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ON BEHAVIORAL ARROW-PRATT RISK PROCESS WITH APPLICATIONS 

TO RISK PRICING, STOCHASTIC CASH FLOWS, AND RISK CONTROL 

 

 

by 

Godfrey Cadogan 

--- Abstract --- 

 

We introduce a closed form behavioural stochastic Arrow-Pratt risk process, decomposed 

into discrete asymmetric risk seeking and risk averse components that run on different 

local times in ϵ-disks centered at risk free states. Additionally, we embed Arrow-Pratt 

(“AP”) risk measure in a simple dynamic system of discounted cash flows with constant 

volatility, and time varying drift. Signal extraction of Arrow-Pratt risk measure shows 

that it is highly nonlinear in constant volatility for cash flows. Robust identifying 

restrictions on the system solution confirm that even for small time periods constant 

volatility is not a measure of AP risk. By contrast, time-varying volatility measures 

aspects of embedded AP risk. Whereupon maximal AP risk measure is obtained from a 

convolution of input volatility and idiosyncratic shocks to the system. We provide four 

applications for our theory. First, we find that Engle, Ng and Rothschild (1990) Factor-

ARCH model for risk premia is misspecified because the factor price of risk is time 

varying and unstable. Our theory predicts that a hyper-ARCH correction factor is 

required to remove the Factor-ARCH specification. Second, when applied to analysts 

beliefs about interest rates and volatility, we find that AP risk measure is a feedback 

control over stochastic cash flows. Whereupon increased risk aversion to negative shocks 

to earnings increases volatility. Third, we use an oft cited example of Benes, Shepp and 

Witsenhausen (1980) to characterize a controlled AP diffusion for a conservative investor 

who wants to minimize the AP risk process for an asset. Fourth, we recover stochastic 

differential utility functional from the AP risk process and show how it is functionally 

equivalent to Duffie and Epstein‟s (1992) parametrization. 

 

Keywords: behavioural Arrow-Pratt risk process; asymmetric risk decomposition; asset 

pricing; Markov process; local martingale; local time change 
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I. INTRODUCTION 

This paper contributes to the mammoth literature on stochastic differential equations 

in financial economics by introducing (1) a closed form stochastic Arrow-Pratt (“AP”) 

risk process that is decomposed into asymmetric risk aversion and risk seeking 

components, and (2) a linear operator that embeds Arrow-Pratt risk measure in stochastic 

processes of interest. The AP process is a time changed martingale, and the discrete 

embedding paves the way for estimation of risk processes via signal extraction methods. 

Specifically, we use an adaptive infinitesimal generator to embed Arrow-Pratt
1
 (“AP”) 

risk measure in a Markov process and then specify a simple theory motivated filtering 

scheme to estimate it. Robustness of that generator was verified by its recovery with an 

independent Dambis-Dubins-Schwartz time change theory for local martingales. We 

impose identifying restrictions on the model to calibrate AP risk measure to volatility. 

Contrary to Tobin‟s (1958, pp. 71-72) static model, we find that constant volatility is not 

a measure of AP risk for any feasible identifying restriction-- even over very small time 

periods. By contrast, we find time varying volatility captures aspects of Arrow-Pratt risk 

measure—even though it is unstable. Thereby confirming empirical results by Chou, et 

al. (1992, pp. 205, 207), who also report that French, et al. (1987, p.20) found no 

                                              

1
 Pratt (1964, p. 123 n.2, p. 135, n.4) credited unpublished lecture notes by Kenneth Arrow, and work by 

Robert Schlaifer with independent “discovery” of the risk aversion measure 𝑟 𝑥 = −
𝑢 ′′  𝑥 

𝑢 ′  𝑥 
 for a regular 

utility function. Aspects of that formula was subsequently published in Arrow (1965). 
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statistically significant evidence between expected risk premia and ex-ante volatility in a 

GARCH type model.  

Time change for local martingales show that independent risk seeking and risk 

aversion components of Arrow-Pratt risk process operate on different time clocks. In fact, 

excursions of each component from a risk free state are asymmetric. Thereby, predicting 

an asymmetric risk aversion result from von Neuman Morgensterrn utility albeit in a 

stochastic environment—as opposed to Tversky and Khaneman (1992) static asymmetric 

loss aversion theories. Additionally, our theory explains empirical results for 

subordinated processes reported by Clark (1973), and Carr and Wu (2004). Nelson and 

Foster (1994, pp. 10-11) derive time change results similar to ours—albeit in the context 

of adaptive data analysis for ARCH models. Our results are obtained from 

microfoundation theory. 

To be sure, variance and or AP risk measure are not the only risk measures 

proposed in the literature. For example, Ross (1981, p. 625) argued that the AP risk 

measure is weak because it fails in cases of incomplete insurance, and he proposed a 

stronger measure of his own. Recently, Artzner, et al (1999) introduced the concept of 

coherent measures of risk based on 4-axioms, that include the controversial translation 

variance restriction which resembles the “risk compensation” concept reported in LeRoy 

and Warner (2000, p. 85 eq. (9.11)). Acerbi (2001, 2008) introduced a purported spectral 

risk measure based on Artzner, et al (1999). However, closer examination of Acerbi‟s 

model shows that it is a version of Tversky and Khaneman‟s (1992) prospect theory. In 

fact, Tversky and Khaneman (1992) popularized the concept of loss aversion—a variant 
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of risk aversion—due to asymmetric value functions or skewed preferences observed in 

laboratory experiments. Even though this paper introduces a behavioural Arrow-Pratt risk 

process, it does not test whether volatility is a measure of risk for prospect theory 

specifications
2
. 

 The instant paper proceeds as follows. In Section II.A. we provide a brief 

introduction to the problem, and in Section II. B we introduce an adaptive infinitesimal 

generator, in Proposition II.B.1, that embeds Arrow-Pratt risk measure in Markov 

processes. The latter process is then used to model discounted stochastic [cash] flow with 

embedded Arrow-Pratt risk measure. Section II.C presents a simple dynamic system for 

signal extraction of the AP risk measure with a Kalman-Bucy filter. Section II.D imposes 

identifying restrictions on the estimator to calibrate Arrow-Pratt risk measures to 

volatility. The feasibility of the restrictions determine whether or not volatility is a 

measure of Arrow-Pratt risk. Additionally, a maximal Arrow-Pratt risk result is 

established from which volatility bounds are inferred. Section III.A. recovers the 

infinitesimal generator for AP risk process by suitable time change of local martingales 

under the Dambis-Dubins-Schwartz  (1965), and Knight‟s (1971) representation theories. 

Section III.B. introduces a risk decomposition theory based on AP risk processes in the 

Ornstein-Uhlenbeck class. We also consider the local time behavior of excursions of AP 

                                              

2
  Risk measures in prospect theory are asymmetric, and subprobability measures are assumed. See 

Tversky and Khaneman (1992). Nelson (1991) provides a mechanism for estimating asymmetric 

volatility. However, implementing the additional complexities of those models here would detract from 

this  paper‟s focus on Arrow-Pratt risk measure. 
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risk from an 𝜖 −disk centered at risk free states. Lemma III.B.5 and Theorem III.B.4 are 

the main results there. 

Section IV of the paper provides four important applications of our theory. First, 

in Section IV.A we show that hyper-ARCH risk aversion processes leads to specification 

error in Engle, Ng and Rothschild (1990) Factor-ARCH model for pricing risk premia. 

Second, in Section IV.B application to analysts beliefs about interest rates, and volatility 

in discounted cash flows show that risk aversion to negative shocks in earnings leads to 

increased volatility from feedback effects between risk aversion and volatility. This is the 

sui generis of Barsky and DeLong‟s (1993) findings. Third, Section IV.C provides 

heuristics about the time changed AP risk process. Whereupon we apply an oft cited 

example by Benes, Shepp and Withausen (1980) to the case of a conservative investor 

who wants to monitor the Arrow-Pratt risk associated to an asset. Fourth, Section IV. D 

employs an elementary integral to recover stochastic differential utilityfrom AP risk 

process, and establish functional equivalence with Duffie and Epstein (1992) 

specification. 

