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Abstract 
 
Estimation and decomposition of overall (economic) efficiency into technical and allocative components goes back to 
Farrell (1957). However, in a cross-sectional framework joint econometric estimation of efficiency components has 
been mostly confined to restrictive production function models (such as the Cobb-Douglas). In this paper we 
implement a maximum likelihood (ML) procedure to estimate technical and allocative inefficiency using the dual 
cost system (cost function and the derivative conditions) in the presence of cross-sectional data.  Specifically, the ML 
procedure is used to estimate simultaneously the translog cost system and cost increase due to both technical and 
allocative inefficiency. This solves the so-called ‘Greene problem’ in the efficiency literature. The proposed 
technique is applied to the Christensen and Greene (1976) data on U.S. electric utilities, and   a cross-section of the 
Brynjolfsson and Hitt (2003) data on large U.S. firms. 
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1. Introduction 

 

The standard neoclassical production theory assumes that producers are always efficient. This assumption, 

however, is not consistent with reality. Consequently, the idea of measuring efficiency of firms is becoming popular 

both in the government and private sectors. In measuring efficiency of producers, the focus is mostly on technical 

efficiency, which is often associated with managerial efficiency and estimated form the production/distance functions 

or the dual cost, revenue and profit functions. Although achieving technical efficiency is perhaps the utmost concern, 

producers can be inefficient in using their input mixes as well. This is labeled as allocative inefficiency, which 

increases cost. Thus a producer is economically efficient when it is both technically and allocatively efficient. 

Estimation of both technical and allocative efficiency requires the use of a system approach. However, the system to 

be used depends on type of data available and the behavioral assumption on the part of the producers. For example, 

the cost system is appropriate if the assumption of cost minimization holds (as is the case with regulated utilities).   

In the stochastic frontier literature there are two approaches to estimate a system and obtain measures of 

increased cost due to technical and allocative efficiencies under the behavioral assumption of cost minimization. 

First, the primal system approach was originally proposed by Schmidt and Lovell (1979). Their system, constructed 

from a Cobb-Douglas (CD) production function and the first-order conditions of cost minimization, is used to 

estimate the parameters of the model as well as technical and allocative inefficiencies. Since inefficiency increases 

cost, measurement of increased cost due to each type of inefficiency is needed. This requires knowledge of the cost 

function, which for a CD production function can be easily derived analytically. Once the cost function is derived, 

computation of increased cost associated with technical and allocative inefficiencies (using the estimated parameters 

and estimates of technical and allocative inefficiencies from the primal system) is trivial.1 The second approach is to 

estimate the dual cost system and was first suggested by Greene (1980). There are two problems in this approach, 

especially when a flexible functional form is used. The first problem is related to specification of the cost function 

that accommodates both technical and allocative inefficiency and the second problem is related to joint estimation of 

the cost system and computation of cost increase due to each inefficiency component. Note that these problems are 

not trivial even for production functions for which the cost function can be derived analytically2, unless one uses the 

                                                           
1 Although the Schmidt-Lovell procedure can be extended to accommodate flexible functional form such as the 
translog (Kumbhakar and Wang (2006)), it is not possible to derive the cost function analytically. That is, for flexible 
production functions computation of cost associated with technical and allocative inefficiency is not trivial. 
2 There are not many production functions for which cost function can be derived analytically. 
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Schmidt-Lovell (1979) primal system to estimate the model and then uses the analytical cost function to compute cost 

of each inefficiency components. In other words, although the dual cost system helps one to specify the technology 

and identify costs of each inefficiency component, estimation of such a system using cross-sectional data is yet to be 

done.3  

Kumbhakar (1997) solved the specification problem in a dual cost function framework that incorporates 

both technical and allocative inefficiency in any cost system. This formulation uses an input-oriented technical 

inefficiency specification and introduces allocative inefficiency following Schmidt and Lovell (1979). It solves the 

specification problem theoretically; however, no estimation technique is offered. The difficulty is that the cost 

function and the deviations of optimal shares from their observed counterparts are complicated functions of allocative 

inefficiency. Although the link between allocative inefficiency and increase in cost therefrom is well established for 

any cost function in Kumbhakar (1997), the stochastic structure for the cost system consisting of the cost function 

and the cost shares is, unfortunately, very complicated for the standard ML method. This estimation problem has 

been a major stumbling block for more than two decades and is labeled as the Greene problem by Bauer (1990).  

It is often argued that the Greene problem can be circumvented if decomposition of cost efficiency into 

technical and allocative components is not desired. The logic behind this argument is that since both inefficiencies 

increase cost inclusion of a one-sided error term in the cost function will capture the cost of overall (technical plus 

allocative) inefficiency, which can easily be estimated by the standard ML method using a single equation approach. 

However, it is shown by Kumbhakar and Wang (2005), in terms of a detailed Monte Carlo simulation, that failure to 

include allocative inefficiency explicitly in the cost function biases estimates of (i) the cost function parameters, (ii) 

returns to scale (RTS), (iii) input price elasticities, and (iv) cost-inefficiency. They also found that the true and 

estimated distributions of RTS, elasticities, and cost-inefficiency are quite different. Based on these results they 

concluded that the widely held view that ignoring costs due to allocative inefficiency (or aggregating it with the cost 

of technical inefficiency) is not likely to affect the technological parameters and measures of RTS, elasticities, etc., is 

not correct. These findings send a strong message indicating the importance of solving the Greene problem, i.e., 

estimating costs of technical and allocative inefficiency jointly from a system.  

We are not aware of any application where the Greene problem is solved using a flexible cost function and 

cross-sectional data with the exception of the Bayesian approach in Kumbhakar and Tsionas (2005). Empirical 

                                                           
3 The exception is Kumbhakar and Tsionas (2005) who uses a Bayesian approach to estimate a translog cost system. 
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application of the Kumbhakar (1997) model in a sampling theory framework is difficult because of the complex error 

structure of the model, especially when allocative inefficiency is represented by random variables a la Schmidt and 

Lovell (1979).4 Because of this difficulty no one has applied the method proposed in Kumbhakar. In this paper we 

propose a classical solution and use an exact ML approach to estimate the translog cost system in a cross-sectional 

setup where both technical and allocative inefficiency are random variables. The proposed method solves the long 

lasting Greene problem. 

The rest of the paper is organized as follows. The cost system of Kumbhakar (1997) is briefly presented in 

Section 2. The ML estimation procedure is discussed in Section 3, first with only allocative inefficient and then both 

technical and allocative inefficiencies. Data and results are discussed in Section 4, followed by some concluding 

remarks in Section 5.  

