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I. Introduction

In telephony, the Internet, and other markets exhibiting positive network effects—the

value of the service to any user rises with the total number of compatible users—some

cooperation among competing providers is needed to achieve good interconnection so that

customers may enjoy fuller network benefits. However, a firm with a sufficiently large share of

customers may gain by restricting interconnection with its smaller competitors in order to attain a

relative quality advantage over them. This was a central concern, for example, in two prominent

mergers involving so-called “Internet Backbone” providers—firms that supply high-capacity

links with international reach to smaller Internet service providers and large business customers.1

European and US competition authorities feared that the merged entity would command such a

large share of Internet customers or traffic that it might gain by degrading—or failing to

enhance—interconnection with smaller rivals. Concern with interconnection incentives of

competing networks is reflected also in the US Telecommunications Act of 1996 that requires all

telephone companies to interconnect.

An influential analysis of interconnection incentives is that of Cremer, Rey, and Tirole

(2000; hereinafter CRT),2 extending the framework of Katz and Shapiro (1985). Networks have

locked-in installed-base customers and compete for new customers in a Cournot fashion.3 CRT

implicitly assume that networks derive profits only from final customers, not from above-cost

sales of access to other networks. This assumption is appropriate, for instance, if regulation holds

access prices close to marginal cost (or, given balanced inbound and outbound traffic, allows

positive but symmetric margins). Regulators, however, often find it harder to prevent restrictions

of rivals’ network access through non-price methods—what Beard, Kaserman, and Mayo (2001)

term “sabotage”—because of the many ways in which the real cost of access can be raised or its

quality lowered. Degrading interconnection then poses the following tradeoff to the largest

network: its own “quality” suffers and thus the absolute attractiveness of its service declines, but

its attractiveness rises relative to the smaller rival, whose quality has suffered even more. When

the largest firm faces a single rival (duopoly case), CRT provide a sufficient condition on the

size of the installed-base advantage, as a function of the other model parameters, needed to make

degradation profitable. Beyond duopoly, CRT consider an example in which the largest firm

                                                  
1 The MCI/WorldCom merger was concluded in 1998 subject to divestiture of MCI’s Internet operations, while MCI
WorldCom/Sprint was abandoned in 2000 under pressure from the European Commission and U.S. Department of
Justice.  See European Commission (1998; 2000), US DOJ (2000), and WorldCom and Sprint (2000). For useful
background on the Internet, see Cave and Mason (2001).
2 The Appendix is available in the working paper by the same title issued in May 1999.
3 Ennis (2002) considers the case where all customers are locked in but derive value from links to other networks,
and where a large networks bargains with smaller ones over payment for interconnection. He finds that the direction
of payment depends on whether the value of connectivity is linear, convex or concave in the total number of users.
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commands half the installed base and faces two symmetric smaller rivals. This fifty-percent

share is not enough for the large firm to profitably degrade interconnection with both rivals, but

can make it profitable to pursue “targeted degradation” against only one rival.

Focusing on global degradation, whereby the initially largest network chooses the same

interconnection policy towards all rivals,4 we extend CRT’s analysis in two directions. First, the

largest network, firm 1, may face any number n of smaller rivals, themselves interconnected.

Second, we analyze the possibility that degradation could lead to tipping—all new customers

gravitating to a single network—a central policy concern in network industries. These extensions

are complementary: allowing an arbitrary number of rivals reveals tipping possibilities that do

not arise under duopoly. If (and only if) firm 1 faces two or more rivals, then degradation could

lead to a unique equilibrium with tipping away from firm 1, even if its installed-base share

exceeds one half. The parameter region that admits this possibility expands with n, while the

region that admits tipping to firm 1 as the unique degradation equilibrium contracts with n. The

driving force is that intra-network competition among the interconnected smaller rivals gives

their network a strategic advantage in its competition with firm 1’s network for new customers,

by enabling their network to commit to a greater expansion of output and thus a greater increase

in quality. This competition-based advantage can, depending on the model’s other parameters

such as the scope for market expansion, outweigh firm 1’s initial advantage in the installed base.

In parameter regions where degradation would not lead to a unique equilibrium involving

tipping (to firm 1 or away from it), it could lead either to a unique interior equilibrium in which

all firms attract new customers, or to any one of three equilibria: the interior equilibrium, tipping

to 1, or tipping from 1. In the multiple-equilibria case, the outcome depends on consumers’

expectations. We characterize the profitability of degradation in each of the cases and summarize

the effect of various parameters on the overall likelihood that—looking across all the other

parameters—degradation would be profitable. As expected, increasing firm 1’s initial market

share is conducive to degradation. Increasing the strength of network effects or the number of

rivals has an ambiguous effect (the latter, in regions where degradation would lead to the interior

equilibrium, rather than tipping as discussed earlier). By contrast, increasing the scope of market

expansion relative to the initial installed base works against profitable degradation, suggesting

that degradation may be a greater concern in mature than in expanding markets.

The remainder of the paper is organized as follows. Section II presents the model, which

modifies CRT’s analysis by allowing any number of rivals and, as in Katz and Shapiro (1985), a

potential pool of customers large enough that it is not exhausted in any equilibrium. Section III

analyzes tipping equilibria. Section IV considers also the interior equilibrium, summarizes the

profitability of degradation in various regions, and reports the relevant comparative statics.

                                                  
4 Malueg and Schwartz (2001) analyze the parameter ranges that can support CRT’s targeted degradation example.
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II. The Model and The Interconnection Benchmark

The model developed in this section is a straightforward extension of CRT’s duopoly

framework:  the largest firm faces n smaller rivals (n = 1 is CRT’s duopoly case).  Unless

otherwise stated, all other assumptions and parameters mentioned below track CRT’s model.

A. The Model

1. Installed Bases and Interconnection Quality

All firms have constant marginal cost c of serving additional customers.  Firms differ

only in the sizes of their installed bases of existing subscribers.  These subscribers are locked in:

pricing to them is determined by previous contracts, and they will not switch to other networks.5

The only relevance of installed bases in the model is to potentially affect competition for new

customers.  The total installed base in the market is equal to β (> 0).  Firm 1 has the largest

installed base, of size β1.  The remainder, β β− 1, is divided among the rivals, with the size of

firm i’s installed base denoted by βi , i = 2, 3, . . . ,  n + 1.  Throughout this paper, a firm’s

“market share” refers to its share of the installed base.

Firms compete for new customers in the next period.  The number of subscribers added
by firm i is denoted by qi . Any customer values equally communication with any other,

regardless of their choices of network.  Thus, if (and only if) interconnection between two firms

is inferior to the quality of connection between subscribers of the same firm, then the firm with

the larger installed base will have an advantage in competing for new customers, because its

network gives access to a larger number of existing users.

The interconnection quality between two firms is denoted by θ, where θ ∈{ , }0 1 .  A

value of θ = 1 represents perfect interconnection, i.e., the same quality as between subscribers on

the same firm’s network, while θ = 0 represents perfect degradation.6 CRT focus mainly on the

case in which all interconnection qualities entail the same cost, which is normalized to zero. For

this case, they find that firms choose only perfect interconnection or perfect degradation, not

intermediate values of θ, and that firms with the same-size installed bases prefer perfect

interconnection.  For simplicity, we follow this cost assumption and, in light of CRT’s findings,

we model the interconnection among firms 2, 3, . . . , n + 1 as perfect.  Furthermore, we consider

                                                  
5 Foros, Kind, and Sand (2002) extend CRT's model by allowing the  price paid by a firm's installed-base customers
to increase linearly in the number of customers that can be reached through that firm.  They find that this
modification can decrease or increase the larger firm's incentive to degrade interconnection with its rival.
6 Values of θ strictly between 0 and 1 would denote imperfect interconnection—subscribers of firm 1 can potentially
reach those of the other network, but not as well as they can reach other subscribers on network 1 (e.g., the
connection between networks is less reliable or imposes longer delay).
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only global interconnection policies by firm 1—firm 1 establishes the same interconnection

quality with each of the rivals—and ask whether firm 1 will choose θ = 0 or 1.

2. Demand by Potential New Customers

a. Benefits from Subscribing to a Network

If a new subscriber whose type is τ  joins network i, that subscriber obtains gross benefit

of τ + si, where si  depends on the size of network i (explained shortly) and τ  can be viewed as

the value of basic access.  New subscribers differ only in their values of τ . Following the

original approach of Katz and Shapiro (1985), on which CRT’s framework builds, we assume

that consumers’ connection-valuation parameter τ  is uniformly distributed over (–∞, 1], (with

density equal to 1 over this interval).7, 8  Rather than literally envisioning the potential demand as

infinite, we interpret this formulation as capturing the realistic feature that demand dispersion is
so large that there will always be some unserved consumers. The term si  is given by

s vLi i= ,

where v > 0 is a common taste parameter measuring the intensity of preferences for connectivity
(hence, the strength of network externalities), and Li  denotes the size of network i, that is, the

total number of links offered by network i next period.
The number Li  includes the subscribers (installed-base and new ones) on network i as

well as on other networks with which i interconnects.  Because we have assumed that all smaller

firms will be interconnected, a subscriber of firm i, i ≠ 1, can reach the subscribers of all the

small firms.  If the quality of interconnection between firm i and firm 1 is θ, the number of links

offered by i is therefore given by

(1) L q qi j
j

n

= − + + +
=

+

∑( ) ( )β β θ β1
2

1

1 1 .

                                                  
7 Exact agreement with Katz and Shapiro’s setting would model parameter τ as uniformly distributed over (–∞, A],
for A > 0.  Our current results would carry through after slight reinterpretation. For example, τ  would be replaced by
τ/A and c would be replaced by c/A.  It is without loss of generality that we assume A = 1.
8 Katz and Shapiro (1985) specifically introduce this “unbounded below” assumption to eliminate problems with
solutions in which all potential consumers are served: “We assume that the support of r has no finite lower limit in
order to avoid having to consider corner solutions, where all consumers enter the market” (ft. 2; their r is equivalent
to our τ).  CRT assume that τ  is uniformly distributed over [0, 1]; this finite pool of potential customers leads to the
possibility of corner solutions for some combinations of parameters. Corner solutions raise issues of  multiple
equilibria (Malueg and Schwartz, 2002, fn. 8).  Malueg and Schwartz (2002) retain CRT’s assumption, but take the
perspective that the plausible market outcome is one in which not all potential customers will subscribe; this
constraint, that the total number of new subscribers be less than the potential pool, yields a restriction on plausible
combinations of the model’s parameters.
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Thus, if firm i is connected to firm 1 (θ = 1), then a subscriber to i can reach all of the (next-

period) subscribers in the market; but if interconnection with 1 is degraded (θ = 0), then only

subscribers to firm 1’s rivals are reachable from firm i.  Similarly, the number of links offered by

firm 1 is given by

(2) L q qj
j

n

1 1 1 1
2

1

= + + − +
=

+

∑( ) ( )β θ β β .

b. Individual Subscription Decisions and Inverse Demands

The net benefit to customer of type τ  from subscribing to firm i at price pi  is given by

(3) τ + −s pi i .