II. THE MODEL 

A. Introduction to the problem 

Given a sample space Ω, i.e., laws of nature, 𝔉 a 𝜍-field of Borel subsets of Ω, a 

probability measure 𝑃 on Ω, and a finite time interval [0,𝑇], an analyst wants to estimate 

the Arrow-Pratt risk aversion process  𝑟 𝑡,𝜔 ; 0 ≤ 𝑡 ≤ 𝑇 < ∞ --associated with a 
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realization of a sample path for the flow {𝐻 𝑡,𝜔 ; 0 ≤ 𝑡 ≤ 𝑇 < ∞} (exponentially 

discounted over  𝔽 with (constant) rate 𝑅 =  1 + 𝑖 −1 for interest rate 𝑖). Technically, all 

processes are right continuous with left hand limits, and 𝐻(𝑡,𝜔) is a 𝔽-adapted process 

defined on the measure space (Ω,𝔉,𝔽,𝑃) where 𝔽 is the 𝑃 completition of the augmented 

natural filtration of Brownian motions 𝔉𝑈 ∪ 𝔉𝑉  to be motivated in the sequel. That is, 

𝔽 =  𝔉𝑡 0≤𝑡<𝑇<∞  subsumes the natural filtration of Brownian motions (𝑈 𝑡,𝜔 ; 0 ≤ 𝑡 <

∞) and (𝑉 𝑡,𝜔 ; 0 ≤ 𝑡 < ∞). All processes are assumed to have the strong Markov 

property
3
, i.e., present independent of the past.  

Pratt (1964, p. 125 eq. (5)) postulated the following relationship for local risk 

premium 𝜋(𝑥, 𝑧 ) on an asset for some generic risk 𝑧  with volatility, i.e., variance, 𝜍𝑧
2 

(1)    𝜋 𝑥, 𝑧  =
1

2
𝜍𝑧

2𝑟 𝑥 + 𝑜(𝜍𝑧
2) 

If we assume that 𝜋(⋅) is observable and that 𝜍𝑧
2 and 𝑟(𝑥) are not, then AP risk is 

embedded in 𝜋(⋅), and separability of 𝜍𝑧
2 and 𝑟(𝑥) is an artifact of Pratt‟s theoretical 

assumptions. Specifically, a generalized risk premium relationship could be rewritten as 

(2)     𝜋 𝑥, 𝑧  = 𝑓(𝜍𝑧
2, 𝑟 𝑥 ) + 𝜉 

where the functional form of 𝑓(⋅) is unknown, and the random variable 𝜉 depends on 𝜍𝑧
2. 

With that in mind, (1) and (2) suggests a signal extraction or filtering procedure for 

estimating 𝑟(𝑥). We proceed as follows. 

                                              

3
 See Dynkin (1961, p. 108) 
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B. Embedding Arrow-Pratt risk measure with infinitesimal generators 

By definition, Arrow-Pratt risk measure in choice space 𝑋 for a utility function 

𝑢 ∈ 𝐶2(𝑋) is given by 

(3)     𝑟 𝑥 = −
𝜕2𝑢(𝑥)

𝜕𝑥2

𝜕𝑢 (𝑥)

𝜕𝑥

 

This can be rewritten as 

(4)       
𝜕2𝑢

𝜕𝑥2
 + 𝑟 𝑥  

𝜕𝑢

𝜕𝑥
 = 0 

So that slight modification of (4) leads to a linear operator 

(5)     ℒ =
𝜍2(𝑥)

2
 
𝜕2

𝜕𝑥2
 + 𝑟 𝑥  

𝜕

𝜕𝑥
  

which is the infinitesimal generator of the following homogenous Markov process
4
 

(6)    𝑑𝑋 𝑡,𝜔 = 𝑟 𝑋 𝑡  𝑑𝑡 + 𝜍 𝑋 𝑡  𝑑𝑊 𝑡,𝜔  

where 𝑊(𝑡,𝜔) is a Wiener process, 𝜍(𝑋 𝑡 ) is a coefficient of diffusion, and 𝑟 𝑋 𝑡   is 

Arrow-Pratt risk measure embedded in the drift term. In the sequel we assume that 𝑟(⋅) 

and 𝜍(⋅) are Lipshitz continuous and square integrable, i.e., ∫ |𝑟(𝑋 𝑡   2𝑑𝑡 +
∞

0

∫ |𝜍(𝑋 𝑡,𝜔   2
∞

0
< ∞. These requirement guarantee convergence of the Pickard-Lindelof 

iteration scheme to a fixed point solution of the AP equation(s). In particular, equation (6) 

is the stochastic differential analog to Pratt‟s (1964) risk premium equation generalized in 

(2) above. Let 𝔇(ℒ) be the domain of ℒ. The results in (1)-(6) can be summarized by the 

following 

                                              

4
 See Protter (2004, pp. 349-350). 
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PROPOSITION II.B.1 (Arrow-Pratt embedding). Let 𝑟 𝑥 = −
𝜕2𝑢(𝑥)

𝜕𝑥2

𝜕𝑢 (𝑥)

𝜕𝑥

 be the Arrow-

Pratt risk measure on a choice space for a utility function 𝑢 ∈ 𝐶2(𝑋); and  

ℒ =
𝜍2(𝑥)

2
 
𝜕2

𝜕𝑥2
 + 𝑟 𝑥  

𝜕

𝜕𝑥
  

be an infinitesimal generator, with domain 𝔇(ℒ), defined on utility functions 𝑢 ∈

𝐶2 𝑋 ∩ 𝔇(ℒ). Then Arrow-Pratt risk measure 𝑟(𝑥) is embedded in the Markov process 

{𝑋 𝑡,𝜔 ; 0 ≤ 𝑡 < ∞} defined on the measure space (Ω,𝔉,𝔽,𝑃) and represented by the 

Ito process 

𝑑𝑋 𝑡,𝜔 = 𝑟 𝑋 𝑡  𝑑𝑡 + 𝜍 𝑋 𝑡  𝑑𝑊 𝑡,𝜔  

So that estimation of Arrow-Pratt risk measure is a signal extraction problem tantamount 

to estimation of the drift term in a Markov process.     〗 

C. A simple dynamic system for estimating Arrow-Pratt risk measure 

With the foregoing embedding behind us, let 𝑍(𝑡,𝜔) be the discounted value of 

the flow 𝐻(𝑡,𝜔) over 𝔽. Assume that 𝑈(𝑡,𝜔) and 𝑉(𝑡,𝜔) are Brownian motions, and 

that 𝜍𝑧  is a constant volatility associated with 𝐻(𝑡,𝜔) through 𝑍(𝑡,𝜔). We let 𝐶(𝑡) be an 

unobservable deterministic function that controls “jumps” in 𝑈(𝑡,𝜔) in equation (8) 

below
5
. In order to estimate 𝑟(𝑍(𝑡,𝜔)), the analyst proposes the simple solveable 

dynamic system: 

                                              

5
 This assumption implies that the AP risk measure embedded in the Markov process for equation (9) also 

has its own stochastic process. 
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(7)    𝑍 𝑡,𝜔 = ∫ 𝑒−𝑅𝑠𝐻 𝑠,𝜔 𝑑𝑠
𝑡

0
 

(8)    𝑑𝑟 𝑍(𝑡,𝜔) = 𝐶 𝑡 𝑑𝑈(𝑡,𝜔) 

(9)   𝑑𝑍 𝑡,𝜔 = 𝑟(𝑍(𝑡,𝜔))𝑑𝑡 + 𝜍𝑧𝑑𝑉(𝑡,𝜔) 

These equations
6
 describe a filtering problem in which the mean squared error for 

estimated Arrow-Pratt risk measure, 𝑟 (𝑍(𝑡,𝜔)), is 

(10)    𝑆 𝑡,𝜔 = 𝐸   𝑟 𝑍(𝑡,𝜔) − 𝑟  𝑍(𝑡,𝜔)  
2
  

Whereupon the Ricatti equation
7
 is given by 

(11)    
𝑑𝑆 𝑡 ,𝜔 

𝑑𝑡
= −𝜍𝑧

2𝑆2 𝑡,𝜔 + 𝐶2 𝑡  

To simplify matters further, assume 𝐶 𝑡 = 𝑐 so that 

(12)      
𝑑𝑆(𝑡 ,𝜔)

(𝑐2−𝜍𝑧
2𝑆2 𝑡 ,𝜔 )

= 𝑑𝑡 

The solution to that equation is 

(13)     𝑆 𝑡,𝜔 =  
𝑐

σz
 tanh 𝜍𝑧𝑐𝑡  

According to Kalman-Bucy filter theory, Oksendal (2003, pp. 99-100, Theorem 6.2.8), 

the dynamics of 𝑟 (𝑍(𝑡,𝜔)) is given by 

(14)   𝑑𝑟  𝑍(𝑡,𝜔) = −𝜍𝑧
2𝑆 𝑡,𝜔 𝑟  𝑍(𝑡,𝜔) 𝑑𝑡 + 𝜍𝑧

2𝑆 𝑡,𝜔 𝑑𝑍 𝑡,𝜔  

                                              

6
 In models that posit risk neutrality equation (7) is  replaced by 

𝑍 𝑡,𝜔 = 𝐸𝑃
∗
[ 𝑒−𝑅𝑠𝐻 𝑠,𝜔 𝑑𝑠

𝑡

0

|𝔉𝑟 ; 0 ≤ 𝑟 < 𝑡] 

where 𝑃∗ is an equivalent martingale measure. That is, the probability measure 𝑃∗ is equivalent to 𝑃 but it 

is a function of 𝑍 𝑡,𝜔 . See Musiela and Rutkowski (2004, pp. 13-14). 