  

2. The model 

Since our focus is to estimate the cost system, in this section we lay out the model proposed in Kumbhakar 

(1997). Let the production technology be specified as  where qi is output and xi is a vector of J inputs 

for firm i (i = 1, …, n), f (.) is the production function, and  measures input-oriented (IO) technical inefficiency 

(Farrell (1957)). This specification implies that a technically inefficient producer over-uses all the inputs by u

( iu
i iq f x e−= )

0iu ≥

⋅100 

percent compared to an efficient producer producing the same output. Consequently, the IO measure of technical 

inefficiency is useful when the objective of the producers is to allocate inputs in such a way that cost is minimized for 

an exogenously given level of output. In allocating inputs producers may make mistakes. These mistakes are  labeled 

as allocative inefficiency. Here we follow Schmidt and Lovell (1979) and Kumbhakar (1997) in modeling allocative 

inefficiency, viz.,  Here a non-zero value of ,
1 , 1,( ) / ( ) / , 2,..., .j ii iu u

j i i j i if x e f x e w e w j Jξ− − = = ,j iξ  indicates the presence 

of allocative inefficiency for the input pair (j,1) for firm i. Note that unless the production function is homogeneous 

the IO technical inefficiency term (u) will not drop out from the first-order conditions.  

                                                           
4 With panel data these problems can be avoided by modeling allocative inefficiency parametrically. This involves the assumption 
that either price distortions are time-invariant or they can be related functionally to certain explanatory variables. Furthermore, 
additional error terms are to be introduced in the cost share equations without including them in the cost function (integrability 
condition, see McElroy (1987)). If panel data are not available or one does not want to make the assumption that allocative 
inefficiency can be completely explained in terms of some covariates, the only alternative is to model technical and allocative 
inefficiency as random variables.  
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Schmidt and Lovell (1979) used the above framework to estimate a Cobb-Douglas production function for 

which the cost function can be derived analytically. Since there are not many production functions for which the cost 

function can be derived analytically and the interest is mostly on costs of inefficiency, the natural alternative is to 

consider a dual cost function, which is widely used in empirical studies. The cost function specification with input-

oriented technical inefficiency is strongly separable in costs of technical and allocative inefficiency. The 

complicating factor is that the cost share equations are affected by the presence of allocative inefficiency. Thus, the 

model has to take into account the link between allocative inefficiency appearing in the cost share equations and 

increase in cost therefrom that appears in the cost function. The modeling approach proposed by Greene (1980) did 

not make use of this link in a theoretically consistent manner. Kumbhakar (1997) derived the exact relationship 

between allocative inefficiency and cost therefrom using a translog cost function, thereby solving the Greene problem 

theoretically. This relationship is crucial from estimation point of view because it connects the error terms in the cost 

share equations and the cost function.   

Since ,j iξ  represents allocative inefficiency for the input pair (j, 1) the relevant input prices to the firm i (i = 

1, …, n) are ( , *
iw ≡ 1,iw 2, 2,exp( )i iw ξ ,…, , ,exp( ))J i J iw ξ ′  where 2, ,,...,i J iξ ξ  are random variables that capture 

allocative inefficiency. Kumbhakar (1997) showed that actual cost could be expressed as 

* *ln ln ( , ) ln ( , , )a
i i i i i iC C w q G w q ξ= + iu+

jC w x= ∑ * *( , )i iC w q

-u

       (1) 

where and  is the minimum cost function obtained from solving the following problem: 

. The G(

, ,
a

ji j i i

*'min subject to
u

i

u
i i i i

x e
w x e q f(x e )

−

− = , ,i i iw q ξ ) function in (1) is defined as where 

.  Since (1) is strongly separable in , cost of technical inefficiency (percentage increase in 

cost due to technical inefficiency) is represented by . The allocative inefficiency terms (

,*
,(.) j i

j j iG S e ξ−= ∑

* *
, ln (.) / lnj i j iS C= ∂ ∂ *

,w iu

0iu ≥ jξ ) appear both in the 

 and the G(.) functions. Thus, to separate the cost of allocative inefficiency, we need to define , the 

cost frontier (also labeled as the neoclassical cost function). For this we rewrite the cost function in (1) as 

where  is the cost frontier (the neo-classical cost function), 

which can be obtained from the cost function in (1) by imposing restrictions that firms are efficient both technically 

and allocatively. That is, 

* (.)C 0 ( , )i iC w q

0ln ln ( , ) ln ( , , )a AL
i i i i i iC C w q C w q uξ= + i+ 0 ( , )i iC w q

0
,ln (.) ln (. | 0 , 0)a

j i iC C j uξ= = ∀ = *
, 0 , 0ln (.) | (since ln (.) | 0)j i j iC Gξ ξ= == = and 
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ln ( , , )AL
i i iC w q ξ  0 * *

0ln | ln (.) ln ( , ) ln ( , , )
i

a
u i i i i iqC C C w q G w ξ== − = + 0ln (.)C− . The term can be interpreted 

as the percentage increase in cost due to allocative inefficiency. 

ln AL
iC

To get a better understanding of the above decomposition we start with a parametric functional form 

on . Once a functional form for  is assumed, the G(.) and C0(.) functions can be easily derived. Using these 

functions we can easily obtain . Since the cost function in (1) is naturally expressed in logarithms, it is 

convenient to discuss both modeling and estimation issues in terms of the Cobb-Douglas and translog cost functions. 

It is worth pointing out, however, that the methodology is equally applicable for any other flexible parametric form 

for . For example, if we assume a parametric functional form (e.g., translog) for , i.e., 

* (.)C * (.)C

ln ALC

* (.)C * (.)C

( )2* * * * * *1 1
0 , , , ,2 2ln ( , ) ln ln ln ln ln ln lni i j j i q i qq i jk j i k i jq j i i

j j k
C w q w q q w w w qα α γ γ β γ= + + + + +∑ ∑∑

j
∑

q

i

 

then . Imposing the linear homogeneity restrictions on , and noting that 

 by definition, we can rewrite (1) as 

* *
, ,ln lnj i j jk k i jq i

k
S wα β γ= + +∑ * (.)C

*
1, 1,iw w= * * *

1, , ,ln( / ) ln ( , ) exp( )
Ja

i i i i j i j i
j

C w C w q S ξ= +∑ −

)i

C w C w q C w q uξ

, where 

 and . Now we write the cost function and the associated cost 

share equations in terms of C0(.). These are 

* * * *
1,( , ) ( , ) /i i i i iC w q C w q w=

2,

* * *
1, , 1,( / ,..., /

ii i J iw w w w w=

0
1,ln( / ) ln ( , ) ln ( , , )a AL

i i i i i i i i i i= + + ,      (2) 

