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An Empirical Evaluation of Irrigation Insurance for Agricultural Systems in the 

Mexican Northwest 

Abstract 
 
Prototype inflow-based derivative contracts are designed to hedge irrigation risk in the 
Rio Mayo Valley of Sonora, Mexico. The results indicate that an 18-month contract is 
feasible given the specific characteristics of the region selected for the study. 
 
Introduction 

Regions of the Mexican Northwest are characterized by scarce precipitation, and 

rely almost entirely on reservoir systems to irrigate large cropping areas, provide water to 

urban centers, and even generate electricity. Irrigation, however, remains the most water-

intensive sector of those regional economies. In fact, in the dry states of Sonora, Sinaloa, 

and Baja California, irrigation takes up a high percentage of total water consumption 

(CNA). Despite the existence of irrigation systems, farm income is by no means shielded 

from weather uncertainties since the availability of water depends to a large extent on 

river inflows – a highly variable hydrological variable. When the annual accumulation of 

inflows is not adequate to replenish the reservoirs, agriculture is the sector that bears the 

major water cuts; consequently, cropping activities decline, rural unemployment 

increases, and farm income falls. Put differently, the annual variability of reservoir 

inflows represents the most important source of production risk for irrigated agriculture 

in these Mexican localities. Therefore, research that investigates potential risk 

management solutions is relevant not only from a purely academic viewpoint, but also 

from a policy perspective.  

Economists have recognized that the uncertainty surrounding reservoir inflows 

stymies the operation and management of irrigation districts. One body of literature has 

focused on the technical operation of reservoirs and proposed the use of several 
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optimization techniques to develop reservoir operation policies that account for the 

stochastic nature of inflows [see Labadie for a recent survey]. Among the methods 

studied are stochastic dynamic programming (Dudley and Burt; Kelman el al; Stedinger, 

Sule, and Loucks), chance-constrained programming (Eisel), and chanced-constrained 

dynamic programming (Askew). These tools have been used since the 1960s to design 

the optimal size of irrigation districts, and to operate corresponding reservoirs. Although 

with these tools operators are better prepared to assess the impact of stochastic inflows, 

their application implies some opportunity costs and seldom guarantees a full risk-sharing 

solution.  As Dudley (1988a) puts it “why use stored water as an insurance medium when 

it evaporates and its presence in the reservoir increases reservoir spills.” Dudley suggests 

that storing output and revenues should also be included in the set of decision variables of 

reservoir operation models. 

Another body of literature has explored institutional approaches that rely on water 

markets and financial contracts to facilitate water allocations under uncertainty 

conditions. The institutions proposed include: developing option contracts and water 

markets to transfer irrigation supplies to urban centers (Michelsen and Young; Taylor and 

Young); interruptible water markets between power companies and agriculture 

(Hamilton, Whittlesey, and Halverson); contracts to divert agricultural use towards 

ecological uses (Turner and Perry); sharing the capacity and volume of a reservoir 

(Dudley); and using a water bank (Iglesias, Garrido, and Gomez-Ramos). Furthermore, 

emerging research has focused on transferring new financial innovations to the 

management of weather risk in agriculture (Turvey; Hao, Hartell, and Skees; Skees and 

Enkh-Amgalan; Skees et al); however, research on the use of these innovations to hedge 
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the income risk caused by stochastic reservoir inflows remains lacking, except for a few 

instances (Skees and Zeuli). 

This paper uses data from the Rio Mayo irrigation district to examine the 

feasibility of using an inflow-based derivative as primary insurance against water supply 

risk in irrigated agriculture. The analysis uses stochastic simulations to develop a set of 

risk management strategies that combine an inflow-derivative with reservoir operation 

policies, including pricing considerations. Moreover, a ranking procedure is employed to 

evaluate the simulated income distributions produced by each strategy according to the 

buyer’s risk preferences and downside risk measures. The framework developed in this 

paper, and insights derived from it, are relevant to decision makers, irrigators, and 

organizations interested in risk management strategies for irrigated agriculture.  