7
 See Oksendal (2003, p. 99). 
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which upon substitution of the value of 𝑆(𝑡,𝜔) from (13) gives 

= −𝜍𝑧
2  
𝑐

𝜍𝑧
 tanh 𝜍𝑣𝑐𝑡 𝑟  𝑡,𝜔 𝑑𝑡 + 𝜍𝑧

2  
𝑐

𝜍𝑧
 𝑡𝑎𝑛𝑕 𝜍𝑧𝑐𝑡 𝑑𝑍 𝑡,𝜔  

⇒ 𝑑 cosh 𝜍𝑧𝑐𝑡  𝑟  𝑡,𝜔 = 𝜍𝑧𝑐. sinh 𝜍𝑧𝑐𝑡 𝑑𝑍 𝑡,𝜔  

So that 

(15)   𝑟  𝑍(𝑡,𝜔) =  
𝜍𝑧

cosh  𝜍𝑧𝑐𝑡 
 ∫ sinh 𝜍𝑧𝑐𝑠 𝑑𝑍 𝑠,𝜔 

𝑡

𝑜
 

=  
𝜍𝑧

cosh 𝜍𝑧𝑐𝑡 
  sinh 𝜍𝑧𝑐𝑠 𝑒

−𝑅𝑠𝐻 𝑠,𝜔 𝑑𝑠
𝑡

0

 

D. Interpreting the system estimator for Arrow-Pratt risk measure. 

This estimate of Arrow-Pratt relative risk aversion plainly shows that it depends 

on volatility (𝜍𝑧), and interest rate (𝑅) for discounted dynamic flows (𝐻 𝑠,𝜔 ). For 

example, if 𝐻(𝑡,𝜔) is earnings flow at time 𝑡, then equation (7) is discounted earnings 

 𝑑𝑍 𝑡,𝜔   decomposed into unobservable permanent  𝑟 𝑍(𝑡,𝜔) 𝑑𝑡  and temporary 

 𝜍𝑧𝑑𝑉 𝑡,𝜔   components. Thus, risk aversion (“don‟t mess with my money”) is a 

“permanent” part of discounted cash flows in which volatility is also embedded. So the 

problem here is one of signal extraction
8
. Heuristically, instead of the time separable 

volatility implied by equation (13), we let 𝜍 𝑧 𝑡 = 𝜍𝑧𝑐𝑡 be a time varying volatility, and 

plug it in the solution, for expository purposes to get  

                                              

8
 Barsky and DeLong (1993) used fundamental valuation in a rational expectations framework and found 

that permanent and temporary components of dividend streams explains excess fluctuations in historic 

stock market index. So our equation (9) could also be interpreted as the present value of a dividend 

payment stream.  In Barsky and De Long‟s paper investors risk aversion is reflected in their beliefs about 

dividend growth rates. 
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(16)   𝑟  𝑍(𝑡,𝜔) =  
𝜍𝑧

cosh  𝜍 𝑧 𝑡  
 ∫ sinh 𝜍 𝑧 𝑠  𝑑𝑍 𝑠,𝜔 

𝑡

𝑜
 

= 𝜍𝑧 sech 𝜍 𝑧 𝑡   sinh 𝜍 𝑧 𝑠  𝑒
−𝑅𝑠𝐻 𝑠,𝜔 𝑑𝑠

𝑡

0

 

This is equivalent to imposing restrictions on a Heston (1993) type stochastic volatility 

model 

(17)  𝑑𝜍 𝑧 𝑡,𝜔 = 𝜅  𝜇𝜍 𝑧 − 𝜍 𝑧 𝑡,𝜔  𝑑𝑡 + 𝜂 𝜍 𝑧 𝑡,𝜔  𝑑𝑊(𝑡,𝜔) 

where 𝜇𝜍 𝑧  is long run mean volatility, 𝜅 is the rate of mean reversion, 𝜂 is a constant 

volatility of  𝜍 𝑧 𝑡,𝜔 , i.e., a secondary source of volatility risk, and 𝑊(𝑡,𝜔) is a 

Brownian motion. Typically, 𝑊(𝑡,𝜔) is assumed to be correlated with 𝑉(𝑡,𝜔) in 

equation (9). That is, 𝐸 𝑑𝑊 𝑡,𝜔 𝑑𝑉 𝑡,𝜔  = 𝜌𝑑𝑡. However in this paper, if we assume 

that 𝜍 𝑧 𝑡,𝜔  is deterministic, i.e., 𝑑𝑊 𝑡,𝜔 = 0, then equating the drift term in (17) with 

the time separable specification implied by (13) shows that 

(18)      𝜍𝑧𝑐 = 𝜅  𝜇𝜍 𝑧 − 𝜍 𝑧 𝑡,𝜔   

Which implies that for 𝜍 𝑧 𝑡,𝜔 ≥ 0 we get 

(18)′        𝜍𝑧𝑐 ≤ 𝜅𝜇𝜍 𝑧  

So that constant volatility 𝜍𝑧  is bounded by long run volatility factors comprised of the 

rate of volatility reversion (𝜅) and controls (𝑐)on the jumps of risk aversion. This result 

is summarized in the following 

LEMMA II.D.1 (Volatility bounds). Let {𝑟 𝑍(𝑡,𝜔) ; 0 ≤ 𝑡 ≤ 𝑇 < ∞} be an Arrow-

Pratt risk aversion process, and  

𝑑𝑍 𝑡,𝜔 = 𝑟 𝑍(𝑡,𝜔 𝑑𝑡 + 𝜍𝑧𝑑𝑉(𝑡,𝜔) 
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be an induced behavioural Markov process defined on a filtered probability space 

(Ω,𝔉,  𝔉𝑡 0≤𝑡<𝑇<∞ ,𝑃) with constant diffusion coefficient 𝜍𝑧  and background driving 

Brownian motion 𝑉(𝑡,𝜔). Let 𝜇𝜍 𝑧  be the long run mean diffusion coefficient for 𝑍(𝑡,𝜔); 

𝜅 be the rate of mean reversion, and 𝑐 be the constant volatility of the AP risk aversion 

process. If 𝜍 𝑧(𝑡) is a deterministic time separable volatility measure for 𝑍(𝑡,𝜔), then  

𝜍 𝑧(𝑡) = 𝜇𝜍 𝑧 −  
𝜍𝑧𝑐

𝜅
  

whereupon 𝜍𝑧 ≤  
𝜅

𝑐
 𝜇𝜍 𝑧 .         〗 

1. Identifying restrictions 

In order to extend Arrow-Pratt risk measure 𝑟 (𝑍(𝑡,𝜔)) to constant volatility 𝜍𝑧  it 

must satisfy the identifying restriction 

(19)      𝑟  𝑍(𝑡,𝜔) = 𝜍𝑧  

This is tantamount to asserting that the drift term for discounted flow variables in 

equation (9) is constant. Whereupon we have the identifying restriction
9
 

(20)    sech 𝜍 𝑧 𝑡  ∫ sinh 𝜍 𝑧 𝑠  𝑑𝑍 𝑠,𝜔 
𝑡

0
= 1 

But the law of the iterated logarithm for Brownian motion (Brieman (1968, p. 263)) states 

that 

                                              

9
 This restriction depends on the zero drift specification of equation (8) because if 𝑐 = 0, then 𝜍  𝑡 = 0 

and we get “0 = 1" which is a non sequitur. Therefore, we must have 𝑐 ≠ 0 for a plausible restriction and 

for equation (19) to hold. Additionally, there is no loss of generality in specifying (8) without a constant 

drift term. Because Girsanov‟s Theorem would remove it and we would have a functionally equivalent 

specification. 
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(21)    𝑃 − lim    𝑡↓0  
𝑉 𝑡 ,𝜔 