0
, , ,( , ) ( , , )a

j i j i i i j i i i iS S w q w qη ξ= + , 1,...,i n= ; j = 2, …, J     (3) 

where ,  is the actual (observed) cost share of input  (2, 1, , 1,( / ,..., / )i i i J i iw w w w w= , , , /a a
j i j i j i iS w x C= j 2,...,j J= ), 

 is the normalized (by ) cost frontier and  ( ).  For the above 

translog cost function  is 

0 ( , )i i iC w q 1,iw 0 0
, ,ln (.) / lnj i i j iS C w= ∂ ∂ 2,...,j J=

0ln ( , )i i iC w q

( )20 1 1
0 , , , ,2 2

2 2 2
ln (.) ln ln ln ln ln ln ln

2

J J J J

i j j i q i qq i jk j i k i jq j i i
j j k j

C w q q w w w qα α γ γ β γ
= = = =

= + + + + +∑ ∑ ∑ ∑

J

,  (4) 

 ,         (5) 0
, ,

2
ln ln , 2,...,

J

j i j jk k i jq i
k

S w q jα β γ
=

= + + =∑

1
, , , , , ,2

2 2 2 2 2 2
ln ln ln ln ,

J J J J J JAL
i i j j i jk j i k i jk j i k i jq j i i

j j k j k j
C G wα ξ β ξ β ξ ξ γ ξ

= = = = = =
= + + + +∑ ∑ ∑ ∑ ∑ ∑ q     (6) 
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{ }0
, , ,

,
,

1 exp( )

exp( )
j i i j i j i

j i
i j i

S G a

G

ξ
η

ξ

− +
= 2,...,j J,  =       (7) 

where 

0
, , ,

2
( ) exp(

J

i j i j i
j

G S a )j iξ
=

= + −∑ ,        (8) 

and  

,
2

J

j i jk k i
k

a ,β ξ
=

= ∑ .           (9)  

The cost system defined in (2) and (3) serves two purposes. First, technical and allocative inefficiencies are 

modeled in a coherent manner. Second, the exact link between allocative inefficiency ( jξ ) and its cost is given in (6).  

The cost function decomposes the overall increase in cost due to inefficiency into two components, viz., the 

percentage increase in cost due to allocative inefficiency, , and the percentage increase in cost due to 

technical inefficiency, ui.  The decomposition formula also establishes an exact link between the error terms in the 

cost share equations (which are functions of allocative inefficiency) and cost of allocative inefficiency, which is very 

important from estimation point of view. In general, the link is provided by the relationship ln

ln AL
iC

( , , )AL
i i iC w q ξ  = 

* *ln ( , ) ln ( , , )i i i i iC w q G w q ξ+ 0ln (.)C− . For the Cobb-Douglas case, this link is established in Schmidt and Lovell 

(1979), viz., 1
2 2

ln ln ln[ ]j
J J

AL

1

J

j j j
j j

C e ξ
j

j
α ξ α α α−

= =

⎡ ⎤
= + + −⎢ ⎥

⎣ ⎦
∑ ∑

=
∑ .   Since Schmidt and Lovell used the system 

consisting of the production function and the first-order conditions of cost minimization, it was not necessary to use 

the above link in estimation. It was, however, used to compute the cost of allocative inefficiency. Thus, Schmidt and 

Lovell avoided the Greene problem by not estimating the cost system. Kumbhakar and Wang (2006) did the same 

when they extended the CD model of Schmidt and Lovell to accommodate flexible production functions (such as the 

translog). Although they avoided the Greene problem by following the Schmidt and Lovell procedure, they had to 

solve a system of nonlinear equations to compute the costs of technical and allocative inefficiencies.  

The Greene problem is associated with estimating a cost system in (2) and (3) using the link between cost of 

allocative inefficiency and errors in the cost share equations (which are functions of allocative inefficiency),  given in 

equations (6), (8) and (9). Thus to address the Greene problem, we focus on estimating the cost system  It can be seen 

that the error structure based on u and jξ in (2) and (3) is quite complicated. Because of this the model has not been 
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estimated using cross-sectional data.5  In the following section we discuss an estimation method, first with only 

allocative inefficiency and then with both technical and allocative inefficiency. 

 

3. Estimation  

3.1. Only allocative inefficiency 

For simplicity we consider first the case with only allocative inefficiency, and write the cost system in (2) 

and (3) as  

0

0
, , ,

ln ln ( ) ln ( , ) ,

( ) ( , ),   2,..., , 1,..., ,

a AL
i i i i i

a
j i j i j i i

C C C v

S S j J i

β β ξ

β η β ξ

= + +

= + = = n
     (10) 

where β  is the parameter vector associated with the translog cost function, and v is the stochastic noise component 

added to the cost function. To avoid singularity problem, one share equation is dropped and we normalize the 

corresponding element of iξ  to zero. We impose the standard distributional assumptions on the error components, vi 

and iξ , in the above system.. More specifically, we assume 2~ . . . (0, )iv i i d N σ  and 1~ . . . ( , )i Ji i d Nξ µ− Ω , distributed 

independently of . Here, the  vector iv ( 1)J − ×1 µ  represents systematic allocative inefficiency, and the 

 matrix Ω  is the covariance matrix of allocative inefficiency components.  ( 1) ( 1J J− × − )

 

We write the i th observation for the above system compactly as 

ln ( , )
( , )

AL
ii i

i i i
ii i

C v
y X X

εξ β
β β

ηη ξ β
⎡ ⎤ ⎡ ⎤+

= + ≡ +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

,      (11) 

 

where , 
2, ,

[ln , ,..., ]
i J i

a a a
i iy C S S ′= 0 0 0

2, ,[ln ( ), ( ),..., ( )]i i i J iX C S Sβ β β ′= , 2,( , ) ( ( , ),..., ( , , )) 'i i i i i J iη ξ β η ξ β η ξ β= . Since the 

error vector in (11) is ( , ) 'i iε η , for the ML method one has to derive the joint pdf of ( , ) 'i iε η  starting from the 

distributions on  and iv iξ . The joint pdf of ( , ) 'i iε η  is |( , ) ( | ) ( )i i i i ip p pε η ηε η ε η η=  and 

                                                           
5 The system described in (2) and (3) is somewhat similar to the Kumbhakar and Tsionas (2005) model which assumed the 
presence of additional error terms in the share equations. Integrability condition requires that if there are errors in the share 
equations, these errors should also appear in the cost function (McElroy (1987)).  No such allowance was made in the Kumbhakar 
and Tsionas (2005) model.  Furthermore, they used a Bayesian approach to estimate the system. Here we propose a classical ML 
method without any extra error terms in the share equations. 
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2| ~ (ln ( ( ), ), )AL
i i i i vN Cε η ξ η β σ , where ( )i iξ η  is the solution of iξ  in terms of iη  from ( , )i i iη η ξ β= . Furthermore, 

the pdf of ( )ipη η  can be expressed as 

( ) ( ( )). | det ( ) |i i i ip p Dη ξ iη ξ η ξ η= ,        (12) 

where ( )i iDξ η  is the Jacobian matrix (derivatives of iξ  with respect to iη ). Therefore, the joint pdf of the error 

vector in (11) is 

/ 2 2 1/ 2 1/ 2
|

2
11

22

( , ) ( | ) ( ) (2 ) ( ) det( )

[ (ln ( ( )]
exp ( , ) ( , ) | det ( ) |

2

J
i i i i i v

AL
i i i

i i i i i i
v

p p p

C
e e D

ε η ηε η ε η η π σ

ξ ξ η
η β η β ξ η

σ

− − −

−

= = Ω ×

⎧ ⎫−⎪ ⎪′− − Ω⎨ ⎬
⎪ ⎪⎩ ⎭

    (13) 

where ( , ) ( , )i i i ie η β ξ η β µ= − . 