Irrigated Agriculture in the Mayo Valley 

Description 

 The Rio Mayo irrigation district is located in the southern part of the state of 

Sonora. The district includes an area of 98,598 ha suitable for irrigated agriculture, and 

groups 11,717 irrigators under 16 irrigation modules. The main source of water supply 

for the irrigation district is the watershed of the Mayo River (hence the name Rio Mayo), 

which covers an approximate area of 11,000 km2. The river extends for approximately 

350 km and averages 1,000 million m3 in annual streamflows. The hydraulic work used 

to secure the flows from the river is the Alfonso Ruiz Cortinez (ARC) reservoir, which 

has a storage capacity of approximately 1,200 million m3. Approximately, 81% (825 

million m3) of the water supply is used for irrigation, while the rest is allocated to other 
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uses or lost due to evaporation. Please refer to Table 1 for descriptive statistics about the 

Rio Mayo. 

 The agricultural cycle in the Mayo Valley, as in other parts of the Mexican 

Northwest, is divided in two cropping seasons, namely Fall-Winter (FW) and Spring 

Summer (SS). On average, irrigators plant 100,000 ha in year, with 75% of the planting 

taking place in FW and 25% in SS. In terms of cropping patterns, the FW season (Figure 

1) carries the entire production of wheat, which is the main crop of the region, in addition 

to a substantial proportion of maize and safflower. In contrast, the SS season (Figure 2) 

has a variable crop pattern, but cotton and safflower are the dominant crops. The relative 

importance of the FW season is also reflected in the fact that, on average, the ARC 

reservoir stores 255 million m3 (52%) more in October (beginning of FW season) relative 

to April (beginning of SS). 

Organization and Decision-Making 

  The Water Law of 1992 introduced reforms that had an impact in the organization 

and operation of irrigation districts in Mexico, including the Mayo Valley [see Naylor, 

Falcon, and Puente-Gonzalez, (2001) for more details on policy reforms]. Currently, 

there are three parties that jointly plan, distribute, and use water for irrigation purposes: 

the National Water Comission (CNA), the Limited Responsibility Society (SRL), and the 

irrigation modules. CNA is an autonomous government agency of the Mexican federal 

government in charge of regulating all aspects of water use and planning, including the 

operation of reservoirs and issuance of water concessions. On the other hand, irrigation 

modules are subdivisions of an irrigation district that represent their individual members 

in the decision-making process and also participate in the water allocation process. In 
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turn, the SRL groups all the irrigation modules and is responsible for collecting fees to 

finance the operation the management of the irrigation district. 

In a typical irrigation cycle, the decision-making process starts when irrigators 

submit their individual irrigation plans to their corresponding irrigation module. In turn, 

the irrigation modules, the SRL, and CNA meet to estimate the water required to 

implement the irrigation plans, given the storage conditions in the ARC reservoir as of 

October 1. Although some negotiations may occur, CNA is the main decision maker 

about the annual release or supply of water. In times of drought, however, CNA’s 

decisions may entail strict modifications in irrigators’ cropping plans to accommodate 

irrigations supplies. At any rate, once water is released from the reservoir, the SRL 

receives and allocates the endowment of water to each irrigation module. Finally, the 

irrigation module delivers water to the parcels to be irrigated by individual irrigators.  

The Impact of Water Shortage 

In a place where the mean annual rainfall is only 260 mm (10.24 in), water is the 

most limiting factor in agricultural production. Figure 3 shows that there is a strict 

relationship between the annual plantings and the annual volume of water from the ARC 

reservoir made available for irrigation. For instance, in the year 1987-1988 when the 

agricultural sector received the lowest allocation of water (481 million m3) in the 

historical series, the irrigation district registered the lowest number of hectares planted 

(70,202 ha). However, the effect of water shortages in the Mayo Valley has been more 

evident in the last four years when the annual plantings have declined to about 80% of the 

historical mean.  
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Overview of Empirical Procedures 

A stochastic dynamic simulation model is employed to assess the potential for 

using an inflow-based derivative in the Mayo Valley. The stochastic part of the model is 

based on the simulation of the random process that underlies the seasonal inflows feeding 

the ARC reservoir. In addition, the model is composed of a set of reservoir operation 

policies or releases rules. The third and most important component is the contract design. 