 2𝑡 log log
1

𝑡

= 1 = 1 a.s 

So that for small 𝑡, equation (16) is approximately equal to 

(22)      tanh𝜍 𝑧 𝑡 .Δ𝑍 𝑡,𝜔 = 1 

where 𝛥𝑍 𝑡,𝜔 = 𝑟 𝑍(𝑡,𝜔) Δ𝑡 + 𝜍𝑧Δ𝑉(𝑡,𝜔). Thus, tanh𝜍 𝑧 𝑡 𝜍𝑧Δ𝑉 𝑡,𝜔 ≤ 1, where 

Δ𝑉 𝑡,𝜔  is the modulus of Brownian motion. The modulus, Δ𝑉(𝑡,𝜔) in equation (22) is 

characterized as follows  

PROPOSITION II.D.1.1 (Modulus of Continuity of Brownian motion). Let {𝑉 𝑡 ; 𝑡 ≥

0} be Brownian motion, and define the following random subsets on the space of 

continuous functions 𝐶[0,1]: 

(23)     𝔉 𝑕 =  𝑉 𝑠 + 𝑕 − 𝑉 𝑠 ; 0 ≤ 𝑠 ≤ 1− 𝑕  

Then  

(24)  𝑃 − lim
h↓0

sup{ 2hlog h−1  − 
1

2
 sup0≤h≤1 |𝑉 𝑠 + 𝑕 − 𝑉 𝑠 | = 1} = 1 

Further, 

(25) 𝑃 − lim
h↓0

  h−1log h−1  
 

1

2
 

inf0≤s≤1−h sup0≤t≤h 𝑉 𝑡 + 𝑠 − 𝑉 𝑠  =
𝜋

 8
 = 1 

            〗  

Proof. See de Acosta (1985). 

Because tanh𝜍 𝑧 𝑡 ≈𝜍 𝑧 𝑡 + 𝑜𝑝(𝜍 2 𝑡 ) is small, and according to Proposition II.D.1.1, 

Δ𝑉 𝑡,𝜔 ∈ 𝔉(𝑕) is also a Brownian motion, see Gikhman and Skorokhod (1969), 

equation (22) is further reduced to 
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(26)      𝜍 𝑧 𝑡 Δ𝑉 𝑡,𝜔 ≤ 1 

Treating Δ𝑉 𝑡,𝜔  as a Brownian motion, and substituting the incipient time varying 

relation 𝜍 𝑧 𝑡 = 𝜍𝑧𝑐𝑡 in (26) reveals that the restriction is satisfied only if 

(27)     𝜍𝑧 ≤  
1

𝑐𝑡
  

1

 2𝑡 log log
1

𝑡

  

This is contrary to our initial hypothesis of constant variance because the upper bound 

above fluctuates with time. Therefore, constant volatility is not a measure of Arrow-Pratt 

risk almost surely because according to (27) the identifying restriction in (26) fails for 

even small values of 𝑡. 

 Without the identifying restrictions for constant volatility, small values of 𝑡 in 

equation (20) and (22) implies 

(28)   𝑟  𝑍(𝑡,𝜔) = 𝜍𝑧𝜍 𝑧 𝑡 𝑟 𝑍(𝑡,𝜔) Δ𝑡 +  𝜍𝑧𝜍 𝑧 𝑡 Δ𝑉 𝑡,𝜔 + 𝑜𝑝(𝜍 2 𝑡 ) 

So that for time separable 𝜍 𝑧 𝑡 = 𝜍𝑧𝑐𝑡, we have 

(29)   𝑟  𝑍(𝑡,𝜔) = 𝜍𝑧
2𝑐𝑡Δ𝑍 𝑡,𝜔 + 𝑜𝑝 𝜍 

2 𝑡   

= 𝜍𝑧
2𝑐𝑡 𝑟 𝑍(𝑡,𝜔) Δ𝑡 + 𝜍𝑧

2Δ𝑉 𝑐2𝑡2,𝜔 + 𝑜𝑝 𝜍 
2 𝑡   

where Δ𝑉(𝑡,𝜔) is the modulus of Brownian motion. In which case Arrow-Pratt risk 

measure extends to volatility as indicated by the term 

(29)′   𝑣𝑎𝑟(𝑟  𝑡,𝜔 = 𝜍 𝑧
2 𝑡,𝜔 = 𝜍𝑧

4𝑣𝑎𝑟(Δ𝑉 𝑐2𝑡2,𝜔 ) = 𝜍𝑧
4𝑐2𝑡2 

2. Volatility-shock convolution and maximal Arrow-Pratt risk measure 

Equation (28) suggests the existence of a convolution between time-varying 

volatility input and idiosyncratic shocks, i.e. the impulse from a Brownian motion. 
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Assume a time interval 0 ≤ 𝑡 ≤ 110, and partition the interval in equal increments Δ𝑢. 

Specifically we rewrite (29)′ as follows: 

(30)   𝜍 𝑟(𝑡,𝜔) = 𝜍 𝑧
2 𝑡 ∗ Δ𝑉 𝜍𝑧

2𝑡,𝜔 = ∫ 𝜍 𝑧
2 𝑡 − 𝑢 Δ𝑉(𝜍𝑧

2𝑢,𝜔)
1

0
𝑑𝑢 

Thus, by Cauchy-Schwartz inequality 

(31)  sup𝑡∈[0,𝑇] 𝜍 𝑟(𝑡,𝜔) 2 ≤ ∫ │𝜍 𝑧
2 𝑡 − 𝑢 │2𝑑𝑢

1

0
  ∫ │Δ𝑉 𝜍𝑧

2𝑢,𝜔 │2𝑑𝑢
1

0
  

If we use a “matched filter”
11

 so that 𝐴𝜍 𝑧
2 𝑡 − 𝑢 = Δ𝑉 𝜍𝑧

2𝑢,𝜔 , where 𝐴 is a constant, 

then 

(32)   sup𝑡∈ 0,𝑇  𝜍 𝑟(𝑡,𝜔) 2 =𝐴−2 maxΔu  ∫ (𝜍𝑧
2Δ𝑢)𝑑𝑢

1

0
 

2

  

= 𝐴−2 max
0<Δu≤t<1

 𝜍𝑧
2Δ𝑢 2 = 𝐴−2𝜍𝑧

4𝑡2 

Since the total variation maxΔ𝑢 = 𝑡. Thus, depending on whether 𝐴 ⋚ 1 from (18), the 

maximal volatility of Arrow-Pratt risk  

(33)     sup
𝑡∈ 0,𝑇 

 𝜍 𝑟(𝑡,𝜔) = 𝐴−1𝜍𝑧
2𝑡 ≤ 𝐴−1  

𝜇𝜍 𝑧𝜃

𝑐
 

2

𝑡 

is bounded by long run volatility factors. 

III. AN INVARIANT ARROW-PRATT RISK PROCESS 

In this section we introduce an invariant Arrow-Pratt risk process based on the 

relation posited  for Arrow-Pratt risk measure in equation (4). First we begin by stating 

                                              

10
 Normalizing the interval [0,𝑇] by dividing it by 𝑇, and scaling Brownian motion accordingly permits 

this without loss of generality.  

11
 See Gershenfeld (1999, p. 187). 
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the Dambis-Dubins-Schwartz time change theorem for local martingales after we provide 

some basic definitions. 

Definition III.1 (Stopping time functional) (Revuz and Yor (1999)). Let 𝔽 =  𝔉𝑡 𝑡≥0 be 

a right continuous filtration, and {𝐴 𝑡,𝜔 ; 0 ≤ 𝑡 < ∞} be an increasing right continuous 

process adapted to 𝔽, i.e. 𝐴(⋅) can be derived from information in 𝔽. Let 

(34)     𝑇 𝑠 = inf 𝑡;𝐴 𝑡,𝜔 > 𝑠  

where inf 𝜙 = +∞. Then 𝑇(𝑠) is a stopping time. 

Definition II.2 (Time change) A time change 𝑇is a family 𝑇(𝑠), 𝑠 ≥ 0 of stopping times 

such that 𝑠 ⟼ 𝑇(𝑠) are almost surely increasing and right continuous. 

LEMMA III.3. 𝐴(𝑡,𝜔) is an 𝔉𝑇 𝑠  stopping time.     〗 

Proof. See Revuz and Yor (1999, p. 180) 

A. Time changed Arrow-Pratt risk processes 

Now we are ready to state the following. For notational convenience we write 𝑟(𝑡,𝜔) 

instead of 𝑟(𝑍 𝑡,𝜔 ). 

