ( ) ( ) ( ) ( ) ( )
V

H t t t t t t t
t

  
    


λ x λ x λ x  = ( )H t   (20) 

Since, ( ) tt x x  is a constant ( ) 0t x .  For similar reasons ( )
V

H T
T





. Finally it follows 

Immediately from equation (19) that ( )
t

V
t





λ

x
. The latter vector (the co-state vector) tells 

us about the value of an extra unit of capital at time t (the shadow prices of the capital 

stocks or state variables.  

What has the above to do with cost benefit analysis? One answer is that we can treat  as a 

vector of parameters and change this vector by adding increments 1[ ,..., ]nd d d   and 

add try to evaluate how this changes the optimal value function. The general idea would be 

to totally differentiate the vale function with respect to the parameters. Since the parameter 

vector is everywhere in the Hamiltonian this result in a mess. However, by adding the 

parameter vector as the state variable to the Hamiltonian by putting 

                                                           
18

 This trick is due to an idea by Leonard (1987). He is also worth an envelope theorem.  
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0

( )t



 




     (21)  

With shadow price vector ( )s , we now from the maximum principle that 

( )
( )

H s
s




 


     (22) 

Integrating forwards yields 

( )
( ) ( )

T

t

H s
T t ds 




 

      (23) 

Hence the value of the project is 

( )
( ) ( )

T

t

H s
t T ds 




 

      (24) 

Typically ( ) 0T   

Hence, 

( )
( )

T

t

H s
t ds






       (25) 

In other words, differentiation with respect to parameters and initial conditions give similar 

answers. The reason is that parameters can be upgraded to “stiff” state variables.  

For an infinite time horizon problem with a finite project Li and Löfgren (2008) has shown 

that the present value sum of the direct perturbations of consumption and investment over 

the finite project period will give us the value of the project. Note that the cost-benefit rule 

both in equation (24) and the result in Li and Löfgren (2008) does not involve indirect 

general equilibrium effects. The reason is that we obtain envelope properties along the 

optimal path19. Li and Löfgren in addition show that the direct net effect during the project 

period is enough to obtain a correct answer. 

6. Stochastic cost –benefit rules        

Similar envelope properties are at work also in stochastic optimization. One can in fact say 

that much of the deterministic version of Pontryagin’s maximum principle follows from the 

stochastic version of optimal control theory based on Ito calculus. 

                                                           
19

 The proof is available in Li and Löfgren (2008) 
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Let u(c(t)) be a smooth strictly concave instantaneous  utility function, where c(t) denotes 

per capita consumption. The optimization problem is to find an optimal consumption policy. 

The stochastic Ramsey problem can be written 

 

 0

0

( ) ;

T

E u c e d 
 
 
 
  (26a) 

 

subject to 

2( ) [ ( ( )) ( ) ( ) ( )] ( ) ( )dk t f k t c t n k t dt k t dB t           
0 tk k    (26b) 

 

0)( tc    t  

   

  

E0 denotes that mathematical expectations are taken conditional on the information 

available at time zero. The capital stock per capita is denoted ( )k t and ( ( ))f k t is the 

production function. Population growth is denoted n , and   is the standard deviation of the 

Brownian motion process ( )B t that governs population growth.  

T  is the first exit time from the solvency set20 { ( ); 0}G k k   , i.e. 

inf{ ; ( ) }T s k G     . In other words, the process is stopped when the capital stock 

per capita becomes non-positive (when bankruptcy occurs). The stochastic differential 

equation in above is not Geometric Brownian motion and we cannot guarantee that ( )k 

stays non-negative, i.e. that bankruptcy does not occur21.  