In particular, several designs are integrated to the model and the resulting plantings 

cumulative distributions are ranked according to a risk preference procedure. Each 

component is briefly explained below. 

Inflow Simulations 

The streamflows of the Mayo River are defined by seasonal changes. Figure 4 

shows the mean monthly inflows for three selected periods for which data is available. 

The figure shows two important details that play an important role in the simulation. 

First, notice that most of the inflow accumulations take place in the SS season, 

particularly within the months of June and September. Second, the figure shows that 

although FW accumulations carry less weight, during the December-January months the 

inflows experience a small “bump.” In fact, the data shows that some years when the 

“bump” is large enough, the FW winter accumulation might be just as important as the 

SS accumulations. Rio Mayo farmers have recognized the value of those “bumps” to 

irrigate land during the SS season, and increase their revenues. 

In order to simplify the simulation, the monthly inflows were grouped in seasons 

corresponding to the agricultural cycle of the Rio Mayo irrigation district. Specifically, 

the FW accumulation period includes inflows from October to March and accounts for 

 6



35% of annual accumulations, while the SS accumulation period includes inflows from 

April to September and accounts for 65% of annual accumulations. Furthermore, there is 

a positive correlation of 0.23 between FW and SS inflows. 

The random process governing the random seasonal inflows was simulated using 

a multivariate empirical (MVE) distribution. The advantage of the MVE distribution is 

that it preserves the intra-year correlation structure in a satisfactory manner (Richardson 

2003). Table 2 compares the results of the simulation against the actual data for the 

seasonal inflows. Furthermore, statistical tests suggest that the mean and covariance of 

the simulated data correspond to those of the actual data.  

Reservoir Operation Policy and Planting Response Functions 

For a given volume of water, the agricultural output produced in an irrigation 

district depends on how water from the reservoir is operated (e.g. release decisions) and 

on the set of characteristics that determine the relationship between water and crop output 

(e.g. conveyance efficiency, temperature, distance, etc). One the one hand, although the 

reservoir operation policies used by CNA were provided to the authors, they did not 

produce results that matched the actual data on released volumes. Therefore, we relied on 

the hydrological data, the historical plantings, and the experience of Rio Mayo irrigators 

to derive the reservoir operation rules. The reservoir operation policy used for the 

simulation is based on the assumption that the marginal value product of water in the FW 

season is greater than in the SS, therefore for a given level of water in the reservoir 

irrigator will prefer more water to be allocated to FW rather than SS. On the other hand, 

there are physical and climate factors that suggest that the volume of water released from 

the reservoir leads to less than proportional increments in the number of hectares planted 
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within a given season. Therefore, response functions for both seasons were developed 

that incorporated diminishing marginal returns to the use of irrigation water1.  

Using the reservoir operation policy and the plantings response functions, the 

simulation yields results (i.e. planted hectares) that are not statistically different from the 

observed historical data. For instance, the FW historical records suggest that plantings are 

typically 75,900 ha and for the same period the simulation yields mean plantings of 

73,160 ha. Similarly, the SS historical data indicates that the mean plantings are 28,000 

ha and the mean simulated plantings are 27,745 ha. 

Contract Designs 

In this study we examine the feasibility of contracts that derive their value from 

the inflows of the Mayo River as measured in the site that feeds the ARC reservoir. In 

addition, the contracts are structured as option-type arrangements in which the buyer is 

entitled to a payment when the inflow index falls below some pre-determined strike 

value. In terms of pricing, two factors determine the full price the buyer will be charged: 

the “pure” premium and the loading factor. The pure premium is computed on the mean 

payment that the seller of the contract can expect to make in the long run. In turn, the 

pure premium is loaded with a 50% mark up to account for other factors that a potential 

                                                 
1 The combination of reservoir operation policies and response functions that matched the actual 
management decisions and economic outcomes are presented in the following equations: 