THEOREM III.A.1 (Dambis-Dubins-Schwartz). Let {𝑟 𝑡,𝜔 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞} be a 

nowhere constant right continuous local martingale, and < 𝑟 >𝑡  be its variation such that 

lim𝑡→∞ < 𝑟 >𝑡 = ∞. Let 𝑇(𝑠) be a stopping time defined by 

(35)      𝑇 𝑠 = inf⁡{𝑡 ≥ 0; < 𝑟 >𝑡   > 𝑠} 

and {𝑉 𝑠,𝜔 ,𝒢𝑠; 0 ≤ 𝑠 < ∞} be a Brownian motion defined over a filtration  𝒢𝑠 𝑠≥0. 

Then the time changed Brownian motion process 

(36)      𝑉 𝑠,𝜔 = 𝑟(𝑇 𝑠 ,𝜔) 
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over the filtration 𝒢𝑠 ≜ 𝔉𝑇 𝑠  is a standard Brownian motion. Specifically, we have 

(37)      𝑟 𝑡,𝜔 = 𝑉(< 𝑟 >𝑡 ,𝜔)    〗 

Proof. See Karatzas and Shreve (1991,  p. 174). 

Specifically, to apply the Dambis-Dubins-Schwartz theorem, let 

(38)      𝔏 =  
𝜕2

𝜕𝑥2
 + 𝑟 𝑥  

𝜕

𝜕𝑥
 = 

be the infinitesimal generator of an Arrow-Pratt process as indicated by equation (4). The 

following steps are adapted from Pedersen (2003, pp. 208-209). Let 

(39)       𝑇 𝑡 = 1− 𝑒−2𝑡  

be a time change, and 

(40)     𝑟 𝑡,𝜔 =
𝑉 𝑇 𝑡 ,𝜔 

 1−𝑇 𝑡 
= 𝑒𝑡𝑉(1− 𝑒−2𝑡 ,𝜔) 

Further, let 

(41)     𝑊 𝑡,𝜔 =
1

 2
∫

1

 1−𝑢

𝑇 𝑡 

0
𝑑𝑉 𝑢,𝜔  

=
1

 2
 

1

 1 − 𝑇(𝑢)

𝑡

0

𝑑𝑉 𝑇(𝑢),𝜔  

Let 𝑓 ∈ 𝐶2(𝑋) and consider the Ito formula for a generic Markov process  

(42)     𝑑𝑋 𝑡,𝜔 = 𝜇 𝑋 𝑑𝑡 + 𝜍 𝑋 𝑑𝑊 𝑡,𝜔  

starting at 𝑋 0 = 𝑥. Then 

(43)   𝑓 𝑋 𝑡,𝜔  = 𝑓 𝑥 + 𝑓′ 𝑋 𝑡,𝜔  𝑑𝑋 𝑡,𝜔 +
1

2
𝑓′′  𝑋 𝑡,𝜔  (𝑑 𝑋 𝑡,𝜔  

2
 

From which we get the infinitesimal generator 

(44)     𝐴𝑓 = limt↓0
𝑓 𝑋 𝑡 ,𝜔  −𝑓 𝑥 

𝑡
≡ 𝔏𝑓 
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assuming 𝑓 ∈ 𝒟 𝐴 ∩ 𝒟 𝔏 ∩ 𝐶2(𝑋) where 𝒟(⋅) is the domain of (⋅). Thus computation 

shows that 

(45)     𝐴𝑓 = 𝜇 𝑋 𝑓′(𝑥) +
1

2
𝑓′′ (𝑥) 𝑑𝑊 2 

But from (39) and (41) we get 

(46)    
1

2
 𝑑𝑊 2 =

1

2
 

1

 1−𝑇 𝑡 
𝑑𝑉 𝑇 𝑡 ,𝜔  

2

=
1

2
 
𝑑𝑇 𝑡 

1−𝑇 𝑡 
 = 1 

which upon evaluation from the relation for 𝐴𝑓 = 𝔏𝑓 in (44) implies that 𝜇 𝑋 = 𝑟(𝑥) 

and 𝜍 𝑥 =  2. Whereupon we get the Arrow-Pratt risk process 

(47)     𝑟 𝑍(𝑡,𝜔) = 𝑟 𝑍(𝑡,𝜔) 𝑑𝑡 +  2 𝑑𝑊(𝑡,𝜔) 

PROPOSITION III.A.2 (Time Changed Arrow-Pratt Processes). Let 𝑇 𝑡 = 1− 𝑒−2𝑡  

be a time change process, and {𝑉 𝑡,𝜔 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞} be a Brownian motion. Let 

{𝑟 𝑡,𝜔 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞} be a nowhere constant local martingale Arrow-Pratt risk process 

given by the time change transformation 

(48)     𝑟 𝑡,𝜔 =
𝑉 𝑇 𝑡 ,𝜔 

 1−𝑇 𝑡 
= 𝑒𝑡𝑉(1− 𝑒−2𝑡 ,𝜔) 

Then the infinitesimal generator for Arrow-Pratt risk process is 

(49)      𝔏 =  
𝜕2

𝜕𝑥2
 + 𝑟 𝑥  

𝜕

𝜕𝑥
  

in the class of Ornstein-Uhelenbeck processes. 

〗 

We will state below a theorem by Frank B. Knight (1971) as presented in Karatzas and 

Shreve (1991, p. 179), and then provide an application in Section IV. Before doing so, we 

define the following local Brownian functional for 0 ≤ 𝑡 < ∞ 
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(50)     𝑉 1  𝑡,𝜔 = ∫ 𝕝 𝑊 𝑠,𝜔 ≥0 
𝑡

0
𝑑𝑉(𝑠,𝜔) 

(51)     𝑉 2  𝑡,𝜔 = ∫ 𝕝 𝑊 𝑠,𝜔 <0 
𝑡

0
𝑑𝑉(𝑠,𝜔) 

Where 𝑉 1  and 𝑉 2  correspond to positive and negative shocks respectively, so that 

 𝑉 = 𝑉 1 − 𝑉 2  is the variation of 𝑉. In the sequel we will suppress the 𝜔 sample point 

unless otherwise needed. 

THEOREM III.A.3 (Frank B. Knight (1971)). Let 𝑟 𝑡 = (𝑟 1  𝑡 , 𝑟 2 ) where 𝑟 𝑖 (𝑡) is 

a local martingale, 𝑖 = 1,2 and 𝑟 = {𝑟 𝑡 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞} be a continuous process 

adapted to 𝔽 such that lim𝑡→∞ < 𝑟 𝑖 >𝑡 = ∞ w.r.t (Ω,𝔉𝑡 ,𝔽,𝑃), and the cross-variation 

(52)      < 𝑟 1 , 𝑟 2 >𝑡= 0 

Define 

(53)   𝑇𝑖 𝑠 = inf 𝑡 ≥ 0; < 𝑟 𝑖 >𝑡> 𝑠     0 ≤ 𝑠 < ∞ 

So that 𝑇𝑖(𝑠) is a stopping time for 𝔽. Then the processes 

(54)     𝑉 𝑖  𝑠,𝜔 ≜ 𝑟 𝑖  𝑇𝑖 𝑠 ,𝜔  

are independent standard Brownian motions. Additionallly 

(55)    𝑟 𝑖  𝑡,𝜔 = 𝑉 𝑖  < 𝑟 𝑖 >𝑡 ,𝜔  

for 0 ≤ 𝑡 < ∞.          〗  

Proof. See Karatzas and Shreve (1991, p. 179) 

This theorem implies that our Arrow-Pratt risk process can be decomposed into a 

process for positive and negative excursions of 𝑊(𝑡,𝜔) which we address below. 
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B. Risk decomposition with asymmetric Ornstein-Uhlenbeck processes. 