Since there is no fundamental time dependence, only a discount factor with a constant 

utility discount rate, one can show that the optimal path is independent of the starting 

point. This means that we can prove that22 t

tt ekVktV  ),0(),(  and the so called Hamilton-

Jacobi –Bellman (HJB) equation can be written in the following manner 

                                                           
20

 G is simply the real positive line (0, ) . 
21

 A hard question is whether it occurs with probability one.  
22

 A proof is available in Li and Löfgren (2009). 
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2) 2 2

t k kk
c

1
W(t,k Max u(c(t) W h(k,c; ,n) k W

2
  

 
   

 
  (27) 

      

      

   

where ( ) ( , ) (0, )t

t t tW k e V t k V k  , 2( , ; , )h k c n dk   and  is the discount rate. We can 

now define a co-state variable p(t) as 

 

( ) ( )kp t W k  (28) 

and its derivative 

( )
( )kk

p t
W k

t





 (29) 

We can now write 

  2 c* * 2 2

t

1 p p
W k ) u(c ) ph(k,c ; ,n) k H (k, p, )

2 k k

 
  

 



     (30) 

The function )(
cH  can be interpreted as a “generalized” optimized Hamiltonian in current 

value terms. Similar to Weitzman theorem ( H V  ), the HJB equation shows that the 

generalized current value Hamiltonian is directly proportional to the optimal value function. 

Moreover, and also interesting, is that by putting 0  equation (30) collapses to 

Weitzman’s theorem. In fact, also the co-state and state equations collapses to those of the 

maximum principle23. One can say that most of the maximum principle follows as a special 

case from stochastic optimal control. 

Moreover, the cost benefit rule that was derived above looks the same, when you take 

expectations of the stochastic co-state equation that represents the cost benefit project. 

More precisely, it can be written: 

( )
( ) { }t

H
p t E

d




 
  

Again envelope properties are involved. The reader is referred to a memoranda by Aronsson, 

Löfgren and Nyström (2003) and Aronsson Löfgren and Backlund (2004) for technicalities. 

                                                           
23

 See Malliaris and Brock (1982) 
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Chapter 9 in the latter reference and Malliaris and Brock (1982) tell us more in detail how 

the HJB-equation and the maximum principle fit together.  

Conclusions 

It is not easy to sum up the contents of the paper. My curiosity may have put me astray, and 

the paper reminds me of a small smörgåsbord, which  at least contains herring, salmon, fish 

eggs, sausages, meatballs , ham, pate’ and almond potatoes. It is obvious that it does not 

contain the comprehensive story of envelope theorems, but I have hopefully conveyed the 

message on the importance of them for economic analysis. Optimization helps to produce 

them. Another message is that they are easy to handle. As Eugene Silberberg (1974, 1978) 

very wittedly has pointed out, the calculations can be carried out at the “back of an 

envelope”. Finally, they are old and have been discovered by many.   

Appendix: The Result from the Forgotten Lecture 

 

Puu’s Lemma: Let 

1

0

0 1 0 1

0 0

1 1

( , , , ; ) ( ( ), ( ), ; )

( )

( )

t

t

C y y t t k F y t y t t k dt

y t t

y t t









  

be the optimal value function of the above calculus of variations problem, where ( )F  is twice 

continuously differentiable with respect to its arguments, the derivative of the optimal value 

function with respect to the parameter k is 
1

0

( )

x

k

x

C
F dx

k


 

  , where the asterisk denotes that 

the derivative is taken along the optimal path.   

Proof: Straightforward differentiation gives 

1

0

( )

x

x

dC F y F y F
dt

dk y k y k k

      
  

      

The Euler equation reads
( ) ( )

( )
F F

y t y

     


  
. Substitution gives 
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 since 0 1
( ) ( )

0
y t y t

k k

 
 

 
 

End of engineering proof. 

The Caputo proof of the dynamic envelope in the calculus of variations follows essentially 

the brief proof of the static envelope theorem in section 2. The idea comes from a paper by 

Silberberg (1974), where he shows how the static comparative statics can be simplified. The 

difference is that Caputo has an optimal value function that is an integral. The result is more 

general than Puu’s Lemma. He can handle problems containing other integration intervals, 

and other starting and endpoint conditions.  
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