( ) 5.11_02.01_005.0187 OctStorOctStorRFW +−=  
1_87.0 AprStorRSS =  

( ) 5.18.8380000,21 RFWRFWPlantingFW −+−=  

( ) 5.16.5245000,12 RFWRFWPlantingSS −+−=  
Where RFW and RSS refer to releases in FW and SS, respectively; Stor_Oct1 and Stor_Apr1 represent the 
volume of water stored in the ARC reservoir as of October 1 and April 1, respectively; PlantingFW and 
PlantingSS refer to the hectares irrigated in FW and SS, respectively. 
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seller may consider when operating in a new market (e.g. administration, return on 

investment, uncertainty, reserves loading, etc.).  

In this study two basic types of contracts are considered and their difference lies 

in the period over which the inflow index is used to compute the payments and the 

number of triggers that determine the contract structure. The first type of contract is 

based on a 12-month inflows accumulation period and a single strike value to trigger the 

payments. Furthermore, by extending the accumulation period to 18 months and 

introducing multiple strike values in the structure of the payment-triggering rule a second 

type of contract is considered. While the second contract is more complex, it comes with 

the benefits of tailoring the contract more effectively to the “bumps” identified in Figure 

4. Whenever the “bump” is large enough, farmers obtain a higher-than-expected increase 

in the water supply, which allows them to increase their plantings during the SS season.  

The general structure of the put contracts is stated in equations 1, 2, and 3 below. 

Equation 1 describes the maximum payoff or indemnity paid by the contract, measured in 

hectare-equivalent income2, in a given year, denoted by tP . This maximum payment is a 

function of the first trigger and the volume of inflows accumulated throughout the 

previous time period, denoted by  and , respectively. The indemnity rule is linear 

and pays only when the  accumulation falls short of the critical level represented by 

. Furthermore, the contract pays a TIC of 100 units of hectare-equivalent income for 

each m

CI 1−tI

1−tI

CI
3 that falls short of the critical level of inflows Ic.  

 

                                                 
2 Since data on costs of production and crop prices were not obtained, income and payoff from the contract 
will be approximated using a hectare-equivalent measure. In other words, annual plantings, rather than 
annual income, will be the basis for comparing the risk-return profile of the risk management strategies 
developed in the study.  
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In addition, equation 2 represents a discount rule that applies when the contract 

includes more than one time period (more than 12 months). In other words, the actual 

payment  received in a given year is equal to the maximum qualifying payment tP tP  

discounted by the factor . The discount factor  is computed according to equation 3 

and can take any value in the interval [0,1]. In particular case studied, the maximum 

payment 

D D

tP (computed using equation 1) is discounted if the volume of FW inflows 

accumulated in the second time period (i.e. October-March), denoted by  falls within 

the bounds of the upper and lower triggers, denoted by and , respectively. If  

falls short of the lower bound trigger, no discount rule applies and the contract pays 

exactly 

tI ,1

maxI minI tI ,1

tP . However, if  exceeds the upper bound trigger then the contract makes no 

payment. 

tI ,1
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While the 12-month contract is straightforward, the 18-month contract may be 

better described with an example. Suppose the following parameters: Ic = 725, TIC = 100 

ha. Then, if the inflows corresponding to the period agricultural year 2005-2006 were 550 

 10



million m3, then maximum payment would be 17, 500 ha.3 However, if inflows of 300 

million m3 were registered in the period October 2006 to March 2007, then the payment 

would have to be discounted4 to 50% of the maximum payment, which is 8,750 ha. 

Results and Discussion 

A set of possible contracts was structured by setting specific values to the 

parameters described in equations 1 and 3. In the case of equation 1, the following three 

values for the trigger Ic were selected: 700, 750, and 800 million m3, which represent 

70%, 75%, and 80% of mean annual inflows. These parameters in equation 1 fully 

describe the structure of the single period or 12-month contract described above and 

represents the 12-month component of the multi-period contract. In the case of the multi-

period contract or 18-month contract, the following trigger values were selected for 

equation 3: 100 and 200 million m3 for Imin (equivalent to 27% and 54% of the mean FW 

inflow accumulations, respectively); 300 and 500 million m3 for Imax (equivalent to 81% 

and 135% of the mean FW inflow accumulations, respectively).  