The Arrow-Pratt risk process in Proposition III.A.2, obtained from time changed 

transformation of Brownian motion in (48), is an Ornstein-Uhlenbeck process. See 

Karatzas and Shreve (1991, p. 354). However, according to Theorem III.A.1 that process 

is decomposed according to whether the background driving Brownian motion is in the 

positive or negative quadrant. Additionally, negative Arrow-Pratt risk measure is 

associated with risk seeking behavior while risk aversion is associated with  a positive 

measure. So that starting from a risk free position 𝑟 𝑍 𝑡,𝜔  = 0 positive excursions 

represent risk aversion, and negative excursions represent risk seeking. Thus 

(56)  𝑟𝑖𝑠𝑘 𝑎𝑣𝑒𝑟𝑠𝑒:  𝑟 1  𝑡,𝜔 = 𝑟 1  𝑡,𝜔 𝑑𝑡 +  2𝑉 1  𝑡,𝜔  

Where  𝑟 1  𝑡 ≥ 0,𝑉 1  𝑡,𝜔 ≥ 0, and  

(57)  𝑟𝑖𝑠𝑘 𝑠𝑒𝑒𝑘𝑖𝑛𝑔: 𝑟 2  𝑡,𝜔 = 𝑟 2  𝑡,𝜔 𝑑𝑡 +  2𝑉 2  𝑡,𝜔  

and 𝑟 2  𝑡 ≤ 0, 𝑉 2  𝑡,𝜔 ≤ 0 

Asuming the strong Markov property, for 0 ≤ 𝑠 ≤ 𝑡 the solution for each of those 

Ornstein-Uhlenbeck processes, starting afresh at some initial point 𝑟 𝑡,𝜔 = 𝑟0 are: 

(58)    𝑟 1  𝑡,𝜔 = 𝑟0
 1 𝑒𝑡 +  2∫ 𝑒 𝑡−𝑠 

𝑡

0
𝑑𝑉 1  𝑠,𝜔  

(59)   𝑟 2  𝑡,𝜔 = 𝑟0
 2 𝑒−𝑡 +  2 ∫ 𝑒− 𝑡−𝑠 

𝑡

0
𝑑𝑉 2  𝑠,𝜔  

Arrow-Pratt risk process is recovered from superposition of these two asymmetric 

equations. So that for 𝑟0
 1 

= 𝑟0
 2 

= 𝑟0 upon superposition 

(60)    𝑟 𝑡,𝜔 = 𝑟 1  𝑡,𝜔 + 𝑟 2  𝑡,𝜔  
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= 𝑟0
 1 𝑒𝑡 + 𝑟0

 2 𝑒−𝑡 +  2  𝑒 𝑡−𝑠 𝑑𝑉 1  𝑠,𝜔 + 𝑒− 𝑡−𝑠 𝑑𝑉 2  𝑠,𝜔  
𝑡

0

   

= 𝑟0sinh 𝑡 +  2   𝑑𝑉 1  𝑠,𝜔 − 𝑑𝑉 2  𝑠,𝜔  sinh 𝑡 − 𝑠 
𝑡

0

+  𝑑𝑉 1  𝑠,𝜔 + 𝑑𝑉 2  𝑠,𝜔  cosh 𝑡 − 𝑠  𝑑𝑠 

=   sinh 𝑡 

+  2  sinh 𝑡 − 𝑠  𝑑𝑉 1  𝑠,𝜔 − 𝑑𝑉 2  𝑠,𝜔  + cosh 𝑡 − 𝑠)𝑑𝑉(𝑠,𝜔  
𝑡

0

𝑑𝑠 

=   𝑟0sinh 𝑡 +  2 sinh 𝑡 − 𝑠  𝑑𝑉 1  𝑠,𝜔 − 𝑑𝑉 2  𝑠,𝜔  
𝑡

0

𝑑𝑠 

+ 𝑟0 cosh 𝑡 +  2 cosh 𝑡 − 𝑠)𝑑𝑉(𝑠,𝜔 
𝑡

0

 

By an abuse of notation, for AP risk process moving away from the origin in a disk 𝐵𝜖  

centered at the origin, i.e., risk free state, with radius 𝜖 > 0 let 

 (60)   𝑟 𝐵𝜖 ,𝜖↑0 𝑡,𝜔 =   𝑟0 sinh 𝑡 

+ 2 sinh 𝑡 − 𝑠  𝑑𝑉 1  𝑠,𝜔 − 𝑑𝑉 2  𝑠,𝜔  
𝑡

0

𝑑𝑠 

It should be noted that  𝑑𝑉 =  𝑑𝑉 1 − 𝑑𝑉 2  is the variation of 𝑑𝑉. So we can rewite 

(60) as 

(60)′   𝑟 𝐵𝜖 ,𝜖↑0 𝑡,𝜔 =   𝑟0 sinh 𝑡  +  2∫ sinh 𝑡 − 𝑠  𝑑𝑉 
𝑡

0
𝑑𝑠 

For AP risk near the origin, heading towards the origin, let 

(61)   𝑟 𝐵𝜖 ,𝜖↓0 𝑡,𝜔 = 𝑟0 cosh 𝑡 +  2∫ cosh 𝑡 − 𝑠)𝑑𝑉(𝑠,𝜔 
𝑡

0
 

So that for AP processes 𝑟 𝐵𝜖 (𝑡,𝜔) in a disk 𝐵𝜖centered at the origin, we have 
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(62)     𝑟 𝐵𝜖 𝑡,𝜔 = 𝑟 𝐵𝜖 ,𝜖↑0 𝑡,𝜔 + 𝑟 𝐵𝜖 ,𝜖↓0 𝑡,𝜔  

1.  Local time behavior of AP risk processes and random time change of Clark’s 

(1973) subordinate process 

It is clear that there are two different high frequency dynamics at work here by 

virtue of the pseudo sinusoidal representations for the components of AP risk process. 

One dynamic (𝑟 𝐵𝜖 ,𝜖↓0 𝑡,𝜔 ) is pulling towards the “origin”
12

, and the other is pulling 

away (𝑟 𝐵𝜖 ,𝜖↑0 𝑡,𝜔 ). Thus, we have just constructed the local time behavior of AP risk 

processes in an 𝜖-disk, and shown that risk aversion and risk seeking run on different 

time clocks near the origin. In equation (60), the quantity 𝑟0 sinh 𝑡 is increasing in time 

away from the origin, and it is zero at the origin. It approaches 0 from the left. By 

contrast, in equation (61) the process converges to 𝑟0 when approached from the right 

since it is right continuous. This asymmetric result, derived from Arrow-Pratt risk 

measure for von Neuman Morgenstern utility functions, predicts Tversky and 

Khaneman‟s (1992) asymmetric value function loss aversion result--relative to a 

reference point, i.e. “origin”. It should be noted in passing that for 𝑡 = ∞ risk aversion is 

infinite while risk seeking is zero. That is, in the long run people are risk averse.  

An important paper by Clark (1973) opined: 

[T]he hypothesis presented and tested in this paper is that the distribution 

of price change is subordinate to a normal distribution. The price series 

for cotton futures evolves at different rates during identical rates of time. 

The number of individual effects added together to give price change 

                                              

12
 Under the strong Markov property the “origin” is the starting point of the risk process, and does not 

necessarily mean the coordinate point 0. 
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during a day is variable and in fact random, making the Central Limit 

Theorem inapplicable. Id at 137. 

In the context of our theory, it appears that depending on whether a „critical mass” of 

futures traders were risk averse (bearish) or risk seeking (bullish), the weighted average 

“added effects” in (60) and (61) also renders the Central Limit Theory inapplicable. That 

is, if there are a total of 𝑁 = 𝑁𝑟𝑎 + 𝑁𝑟𝑠  futures traders, 𝑁𝑟𝑎  of whom are bearish and 𝑁𝑟𝑠  

bullish, then the AP risk process generated by them is 𝑁𝑟𝑎 𝑟
 1  𝑡,𝜔 + 𝑁𝑟𝑠𝑟

 2 (𝑡,𝜔). If 

the 𝑁𝑟𝑎  and 𝑁𝑟𝑠  are modeled after an Ehrenfest urn scheme in which traders go in and out 

of  bull or bear positions, with given probabilities, and there are no new entrants or exits 

from the market, then one can see Clark‟s empirical results at work. Because the limiting 

value of this set-up, for traders moving in and out of bull or bear positions with given 

probabilities, is a stochastic process. See e.g., Kac (1947, 374-375). Similarly, Carr and 

Wu (2004) used a time changed Levy process to address the subordinated processes 

problem identified by Clark (1973). Daniel and Foster (1994, pp. 10-11) provide 

excellent heuristics on the efficacy of change in time scales. In fact, they also derive 

Ornstein-Uhlenbeck process representation for unobservable variance in a filtering 

scheme for ARCH models. Our theory is distinguished because it employs 

microfoundations of utility theory in lieu of adaptive data analysis for its results--in the 

context of AP risk processes. 

We summarize the foregoing with the following propositions and theorems. 