Regardless of τ, all potential subscribers have the same ranking of various networks’ desirability.

Therefore, firms attracting new customers must offer the same net benefit,

τ τ+ − = + −s p s pi i j j ,

which implies that quality-adjusted prices must be equal:

p s p si i j j− = − ,

for all networks i, j that acquire new subscribers.  The marginal customer, τ , just obtains a net
surplus of zero from subscription (τ = −p si i). All customers with values of τ  greater than τ

would subscribe to one of the networks, implying a total number of new subscribers equal to

1− τ .  Therefore, market clearing requires that, for each firm i, we have

(4) q p sj
j

n

i i
=

+

∑ = − −
1

1

1 ( ),

so that, using (2) with s vL1 1=  in (4), the resulting inverse demand facing firm 1 is

 (5)

p s q q

v v q v q

j
j

n

j
j

n

1 1 1
2

1

1 1 1
2

1

1

1 1 1

= + − −

= + + − − − − −

=

+

=

+

∑

∑( ( )) ( ) ( ) ;β θ β β θ

similarly, the inverse demand facing any smaller firm i is

(6)

p s q q

v v q q v q

i i i j
j i

i j
j i

= + − −

= + − + − − +








 − −

≠

≠

∑

∑

1

1 1 11 1
1

1(( ) ) ( ) ( ) ,
,

β β θβ θ

for i ≥ 2.
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We restrict v < 1 to guarantee that demand is downward-sloping (cf., (5) and (6)).9  Also,

we restrict c ≤ 1 to ensure that some new customers are added under perfect interconnection, no

matter how small the values of v or β: among the potential new subscribers, the highest

willingness to pay under perfect interconnection is at least 1+ vβ , which is sure to exceed

marginal cost if and only if c ≤ 1.

3. Interconnection Choices and Competition for New Customers

Decisions take place in two stages. First, firm 1 chooses whether to interconnect with the

rival network of firms 2, . . . , n + 1. Observing this choice, firms then compete in a Cournot

fashion for new subscribers: each firm chooses the number of customers it wishes to add, and

firms’ prices adjust to yield the quality-adjusted price that clears the market, given the expected

numbers of new subscribers to each firm. Firm 1 chooses its interconnection quality to maximize

its profit in the expected Cournot competition.

 The Cournot profit of any firm i (ignoring the installed-base customers) is simply
π i i ip c q= −( ) , where the quality choice θ  made by firm 1 enters in the inverse demand function

pi  discussed earlier.  In choosing interconnection quality, firm 1 faces a tradeoff if its installed-

base share exceeds one half: decreasing θ  makes all networks less attractive, thus drawing fewer

new customers in total (market-contraction effect); but it also gives firm 1 an initial quality

advantage due to its largest installed base (quality-differentiation effect).

B. Equilibrium Under Interconnection

With interconnection by firm 1, all firms offer identical qualities and their services are

perfect substitutes. Using inverse demands given in (5) and (6) with θ = 1, firm i’s profit can be

expressed as

(7) π βi i i i j
j i

ip c q v v q q c q= − = + − − +








 −











≠
∑( ) ( ) ,1 1

i = 1, 2, . . . , n + 1.  At the Cournot equilibrium, each firm i maximizes its profit given in (7),

taking as given the outputs of its rivals. Given the assumptions that v < 1 and c ≤ 1, the Cournot

equilibrium under interconnection is unique, with each firm adding an identical number of

subscribers equal to

                                                  
9 The role of v < 1 can be understood as follows.  Consider perfect interconnection.  Suppose at price p the marginal
subscriber has personal connection value equal to τ.  If ∆τ  more subscribers are to be added, then the connection
value of the new marginal subscriber must be lower by ∆τ (since τ is uniformly distributed over [0,1]).  The quality
of the expanded network, however, rises by v∆τ, so that the overall value of subscription to the marginal subscriber
(which determines the market price) would fall by just (1 – v)∆τ.  In order for marginal willingness-to-pay actually
to fall as the number of subscribers increases, it is necessary that v < 1.
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(8) q
c v

n v
a =

− +
+ −

( )
( )( )

1
2 1

β
.

As expected, the equilibrium number of new subscribers increases with the installed base β  and

valuation parameter v, as both increase network attractiveness, as well as with the number of

rivals n, and decreases with marginal cost c. Degradation is profitable if it yields firm 1 greater

profit than would this unique interconnection equilibrium.

III. Possible Equilibria Under Degradation

If firm 1 degrades interconnection with its rivals, several types of Cournot equilibria are

possible: a) tipping to firm 1—only it obtains new customers; b) tipping away from firm 1—it

obtains no new customers; and c) the interior equilibrium, in which all firms acquire new

customers. For some parameter values, there exist multiple equilibria—depending on consumers’

expectations, the outcome can be any of the above three equilibria. Figure 1(a) illustrates these
possibilities in ( , )m v1  space, fixing the other parameters β, c, and n. In region A, the unique

equilibrium is the interior equilibrium; in B, it is tipping to 1; and in C, it is tipping from 1. In D,

all three equilibria exist. As explained below, in Figure 1(a) β is relatively large, while in Figure

1(b) β is relatively small, in which case region B is empty.

This section derives the boundaries, M 1 and M1, between these four regions and shows

in each case how the critical value of m1 varies with the parameters v, β, c, and n. Considering

all regions, Section IV examines when degradation is profitable to firm 1.

A. Interior Equilibrium

If firm 1 degrades its interconnection, then its service is no longer a perfect substitute for

that offered by the network formed by the n rivals that are themselves interconnected. In this
case, firm 1 chooses its number of new customers, q1, to maximize its profit

(9) π β1 1 1 1 1
2

1

11 1= − = + − − − −










=

+

∑( ) ( )p c q v v q q c qj
j

n

.

Among the rivals, any firm i chooses its number of new customers, qi , to maximize

(10) π β βi i i i j
j i

ip c q v v q q q c q= − = + − − − +








 − −











≠
∑( ) ( ) ( )

,

1 11
1

1 .

If the Cournot equilibrium has all firms adding new subscribers, then the equilibrium outputs are

(11) q
c n v n n v v nv

n v n
d

1
1

2

1 1 1 1 1

2 1 1
=

− − + + + + − −

+ − −

( )[ ( ) ] [ ( )( )]

( )( )

β β
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for firm 1, and

(12) q
c v v v v v

n v ni
d =

− − − − + −

+ − −

( )( ) ( ) ( )

( )( )

1 1 2 3 2 2 1

2 1 1
1

2

β β

for firm i, i = 2, 3, . . . , n + 1. Note that firm 1’s rivals all have the same number of new

customers, regardless of their individual installed bases, because the rivals are perfectly

interconnected and hence offer identical services.

Equations (11) and (12) provide the unique interior equilibrium as long as these
expressions are well-defined, qd

1 0> , and qi
d > 0. The denominators of the expressions in (11)

and (12) equal zero at

(13) v n
n

n
( )

( )
≡ −

+
1

2 1
,

and they are strictly positive for v v<  and strictly negative for v v> .10  Therefore, the interior

equilibrium exists in two cases—if the numerators of (11) and (12) are strictly positive for v v<

or strictly negative for v v> :
Case 1: v v n< ( )

1(i) ( )[ ( ) ] [ ( )( )]1 1 1 1 1 01− − + + + + − − >c n v n n v v nvβ β

and

1(ii) ( )( ) ( ) ( )1 1 2 3 2 2 1 01− − − − + − >c v v v v vβ β ;

or
Case 2: v v n> ( )

2(i) ( )[ ( ) ] [ ( )( )]1 1 1 1 1 01− − + + + + − − <c n v n n v v nvβ β

and

2(ii) ( )( ) ( ) ( )1 1 2 3 2 2 1 01− − − − + − <c v v v v vβ β .

The conditions of Cases 1 and 2 for the existence of the interior equilibrium can be converted to
conditions on firm 1’s market share, m1, by setting β β1 1= m  in the above expressions:

Case 1: v v n< ( )

(14) 1(i) m
n

n n v

n v

n n v v
c1 1 1

1 1

1 1
1>

+ + −
+

+ −( )
+ + −( )

−
( )( )

( )

( )( )
( )

β

and

                                                  
10 The critical v  depends only on n and decreases in n, with v( ) /1 1 2=  and with limit lim ( ) / .

n
v n

→∞
= − ≈1 1 2 0 293.
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(15) 1(ii) m
v
v

v
v v

c1

2 1
3 2

1 2
3 2

1<
−
−

+
−
−

−
( )

( )
( )

( )
( )

β
;

or

Case 2: v v n> ( )

(16) 2(i) m
n

n n v

n v

n n v v
c1 1 1

1 1

1 1
1<

+ + −
+

+ −( )
+ + −( )

−
( )( )

( )

( )( )
( )

β

and

(17) 2(ii) m
v
v

v
v v

c1

2 1
3 2

1 2
3 2

1>
−
−

+
−
−

−
( )

( )
( )

( )
( )

β
.

In Section III.B we derive conditions for tipping equilibria, and in Section III.C we compare

those conditions to the ones for the interior degradation equilibrium discussed above.

B. Tipping Equilibria

1. Tipping To Firm 1

A tipping equilibrium to firm 1 if it degrades interconnection with all rivals is described

as follows.  Suppose each potential new customer expects that any other customer will also

choose firm 1 (or no network at all).  Given such expectations, firm 1 adds its monopoly number

of new subscribers and accepts the corresponding price; taking as given that firm 1 adds this

number of new customers, no rival can profitably attract any new customers, despite the fact that

firm 1’s price is above marginal cost.11  We now derive the conditions for such a tipping

equilibrium.
If q qn2 1 0= = =+L , then firm 1’s optimal output (i.e., number of new customers) is

(18) q
c v

v
Tip
1

11
2 1

=
− +

−
( )

( )
β

.

This is simply firm 1’s monopoly output—firm 1’s Cournot response to its rivals’ total new
output of zero. Any rival firm i will indeed choose zero output if, given qTip

1  and zero output by

the other smaller firms, p ci ≤  for any qi > 0, where the function pi  is given by (6).  At these

candidate equilibrium outputs, qTip
1  and q qn2 1 0= = =+L , we indeed have p ci ≤  if and only if

                                                  
11 Because of the network externalities, entry by a rival on a small scale would deliver a service of low quality,
which would have to be compensated by a prohibitively lower price; entry on a large scale would require a large
price cut to achieve the requisite market expansion, again driving price below marginal cost.
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(19) 1
1

2 11
1+ − −

− +
−









 ≤( )

( )
β β

β
v

c v
v

c .

Letting β β1 1= m , we transform (19) into a condition expressing the minimum market share of

firm 1, M 1, for which there exists a tipping equilibrium to firm 1 under degradation:

(20) m M c v
v
v

v
v v

c1 1

2 1
3 2

1 2
3 2

1≥ ≡
−
−

+
−

−
−( , , )

( )
( )

( )
( )

( )β
β

.

Lemma 1: ∂ ∂M v1 0<  and ∂ ∂M n1 0= .  Furthermore, M
v1 1 2

1 2
=

=
/

/ .