 

In practice, to implement the likelihood function based on (13) we have to show that (i) ξ  can be solved in terms of 

η , and (ii) the Jacobian matrix can be derived analytically. We show these next. 

 For notational simplicity now we drop the observation index i . The first task is to solve for ξ  in terms of 

η . Note that  

0a
j j jS Sη = −

0

1
[1 exp( )]

exp( )

J

j j jk
k

j

S G

G

kξ β ξ

ξ
=

− + ∑
=  

0 0

1
( ) exp( )

J

j j j j jk k
k

S G Sη ξ β ξ
=

⇒ + = + ∑  

0 0

1 2
exp( )

J Ja
j j j jk k j jk k

k k
S G S Sξ β ξ β ξ

= =
⇒ = + = +∑ ∑ 1,...,j J, = .                (14) 

For the last equality we used the normalization 1 0ξ = . The equations in (14) can be expressed in ratio form to 

generate the following system of nonlinear equations,  

0

2

0

2

exp( )

J

j jk k
k

j j J

J Jk k
k

S

S

β ξ
λ ξ

β ξ
=

=

+ ∑
=

+ ∑
, 2,...,j J= ,          (15) 
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where . In the Appendix we use fixed point arguments to show that a solution of 1/a a
j jS Sλ = jξ  exists and is unique. 

Once the jξ s are obtained, the value of  can be obtained as G
0

*1 1
2 1

1 1

J

k k
k

a

S S
G

S S

β ξ
=

+ ∑
= a= . Note that we need  to 

compute

G

ln ( , )AL
iC ξ β .  

The second task is to derive the Jacobian of the transformation from ξ  to η . To compute it we start again 

from the definition of jη , i.e., 

0

2
(1 )

J

j j ik k
k

j
j

S h

h

β ξ
η =

− + ∑
= 2,...,j J= j, , where exp( )jh G ξ= . Differentiating it with respect to lη  gives 

ja k
j jl j jk

k kk l

h
h S k

l

ξ ξ
δ β

ξ η η
∂ ∂ ∂

+ =∑ ∑
∂ ∂ ∂

,        (16) 

where jlδ  is the Kronecker delta. The system in (16) can be written as 

D MΘ = ,          (17) 

where ja
jk j jk

k

h
S β

ξ
∂

Θ = −
∂

, k
kj

j

D
ξ
η
∂

=
∂

, 2( ,..., )JM diag h h= − . Here, D  (the short form of ( )j jDξ η ) is the Jacobian 

of the transformation. The solution of D from (17) is , and 1D M−= Θ 1

2
det( ) det( )

J

j
j

D h−

=
= Θ ∏ . To evaluate the 

components of  we obtain Θ

exp( )j
jk j

k k

h G Gδ ξ
ξ ξ
∂ ⎛ ⎞∂

= +⎜ ⎟
∂ ∂⎝ ⎠

, , 2,...,j k J= , 

*exp( ) exp( )km m k k
mk

G Sβ ξ ξ
ξ
∂

= − − −∑
∂

, 2,...,k J= , 

with the understanding that all the previous expressions are evaluated at the solution of the system which is ( )ξ ξ η= . 

Thus, the solution for the ith observation can be written as ( , )i i iξ ξ η β= , and the likelihood function is 

{ }2

/ 2 2 / 2 / 2

2 11 1
22 1 1 1

( , , ; , ) (2 ) ( ) det( )

exp [ ln ( , ( , )] ( , ) ( , ) | det ( , ) |
v

Jn n n
v v

nn nAL
i i i i i i i i

i i i

L y X

C e e D
σ

β σ π σ

iε β ξ η β η β η β ξ η β

− − −

−

= = =

Ω = Ω ×

′− − − Ω∑ ∑ ∏

  (18) 

where ( , ) ( , )i i i ie η β ξ η β µ= − . 
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The ML estimators of 2
vσ , µ  and  are Ω

2 1 2

1
( ) [ (ln ( ( , )]

n AL
v i i i

i
n Cσ β ε ξ η β−

=
= −∑ 1

1
( ) ( ) ( )

n

i
i

nµ β ξ β ξ β−

=
= ≡∑, , 

1

1
( ) [ ( ) ( )][ ( ) ( ))]

n

i i
i

nβ ξ β ξ β ξ β ξ β−

=
′Ω = − −∑ ,    

where ( ) ( , )i i iξ β ξ η β≡ , and iη  is the cost share residual vector. The concentrated log-likelihood function is: 

2

1
ln ( ; , ) const. ( / 2) ln ( ) ( / 2) ln(det( ( ))) ln | det ( , ) |

nC
v i

i
L y X n n D iβ σ β β ξ η β

=
= − − Ω + ∑ .  (19) 

Note that the concentrated log-likelihood function in the absence of systematic allocative inefficiency can be obtained 

by setting 10Jµ −=  and 1

1

n

i i
i

n ξ ξ−

=

′Ω = ∑  in (19).  

 

3.2. Both technical and allocative inefficiency 

 

With both technical and allocative inefficiency the system is 

 

ln ( , )
( , )

AL
ii i i

i i i
ii

C v u
y X X

ζξ β
β β

ηη ξ β
⎡ ⎤ ⎡ ⎤+ +

= + ≡ +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

      (20) 

 

where 2~ . . . (0, )i u  ( u  distributed independently of  and 0)i ≥ iv iξ . The convolution ii iv uω ≡ +u i i d N σ  has a familiar 

distribution, namely, 2( ) i
if iω λω

ω φ
σ σ σ

⎛ ⎞ ⎛ ⎞= Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where 2 2 2
v uσ σ σ= + /u vλ σ σ=, , and ,  φ Φ  denote, respectively 

the pdf and cdf of the standard normal variable (see Kumbhakar and Lovell (2000), p. 140). Consequently, 

( | ) ( ln ( , ))AL
i i i ip p Cωζ ξ ω ξ β= − .  