Table 4 describes a set of 12 possible strategies that could be implemented in Rio 

Mayo irrigation district to hedge against irrigation risk. Each strategy is identified by the 

three parameters in the following format: Ic-Imin-Imax. For instance strategy 700-100-300 

denotes an 18-month contract that uses an Ic trigger of 700 million m3, an Imin of 100 

million m3, and an Imax of 300 million m3.  The base case scenario, or case in which no 

risk management is used, is presented to establish a benchmark and compare the results 

from the set of strategies. In addition to mean income produced by each strategy, table 4 

reports certain criteria to measure the risk profile of each strategy, including the 
                                                 
3 ( ) 500,17100550725 =×−= haP  
4 , supposing I( 5.0)200()0025.0(1 =−×−−=D ) min = 100 and Imax = 500. 
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coefficient of variation (CV), value-at-risk probabilities (VaR), and conditional value at 

risk (CVaR)5. The latter measures assume that the maximum income shortfall that the 

irrigation district tolerates within a given year is only 25% of mean income. In other 

words, we assume that shortfalls below 75,000 units of hectare-equivalent income impose 

tremendous burdens to the irrigation district.  

As reported in table 4, without any insurance strategy, the mean hectare 

equivalent income is 98,853 units and a relative income variation of 20.24% around the 

mean (coefficient of variation or CV). In addition, under the base scenario there is a 13% 

chance that income falls below the 75,000 ha threshold and the expected shortfall is 

approximately 8,342 units of hectare-equivalent income. As with any risk-sharing 

mechanism, adopting any of the risk management strategies implies that decision makers 

are willing to give up a fraction of their expected income to reduce their risk exposure. 

For instance, with a single-period or 12-month contract that starts to pay when the annual 

accumulation of inflows falls below 750 million m3, the expected annual income is 

reduced to 96,017 units; however, the variation of income is reduced to 18.27% as 

measured by the CV, while the probability of falling short of the 75,000 units threshold 

declines to 11.2%, with mean shortfalls averaging 7,442 units.  

The results reported in table 4 also indicate that the 18-month contract seems to 

achieve a higher risk reduction at a more affordable price or premium. For instance, the 

800-00-00 contract costs 7,486 units of income and reduces the income variation to 

                                                 
5 VaR and CVaR are measures of downside risk. Typically, VaR refers the maximum loss or threshold for a 
given confidence level during a specific period of time. In the particular application we use the cumulative 
probability distribution to compute not the maximum loss, but the probability that the annual income falls 
below a given threshold. In other words, wee seek the probability value, given a certain tolerable threshold. 
While VaR provides the probability of income falling below the desired threshold, CVaR measures the 
mean value of the expected shortfall. In our case, the CVaR measure represents the mean value of the 
hectares below a given threshold. 
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18.34%, the VaR probability to 11.4%, and the CVaR measure to 7,529 units of hectare 

equivalent income. Conversely, the 800-100-300 costs 3,275 units of income (only 44% 

of the cost of the 800-00-00 contract) and reduces the CV measure to 16.45%, the VaR 

probability to 6.3%, and the CVaR measure to 3,275 unit of income. As depicted in 

figure 4, the months of December and January experience a “lump” in the supply of water 

that feeds the ARC reservoir. However, during certain years the “lump” is large enough 

to replenish the reservoir before the full replenishment of the SS season starts. In the 

cases of large “lumps” the irrigation district has the ability to generate additional income 

from the extra plantings that result from the unexpected increase in the water supply. 

Since the 18-month structure takes the “lump” factor into account, the contract is better 

tailored to the particular conditions of the Rio Mayo system. In particular, the discount 

factor introduced in equations 2 and 3 recognize the fact that the need for insurance 

payments is reduced when a large “lump” augments the supply of water; consequently, 

the insurance premium is reduced and the contract becomes more affordable. 