The proofs of Lemma 1 and subsequent results are given in Appendix 1.  As recorded in the
following remark, Lemma 1 establishes the shape of the M 1 curve shown in Figure 1.

Remark 1: Fix c, β, and n.  In ( , )m v1  space, the graph of M 1 is strictly decreasing in v and

passes through the point ( , )m v1  = (1/2, 1/2). In addition, this curve is independent of n.

The M 1 curve is decreasing in v because tipping to 1 can occur for either of two reasons:

network externalities are sufficiently strong or firm 1’s installed-base advantage is sufficiently

large. Increasing the strength of network externalities thus reduces the installed-base advantage
needed for an equilibrium with tipping to 1. The reason M 1 is independent of n is that 1’s

monopoly output does not vary with n—and the condition for tipping to 1 is that, at 1’s

monopoly output, the rivals’ inverse demand be depressed below marginal cost, c, which also

does not vary with n.

2. Tipping From Firm 1

Next consider a tipping equilibrium away from firm 1 to the rivals’ network. Suppose

each potential new customer expects that no new customer will choose firm 1.  Given such
expectations of q1 0= , each of the n rivals adds the symmetric Cournot-equilibrium number of

new customers

(21) q
c v
n vi

Tip =
− + −

+ −
( ) ( )

( )( )
1

1 1
1β β

,

i = 2, . . . , n + 1.  The outputs q1 0=  and q qi i
Tip=  indeed form a tipping equilibrium from firm 1

if at these outputs p c1 ≤ , where firm 1’s inverse demand function p1 is given in (5):
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(22) 1
1

1 11
1+ −

− + −( )
+ −

≤β
β β

v
n c v

n v
c

( )

( )( )
.

Therefore, q1 0=  and q qi i
Tip=  form a tipping equilibrium from firm 1 if condition (22) is

satisfied. Letting β β1 1= m , we transform (22) into a condition expressing the maximum market

share of firm 1, M1, for which there exists a tipping equilibrium from firm 1, i.e., tipping is to

the rivals:

(23) m M c v n
n

n n v

n v

n n v v
c1 1 1 1

1 1

1 1
1≤ ≡

+ + −
+

+ −( )
+ + −( )

− ( , , , )
( )( )

( )

( )( )
( )β

β
.

Lemma 2: ∂ ∂M v1 0>  and ∂ ∂M n1 0> .  Furthermore, M
v n1 1 1

1 2
= +

=
( )

/ .

As recorded in the following remark, Lemma 2 establishes the shape of the M1 curve shown in

Figure 1.

Remark 2: Fix c, β, and n.  In ( , )m v1  space, the graph of M1 is strictly increasing in v and

passes through the point ( , )m v1  = (1/2, 1/(n + 1)). In addition, this curve shifts rightward and

downward as n increases.

The M1 curve is increasing in v because tipping from 1 can occur if network externalities

are sufficiently strong or firm 1’s installed-base advantage is not too large. Thus, the greater is
m1, the greater is the v needed for tipping from 1. Furthermore, M1 increases with n because an

increase in n leads to greater Cournot output of the rivals (given q1 0= ), thereby further

depressing firm 1’s inverse demand. Consequently, tipping from 1 could then occur for  a
somewhat greater installed-base advantage of firm 1 (higher m1).

Let c, β, and n be given and consider Figure 1. Recall that tipping to 1 can occur in the

region above M 1 and tipping from 1 can occur above M1. Because 1/(n + 1) ≤ 1/2 for all n ≥ 1,

Remarks 1 and 2 imply that the M1 curve lies below the M 1 curve for all m1 1 2≤ / , and strictly

below for m1 1 2< / . This observation yields the following lemma.

Lemma 3: Fix m1 1 2≤ / .  If (c, v, β, n, m1) supports an equilibrium with tipping to 1 under

degradation, then it also supports an equilibrium with tipping away from 1, but not vice versa.

The next result is proved in Appendix 1 (recall that v n( ) is defined in (13)).
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Lemma 4:
(i) Fix n ≥ 1.  If v v= , then M M1 1= ; if v v< , then M M1 1> ; and if v v> , then M M1 1< .

(ii) Fix c < 1 and n ≥ 1.  If β  is sufficiently large, then M 1 and M1 intersect at ( , )m v1  for some

m1 1 2 1∈[ / , ) .

(iii) Fix c < 1 and n ≥ 2.  If β  is sufficiently small, then M 1 and M1 do not intersect at any

m1 1 2 1∈[ / , ].

An implication of Lemma 4 is that if β is sufficiently large, then tipping to firm 1 can be

the unique degradation equilibrium—region B in Figure 1 is nonempty, the case shown in Figure

1(a). On the other hand, if c < 1 and n ≥ 2 and if the installed base β  is sufficiently small, then

the unique degradation equilibrium can be tipping from firm 1, even when 1 has the entire
installed base ( m1 1= ). This possibility is illustrated in Figure 1(b).

C. Uniqueness of Equilibrium Under Degradation

The results of Section III.B collectively show that, for given c, v, β, and n, the

possibilities for tipping equilibria fall into four cases:
A: m M1 1<   and  m M1 1>  — no tipping equilibrium;

B: m M1 1≥   and  m M1 1>  — tipping to firm 1 but not from firm 1;

C: m M1 1<   and  m M1 1≤  — tipping from firm 1 but not to firm 1;

D: m M1 1≥   and  m M1 1≤  — tipping to firm 1 and tipping from firm 1.

This taxonomy of possible tipping equilibria can be linked to the possibility of the interior

equilibrium discussed earlier. Note that the expressions on the right-hand sides of (14) and (16)
are M1 and the expressions on the right-hand sides of (15) and (17) are M 1. Moreover, in light

of Lemma 4, case A can arise only if v v< , and D can arise only if v v≥ .12  Consequently, case

A admits an interior equilibrium, as does case D if the inequalities in D hold strictly. Therefore,

the equilibrium possibilities are as follows, where each of the cases given above corresponds to

the so-labeled regions in Figure 1:

region A: m M1 1<   and  m M1 1>  — the unique equilibrium is interior;

region B: m M1 1≥   and  m M1 1>  — the unique equilibrium is tipping to firm 1;

region C: m M1 1<   and  m M1 1≤  — the unique equilibrium is tipping from firm 1;

region D: m M1 1≥   and  m M1 1≤  — both tipping equilibria exist, and if these

 inequalities are strict, the interior equilibrium also exists.

The foregoing characterization of equilibrium possibilities is central to determining how model

parameters affect the prospect for tipping and for profitable degradation.

                                                  
12 For v v≥ , Lemma 4 shows M M1 1≤ , so there do not exist m1 satisfying m M1 1<  and m M1 1> —that is, case A
is impossible. Similarly, for v v< , case D cannot arise.
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D. Tipping Equilibria and the Number of Rivals

As expected, stronger network externalities (higher v) increase the likelihood of tipping

under degradation—an increase in v lowers the minimal market share of firm 1 needed for
tipping to 1 ( M 1) and raises the maximal share permitting tipping away from 1 ( M1).

More interesting is the effect of the number of rivals, n, on the possibility that

degradation could lead to tipping away from firm 1 even if its initial market share exceeds 1/2.
While Lemma 3 focussed on the case of m1 1 2≤ / , the following proposition considers the case

of m1 1 2> / , i.e. firm 1’s installed base is larger than the total base of all its rivals. The following

notation is helpful. Define the sets

T n c v m m c v n m1 1 1 11 2( ) ( , , , ) | / ( , , , , )= >{ }β β and  supports a tipping equilibrium to 1

and

T n c v m m c v n mR ( ) ( , , , ) | / ( , , , , )= >{ }β β1 1 11 2 and  supports a tipping equilibrium from 1 .

Thus, T n1( ) is the set of parameters for which there is tipping to 1, given that 1 faces n rivals;

similarly, T nR ( ) is the set of parameters for which there is tipping from 1. Next define13

T n T n T nu
R1 1( ) ( ) ( )≡ −    and   T n T n T nR

u
R( ) ( ) ( )≡ − 1 .

Thus, T nu
1 ( ) denotes the set of parameters (together with n) for which the unique equilibrium is

tipping to 1, and T nR
u( ) denotes the set of parameters for which the unique equilibrium is tipping

from 1.

Proposition 1 (Larger Number of Rivals Favors Tipping From 1):  Suppose  m1 1 2> / .

(i) For any n, there exist parameters that admit tipping to 1 as the unique equilibrium, and others
for which tipping from 1 is an equilibrium (i.e., the sets T nu

1 ( ) and T nR ( ) are nonempty);

(ii) Tipping from 1 can be the unique equilibrium if and only if  firm 1 faces at least two rivals
( T nR

u( ) is nonempty iff n ≥ 2).

(iii) Increasing the number of rivals increases the scope for tipping from 1 and decreases the

scope for tipping to 1. That is, if ′′ > ′ ≥n n 1, then14

(a) T n1( )′′  = T n1( )′   and T nu
1 ( )′′  ⊂ T nu

1 ( )′ ;

and

(b) T nR ( )′′  ⊃ T nR ( )′   and  T nR
u( )′′  ⊃ T nR

u( )′ .

                                                  
13 For any two sets X and Y, we denote by X – Y the set of elements of X that are not elements of Y.
14 For any two sets X and Y, X Y⊆  denotes that X is a subset of Y; X Y⊂  denotes that X is a strict subset of Y. The
symbols ⊇  and ⊃  are interpreted analogously.
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The properties described in Proposition 1 are illustrated in Figure 2, which is similar to
Figure 1(a) but includes an additional M1 contour corresponding to a higher number of rivals.

Fix c, β, and ′ > ≥n n 2. Because n ≥ 2, the left-side vertical intercept for M1 lies strictly below

that for M 1.  Figure 2 depicts the case in which β is relatively large so that M 1 and M1 intersect

at some market share m1 1< . The region of tipping to 1 lies above the M 1 curve; the region of

tipping from 1 lies below the M1 curve. Because M 1 is independent of n, the region of tipping to

1 does not change with n. However, the entire M1 curve shifts down as the number of rivals

increases from n to ′n . Thus, the region of tipping from 1 strictly expands from C D∪  to

C D B C∪ ∪ ∪ ′; correspondingly, the region where tipping is uniquely to 1 strictly shrinks from

B B∪ ′  to ′B  and the region where tipping is uniquely from 1 strictly expands to C C∪ ′ .