Assuming 1~ . . . (0, )i Ji i d Nξ − Ω  as before, we obtain the following joint probability density function  

( , ) ( | ) ( ) ( | ( , )) ( ( , )). | det ( , ) |i i i i i i i i i i i ip p p p p D
η ξζ η ζ η η ζ ξ η β ξ η β ξ η β= ⋅ = ⋅  

             2 ( [ ln ( , ]) | det ( , ) |AL
i i i iC Dλ

σ σ ζ ξ β ξ η β= Φ − ⋅ ×  

2
/ 2 1/ 2 11

22

[ ln ( , )]
(2 ) det( ) exp ( , ) ( , )

2

AL
J i i

i i
C

e e
ζ ξ β

π η β η β
σ

− − −⎧ ⎫−⎪ ⎪′Ω − − Ω⎨ ⎬
⎪ ⎪⎩ ⎭

. 
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Using  

0

0
, , ,

ln ln ( ) ln ( , ( , ))

( ),   1,..., 1,

a AL
i i i i i i

a
j i j i j i

C C C

S S j J

ζ β β ξ η

η β

= − −

= − = −

β
 

the likelihood function becomes  

1 1

( , , , ; , )

( [ ln ( , ]) | det ( , ) |

v u

n nn AL
i i i i

i i

L y X

C Dλ
σ

β σ σ

σ ζ ξ β ξ η−

= =

Ω ∝

Φ − − ⋅ ×∏ ∏ β

 

 { }2
/ 2 2 11 1

22 1 1
det( ) exp [ ln ( , )] ( , ) ( , )

n nn AL
i i i i i i

i i
C e e

σ
ζ ξ β η β η β− −

= =
′Ω − − − Ω∑ ∑ ,    (21) 

where ( , ) ( , ) ( , )i i i i ie η β ξ η β ξ η β= − , and 1

1
( , ) ( , )

n

i i
i

n iξ η β ξ η β−

=
= ∑ . The above likelihood function can be 

concentrated with respect to , the ML estimator of which is  Ω

1

1

ˆ ( ) ( , ) ( , )
n

i i i i
i

n e eβ η β η β−

=
′Ω = ∑ . 

Thus, the concentrated log-likelihood function is proportional to 

2
2

1 1
ln ( , , ; , ) ln( ) ln ( [ ln ( , ]) ln | det ( , ) |

n nC ALn
v u i i i i

i i
L y X C Dλ

σβ σ σ σ ζ ξ β ξ η β
= =

= − + Φ − − +∑ ∑  

2
21

2 2 1

ˆˆdet( ( )) [ ln ( , )]
n ALn

i i
i

C
σ

β ζ ξ β
=

− Ω − −∑ .     (22) 

 

Here, σ  and λ  are functions of the original parameters vσ  and uσ . To maximize the log-likelihood functions 

shown in (22) we use the Nelder-Mead simplex maximization technique that does not require numerical derivatives. 

To compute standard errors for the parameters we have used the BHHH formula which is based on first-order 

derivatives of the log-density with respect to the parameters.  

 

4. Results 

4.1 Electric utility data 

 

 Data for the first application is from Christensen and Greene (1976) who used this cross-sectional data on 

steam electricity generating firms. The inputs are capital, labor and fuel. Output is electricity (million kwh) generated 
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by steam power. The total cost is the sum of labor, fuel and capital cost. The total number of firms in the data set is 

123. Details on the construction of output and input quantities, input prices and output can be found in Christensen 

and Greene (1976).  

First, we consider the model with only allocative inefficiency, which is estimated with and without 

systematic components. In both cases fuel price is used as a numeraire to impose homogeneity (of degree one) in 

input prices. Thus, our estimates of allocative inefficiency in labor and capital ( Lξ and Kξ ) are relative to fuel. Since 

both the mean and median values of Lξ and Kξ  are negative (without systematic allocative inefficiency), we can 

argue that, on average, both labor and capital are overused (relative to fuel). Overuse (underuse) of capital relative to 

labor can be computed by comparing /K L
K Lw e w eξ ξ with /K Lw w (i.e., from K Lξ ξ− ) which shows that capital is over-

used relative to labor since 0K Lξ ξ− < (at the mean and median). When we allowed systematic allocative 

inefficiency, we find that capital (but not labor) is overused relative to fuel. We also find that, on average, capital is 

overused. Since 0Kξ <  and Lξ > 0, the degree of over-use (indicated by K Lξ ξ− ) is stronger in the model with 

persistent allocative inefficiency. Note that these results hold at the mean/median. To get an idea about relative over-

use of capital and labor for each firm, we plot the distribution of andK Lξ ξ  in Figures 1(a) and 1(b) for the model 

without systematic/persistent allocative inefficiency.  Figures 1(c) and 1(d) plot these for the model that allows 

systematic/persistent allocative inefficiency. It is clear from the graphs that the mean values of andK Lξ ξ  are close to 

zero (an artifact of the distributional assumption that their means are zero). This is, however, not the case when non-

zero means (systematic allocative inefficiency) are allowed on andK Lξ ξ . For these models the mean values of 

andK Lξ ξ are found to be negative, which means that capital and labor are overused relative to fuel.6 The percentage 

of firms that are not overusing capital (relative to fuel and/or labor) is quite small, especially when technical 

inefficiency is allowed.  

Since we use input-oriented technical inefficiency, the percentage increase in cost is the same as percentage 

over-use of inputs due to technical inefficiency, u. We find that, on average, cost is increased about 9% due to 

technical inefficiency. This is true irrespective of whether allocative inefficiency is systematic or not (see Table 2). 

Technical inefficiency of the top (bottom) 5% of the firms is 3% or less (20% or more). The distribution u (cost of 

                                                           
6 These results are in line with those of Kumbhakar and Wang (2006) who used a more recent data (1986-1996) on 72 
steam electric power generation plants, although they used a different modeling approach. 
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technical inefficiency) is given in Figure 2. It can be seen from this figure that technical inefficiency for about 90% of 

the firms is less than 15%. That is, technical efficiency of about 90% of the firms is at least 85%.  Using a more 

recent data (1986-1996) on 72 steam electric power generation plants, Kumbhakar and Wang (2006) found similar 

results although they used a different modeling approach. 