Comparison across the summary statistics of the proposed contracts is of little 

help without a mechanism to weight the risk-return tradeoff implied by the strategies. For 

instance, if the decision makers would be interested in the most affordable alternative, the 

clear choice is the 700-100-300 contract costs only 1,802 units of income and effectively 

reduces the risk exposure as measured by the three risk measures. However, if the 

decision maker was more sensitive to risk, the 800-100-300 contract provides the greatest 

protection, but costs about 1,472 units of income more than the 700-100-300 contract (i.e. 

an 81% increase in price for a little bit more of insurance coverage). 
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In the literature the most common method used to rank risky scenarios is 

stochastic dominance, although the mean-variance approach has also found some 

popularity. However, in this paper we use a new method proposed by Hardaker et al 

(2004) called stochastic efficiency with respect to a function (called SERF hereafter)6. 

SERF ranks risky alternatives using their certainty equivalents (CE) over a defined range 

of risk aversion measures. In practice, the SERF is applied when the utility function 

selected to approximate the decision maker’s risk preferences has an inverse function that 

can be computed based on ranges in the risk aversion coefficient (RAC). Furthermore, 

the SERF method possesses the following advantages: it produces a smaller efficient set 

than its stochastic dominance counterpart; it provides a cardinal measure of the decision 

maker’s conviction for risk alternatives at each measure of risk aversion utilized. 

While some studies usually elicit risk attitudes directly from decision makers or 

incorporate those estimated in other studies in the same location, we did not engage in 

any activity to gauge the risk preferences in the Rio Mayo area nor we found any 

previous study to use as a guide. Therefore, we decided to approximate the unknown risk 

preferences from the collective group of farmers in the Rio Mayo by means of a power 

utility function7. Furthermore, the power utility function is suitable for use in the SERF 

method proposed by Hardaker et al (2004). In addition, the analysis relies on the relative 

                                                 
6 SERF possess several advantages over generalized stochastic dominance, however the discussion of those 
ranking methods is outside the scope of this paper. Readers are referred to the Hardaker et al (2004) article 
for a full comparison between the methods. 
7 The analysis is based on a power utility function that exhibits constant relative risk aversion (CRRA). The 
CRRA property is convenient to group all decision makers in the irrigation district regardless of their 
wealth levels. Furthermore, since wealth in this paper is measured in “hectares”, the CRRA property allows 
for preferences to remain unchanged when all the payoffs are converted to a monetary unit by multiplying 
by the appropriate per hectare returns. Specifically, utility is given by ( )

( )r

r

R
R wu −

−= 1
1

1 , where  

refers to the relative risk aversion coefficient. 
rR
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risk aversion measures proposed by Anderson and Dillon (1992), which range from a 

RAC of 0.5 for slightly risk aversion to a RAC of 4 for extremely risk aversion.   

The entire set of risk management alternatives is presented in Figure 5a. For each 

contract design the figure displays the certainty equivalent (hereafter CE) for each RAC 

within the range proposed by Anderson and Dillon (1992). Once the CE corresponding to 

each strategy is plotted against the CE from other strategies, the SERF efficient set is 

found by identifying the locus with the maximum CE values for a given RAC. For 

instance, Figure 5a clearly identifies that strategies 800-00-00 and 750-00-00 are the least 

preferred strategies for any level of risk aversion, while strategy 750-00-00 is dominated 

by all strategies with the exception of the 800-200-500 contract at very low levels of risk 

aversion. One reason behind this result is the 12-month contracts achieve risk-reducing 

results comparable to the 18-month contracts, but charge considerably higher prices, as 

presented in table 4.  