Given the central role of consumers’ expectations under network externalities, it is not

surprising that there can exist multiple equilibria under degradation (cf. Katz and Shapiro, 1986),
including tipping away from firm 1 even if m1 1 2> / . Less obvious is why tipping from 1 can be

the unique equilibrium when m1 1 2> / . The answer is that competition among the interconnected

rivals confers an advantage to their network, denoted R, in the inter-network competition against

firm 1. The n rivals’ intra-network competition can commit their network to a higher expansion

of future output, and thus a greater increase of network quality, than can network 1 as a

monopolist.15

To see the role of competition, recall that a tipping equilibrium to network j (j = 1 or R)

exists if and only if the other network i cannot profitably attract new customers given i’s installed

base (which affects i’s inverse demand function) and taking as given j’s chosen number of new

customers. The number of new customers under tipping to firm 1 is 1’s monopoly solution
conditional on 1’s installed base, qm

1  (≡ qTip
1 , defined in (18)); under tipping to the rivals, the

number is the n-firm Cournot solution conditional on the rivals’ total installed base, Qn
c (≡ nqi

Tip;

cf. (21)). For equal installed bases ( m1 1 2= / ), competition among the n rivals implies Q qn
c m> 1 ;

by continuity, this inequality can also hold for some m1 1 2> / . That is, while firm 1’s larger

installed base increases its network’s attractiveness to new customers and hence its expected

output as a monopolist, this advantage can be outweighed by network R’s ability to act more

aggressively in expanding future output due to competition among its members. The condition
Q qn

c m> 1  in turn makes it possible, for some values of the other parameters c, v, and β, to have a

                                                  
15 The strategic benefits of competition as a vehicle of commitment to higher output have been noted in other
contexts. For example, Schwartz and Thompson (1986) show that an incumbent may gain from establishing
competing divisions for purposes of deterring entry by other firms. Farrell and Galini (1988) show that an innovator
may prefer to have more than one licensee despite the profit destruction caused by licensees’ competition because,
given incomplete contracts, this competition helps assure consumers against future ex post opportunism and thus
induces them to undertake specialized investments complementary to the innovator’s product.
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unique equilibrium with tipping away from firm 1 despite 1’s initial demand advantage due to its

larger installed base.16

Several implications follow. First, when m1 1 2> / , the possibility of a unique equilibrium

with tipping away from firm 1 requires two or more rivals in order for their network to exhibit

competition among its members, as needed to offset 1’s installed-base advantage. Thus, region C

in Figure 2 can arise only for n ≥ 2.

Second, rivals’ tipping-equilibrium output expands with n. Therefore, the parameter set
for m1 1 2> /  consistent with tipping from 1 also expands with n by increasing M1, thereby

shifting rightward the curve labeled M1 in Figure 2. By contrast, firm 1’s monopoly output qm
1  is

independent of n; hence, the parameter set that admits tipping to firm 1 is independent of n.

Thus, an increase in n expands the parameter set for which tipping from 1 is the unique

equilibrium and shrinks the set for which tipping to 1 is the unique equilibrium.

IV. Profitability of Degradation to the Largest Firm

It can be shown that in any equilibrium firm 1’s profit is π1 1
21* *( )( )= − v q , where q1

*

denotes firm 1’s corresponding equilibrium output. Therefore, in the first stage firm 1 will

choose the interconnection quality (θ = 0 or 1) that gives it the greater equilibrium output.

A. The Interior Equilibrium

First consider parameters values for which the unique equilibrium under degradation is

the interior equilibrium, given by (11) and (12). The discussion in Section III.C implies that a

necessary (but not sufficient) condition is v v< . In this case, firm 1 will prefer degradation if
and only if q qd a

1 > , where these outputs are given by (8) and (11). Let m1 denote the minimum

market share for which firm 1 will find degradation (weakly) preferable when it yields the
interior equilibrium. This threshold market share, m1, is obtained where firm 1’s outputs under

the two regimes are equal, q qa d= 1 , with the substitution β β1 1= m .  Solving q qa d= 1  for m1

yields

(24) m c v n
c n n v v n v v n v v

n v n n v
1

2 2 21 1 1 2 1 3 6 2

2 1 1 1
( , , , )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )
β

β

β
≡

− − −[ ] + − + − + − +[ ]
+ − + + −[ ]

.

                                                  
16 Suppose m1 1 2= /  and n ≥ 2. If v = 0, then the absence of network externalities leads to an interior equilibrium in
which all firms’ outputs are equal. Now increase v slightly. While both network 1 and network R have identical
installed bases, the additional competition in network R leads to the interior equilibrium with a greater number of
new subscribers to R than to 1. Consequently, network R has higher quality than network 1. Hence, as v is increased
further, tipping will first occur in the direction of network R. Because this is true for m1 1 2= / , it is also be true for

m1 slightly larger than 1/2: there is a range of v for which the unique equilibrium is tipping from 1.
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Lemma 5: If v < 1 2/ , then m1 1 2> / .

The intuition for Lemma 5 has been noted by Cremer, Rey and Tirole (2000, Proposition
5, which discusses their three-firm example). If m1 1 2≤ / , then degradation yields no quality

advantage to firm 1—since the interconnected rivals offer access to at least as many customers—

but reduces all firms’ qualities and thus overall demand by new subscribers. Hence, if

degradation can only yield the interior equilibrium, then firm 1 must have an initial market

exceeding 1/2 for degradation to be profitable.
Figure 3 is identical to Figure 1(a), except that we confine attention to m1 1 2 1∈[ / , ] and

we have added the contour m1, which partitions region A—in which the unique degradation

equilibrium is the interior equilibrium—into two sub-regions: A1, where firm 1’s profit is lower

than under interconnection, and A2 where its profit is higher. Furthermore, it can be shown that
the m1 curve passes through the intersection of the M 1 and M1 curves.17

B. Tipping Equilibria

Naturally, firm 1 will forgo degradation if it expects the outcome to be tipping to its

rivals. If tipping would be to firm 1, degradation presents a tradeoff: firm 1 obtains all the new

subscribers, but the total number of new subscribers falls because degradation reduces product

quality (by denying access to the rivals’ installed base).  Degradation is then profitable if and
only if q qTip a

1 0− > , where

(25) q q
c n n v

n v

c n n m v

n v
Tip a
1

1 11 2 2

2 2 1

1 2 2

2 2 1
− =

− + + −( )
+ −

=
− + + −( )

+ −

( ) ( )

( )( )

( ) ( )

( )( )

β β β
.

Because the difference in (25) can be negative, degradation need not be profitable even if it

yields tipping to firm 1. However, the following remark provides a sufficient condition for firm 1

to prefer the tipping equilibrium:

Remark 3: The degradation equilibrium with tipping to firm 1 is more profitable to it than the
interconnection equilibrium if m n1 2 2> +/( ) . Thus, firm 1 prefers the tipping equilibrium if

(i) m1 2 3> /  or (ii) n ≥ 2 and m1 1 2> / .

                                                  
17 To see this, consider v slightly less than v . Given this value of v, for market shares m1 satisfying M m M1 1 1< <
the unique degradation equilibrium is the interior equilibrium. But near the endpoints of this interval, firm 1’s profit
approaches that in the two tipping equilibria. At ( , )M v1  the degradation equilibrium is tipping from 1, which is

clearly less profitable than interconnection; and at ( , )M v1  the degradation equilibrium is tipping to 1, which is
usually more profitable than accommodation (see Remark 3 below). By continuity, there is some market share
between M1 and M 1 at which firm 1 is indifferent between connection and no connection. As v increases to v , the

interval ( , )M M1 1  shrinks to a single point, the intersection of the M1 and M 1 curves.
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C. Unprofitable Degradation

We shall say that degradation is clearly profitable at (c, v, β, n, m1) if degradation yields

a unique equilibrium and the corresponding profit to firm 1 strictly exceeds its profit under
interconnection. Similarly, degradation is clearly unprofitable at (c, v, β, n, m1) if it yields a

unique equilibrium in which firm 1’s profit is strictly less than under interconnection. In the

other parameter regions the profitability of degradation is ambiguous, depending on which of the

multiple equilibria emerges as the outcome under degradation (which, in turn, depends on

consumers’ expectations).

In Figure 3, degradation is clearly profitable in regions A2 and B (the latter follows from

Remark 3 because n ≥ 2);18 degradation is clearly unprofitable in regions A1 and C; and its
profitability is ambiguous in region D.  Lemmas 3 and 5 show that if m1 1 2≤ / , then under

degradation either tipping from 1 is possible (in some cases as the unique equilibrium) or the

unique equilibrium is interior and less profitable for firm 1 than is interconnection. This

observation yields the next proposition.

Proposition 2 (Unprofitable Degradation): If m1 1 2≤ / , then degradation (a) is clearly

unprofitable to firm 1 for some parameter values and (b) is never clearly profitable.

D. Potentially Profitable Degradation

To allow the possibility of clearly profitable degradation, we therefore now focus on
m1 1 2> / . In this range, we examine how the parameters v, n, m1, c, and β affect the likelihood of

firm 1’s choosing degradation. Specifically, we ask how varying each parameter individually

affects the set P of other parameter values for which degradation is clearly profitable and the set

U for which it is clearly unprofitable. We say that degradation becomes more likely if P expands

and U does not, or if U shrinks and P does not.

1. Network Effects

Increasing the network-effects term v has an ambiguous effect on the likelihood of
degradation. This is illustrated in Figure 4, which fixes β  and c and plots the contour m1 as the

number of rivals n takes the values 1, 2, 4, or 6. For a given n, the top of the corresponding

contour is shown at v n n n( ) ( )= − +( )( )1 2 1  because higher values of v rule out the interior

                                                  
18 Strictly speaking, degradation is not strictly profitable along the leftmost boundary of region A2; rather, here firm

1’s degradation and accommodation profits are equal ( q qd a
1 = ). For simplicity, we will gloss over this boundary

consideration in the informal discussion but account for it in the formal proofs.
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equilibrium being the unique equilibrium under degradation. Figure 4 shows that m1 can be

decreasing in v (for n = 1 or 2), increasing (n = 6) or backward bending (n = 4). Recall that the

unique interior equilibrium under degradation is less profitable than under interconnection to the
left of m1 and more profitable to the right. Thus, an increase in v can cause a move from

unprofitable to profitable degradation—A1 to A2 (e.g., for n = 2), the reverse (for n = 6), or two

switches (from A2 to A1 then back into A2, for n = 4).

Increasing v has an ambiguous effect on the likelihood of degradation also in the range of

v that admits tipping equilibria. Lemmas 1 and 2 showed that increasing v expands the region in

which there exists tipping to 1 and that in which there exists tipping away from 1. Thus, as

Figure 1 illustrates, an increase in v can cause a move into the region (D) of multiple-equilibria

starting from the region (C) of unique tipping away from 1 (thereby increasing the likelihood of
degradation) or, for higher values of m1, starting from the region (B) of unique tipping to 1

(thereby decreasing the likelihood of degradation).

The ambiguous effect of v in our model is partially at odds with CRT’s statement that, by

focusing on values of v low enough to ensure an interior equilibrium rather than tipping, they

have understated the likelihood of degradation.19 Given that firm 1 has over half the installed

base and faces a single rival, it is true that if network effects are strong enough to make tipping

possible under degradation, then tipping from 1 cannot be the unique equilibrium.  However, if

firm 1 faces at least two rivals (n ≥ 2), then for some values of the other parameters the unique

degradation equilibrium can be tipping from 1. Thus, consideration of tipping possibilities do not

systematically make degradation more likely.