DEFINITION III.B.1 (Local time). Let 𝐵𝜖(𝑎) be a disk of radius 𝜖 centered at a point 

𝑎 ∈ [0,∞), and 
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(63)   Λ 𝑡,𝑎,𝜔 = lim2ϵ↓0 𝑚𝑒𝑎𝑠{0 ≤ 𝑠 ≤ 𝑡;  𝑟 𝑠,𝜔 − 𝑎 ≤ 𝜖} 

where “meas” is the measure of the time spent in the vicinity of 𝑎. Then Λ 𝑡, 𝑎,𝜔  is the 

local time of 𝑟 𝑠,𝜔  at 𝑎. 

THEOREM III.B.2 (Karatzas and Shreve 1991, p. 218). Let 𝑟(𝑡,𝜔) be an AP risk 

process on (Ω,𝔉,𝔽, P). There exist a 𝔉𝑡-measureable local time for AP risk measure, i.e., 

a random field 

Λ = {Λ 𝑡,𝑎,𝜔 ;  𝑡, 𝑎 ∈  0,∞ ×ℝ, 𝜔 ∈ Ω 

such that 

1. ∫ 𝕝 𝑎 𝑐 𝑟 𝑡,𝜔  𝑑Λ 𝑡,𝑎,𝜔 
∞

0
= 0 

2. For each Borel function 𝑘:ℝ →  0,∞ , and local continuous martingale 

component 𝑀(𝑠,𝜔) of 𝑟(𝑠,𝜔) 

 𝑘 𝑟 𝑠,𝜔  𝑑 <
𝑡

0

𝑀 >𝑠= 2 𝑘 𝑎 Λ 𝑡, 𝑎,𝜔 
∞

−∞

𝑑𝑎 

3. Λ is jointly continuous in 𝑡 and right continuous left hand limit in  𝑎 so that 

lim
τ→t
b↓a

Λ 𝑡, 𝑏,𝜔 = Λ 𝑡, 𝑎,𝜔  

lim
τ→t
b↑a

Λ 𝑡, 𝑏,𝜔 = Λ 𝑡,𝑎−,𝜔  

〗 

Proof. See Karatzas and Shreve (1991, p. 218).  

LEMMA III.B.3 The local time representation of AP risk process is given by 

lim
𝜖→0

𝑟 𝐵𝜖  𝑡,𝜔 = lim
𝜖↑0

𝑟 𝐵𝜖  𝑡,𝜔 + lim
ϵ↓0

𝑟 𝐵𝜖  𝑡,𝜔  

𝑟  Λ,𝜔 = 𝑟  Λ−,𝜔 + 𝑟  Λ+,𝜔  
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Proof. See equations (60)-(62) and Theorem III.B.2 

THEOREM III.B.4. (Asymmetric AP representation theorem). Let {𝑉 𝑡,𝜔 ; 0 ≤ 𝑡 <

∞} be a background driving Brownian motion, and |𝑉| be the total variation of 𝑉. Let 

𝑟 1 (𝑡,𝜔) and 𝑟 2 (𝑡,𝜔) be risk aversion and risk seeking components of an AP risk 

process  𝑟 𝑡,𝜔 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞  defined on a filtered probability space (Ω,𝔉,𝔽,𝑃). Let 

𝐵𝜖  be an ϵ -disk centered at the origin. Then the equations of motion for risk seeking, and 

risk averting in 𝐵𝜖  are given by, respectively 

𝑟 1 (𝑡,𝜔) =   𝑟0 sinh 𝑡  +  2 sinh 𝑡 − 𝑠  𝑑𝑉 
𝑡

0

𝑑𝑠 

𝑟 2 (𝑡,𝜔) = 𝑟0 cosh 𝑡 +  2 cosh 𝑡 − 𝑠)𝑑𝑉(𝑠,𝜔 
𝑡

0

 

〗 

IV. APPLICATIONS 

A. Hyper-ARCH risk aversion and specification error in Engle, Ng and 

Rothschild (1990) Factor-ARCH 

The heteroskedasticity correction in (29) implies 

(64)         𝑐t Δt 
−1
𝑟 𝑡,𝜔 = 𝜍𝑧

2𝐵 1,𝜔 + 𝑜𝑝( 𝑐t Δt 
−1
𝜍  𝑡  ) 

This suggests that Arrow-Pratt risk measure has a hyper-ARCH representation because  

even after applying the heteroskedasticity correction displayed on the left hand side of 

(64), the right hand side is still a random variable 𝜍𝑧
2𝐵 1,𝜔  Thus, AP risk measure is 
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unstable and it has an ARCH process of its own. To see this, since Brownian motion 

𝐵 𝜍𝑧
2,𝜔 ~𝑁(0,𝜍𝑧

2) can be scaled as 𝜍𝑧𝐵(1,𝜔) let 𝜖𝑡(𝜔)~𝑁(0,𝜍𝑧
2), then  

(65)    𝑐t Δt 
−1
𝑟 𝑡,𝜔 = σz𝜖𝑡(𝜔) + 𝑜𝑝( 𝑐t Δt 

−1
𝜍  𝑡  ) 

and the term σz𝜖𝑡(𝜔) is Engle‟s ARCH specification. Chou, et al (1992, p. 207) 

confirmed hyper-ARCH  risk aversion in excess stock index returns, and proposed an 

ARCH-M system equation with Kalman filter approach to address the problem. 

Therefore, the theoretical results presented here are robust. 

More on point, Engle, Ng and Rothschild (1990) (“ENR-90”) posited a k-Factor-

ARCH relationship for risk premium with the generic cross-sectional equation 

(66)     𝜋 𝑡,𝜔 = 𝛼 +  𝛽𝑘𝜍𝑘
2(𝑡)𝑘  

In that case the 𝛽𝑘 ′𝑠 are estimates of Arrow-Pratt risk measure in the context of Pratt‟s 

risk premium equation (1). There, in ENG, a signal extraction procedure, based on factor 

analysis methodology popularized by psychometricans, was used to obtain estimates for 

constant 𝛽′𝑠. But according to (29) and (65) the 𝛽𝑘 ′𝑠 are time varying and unstable. So 

the ENG-90 model in equation (66) is misspecified. Thus, an auxillary regression is 

required to find a more accurate “price of risk premium” per unit of volatility. In fact, 

equation (57) suggests that a heteroskedasticity correction factor should be applied to the 

ENG cross-sectional equation in order to get the “true” price of risk for risk premia. 

B. Arrow-Pratt risk aversion as the cause of volatility induced by analysts beliefs 

about interest rates and shocks to cash flows streams 

Persistence in earnings growth in equation (3) depends on changes in interest rates 

(𝑅), volatility (𝜍𝑧) and idiosyncratic shocks 𝑉(𝑡,𝜔) to earnings. If analysts believe that 
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interest rates will increase, then, other things equal, they become more risk averse. For 

instant, 𝐻(𝑡,𝜔) may be the cash flow stream from a bond—in the absence of default risk 

here. Similarly, with high market volatility 𝜍𝑧 , other things equal, analysts become more 

uncertain and hence more risk averse. Other things constant, negative shocks in equation 

(9) tend to increase AP risk measure, and consequently volatility in equation (27). For 

instance, it is clear that Arrow-Pratt risk measure 𝑟(𝑡,𝜔) is adapted to the augmented 

filtration of cash flows 𝜍 𝐻 𝑡,𝜔 ; 0 ≤ 𝑡 < ∞ ∪ 𝔽, and that it is a feedback control for 

the sample path 𝜔(𝑡) realized in a coordinate mapping with 𝐻(𝑡,𝜔). Hence increased 

risk aversion 𝑟 𝑡,𝜔 ↑ due to negative shocks to 𝑉(𝑡,𝜔) causes more volatility in 

𝐻(𝑡,𝜔) through 𝑍(𝑡,𝜔), and vice versa. If our model is properly specified, then 

𝑟  𝑡,𝜔 ∈ Λ𝔏 = {𝜆1(𝑟 𝑥 ), 𝜆2(𝑟 𝑥 ),… }. That is, the distribution of Arrow-Pratt risk 

aversion coincides with the spectral distribution on Λ𝔏--the spectrum of the infinitesimal 

generator 

(67)      𝔏 =  
𝜕2

𝜕𝑥2
 + 𝑟 𝑥  

𝜕

𝜕𝑥
  

It should be noted in passing that 𝔏 is compact because the risk free measure 0 ∈ Λ𝔏 

is a limit point for recovering utility from 𝑟(𝑥). Thus  𝑢𝑛 𝑛=1
∞  is a sequence of 

approximating utility functions whose limit is 𝑢, where 𝔏𝑢𝑛 = 𝜆𝑛𝑢𝑛 . 