Next we report (in Table 1) the increase in cost due to allocative inefficiency,  which is found to be 

quite small for both models. The mean (median) values of l  is 0.0444 (0.0296), which shows that cost is 

increased, on average, by 4.44%. For the top (bottom) 50% of the firms the cost is increased by 2.96% due to input 

misallocation. For the bottom 5% of firms, misallocation of inputs increased cost by 14.44%. These figures are much 

higher (mean 10.13% and median 9.16%) when firms are allowed to make systematic allocative errors in input-use 

decisions. Increase in cost due allocative inefficiency for about half of the firms is more than 9.16%. These figures 

for the bottom 5% of the firms are more than 22.39%. Distributions of l (with and without systematic allocative 

inefficiency) are plotted in Figure 2. It can be seen that the distribution of without systematic allocative 

inefficiency is very tight compared to the one that allows systematic allocative inefficiency. Since these firms were 

regulated, then from a static optimization point of view it is expected that inputs, especially capital, won’t be used 

optimally (the Averch-Johnson hypothesis). Thus the results from the model that ignores systematic allocative 

inefficiency are likely to be biased. This finding accords with the Monte Carlo results in Kumbhakar and Wang 

(2005). 

ln ,ALC

n ALC

n ALC

ln ALC

Results from the models with both technical and allocative inefficiency are reported in Table 2. Increase in 

cost due to technical inefficiency, on average, is 9.07% to 9.94% depending on whether or not systematic allocative 

inefficiency is allowed. For about half of the firms, the increase in cost due to technical inefficiency is  around 8%, 

irrespective of whether allocative inefficiency is systematic or not. However, the increase in cost due to allocative 

inefficiency,  vary widely depending on whether or not allocative inefficiency is assumed to be systematic.  

For example, compared to the model without systematic allocative inefficiency it can be seen that the estimated value 

of  in the model with systematic allocative inefficiency is more than twice (the median values are 8.46% and 

3.8%, respectively). In both models we find overuse of capital and labor (relative to fuel), although the degree of such 

overuse is more pronounced in the model that allows systematic allocative inefficiency. This is one of the reasons 

why  is more than double in the model that allows systematic allocative inefficiency. Further insight can be 

ln ,ALC

ln ALC

ln ALC
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obtained from the plots of l in Figure 3. It is clear that distributions of l are much tighter when systematic 

allocative inefficiency is not allowed. 

n ALC n ALC

Now we examine the returns to scale results, reported in Table 3 and Figure 4. In fact, we report cost 

elasticity with respect to output,  (which is the reciprocal of returns to scale). Scale economies 

(SCE) can then be defined as , which shows economies (diseconomies) of scale if SCE is positive 

(negative).  We find evidence of scale economies (at the mean/median) from all models. The models with only 

allocative inefficiency show smaller scale economies when compared to those with both technical and allocative 

inefficiency (evaluated at the mean/median). Figure 4 shows plots of  from all four models. Percentage of firms 

with scale economies ( ) varies depending on the model. For example, about 94% of the firms in the models 

with both technical and with or without allocative inefficiency were operating with economies of scale. However, if 

one assumes that firms were operating fully efficiently (technically), then these percentages drop dramatically. For 

example, only 62.6% of firms showed economies of scale in the model that allows systematic allocative inefficiency.  

On the other hand, the percentage of firms with economies of scale increased to 82.9% if one makes the assumption 

that firms were operating without systematic allocative inefficiency. Systematic allocative inefficiency matters more 

in the model with no technical inefficiency so far as the estimates of scale economies are concerned. However, all the 

models predict the presence of substantial unexploited scale economies, which is also found by Christensen and 

Greene (1976). However, these results are in contrast to those reported in Kumbhakar and Wang (2006) who used the 

more recent data and found no evidence of substantial scale economies. This is not surprising because the average 

size of firms has increased over time to exploit scale economies.      

0ln / ln ,CQE C= ∂ ∂ q

1 CQSCE E= −

CQE

1CQE <

Since the Christensen and Greene formulation comes closer to our model with no technical and systematic 

allocative inefficiency (Model 1), we compare scale economies derived from these two models. Note that the error 

terms in the cost share equations in the Christensen and Greene model have no economic interpretation while in our 

model these error terms ( )η  are functions of allocative inefficiency ( )ξ . The summary statistics of cost elasticity  

from the Christensen and Greene model (Model 5) are reported in the last column of Table 3. A comparison of these 

numbers with those from Model 1 shows that estimates are underestimated (SCE are biased upward) in Model 5. 

For example, the mean (median) SCE in Model 5 is 0.11 (0.090) whereas in Model 1 it is 0.084 (0.062). 

CQE
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It is often argued that since the data is from the 1970s, the empirical results are not relevant to the electric 

utility industry of today.  Comparing our results to those that used the recent data (for example, Kumbhakar and 

Wang (2006)), we find that efficiency results (both technical and allocative) are in fact qualitatively similar. 

However, the estimates of returns to scale are found to be different. While the industry was mostly operating under 

increasing returns to scale, no scale economies are found in the recent years. Our finding that most of the firms were 

operating under increasing returns to scale is consistent with the findings of Christensen and Greene (1976). That is, 

the inclusion of technical and allocative inefficiencies in the Christensen and Greene model did not change their main 

result that most of the firms experienced scale economies (although the scale economies results are overestimated). In 

general, other results of our models such as own and cross-elasticities of substitution are found to be in agreement 

with those reported in Christensen and Greene7.  

 

4.2 Firm-level IT productivity data 

 
We also apply the proposed technique to another very different type of data set that is used by Brynjolfsson 

and Hitt (2003) to measure computer (IT) productivity. Since our objective is to apply the cost system approach, we 

focused on a single cross-section of 518 firms for the year 1994. The output variable is value added (Q) and the three 

variable inputs are: ordinary capital stock (K), computer (IT) capital stock (C), and labor (L). The total cost is the sum 

of ordinary capital, computer capital, and labor cost. The details on the definition and construction of these variables 

can be found in Brynjolfsson and Hitt (2003). To conserve space we discuss the main results from this data, viz., 

from the models with and without systematic allocative inefficiency.8  In both models price of ordinary capital is used 

as a numeraire to impose homogeneity (of degree one) restrictions. Thus, our estimates of allocative inefficiency in 

labor and IT capital ( Lξ and Cξ ) are relative to ordinary capital. The mean values of Lξ and Cξ are found to be 

positive, which means that labor and IT capital are underused relative to ordinary capital. Alternatively, ordinary 

capital is overused relative to both IT capital and labor. It can be seen from the distributions of Cξ  and Lξ  (Figures 

                                                           
7 To conserve space, we do not report these results. Details can be obtained from the authors upon request. 
8 We do not compare our results with those of Brynjolfsson and Hitt (2003) mainly because their focus was on 
measuring productivity and in doing so they estimated the TFP change regression without estimating the technology 
directly from the production/cost function. On the other hand, our interest is to estimate the underlying technology 
and in doing so we used the flexible translog cost system.  
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5a and 5b) that IT capital under-use (relative to capital) is much less than that of labor. The spread of Lξ is quite large 

in both models with and without systematic allocative inefficiency.   

Since misallocation of inputs increase costs which is what matters most to the producers, it is natural to 

examine increase in cost due to allocative inefficiency. The distributions of percentage increase in cost due to 

allocative inefficiency for both models (with and without systematic allocative inefficiency) are reported in Figure 8. 