2. Number of Rivals

Figure 4 also shows that increasing the number of rivals n has an ambiguous effect on the

likelihood of degradation in the parameter region where the unique degradation equilibrium
would be interior. This follows from the fact that the m1 contours corresponding to different

values of n intersect. For low v, increasing n expands region A2 at the expense of A1, making

degradation more likely; the reverse occurs for high v. The ambiguity arises because increasing n

serves to reduce firm 1’s profit in the unique interior equilibrium both under degradation and

under interconnection. Observe that the ambiguous effect of n in the region where degradation

leads to the (unique) interior equilibrium is in contrast to the tipping regions, where higher n

made degradation less likely (Proposition 1).

                                                  
19 CRT (2000, p. 455) state: “ ... Larger network externalities would give rise to ‘tipping effects’ and make it more
likely that the industry would be monopolized.”
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3. Firm 1’s Market Share
An increase in m1 makes it more likely that m m1 1>  (so the interior degradation

equilibrium is more profitable than interconnection), or m M1 1>  (tipping to 1 is possible), or

m M1 1>  (tipping from 1 is not possible). Such effects can be seen, for example, in Figure 3,

where n, c, v, and β are held constant, as a move into A2 ∪ B, or out of A1 ∪ C.  More formally,

given market share m1, we define

P c v n c v n m
m1

1≡ { }( , , , ) | ( , , , , )β βdegradation is clearly profitable at 

and

U c v n c v n m
m1

1≡ { }( , , , ) | ( , , , , )β βdegradation is clearly unprofitable at .

An increase in firm 1’s market share makes degradation more likely, as reported in the following

proposition.

Proposition 3: Suppose 1 2 1 1/ < ′ < ′′m m . Then P
m′′1
⊃ P

m′1
  and  U

m′′1
⊂ U

m′1
.

4. Market Expansion

 Increased scope for market expansion relative to the installed customer base arises if the
base β  is lower or if firms’ marginal cost c  is lower, since the latter allows a greater percentage

increase in the equilibrium number of new subscribers. In contrast to the ambiguous effects of v
and n, a reduction in β  or c  makes degradation less likely in both the tipping regions and

interior-equilibrium regions.  As we did for market share, we define the following sets:20

P c v n m m n c v n m
β

β≡ ≥{ }( , , , ) | , ( , , , , )1 1 12> 1/2,   and degradation is clearly profitable at ;

U c v n m m n c v n m
β

β≡ ≥{ }( , , , ) | , ( , , , , )1 1 12> 1/2,   and degradation is clearly unprofitable at ;

P v n m m n c v n m
c
≡ ≥{ }( , , , ) | , ( , , , , )β β1 1 12> 1/2,   and degradation is clearly profitable at ;

and

U v n m m n c v n m
c
≡ ≥{ }( , , , ) | , ( , , , , )β β1 1 12> 1/2,   and degradation is clearly unprofitable at .

For n ≥ 2, degradation is clearly profitable for firm 1 if and only if the unique degradation
equilibrium is tipping to 1 or it is interior and m m1 1> ; degradation is clearly unprofitable if the

unique degradation equilibrium is tipping from 1 or it is interior and m m1 1< . The following

lemma shows how the boundaries of these regions vary with the market-expansion parameters.

                                                  
20 In this subsection, the sets of parameters for which degradation is profitable or unprofitable also include the
restriction that n ≥ 2.  The reason for this is that when n = 1, equilibrium tipping to 1 can be unprofitable if firm 1’s
market share is less than 2/3.  Rather than imposing more complex assumptions in our discussion of the market
expansion parameters β and c (see Proposition 4), we restrict attention to the case of n ≥ 2.
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Lemma 6: Fix c < 1.
(i) If v < 1/2, then ∂ ∂M c1 0<  and ∂ ∂βM 1 0< .

(ii) If v n> +1 1/( ), then, ∂ ∂M c1 0<  and ∂ ∂βM1 0< .

(iiii) If v < 1 2/ , then ∂ ∂ <m c1 0 and ∂ ∂ <m1 0β .

Lemma 6 focuses on the case in which firm 1’s market share is at least 1/2, a necessary
condition for clearly profitable degradation. Therefore, to obtain the comparative statics for M 1,

M1, and m1, we consider v only over the ranges given. Geometrically, Lemma 6 implies that a

reduction in β or c pivots the M 1 curve counterclockwise through the point ( , ) ( / , / )m v1 1 2 1 2=

and pivots the M1 curve clockwise through the point ( , ) ( / , /( ))m v n1 1 2 1 1= + , with the

intersection of these two curves moving to the right. In addition, the m1 curve is shifted to the

right. These effects are illustrated in Figure 5, which is drawn for the case in which β  is

sufficiently large that M 1 and M1 intersect at some m1 1< . The initial scenario is depicted by the

curves labeled M 1, M1, and m1. In this case, the region of clearly profitable region is to the right

of the heavily shaded curve αγδ; after β or c is reduced, the  M 1,  M1, and m1 curves shift in the

directions shown, thereby shrinking the region of clearly profitable degradation to that bounded
by the heavily shaded curve ′ ′ ′α γ δ . Correspondingly, the region of clearly unprofitable

degradation expands from that bounded by δγε to that bounded by ′ ′δ γ ε . These observations

yield the following proposition.

Proposition 4 (Market Expansion and Degradation): Increased scope for market expansion

decreases the likelihood of degradation:

(i) If ′′ < ′β β , then P
′′β
⊆ P

′β
, and the inclusion is strict if P

′β
 is nonempty; also U

′′β
 ⊇ U

′β
,

and the inclusion is strict if U
′′β
 is nonempty.

(ii) If ′′ < ′c c , then P
c′′
⊆ P

c′
 and the inclusion is strict if P

c′
 is nonempty; also U

c′′
 ⊇ U

c′
,

and the inclusion is strict if U
c′′

 is nonempty.

The intuition for the above results is as follows. First, consider tipping. Recall that under
tipping to 1 total output equals 1’s monopoly output, qm

1 , while under tipping to the rivals, total

output is their n-firm Cournot output, Qn
c. As marginal cost c falls, qm

1  expands by less than does

Qn
c;22 thus, the competition-based advantage of the rivals’ network is stronger the lower is

marginal cost. A decrease in c, therefore, can both shrink the range of values v for which there

                                                  
22 This follows because the relevant inverse demands differ only in their intercept terms (see (5) and (6)).
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exists a tipping equilibrium to firm 1 and expand the range for which there exists tipping away

from 1. Turning to the total installed base, a lower β implies—for given market shares—a

smaller advantage to firm 1 in the absolute number of installed-base subscribers. A lower β or a

lower c thus reduces the likelihood that degradation would be profitable to firm 1, because each

effect makes tipping to 1 less likely and tipping away from 1 more likely.

Now consider the parameter region where degradation would lead to the unique interior

equilibrium. For this case, and assuming duopoly, CRT decompose the effect of degradation on

firm 1 into two terms: a decrease in total industry output, and a shift in output from firm 2 to firm

1. In Appendix 2, we extend this decomposition to the case where firm 1 faces n rivals and the

unique interior equilibrium under degradation is stable.23 We show the following. A fall in β has

two opposing effects: it decreases the output-reduction effect of degradation, since new

customers lose access to fewer subscribers when the installed base is smaller; but it also

decreases the output-shifting effect because, for given market shares, a lower β means a lower

absolute advantage to firm 1 in installed-base customers (hence a smaller gain in quality

advantage from degradation). This second effect dominates, so that on balance, a lower β makes

degradation by firm 1 less likely. Turning to marginal cost, a lower c increases the output-

reduction effect of degradation, because a fall in quality is more consequential when firms are

otherwise inclined to produce higher outputs (i.e., when marginal costs are low). Less obviously,

a lower c also weakly decreases the output-shifting effect (decreasing it strictly with n >1 rivals

and leaving it unchanged with n = 1, i.e., duopoly). Intuitively, a lower c dampens the installed-

base disadvantage of the rivals, because they can more readily compete for new customers. Thus,

both effects of a lower c make degradation less attractive to firm 1.

E. Illustrative Calculations: The Role of Potential Market Expansion

The parameters c, v, and β are difficult to interpret empirically—they have no natural unit

of measure. For example, c is measured relative to the maximum value for interconnection,

which is taken to be v = 1. And the installed base β  might be understood as measured relative to

the number of potential future subscribers. Nevertheless, for services such as Internet

connectivity, one might have estimates of expected growth, given the current number of firms

and assuming interconnection persists. In this section we show how such estimates can be used

to construct safe harbors below which the largest firm in is unlikely to degrade its connection

with rivals.

                                                  
23 It can be shown that the interior degradation equilibrium is stable if and only if v < 1/(n + 1).  In CRT’s duopoly
case (n = 1), whenever the interior equilibrium is the unique degradation equilibrium ( v v< =( ) /1 1 2) it is also
stable. However, for n ≥ 2, it is the case that 1 1/( ) ( )n v n+ < , so there exists a region in which the unique
degradation equilibrium is interior and stable, and another where it is interior and unstable.  Appendix 2 focuses on
the former case.
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Suppose that under interconnection the overall network would grow by some factor
γ (> 1).  Given parameters c, v, and n, this growth rate is achieved if the installed base equals βγ ,

which is derived as follows. Given parameters c, v, n, and β, if firm 1 pursues global

interconnection, then (8) implies that the number of new subscribers would be

q
n c v

n vi∑ =
+ − +

+ −
( )( )

( )( )
1 1

2 1
β

,

so that the growth rate of the overall network would be

(26)
β

β
β

β

+
=

+ − + + −
+ −

∑q n c n v
n v

i ( )( ) ( )
( )( )

1 1 2
2 1

.

If the network is expected to grow by at least factor γ, then

(27)
( )( ) ( )

( )( )
n c n v

n v
+ − + + −

+ −
≥

1 1 2
2 1

β
β

γ ,

which is equivalent to

(28) β β
γγ≤ ≡

+ −

+ − −[ ] +

( )( )

( ) ( )

n c
n v v

1 1

2 1 1
.

The function βγ  is decreasing in γ —a higher potential growth rate is possible when the initial

installed base is smaller.  In this subsection we assume c < 1, so that βγ  is well-defined.24  But

even then, βγ  (given in (28)) might not be positive for some values of γ and v—this corresponds

to low levels of growth that are simply unachievable.  Indeed, given c < 1, growth by factor γ > 1

is feasible (by an appropriate choice of β > 0) if and only if the denominator in (28) is strictly

positive, a condition that imposes an upper bound on the feasible v:

(29) v v
n

n
< ≡

− +
+ −max

( )( )
( )

γ
γ

1 2
2 1

.

Note that for any γ > 1 and n ≥ 1, vmax  strictly between 0 and 1.
Observe that in (28) the term (1 – c) is a factor in βγ .  Therefore, upon substitution of βγ

for β and m1βγ  for β1 in firm 1’s output formulas at the interior and tipping equilibria ((8), (11),

and (18)), c enters only through the factor (1 – c).  Thus, c affects the level of profitability from

degradation, but not whether degradation is profitable.25  Because we are interested only in
whether firm 1 finds degradation profitable, the normalization β βγ=  allows us to narrow

attention to the parameters v and m1, given a number n of rivals facing firm 1 and an expected

                                                  
24 From (26) we see that if c = 1, then the growth rate is independent of β.

25 Alternatively, with the substitution β βγ= , the expression (1 – c) cancels out of the expressions for M 1, M1, and

m1.
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market growth factor γ  under interconnection. Thus, for any c < 1, Figure 6 displays the

equilibrium possibilities under degradation, for the cases in which—under interconnection—the

network would grow by 50%, 100%, and 200% when firm 1 faces two or four rivals. As stated in

Proposition 4, greater scope for market expansion indeed increases the market share needed for

the largest firm to profit by degrading interconnection. This pattern is also reflected in Table 1.