This spectral relationship coincides with the one posited by Engle, Ng and 

Rothschild (1990) only if 𝔏 can be represented by a function of their covariance matrix 

𝐻𝑡 . The system of equations (7)-(9) can be easily modified to accomodate, inter alia, 

interest rate and volatility dynamics. For example, as indicated by equation (17) 𝜍𝑧  can be 
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parametrized by a Heston (1993) type stochastic volatility model with mean reversion. 

Additionally, term structure equations
13

  could be added when the cash flow stream 

pertains to bond payments. However, formal inclusion of those equations in this paper 

would complicate our erstwhile simple system and detract from our narrow focus on the 

interface between volatility and embedded Arrow-Pratt risk. For a non-technical 

overview of risk management in financial markets the interested reader is directed to 

“New Directions for Understanding Risk,” A Report of a Conference Cosponsored by the 

Federal Reserve Bank of New York and the National Academy of Sciences, May 18-19, 

2006 in Economic Policy Review, 13(2) (November 2007) 

C. Controlled Arrow-Pratt risk processes for negative and positive shocks 

On the basis of Theorem III.5 let 𝑟 𝑡,𝜔 = 𝑟 1  𝑡,𝜔 + 𝑟 2 (𝑡,𝜔) be a 

decomposition of Arrow-Pratt risk process where 𝑟 1 (𝑡) is the response to positive 

shocks and 𝑟 2 (𝑡) the commensurate response to negative shocks on (Ω,𝔉𝑡 ,𝔽,𝑃). Then 

we can write 

(68)    𝑑𝑟 𝑖  𝑡,𝜔 = 𝑟 𝑖  𝑡,𝜔 𝑑𝑡 +  2 𝑑𝑉 𝑖  𝑡,𝜔  

for 𝑖 = 1,2. By definition < 𝑉 1 >𝑡 +< 𝑉 2 >𝑡= 𝑡, so that 

(69)     < 𝑉 2 >𝑡= 𝑡−< 𝑉 1 >𝑡  

and 𝑟 𝑖 (𝑡) = 𝑉 𝑖 (< 𝑟 𝑖 >𝑡). Then for negative shocks, the Arrow-Pratt risk aversion 

process runs on a different clock. That is,  

                                              

13
 The seminal papers of Vasicek (1977), Cox, Ingersoll, and Ross (1985); and Heath, Jarrow and Morton 

(1992)  provide ample evidence of the complexity in modelling interest rate behavior. 
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(70)    𝑟 2  𝑡 = 𝑉 2  𝑡−< 𝑉 1 >𝑡 = 𝑉 2 (< 𝑉 2 >𝑡) 

So that < 𝑟 2  𝑡 >𝑡= 𝑡−< 𝑉 1 >𝑡) is the variation of Arrow-Pratt risk process for 

negative shocks. Intuitively, this means that notwithstanding symmetry in Brownian 

motion, the positive and negative excursions of AP risk process are asymmetric. This 

result is consistent with Tversky and Khaneman (1992) loss aversion results. 

More on point, heuristically, we implement the oft cited example of Benes, Shepp 

and Witsenhausen (1980)
14

 reported in Karatzas and Shreve (1991, pp. 438). In this case, 

we define a risk free asset as one in which 𝑟 𝑡,𝜔 = 015 and using the Karatzas-Shreve 

notation we consider the interval 𝜃0 < 0 < 𝜃1 and 𝑟 𝑡,𝜔 ∈ [𝜃0,𝜃1]. An investor wants 

to minimize the Arrow-Pratt risk associated with the asset--which is discounted 

exponentially at rate 𝑅. Therefore, she wants to solve the following control problem for 

the risk process starting at 𝑟 0,𝜔 = 𝑥 

(71)    𝐽 𝑥; 𝑟∗ = minr∈𝒰 ∫ 𝑒−𝑅𝑠𝑟 𝑠 𝑑𝑠
∞

0
 

for all 𝑥. Where 𝒰 is a set of admissible Arrow-Pratt risk measures. Karatzas and Shreve 

(1991, p.438) show that the optimal drift for risk aversion is given by 

(72)     𝑟∗ 𝑥 =  
𝜃1;       𝑥 ≤ 𝛿
𝜃0;       𝑥 > 𝛿

  

where 

                                              

14
 Those authors solved an array of control problems outside the scope of this paper. 

15
 Recall that we write 𝑟(𝑡,𝜔) for 𝑟(𝑋(𝑡,𝜔) for notational convience. 
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(73)      𝛿 =
1

 𝜃1
2+2𝑅+𝜃1

−
1

 𝜃0
2+2𝑅−𝜃0

 

Since negative Arrow-Pratt risk measure connotes risk seeking, a conservative investor 

would like to keep her risks below 𝛿 which is a function of interest rate and boundary 

values. However, being too conservative could diminish returns. So she would like to 

control risk so that it stays as close as possible to the critical value of 𝑟∗ = 𝛿. Karatzas 

and Shreve (1991) also show how to compute transition probabilities for 𝑟(𝑡,𝜔) in this 

context. The literature on controlled diffusion is both rick and large. In order not to 

overload this paper, we direct the reader to Krylov (1980). Perhaps most important, by 

introducing a separate stochastic process for Arrow-Pratt risk measure, we hope to 

provide a richer solution space for problems involving risk and uncertainty. 

D. Stochastic Differential Utility Functional 

We mention in passing that since utility functions can be recovered from AP risk 

measure, from definition we have  

(74)      𝑟 𝑥 =
𝑑

𝑑𝑥
log 𝑢′ 𝑥   

Whereupon we get 

(75)    𝑢 𝑥 = 𝑢 𝑥0 𝑒
−𝑅 𝑥0 ∫ 𝑒∫ 𝑟 𝑣 𝑑𝑣

𝑤
0

𝑥

𝑥0
𝑑𝑤 

And 𝑅 𝑥0 = ∫ 𝑟 𝑥 𝑑𝑥
𝑥0

0
 for the “process” starting at 𝑥0. Recall that 𝑍(𝑡,𝜔) is a Markov 

process and that 𝑟(𝑍 𝑡,𝜔 ) is the associated AP risk. In that set-up, “stochastic 

differential utility” is obtained by 

(76)    𝑢 𝑍 𝑡,𝜔  = 𝑢 𝑧0 𝑒
−𝑅 𝑧0 ∫ 𝑒∫ 𝑟 𝑣 𝑑𝑣

𝑤
0

𝑧(𝑡 ,𝜔)

𝑧0
𝑑𝑤 
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For the process starting at 𝑍 𝑡0,𝜔 = 𝑧0 at time 𝑡0. Equation (68) is a differentiable 

stochastic utility functional representation of the process  𝑍 𝑡,𝜔 ,𝔉𝑡 ; 0 ≤ 𝑡 < ∞ . 

 Assuming 𝑢 𝑧0 = 0, the Ito expansion of (76) is given by 

(77)    𝑢 𝑍 𝑡,𝜔  = 𝑢𝑧𝑑𝑍 𝑡,𝜔 +
1

2
𝑢𝑧𝑧  𝑑𝑍 𝑡,𝜔  

2
 

= (𝑢𝑧𝑟 𝑍 𝑡,𝜔 + 𝑢𝑧𝑧  𝑑𝑡 +  2𝑢𝑧𝑑𝑉(𝑡,𝜔) 

where 𝑢𝑧  and 𝑢𝑧𝑧  are the first and second derivatives of 𝑢 in an Ito expansion. This result 

compares favourably to Duffie and Epstein (1992, p. 415) who characterized stochastic 

differential utility by the equation 

(78)    𝑑𝑉𝑡 =  −𝑓 𝑐𝑡 ,𝑉𝑡 −
1

2
𝐴 𝑉𝑡  𝜍𝑉 𝑡  

2 𝑑𝑡 + 𝜍𝑉 𝑡 𝑑𝐵𝑡  

Where 𝑉𝑡  is a discounted recursive utility, 𝑐𝑡  is consumption, 𝑓(⋅) is an aggregator 

function, 𝐴(𝑉𝑡) is Arrow-Pratt risk measure and 𝜍𝑉(𝑡) is the volatility of 𝑉𝑡 . In fact, a 

simple equation of coefficients between (77) and (78) establishes functional 

equivalence
16

 

  

                                              

16
 It should be noted that 𝑉𝑡  is recursive, i.e., discounted in a Bellman type equation while 𝑍(𝑡,𝜔) is 

discounted and non-recursive. It would be interesting to see if the utility of a discounted Markov process 

is functionally equivalent in a probabilistic sense to recursive utility of the same Markov process 

employed in Bellman‟s program. 
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