The SERF efficient set is presented in Figure 5b, which contains only following 

four strategies. Thus, for decision with RAC less than 1.52, the preferred strategy is the 

base case scenario. In other words, hardly to normal risk averse individuals (RAC 

between 0.5 and 1.5) prefer to self-insure using the reservoir operation policy to hedge 

against irrigation risk. Nonetheless at RACs greater than 1.52 the SERF efficient set 

contains only strategies that make use of the risk-sharing mechanism. For instance, 

modest risk-averse decision makers will prefer to use strategy 700-100-300 to manage 

water supply risk. As the level of risk aversion increases to higher levels, the SERF 

includes strategies 750-100-300 and 800-100-300. The fact that only 18-month contracts 

are included in the SERF efficient set reinforces the notion that contracts that take into 
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account the higher-than-expected inflows that the Mayo River yields between December 

and January provide more cost-efficient income stabilization to farmers. 

The CE values of the SERF efficient set are presented in Table 5 for five levels of 

risk aversion. Using the differential in CE values measures the degree of conviction for 

the preferred strategies. For instance, slightly risk-averse decision makers would need to 

be paid a minimum between 616 and 1,229 units of income to buy the insurance (i.e. a 

subsidy). In turn, for moderate to extremely high levels of risk aversion, decision makers 

would need to be paid a certain amount to switch away from the preferred insurance 

strategy. For example, at modest risk aversion level, a sure minimum payment of 433 

units of income for farmers to give up the 700-100-300 contract to no hedging at all; 

while at very high risk aversion, the sure payment would need to be 1,405 units of 

income to forgo the 750-100-300 contract relative to no hedging. 

Conclusion 

This paper has introduced the use of prototype risk-sharing contracts in the Rio 

Mayo irrigation district. We conclude that these types of contracts have a promising 

potential to mitigate economic consequences of uncertain water availability in the Mayo 

Valley, particularly in reducing the downside risk in the income profile of farmers. More 

importantly, even when the prices of contracts have been marked up by 50%, the 

premium rates remain under the 10% mark, which indicates that they could be affordable 

from a buyer’s point of view. Affordable premium rates not only increase feasibility of a 

potential risk-sharing market in Mexico, but also reduce the need for government 

sponsorship to encourage farmer participation. 
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Although two types of contracts were considered, we conclude that the 18-month 

contract is more effective in providing risk-reducing results at the most affordable rates. 

In particular, the risk ranking analysis indicates that the most attractive contracts for risk-

averse decision makers are very affordable with risk premium rates ranging from 3.9% to 

6.9%. However, one of the disadvantages of the 18-month contract is that after paying the 

insurance premium, farmers would have to wait 18 months to receive the indemnity 

payment, when they qualify for it. One of way to shorten the waiting period could be to 

introduce partial payments after the first 12-month sub-period has elapsed. 
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Table 1 Descriptive Statistics of Hydrological and Economic Characteristics of Rio Mayo Irrigation 

District 

 Inflows
a

Releas

ea

FW  

Storage
a,b

SS  

Storag

ea

Annual 

Plantings
c,d

FW 

Plantings
c,e

SS 

Plantings
c,e

Mean 1,013.1

9 

825.43 743.48 488.81 101.05

75.97 28.19

Standard Error 64.79 28.90 32.39 45.13 3.65 1.54 4.07

Median 914.50 824.70 685.00 415.39 99.24 78.86 20.62

Standard 

Deviation 

453.52 202.30 226.74 315.92 0.22

8.41 22.30

Minimum 454.73 440.88 314.80 25.11 51.81 49.72 0

Maximum 2,511.5

1 

1,240.4

1

1,206.3

2

1,124.5

6

142.46

85.64 72.66

 
Notes: Data collected from CNA and SRL 
a: inflows, releases and storage are measured in million m3 (1 cubic meter = 0.0008107 
acre foot = 35.315 cubic foot) for the period 1955-2004 
b: storage as of October 1 (beginning of agricultural cycle) 
c: production measured in thousand hectares (1 hectare = 2.47 acre) 
d: Period 1969-2003 
e: Period 1973-2003 
 
 

Table 2 Statistical Properties for Simulated and Historical Data 

Variable Means Covariance 
  Historical Series 

 FW SS
FW 369.8 111,631.6 18,934.3
SS 664.5 18,934.3 53,971.7

  Simulated Series 
 FWSIM SSSIM

FWSIM  360.2 87,207.6 19,468.5
SSSIM 662.9 19,468.5 58,768.8

 
Note: FW and SS represent the historical inflow accumulations corresponding to the 
periods of October-March and April-September, respectively. FWSIM and SSSIM 
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represent the MVE simulated inflows corresponding to the periods of October- March 
and April-September, respectively.  
 