γ

1.5 2.0 3.0

n = 2 .529 .595 .731

n = 4 .561 .638 .731

Table 1.  Safe Harbors: the market share m1 below which

degradation is not clearly profitable for firm 1, given

growth factor γ and n rivals to firm 1

If n rivals face firm 1 and the expected growth factor is γ, then degradation is clearly

profitable for firm 1 only in regions A2 and B, where v ranges over the values consistent with n

and γ; that is, from 0 to vmax. The market shares reported in Table 1 correspond to that at the

leftmost point of region A2∪B. If the expected growth factor is γ  and firm 1 faces n

interconnected rivals, then degradation is not clearly profitable for firm 1 if its market share is

below the critical value reported.  In this sense, the values in Table 1 represent safe harbors. In

one respect these safe harbors might be viewed as permissive because firm 1 might be willing to

degrade interconnection when multiple equilibria are possible—if firm 1 believes that of the

several equilibria possible, the one to be realized will be tipping to 1, then firm 1 may degrade

even for market shares below the safe harbors given (see region D in Figure 6). However, in

another sense these safe harbors are quite restrictive. For example, Figure 6(d) shows that when

γ = 2 and n = 4, even for market shares somewhat above the safe harbor of 0.638, degradation

would also be unprofitable for much of the feasible range of v.

V. Conclusion

A central concern in markets with strong network effects is that if one firm attains a high

enough share of locked-in customers—for example, through merger—it may restrict

interconnection with its smaller competitors because its larger customer base then gives it a

quality edge in competing for new customers. A particularly stark risk is that the market would

tip to the large firm, resulting in monopoly. Moreover, a common intuition is that when network

effects are sufficiently strong and all links have equal value, a fifty-percent share of installed-

base customers suffices for tipping to the large firm if it degrades interconnection, because its
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network then offers access to more links than could the rivals collectively. We showed that this

intuition is flawed whenever the large firm faces two or more rivals: it interconnection is

degraded, the unique equilibrium can be tipping to the rivals (making degradation clearly

unprofitable). Competition among the interconnected rivals serves as a commitment that their

network will expand more aggressively than would a single firm (for the same initial base),

thereby offering higher quality. This competition-based advantage can compensate for the rivals’

smaller installed base. Thus, for a given market share of the large firm, the likelihood of tipping

to the rivals rises with their number or, more generally, with the strength of competition among

them.

The likelihood that degradation would be profitable—whether the market tips away from

rivals or they remain active but contract—decreases as the scope for market expansion relative to

the installed base increases, whether due to lower marginal cost or to greater potential for

demand growth. With greater scope for market expansion, any share advantage in the installed

base becomes less consequential. Thus, for given market shares, the risk that the largest firm

could profitably degrade interconnection is higher in relatively mature industries such as

traditional telephony than in more rapidly growing industries such as the Internet. In rapidly

growing markets, degradation can be unprofitable even if the largest firm controls substantially

more than half the installed base. (Malueg and Schwartz (2002) expand on this point for the

Internet.)

Several caveats to our analysis should be noted, however. We have been agnostic about

what outcome would result when there exist multiple equilibria under degradation, confining our

predictions to cases where there is a unique degradation equilibrium. Degradation becomes more

likely if consumers’ expectations in cases of multiple equilibria would systematically favor the

largest firm (a possibility noted by Farrell and Klemperer, 2002). Secondly, we have focused on

global degradation; as shown by CRT, targeted degradation may be profitable even when global

degradation is not. Finally, and working in the opposite direction, our analysis assumes that the

largest network obtains no profit from sales of access to rivals. Relaxing this assumption can

make degradation of interconnection less attractive.
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Appendix 1.  Proofs

Proof of Lemma 1.
Because n does not enter the expression for M 1, it follows that ∂ ∂M n1 0/ = .

Next, we have

(A.1)
∂
∂ β
M
v

G v c
v v

1
2 23 2

=
−

( , )

( )
,

where G v c c v c v( , ) ( )( ) ( )≡ − − − − − +1 3 4 2 2 2β . First observe that G v v( , ) ( )1 2 1 02= − + <β  for

all v > 0. Next consider c < 1. The denominator of (A.1) is strictly positive for v ∈( , ]0 1 ;

moreover, G is a concave function of v, achieving its maximum at

′ ≡
−

− +
v

c
c

1
2 1( ) β

,

yielding a maximum of

G v c
c c

c
( , )

( )( ( ) )
( )

′ = −
− − +

− +
1 4 1 3

2 1
β

β
,

which is strictly negative for all 0 ≤ c < 1. It now follows that ∂ ∂M v1 0<  for 0 ≤ c ≤ 1.

Finally, substituting v = 1/2 into (20) yields M
v1 1 2

1 2
=

=
/

/ .    ///

Proof of Lemma 2.

First, observe that

∂
∂

β

β

M
n

v c v

v n n v
1

2

1 2 1

1 1
0=

− − +( )
+ + −( )

> 
( ) ( )

( )( )

for all 0 < v < 1, β > 0, and c ≤ 1.

Next, we have

(A.2)
∂
∂ β

M
v

G v c

n n v v
1

2 21 1
=

+ + −( )
 

( , )

( )( )
,

where

G v c c n c n v n n c n v( , ) ( )( ) ( )( ) ( ) ( )( )≡ − + − − + + + + − +( )1 2 1 2 1 1 1 1 1 2β .

First, we see G v n n v( , ) ( )1 1 02= + >β  for all v > 0. Next consider c < 1. With respect to v, G

assumes its minimum at

′ ≡
−

+ − +
v

c
n c n

1
1 1( )( ) β

,
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at which

G v c
c n n c n

n c n
( , )

( ) ( ) ( )( )

( )( )
′ =

− + + − +( )
+ − +

1 2 1 2 1 1

1 1

β

β
,

which is strictly positive for all c < 1. Therefore, we can conclude that G v c( , ) > 0 for all v < 1

and c ≤ 1. Hence, from (A.2), the above cases show that ∂ ∂M v1 0>  for all 0 < v < 1 and c ≤ 1.

Finally, substituting v = 1/(n + 1) into (23) yields M
v n1 1 1

1 2
= +

=
/( )

/ .   ///

Proof of Lemma 4.

(i) It can be shown that

(A.3) M M
c v n n v n v

v v n v v
1 1

22 1 2 4 1 2 1

3 2 1 2
− =

− +( ) + − + + +( )
− + − +( )

( ) ( ) ( )

( ) ( )

β

β
.

Because β > 0, c ≤ 1, and 0 < v < 1, it follows that the difference in (A.3) is zero if and only if

0 2 4 1 2 1 2= + − + + +n n v n v( ) ( ) .

The two roots of this quadratic equation are

1
2 1

±
+

n
n( )

.

Because we only consider v < 1, we see M M1 1=  if and only if

v v
n

n
= = −

+
1

2 1( )
.

Because M 1 is decreasing in v and M1 is increasing in v (Lemmas 1 and 2) and M M1 1=  at

v v= , it follows that  v v>  implies M M1 1< .  Similarly, v v<  implies M M1 1> .

(ii) Given c and β, the point of intersection of M 1 and M1 is at ( , ) ( , )m v M v
v v1 1=

=
.

Moreover,

(A.4) M
c n n n n n n

n nv v1

2 1 2 1 1 2 1

2 2 1=
=

− + − −( ) + + −( )[ ]
+ +( )

( ) ( ) ( )

( )

β

β
.

For n = 1, it is the case that M
v v1 1 2

=
= / . Moreover, the expression in (A.4) is increasing in n.

Therefore, M
v v1 1 2

=
≥ /  for all n ≥ 1. Taking the limit in (A.4), we have

lim
( )

( )β→∞ =
=

+ −( )
+ +

M
n n n

n nv v1

2 2 1

2 2 1
,

which is strictly positive and less than 1 for all n ≥ 1.
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(iii) Next assume n ≥ 2 and c < 1. In this case, 2 1 1n n n( )+ > +  so that, from (A.4) we have

 lim
β→ =

= +∞
0

1M
v v

,

which shows that M 1 and M1 do not intersect at any m1 1<  if β is sufficiently small.  ///

Proof of Proposition 1.

(i)  Let ′ ≥n 1 be given.  Fix c < 1 and let β > 0 be such that M c v
n1 1( , , )
′

<β  (see Lemma 4).

Define the market shares

m M c va n1 1

1
2

1≡ +( )′
( , , )β

and

m M c nb1 1

1
2

1
2

3 4 1≡ + ′{ }







min ( , / , , ),β .

Observe that 1 2 11/ < <m a  and 1 2 11/ < <m b . Furthermore,

m M c v M c v na n n1 1 1> = ′
′ ′

( , , ) ( , , , )β β ,

so at ( , , , , )c v n m
n a′

′β 1  the unique degradation equilibrium is tipping to firm 1 (see Section III.C

and the conditions defining Region B); thus, ( , , , ) ( )c v m T n
n a

u

′
∈ ′β 1 1 .

Next, observe that m M c nb1 1 3 4< ′( , / , , )β , so that at ( , / , , , )c n m b3 4 1β ′  degradation can

yield equilibrium tipping from firm 1. Thus, ( , / , , ) ( )c m T nb R3 4 1β ∈ ′

Because ′ ≥n 1 was arbitrary, the foregoing shows that for any n ≥1, T nu
1 ( ) and T nR ( )

are nonempty.

(ii) If ( , , , ) ( )c v m TRβ 1 1∈ , then v > 1/2 (see Lemma 2, and recall that here m1 1 2> / ). But for

v > 1/2 it is the case that M 1 1 2< / , so that M m1 11 2< </ , which implies that ( , , , , )c v mβ 1 1

supports tipping to 1 as a degradation equilibrium. Thus, if ( , , , ) ( )c v m TRβ 1 1∈ , then

( , , , ) ( )c v m Tβ 1 1 1∈ , implying that tipping from firm 1 cannot be the unique degradation

equilibrium; that is, TR
u( )1  is empty.

Now suppose n ≥ 2.  Define the market share

′ ≡ + { }







m M c v

n1 1

1
2

1
2

1min ( , , ),β .

Then ′ >m1 1 2/  and

′ < =m M c v M c v n
n n1 1 1( , , ) ( , , , )β β ,

so that degradation yields tipping from firm 1 as the unique equilibrium. Thus,
( , , , ) ( )c v m T n

n R
uβ ′ ∈1 .
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The two foregoing cases establish that T nR
u( ) is nonempty if and only if n ≥ 2.