On average, cost due to allocative inefficiency, ln CAL, is increased by 6.2% (9.8%) in the model without (with) 

systematic allocative inefficiency. The median values of ln CAL in these models are 6.8% and 9.7%, respectively. 

Thus, distributions of ln CAL in both models are quite symmetric. However, the variation (spread) in ln CAL in the 

model with systematic allocative inefficiency is more pronounced. 

Next we examine costs of technical inefficiency (which is the same as input-oriented technical inefficiency), 

u. The distribution of u is plotted in Figure 7 for both models. On average, technical inefficiency increased cost by 

7.12% (5.81%) in the models without (with) systematic allocative inefficiency. The high mean value of technical 

inefficiency in the model without systematic allocative inefficiency is due to the fact that the distribution is highly 

skewed to the right and technical inefficiency of several firms is found to be quite high. The median values of 

technical inefficiency in both models are quite low in both models (1.54% vs. 1.64%). 

Finally, we report cost elasticities, , in Figure 6.  From the estimates of  we can obtain the measure 

of scale economies (SCE) which is , and returns to scale which is the reciprocal of . It can be seen 

from Figure 6 that almost all these firms enjoyed economies of scale (operated under increasing returns to scale) in 

the model without systematic allocative inefficiency. The mean value of SCE is 0.0736 and is significantly different 

from zero. On the other hand, in the model with systematic allocative inefficiency, the mean value of SCE is 0.046.  

Finally, the mean value of SCE is reduced to 0.036 when one assumes the firms to be both technically and 

allocatively efficient. A closer look at the distribution of  shows that although the magnitude of scale economies 

is smaller in the model with systematic allocative inefficiency, RTS is found to be greater than unity for about 90% of 

the firms. In summary, we find evidence of economies of scale for most of the firms regardless of which model is 

used. The distributions of  for both models are almost symmetric, and their spreads are quite similar. 

CQE CQE

1 CQSCE E= − CQE

CQE

CQE
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5. Conclusions 

In this paper we build on the work of Kumbhakar (1997) and developed an exact maximum likelihood 

method for his postulated cost system which models technical and allocative inefficiencies in a theoretically 

consistent way. In essence, this methodology permitted us to estimate jointly the cost function parameters as well as 

increased cost due to each inefficiency component using cross-sectional data.  Our approach solves the long standing 

Greene problem, which is associated with estimation of a flexible cost system in the presence of both technical and 

allocative inefficiency. We illustrated the working of our model first with only allocative and then both technical and 

allocative inefficiencies. The Christensen and Greene (1976) electric utility data are used to estimate the parameters 

of our models. We found that costs of technical and allocative inefficiency are sensitive to whether one assumes only 

allocative or both technical and allocative inefficiency. The same conclusion is reached for the estimates of returns to 

scale. Comparing our results with those that use a much more recent data, we find that efficiency results (both 

technical and allocative) are qualitatively similar, but the returns to scale are not.  

Our second application used cross-sectional data on 518 large U.S. firms taken from the Brynjolfsson and 

Hitt (2003) data. In this data we found that costs of allocative inefficiency are somewhat sensitive to whether or not 

allocative inefficiency is assumed to be symmetric. Finally, we found evidence of scale economies in both models, 

although it is found to be more pronounced in the model without systematic allocative inefficiency.     

 

 
References 

 

Bauer, P.W., 1990, Recent Developments in the Econometric Estimation of Frontiers, Journal of Econometrics 46, 

39-56. 

Brynjolfsson, Erik  and Lorin M. Hitt, 2003, Computing Productivity: Firm-Level Evidence, Review of Economics 

and Statistics 85, 793-808.  

Christensen, L. R., and W.H. Greene, 1976, Economies of Scale in U. S. Electric Power Generation, Journal of 

Political Economy 84, 655-76. 

Farrell, M. J., 1957, The Measurement of Productive Efficiency, Journal of the Royal Statistical Society, Series A, 

120, 253-81.  

Greene, W.H., 1980, On the Estimation of a Flexible Frontier Production Model, Journal of Econometrics 13:1, 101-

15. 

Kumbhakar, S.C., 1997, Modeling Allocative Inefficiency in a Translog Cost Function and Cost Share Equations: An 

Exact Relationship, Journal of Econometrics 76, 351-356. 

 17



Kumbhakar, S.C. and C.A.K Lovell, 2000, Stochastic Frontier Analysis (Cambridge University Press, New York). 

 Kumbhakar, S.C., and E.G Tsionas, 2005, The Joint Measurement of Technical and Allocative Inefficiencies: An 

Application of Bayesian Inference in Nonlinear Random-Effects Models, Journal of American Statistical 

Association 100, 736-747. 

Kumbhakar, Subal C, and Wang, Hung-Jen, 2006, Estimation of Technical and Allocative Inefficiency in a 

Stochastic Frontier Production Model: A System Approach, Journal of Econometrics (forthcoming).  

Kumbhakar, Subal C, and Wang, Hung-Jen, 2005, Pitfalls in the Estimation of Cost Function Ignoring Allocative 

Inefficiency: A Monte Carlo Analysis, Journal of Econometrics (forthcoming).  

McElroy, M., 1987, Additive General Error Models for Production, Cost, and Derived Demand or Share System, 

Journal of Political Economy 95, 738-57. 

Schmidt, P., and C.A.K. Lovell, 1979, Estimating Technical and Allocative Inefficiency Relative to Stochastic 

Production and Cost Frontiers, Journal of Econometrics 9, 343-66. 

 18



Table 1: Only allocative inefficiency  

 Without systematic allocative inefficiency With systematic allocative inefficiency 

 ln ALC  Lξ  Kξ  ln ALC  Lξ  Kξ  

Mean 0.0444 -0.0892 -0.4553 0.1013 0.0486 -0.6030 

Median 0.0296 -0.1183 -0.4334 0.0916 0.0489 -0.5844 

Std deviation 0.0472 0.4037 0.5598 0.0697 0.3154 0.4154 

5% 0.0001 -0.6388 -1.364 0.0039 -0.4070 -1.230 

95% 0.1444 0.5448 0.6033 0.2239 0.4194 -0.1526 

 

Table 2: Both technical and allocative inefficiency  

 Without systematic allocative inefficiency With systematic allocative inefficiency 

 u ln ALC  Lξ  Kξ  u ln ALC  Lξ  Kξ  

Mean 0.0994 0.0569 -0.0884 -0.5324 0.0907 0.1052 -0.1465 -0.8078 

Median 0.0882 0.0380 -0.1184 -0.5359 0.0784 0.0846 -0.2029 -0.7929 

Std. dev. 0.0533 0.0582 0.4009 0.5731 0.0504 0.0874 0.4145 0.6331 

5% 0.0305 0.0005 -0.7264 -1.472 0.0321 0.0052 -0.7074 -1.8190 

95% 0.2057 0.0005 0.5890 0.2178 0.2046 0.2854 0.4915 0.0713 

 