(iii)(a) Fix ′′ > ′ ≥n n 1. Because M 1 is independent of n, it follows that T n T n1 1( ) ( )′′ = ′ .  To

show that T nu
1 ( )′′  ⊂ T nu

1 ( )′ , we first show that T nu
1 ( )′′  ⊆ T nu

1 ( )′  and then show that T nu
1 ( )′′  ≠

T nu
1 ( )′ .

Suppose ( , , , ) ( )c v m T nuβ 1 1∈ ′′ . Then at ( , , , , )c v n mβ ′′ 1  the unique degradation

equilibrium is tipping to 1, which requires

m M c v1 1≥ ( , , )β

and

m M c v n1 1> ′′( , , , )β .

From Lemmas 1 and 2 we know that M c v n M c v n1 1( , , , ) ( , , , )β β′′ > ′ . Consequently,

m M c v1 1≥ ( , , )β

and

m M c v n1 1> ′( , , , )β ,

which implies that at ( , , , , )c v n mβ ′ 1  the unique degradation equilibrium is tipping to 1; that is,

( , , , ) ( )c v m T nuβ 1 1∈ ′ . Thus, T nu
1 ( )′′  ⊆ T nu

1 ( )′ .

To see that T nu
1 ( )′′  ≠ T nu

1 ( )′ , fix c < 1 and let β > 0 be such that M c v n
n1 1( , , , )
′

′ <β  (see

Lemma 4). Define the market share

′ ≡ ′ + ′′{ }( )′ ′
m M c v n M c v n

n n1 1 1

1
2

1( , , , ) min ( , , , ),β β .

Then
′ > ′ =

′ ′
m M c v n M c v

n n1 1 1( , , , ) ( , , )β β

so that ( , , , ) ( )c v m T n
n

u

′
′ ∈ ′β 1 1 .  However, because M c v n M c v n1 1( , , , ) ( , , , )β β′′ > ′ , we also have

′ >
′

m M c v
n1 1( , , )β

and
′ < ′′

′
m M c v n

n1 1( , , , )β ,

so that at ( , , , , )c v n m
n′

′′ ′β 1  both tipping equilibria are possible under degradation. Hence,

( , , , ) ( )c v m T n
n

u

′
′ ∉ ′′β 1 1 .  Thus, T nu

1 ( )′′  ≠ T nu
1 ( )′ .

(iii)(b) The proof that T nR ( )′′  ⊃ T nR ( )′   and  T nR
u( )′′  ⊃ T nR

u( )′  follows the same lines given for

(iii)(a) and so is omitted.   ///
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Proof of Lemma 5.

It can be verified that

(A.5) m
c n v v n v v v n v vn

n v n n v
1

2 2 2
1
2

2 1 1 2 1 1 4 1

2 2 1 1 1
− =

− − −( ) + − + − + + −[ ]
+ − + + −[ ]

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

β

β
.

Because c ≤ 1 and v < 1/2 (recall that v v n< ≤( ) /1 2  is necessary for the degradation equilibrium

to be interior and unique), it is clear that the expression in (A.5) is strictly positive if the

coefficient of β  in the numerator is strictly positive over the relevant range. Let the function f

denote the coefficient of β; that is,

f v n v v v n v vn( , ) ( ) ( ) ( )≡ − + − + + −2 1 1 4 12 2 2.

Observe that
(A.6) f v v v v v( , ) ( )( )1 3 7 2 1 2 3 02= − + = − − >

for v < 1/2.  Also,
(A.7) f v v( , )2 4 8 0= − >

for v < 1/2.  Next observe that

(A.8)
∂
∂

= − >
=

f
n

v
n 2

21 3 0

for all v < 1/2. Because f is convex in n for 0 < v < 1 and f v( , )2 0>  for all v < 1/2, it now

follows from (A.8) that
(A.9) f v n f v( , ) ( , )≥ >2 0

for all v < 1/2 and all n ≥ 3.  Inequalities (A.6), (A.7), and (A.9) now establish that the coefficient

of β in (A.5) is strictly positive for all c ≤ 1 and v < 1/2.    ///

Proof of Proposition 3.
Fix  1 2 1 1/ < ′ < ′′m m . We will prove only P

m′′1
⊃ P

m′1
. The proof that U

m′′1
⊂ U

m′1
 is

analogous.  We first show that P
m′′1
⊇ P

m′1
. Suppose ( , , , )c v n P

m
β ∈

′1
. Then the degradation

equilibrium is unique and strictly more profitable than the accommodation equilibrium (so firm
1’s degradation output strictly exceeds qa ). There are two cases to consider: either the

degradation equilibrium is tipping to 1 or it is the interior equilibrium. First, suppose that at
( , , , , )c v n mβ ′  the unique degradation equilibrium is tipping to 1; then

′ ≥m M1 1  and  ′ >m M1 1 (unique degradation equilibrium is tipping to 1)

and

q qTip

m

a
1

1′
> (degradation is strictly profitable).
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Then for ′′> ′m m1 1  it is the case that ′′> ′ ≥m m M1 1 1  and  ′′> ′ >m m M1 1 1, so the unique degradation

equilibrium at share ′′m1  continues to be tipping to 1. Moreover, q q qTip

m

Tip

m

a
1 1

1
1

′′ ′

> > , where the

first inequality follows from (18), so the degradation equilibrium at share ′′m1  is strictly more

profitable than the accommodation equilibrium. Therefore, ( , , , )c v n P
m

β ∈
′′1
.

The second case to consider is that at ( , , , , )c v n mβ ′  the unique degradation equilibrium is

interior; then

′ <m M1 1  and  ′ >m M1 1 (unique degradation equilibrium is interior)

and

q qd

m

a
1

1′
> (degradation is strictly profitable).

Now for ′′> ′m m1 1  it is the case that ′′> ′ >m m M1 1 1, so there are two subcases to consider: either

′′<m M1 1, in which case the unique degradation equilibrium is interior; or ′′≥m M1 1, in which

case the unique degradation equilibrium is tipping to 1. In the first case, ′′<m M1 1, firm 1’s

degradation output is qd

m1
1′′
, with

q q qd

m

d

m

a
1 1

1
1

′′ ′

> > ,

(where the first inequality follows from (11)) implying degradation is strictly profitable. In the
second case, ′′≥m M1 1, firm 1’s degradation output is qTip

m1
1′′
, with

q q q q qTip

m

Tip

m M

d

m M

d

m

a
1 1 1 1

1 1 1 1 1
1

′′ = = ′

≥ = > > ,

where the first inequality follows from (18), the equality follows from substitution of m M1 1=

into (18) and (11), and the second inequality follows from (18), implying degradation is strictly
profitable. Thus, if at ( , , , , )c v n mβ ′  the unique degradation equilibrium is interior and strictly

profitable, then at ( , , , , )c v n mβ ′′  the degradation equilibrium is unique and strictly more

profitable than accommodation. Hence, ( , , , )c v n P
m

β ∈
′′1
.

The above analysis shows P
m′′1
⊇ P

m′1
. To complete the proof, it remains only to show

that P
m′′1

≠ P
m′1

. Continuing with 1 2 1 1/ < ′ < ′′m m ,  fix c = 0 , n = 1, and β > 0 such that

1 3 2 01+ ′′− >( )m β  (this last condition guarantees that tipping to 1 is strictly more profitable than

accommodation when firm 1’s share is ′′m1 —see (25)). Next define ′v  and ′′v  as the unique

solutions in v to

′ =m M v1 1 0 1( , , , )β and ′′=m M v1 1 0 1( , , , )β .
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Then it follows from Lemma 2 that 1 2 1/ < ′ < ′′ <v v . Now define v v v* ( ) /≡ ′ + ′′ 2. Then at

( , , , , )*0 1v mβ ′′  the unique degradation equilibrium is tipping to 1 and it is strictly more profitable

than accommodation, so ( , , , )*0 1
1

v P
m

β ∈
′′
. However, at ( , , , , )*0 1v mβ ′ , tipping from 1 is

possible, so degradation is not clearly profitable; that is, ( , , , )*0 1
1

v P
m

β ∉
′
. Thus, P

m′′1
≠ P

m′1
.  ///

Proof of Lemma 6.

(i) It is easily calculated that

∂
∂ β
M
c

v
v v

1 1 2
3 2

= −
−
−









( )

        and       
∂
∂β β
M v c

v v
1

2

1 2 1

3 2
= −

− −

−











( )( )

( )
,

both of which are strictly negative for  0 ≤ v < 1/2 and 0 ≤ c < 1.

(ii) Also,

∂
∂ β
M
c

n v

n n v v
1

1 1

1 1
=

−( )
+ + −( )

< 
( + )

 0
( )( )

,

where the inequality follows because the denominator of the fraction is strictly positive for all
v ∈ ( , )0 1  and the numerator is strictly negative for all v > 1/(n + 1). Similarly,

∂
∂β β
M n v

n n v v
1

2

1 1

1 1
0=

−( )
+ + −( )

<
( + )

( )( )

for all v n∈ +( /( ), )1 1 1 .

(iii) Finally, we determine the effects of c and β on m1:

∂
∂

= −
− −[ ]

+ − + + −( )
<

m
c

n n v v

n v n n v
1

1

2 1 1 1
0

( )

( )( ) ( )( )β

and

∂
∂

= −
− − −[ ]

+ − + + −( )
<

m c n n v v

n v n n v
1

2

1 1

2 1 1 1
0

β β

( ) ( )

( )( ) ( )( )
,

where the inequalities follow because n ≥ 1 and we are restricting attention to v < 1/2.   ///

Proof of Proposition 4.
We will prove that if ′′ < ′β β , then P

′′β
⊆ P

′β
, and the inclusion is strict if P

′β
 is

nonempty. The other conclusions of the proposition are proved analogously.
Let ′′ < ′β β  be given and suppose ( , , , )c v n m P1 ∈

′′β
. Then the degradation equilibrium at

( , , , , )c v n m′′β 1  is unique and either tipping to 1 or interior. Suppose it is tipping to 1. Then

m M c v1 1≥ ′′( , , )β   and  m M c v n1 1> ′′( , , , )β .
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By Lemma 6 we have M c v M c v1 1( , , ) ( , , )′′ > ′β β  and M c v n M c v n1 1( , , , ) ( , , , )′′ > ′β β , so that

m M c v1 1> ′( , , )β   and  m M c v n1 1> ′( , , , )β ,

implying that at ( , , , , )c v n m′β 1  the degradation equilibrium is unique and interior. Because n ≥ 2,

it follows that at ( , , , , )c v n m′β 1  this tipping to 1 is strictly more profitable to firm 1 than

accommodation. Hence, ( , , , )c v n m P1 ∈
′β
.

Suppose instead that at ( , , , , )c v n m′′β 1  the degradation equilibrium is unique and interior.

Then

m M c v1 1< ′′( , , )β   and  m M c v n1 1> ′′( , , , )β .

Again by Lemma 6 we have M c v M c v1 1( , , ) ( , , )′′ > ′β β  and M c v n M c v n1 1( , , , ) ( , , , )′′ > ′β β .

Consequently, m M c v n1 1> ′( , , , )β  and either (a) m M c v1 1≥ ′( , , )β  or (b) m M c v1 1< ′( , , )β . In

case (a), the degradation equilibrium is unique and it is tipping to 1, which is strictly more

profitable than accommodation because n ≥ 2. In case (b), the degradation equilibrium is unique

and interior, with
m m c v n m c v n1 1 1> ′′ > ′( , , , ) ( , , , )β β ,

where the first inequality follows because the interior degradation equilibrium is strictly more
profitable to firm 1 than accommodation at ( , , , , )c v n m′′β 1 , and the second inequality follows

from Lemma 6. Hence, in case (b) firm 1 also finds degradation strictly more profitable than
accommodation. Therefore, ( , , , )c v n m P1 ∈

′β
.

The foregoing establishes that P
′′β
⊆ P

′β
. Now suppose P

′β
 is nonempty. We will show

this inclusion is strict. Suppose that ( , , , )c v n m P1 ∈
′β
. Then under degradation at ( , , , , )c v n m′β 1 ,

the unique equilibrium is either tipping to 1 or the interior equilibrium. First suppose it is the
tipping equilibrium to 1. Then it is also the case that ( , , , )c v n m P1 ∈

′β
 and at ( , , , , )c v n m′β 1  the

unique equilibrium is tipping to 1, where v v n= ( )  for the particular value of n under

consideration. Define the market share

m M c v n M c v n1 1 1

1
2

1* ( , , , ) min ( , , , ),≡ ′ + ′′{ }( )β β .

Then at ( , , , , )*c v n m′β 1  the unique degradation equilibrium is tipping to 1, so ( , , , )*c v n m P1 ∈
′β
.

In contrast, at ( , , , , )*c v n m′′β 1  tipping from 1 is possible, so degradation is not clearly profitable,

so ( , , , )*c v n m P1 ∉
′′β
.

Next suppose that under degradation at ( , , , , )c v n m′β 1 , the unique equilibrium is the

interior equilibrium. Because degradation is strictly profitable, it must be that m m c v n1 1> ′( , , , )β .

Now define the market share

m m c v n m c v n1 1 1

1
2

1* ( , , , ) min ( , , , ),≡ ′ + ′′{ }( )β β .
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Then m m c v n1 1
* ( , , , )> ′β  and m m c v n1 1

* ( , , , )< ′′β , so ( , , , )*c v n m P1 ∈
′β
  but ( , , , )*c v n m P1 ∉

′′β
.

The above analysis shows that if P
′β
 is nonempty, then P

′′β
⊂ P

′β
.   ///

Appendix 2. Decomposing the Effects of β and c on the Largest
Network’s Incentives for Global Degradation

In this Appendix we provide a decomposition of how c and β affect firm 1’s incentives

for degradation.  To understand the effects of the interconnection-quality choice on firm 1’s

equilibrium output, CRT (2000, p. 451) decompose the effect into a “demand expansion effect,”
q q1 2

* *+ , that captures the effect of quality on total output; and a “quality differentiation effect,”

q q1 2
* *− , that depicts the effect of interconnection quality on firm 1’s advantage in acquiring new

customers.  In this Appendix we introduce a similar decomposition that allows us to analyze, for

n ≥ 1, how firm 1’s incentives for global degradation depend on β and c.

Firm 1’s (interior) equilibrium output, q1
* , can be represented as follows:

q q q q qi
i

n

i
i

n

1 1
2

1

1
2

11
2

* * * * *= +








 + −





















=

+

=

+

∑ ∑ .

Here q qi
i

n

1
2

1
* *+

=

+

∑  is simply total equilibrium output.  Also, q qi
i

n

1
2

1
* *−

=

+

∑  is firm 1’s advantage in

acquiring new customers, which translates into the increase in its advantage in overall network

quality after new subscribers are added (for n = 1, this effect is positive; for n ≥ 2, it may be

negative).

The role of c. Let TotQ c( , )θ  denote the equilibrium total output, q qi
i

n

1
2

1
* *+

=

+

∑ , given

interconnection quality θ  (either 0 or 1) and installed base β (all other variables, such as market

share and marginal cost, are held constant).  Similarly, let QDE c( , )θ  denote the quality

differentiation effect, q qi
i

n

1
2

1
* *−

=

+

∑ . Letting q c1
*( , )θ  denote firm 1’s equilibrium output when it

chooses quality θ  (either 0 or 1) and the common marginal cost is c, we can express firm 1’s

output as a sum of the two terms described above: 2 1q TotQ QDE* = + .  If the difference

q c q c1 10 1* *( , ) ( , )−  is positive, then for cost parameter c, firm 1 would prefer global degradation

over accommodation.  Next we determine how an increase in c affects this difference, holding

the other parameters constant. The terms TotQ and QDE come into play in expressing the effect
of c on these incentives for degradation as follows, with c ch l> :
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2 0 1 0 1

0 0 1 1

0 0

1 1 1 1q c q c q c q c

TotQ c QDE c TotQ c QDE c

TotQ c QDE c

h h l l

h h h h

l l

* * * *( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

−( ) − −( ){ }
= +( ) − +( )[ ]

− +( ) −− +( )[ ]
= −( ) − −( ){ }

+ −( ) − −

TotQ c QDE c

TotQ c TotQ c TotQ c TotQ c

QDE c QDE c QDE c QDE c

l l

h h l l

h h l l

( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( ,

1 1

0 1 0 1

0 1 0 1 )) .( ){ }
It can be shown that

∂ −[ ]
∂

>
TotQ c TotQ c

c

( , ) ( , )0 1
0,

for any parameters for which the equilibrium under degradation is interior and stable (recall that
stability requires v n< +1 1/( )); that is, degradation reduces total output by less when cost is high

than when it is low.  Thus, if parameters yield a stable interior equilibrium under degradation,
then for c ch l> , it follows that

TotQ c TotQ c TotQ c TotQ ch h l l( , ) ( , ) ( , ) ( , )0 1 0 1 0−( ) − −( ) > .

Similarly, it can be shown that

∂ −[ ]
∂

≥
QDE c QDE c

c

( , ) ( , )0 1
0

for any parameters such that the degradation equilibrium is an interior equilibrium (the inequality

is strict if n > 1); that is, degradation increases firm 1’s network quality advantage more when
cost is high than when it is low. Consequently, for c ch l>  we have

QDE c QDE c QDE c QDE ch h l l( , ) ( , ) ( , ) ( , )0 1 0 1 0−( ) − −( ) ≥ ,

where the inequality is strict for n > 1.  Thus, increases in c produce reinforcing effects that favor

degradation: first, there is a smaller loss in total output from degradation at the higher cost level;

second, firm 1’s increase in its absolute network quality advantage is greater at the higher cost

level.  Hence, the above decomposition yields

2 0 1 0 1

0 1 0 1

0 1

1 1 1 1q c q c q c q c

TotQ c TotQ c TotQ c TotQ c

QDE c QDE c

h h l l

h h l l

h h

* * * *( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

−( ) − −( ){ }
= −( ) − −( ){ }

+ −( )) − −( ){ }
>

QDE c QDE cl l( , ) ( , )

.

0 1

0

Thus, if at marginal cost cl  firm 1 is just indifferent between degradation and accommodation,

then at a slightly higher cost level it will strictly prefer degradation.
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The role of β.  As with the analysis of marginal cost, we letTotQ( , )θ β  denote the

equilibrium total output, q qi
i

n

1
2

1
* *+

=

+

∑ , given interconnection quality θ and installed base β, and let

QDE( , )θ β  denote the quality differentiation effect, q qi
i

n

1
2

1
* *−

=

+

∑ .  The effect of β can be

decomposed analogously to that above, here with β βh l> :

2 0 1 0 1

0 1 0 1

0 1

1 1 1 1q q q q

TotQ TotQ TotQ TotQ

QDE QDE

h h l l

h h l l

h h

* * * *( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

β β β β

β β β β

β β

−( ) − −( ){ }
= −( ) − −( ){ }

+ −( )) − −( ){ }QDE QDEl l( , ) ( , ) .0 1β β

It can be shown that

∂ −[ ]
∂

<
TotQ TotQ( , ) ( , )0 1

0
β β

β
,

for any parameters for which the equilibrium under degradation is interior and stable; that is,

degradation reduces total output by more when the installed base is large than when it is small.
Thus, if parameters yield a stable interior equilibrium under degradation, then for β βh l> , it

follows that

TotQ TotQ TotQ TotQh h l l( , ) ( , ) ( , ) ( , )0 1 0 1 0β β β β−( ) − −( ) < .

Also, it can be shown that for all relevant cases26,

∂ −[ ]
∂

>
QDE QDE( , ) ( , )0 1

0
β β

β
,

which says that the increase in firm 1’s network quality advantage from degradation is greater

when the installed base is large than when it is small.  Thus, increases in β have opposing effects

on firm 1’s incentives for degradation.  However, it can be shown that the second effect
dominates the first, so that if at βl  firm 1 is indifferent between accommodation and degradation,

then, holding constant firm 1’s share of the installed base, it will strictly prefer degradation for
β βh l> .

                                                  
26 The only cases in which, for stable equilibria, this derivative is negative arise when n = 2 and firm 1’s market
share is less than 53/104.  But in these situations, when comparing the stable interior equilibrium under degradation
with that under accommodation, firm 1 always prefers accommodation, for all β > 0.  For such cases, changes in β
do not affect firm 1’s choice of interconnection quality (perfect interconnection), which is our primary concern.
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Figure 1(a). Equilibria Under Degradation (large β)

Region A:  The unique equilibrium is interior

Region B:   The unique equilibrium is tipping to 1

Region C:   The unique equilibrium is tipping from 1

Region D:   Three equilibria exist: tipping to 1, 

! ! tipping from 1, and the interior equilibrium
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Figure 1(b). Equilibria Under Degradation (small β)

Region A:  The unique equilibrium is interior

Region C:   The unique equilibrium is tipping from 1

Region D:   Three equilibria exist: tipping to 1, 

! ! tipping from 1, and the interior equilibrium
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Figure 3.  Equilibrium Possibilities and Interconnection Choice

No Degradation: region A1 –– degradation leads to worse interior equilibrium for firm 1

! !      region C — degradation leads to tipping away from firm 1

Degradation: region A2 –– degradation leads to better interior equilibrium for firm 1

!            region B — degradation leads to tipping to firm 1

Ambiguous:  region D –– degradation can lead to either tipping equilibrium
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Figure 4.  Effects of n on Profitability of Degradation
                When the Unique Equilibrium Is Interior  
                 (β = 1, c = 0.7)
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Figure 5. Effects of Increased Scope for Market Expansion:  β'' < β'
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Figure 6.  Equilibrium Possibilities and Interconnection Choice: Market Expansion Scenarios

No Degradation: region A1 –– degradation leads to worse interior equilibrium for firm 1

! !      region C — degradation leads to tipping from firm 1

Degradation: region A2 –– degradation leads to better interior equilibrium for firm 1

!            region B — degradation leads to tipping to firm 1

Ambiguous:  region D –– degradation can lead to either tipping equilibrium
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