Table 3: Output cost elasticity  

Only allocative inefficiency Both technical and allocative inefficiency  

without systematic 

Model 1 

with systematic 

Model 2 

without systematic 

Model 3 

with systematic 

Model 4 

 

Model 5 

Mean 0.9155 0.9595 0.8870 0.8898 0.8866 

Median 0.9378 0.9799 0.9078 0.9099 0.9066 

Std deviation 0.1003 0.0970 0.0967 0.0954 0.0929 

5% 0.6217 0.6699 0.6051 0.6115 0.6146 

95% 1.052 1.093 1.018 1.019 1.013 
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Appendix: Existence and uniqueness of solution to the system of equations 

Theorem: If 

(A1) the actual share  for all ,  0a
iS > {1,..., }i J∈ =Z

(A2) for every , we have (i∈Z 0ijβ ≠  for some j∈Z ), where ijβ  represents the second-order translog coefficients 

with respect to prices,  

(A3) 0jk
j

β
∈

=∑
Z

, and  

(A4) , 0 1j
j

S
∈

=∑
Z

then  (i) there exists a solution of ξ in the system of equations in (14), and (ii) the solution is unique. 

 

Proof: Before proving the existence and uniqueness, we note that the condition in (A1) follows from the definition of 

cost shares, while that in (A2) is necessary for flexibility of the translog cost function. Finally, the conditions (A3) 

and (A4) follow from homogeneity (of degree one in input prices) of the cost function. 

 

(i) Existence. 

The system in (14) is of the form 0exp( )a
j j j jk k

k
S G Sξ β ξ

∈
= + ∑

Z
j, ∈Z

κ ξ= j∈Z κ ξ= + + j

. Note that here we are considering 

the system in which the homogeneity restrictions are not directly imposed by expressing all prices and cost relative to 

one input price. Let , , so that , exp( )a
j j jS G ln ln lna

j j jS G ∈Z . Then the system in (14) can 

be written in the form 

0 0ln ln ln ln lna a
j j jk k jk k jk j jk k jk k

k k k k k
S S G S Sκ β β κ β β β κ

∈ ∈ ∈ ∈ ∈
= − + − = − +∑ ∑ ∑ ∑ ∑

Z Z Z Z Z
, j∈Z .     (A.1) 

 such that  . Then , the unit simplex in . Write the residual from the cost 

share system (3) as 

1j
j
κ

∈
=∑

Z
{ |n

j
j

κ κ κ+
∈

∈ ≡ ∈ =∑
Z

S 1}

k k
f S Sκ κ

n

0( ) ln lna
j j j jk k jk kβ β κ

∈ ∈
= − + −∑ ∑

Z Z
j∈Z, .                           (A.2) 

Define the mapping 
2

2

( )
( )

1 ( )
j j

j
k

k

f
g

f
κ κ

κ
κ

∈

+
=

+ ∑
Z

j∈Z

*

, . 

Clearly, , i.e., it maps S  into itself and is continuous. By Brouwer's fixed point theorem, there exists a 

 such that , which implies that 

:g →S S

*κ ∈S *( )g κ κ=

* 2 * * 2( ) ( )j j k
k

f fκ κ κ
∈

= ∑
Z

, . j∈Z

Multiplying both sides by  and summing over  we obtain *( )jf κ j
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* 3 * * * 2( ) ( ) ( )j j j k
j j k

f f fκ κ κ κ
∈ ∈ ∈

=∑ ∑ ∑
Z Z Z

. 

Suppose  for all  but *( ) 0jf κ = j l≠ *( ) 0lf κ ≠ . Then the above equation implies * 3 * * 3( ) ( )l l lf fκ κ κ= , which gives 

. Write * 0lκ = * exp( )a
l l lSκ *ξ= . By assumption (A1) since * 0lκ =  we have *

lξ = −∞ . For  by (A.2) we obtain 

 for some  provided assumption (A2) holds. Now, 

* 0lκ =

*( )jf κ = ±∞ j∈Z
* *

* *
* 2

( )
( )

1 ( )
l l

l l
l

f
g

f
κ κ

κ κ
κ

+
= =

+

2

. Although * 0lκ = , 

the limit of the right hand side expression as  (and therefore as ) is equal to one, a 

contradiction since  is continuous. Therefore, we conclude that at the fixed point 

* 0lκ → * 2( )lf κ → +∞

( )lg κ *κ  we must have *( ) 0jf κ =  

for all  which means that  represents a solution. j∈Z *κ

 

(ii) Uniqueness. 

Suppose { }jξ  and { }jϕ  are distinct solutions. Therefore they must satisfy 

0exp( )a
j j j jk

k
S G S kξ β ξ

∈
= + ∑

Z
 

0exp( )a
j j j jk

k
S G S kϕ β ϕ

∈
= + ∑

Z
,                                            (A.3) 

for all , and they also satisfy the following equality j∈Z

exp( ) exp( ) 1a a
j j j j

j j
S Sξ

∈ ∈
=∑ ∑

Z Z
ϕ =

k

.                                   (A.4) 

Define k kε ξ ϕ= −  so that we have exp( )[exp( 1)]a
j j j jk

k
S kϕ ε β ε

∈
− = ∑

Z
. Let exp( )a

j j jS ϕΛ =  and notice that 

jexp( 1)jε ε− ≥  to obtain jk k j j
k

β ε
∈

≥ Λ∑
Z

ε 0. This system can be written in the form [ ( )]B diag ε− Λ ≥ . Now choose 

a vector  such that c 0c ε′ < , which is always possible provided not all the jε s are zero (a fact that we have to accept 

since we have assumed the existence of two different solutions). By applying the Farkas’ lemma we obtain that since 

the above system has a solution, the system [ ( )]B diag cε− Λ = , 0ε ≥  must have no solution. Therefore, there exists 

no nonnegative vector ε  to satisfy jk k j j j
k

cβ ε ε
∈

= Λ +∑
Z

. We set j wε =  for all j so we know that there exists no 

nonnegative w to satisfy . We will obtain an obvious contradiction provided we can show that the 

inequality 

jc w= − Λ j

0c ε′ <  is satisfied. But  since the 2 0j j j
j j

c c wε ε
∈ ∈

′ = = − Λ∑ ∑ < jΛ s are positive. The contradiction shows 

that the solution must be unique. 
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Farkas’ lemma: The system Ax c= ,  has no solution if and only if the system 0x ≥ 0A y′ ≥ ,  has a solution. 0c y′ <

 22


