 
 
Table 3 Distribution Comparisons of Simulated and Historical Inflow Data 

 Test Value Critical Value P-Value Conclusion* 
2 Sample Hotelling T2 Testa 0.03 9.58 0.984 Fail to Reject H0

Box's M Testb 1.21 11.34 0.750 Fail to Reject H0
Complete Homogeneity Testc 1.19 15.09 0.946 Fail to Reject H0
Correlation Matrix Testd 0.19 2.69 - Fail to Reject H0

 
* 99% level of confidence. 
aH0: Mean vectors are the same. 
bH0: Covariance matrices are equivalent. 
cH0: Mean vectors and covariance matrices are equivalent, respectively. 
dH0: correlation matrices are equivalent. 

 

Table 4 Summary Statistics from Insurance Alternatives in Rio Mayo Irrigation District 

Strategya Mean Incomeb CVc VaRd CVaRe Premiumf Premium Rateg

Base 98,853.90 20.24 13.0% 8,342.59 NA NA
700-00-00 96,789.95 18.39 13.1% 8,879.51 4,115.56 8.8%
750-00-00 96,017.97 18.27 11.2% 7,442.1 5,654.91 11.3%
800-00-00 95,099.59 18.32 11.4% 7,529.2 7,486.18 14.1%
700-100-300 97,950.14 17.80 8.5% 5,774.09 1,802.10 3.9%
750-100-300 97,617.39 17.14 7.3% 4,942.17 2,465.62 4.9%
800-100-300 97,211.54 16.45 6.3% 4,228.43 3,274.89 6.1%
700-100-500 97,716.22 17.56 9.1% 6,173.49 2,268.56 4.9%
750-100-500 97,288.88 16.87 8.0% 5,398.62 3,120.67 6.2%
800-100-500 96,772.36 16.14 7.3% 4,899.07 4,150.63 7.8%
700-200-500 96,486.17 16.08 7.7% 5,140.92 4,721.29 8.9%
750-200-500 97,075.36 16.76 8.5% 5,724.94 3,546.44 7.1%
800-200-500 96,486.17 16.08 7.7% 5,140.92 4,721.29 8.9%
 

Notes: 
NA: Does not apply. 
a: Each strategy is coded according to the following format (strike, Imin, Imax). Please refer 
to equations 1, 2, 3 for more explanation on the parameters of each contract. 
b: Measured in hectare equivalents. 
c: Coefficient of Variation (in %). 
d: Value at Risk evaluated at the 75,000 ha threshold (in %). 
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e: Conditional Value at Risk at the 75,000 ha threshold in hectare equivalents. 
f: Insurance premium with a 50% mark up, expressed in hectare equivalent income. 
g: Premium rates as a percentage of the maximum indemnity. 
 
 
 
 
Table 5 CE Values of the SERF Efficient Set for Across Risk Aversion Levels 

 Risk Aversion Levels 
Strategy Very Low Normal Moderate High Extreme 
Base 97,772.88 96,790.71 94,354.15 91,733.47 88,976.42
700-100-300 97,156.73 96,455.37 94,787.09 93,079.94 91,337.76
750-100-300 96,887.09 96,242.39 94,710.66 93,139.34 91,521.97
800-100-300 96,543.99 95,954.67 94,554.15 93,112.23 91,615.92
Note: Bold indicates highest CE for risk aversion level
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Figure 1: Rio Mayo Fall-Winter Cropping Patterns, 1994-2004 
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Figure 2: Rio Mayo Spring-Summer Cropping Patterns, 1994-2004 
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Figure 3: Annual Plantings and Annual Releases  
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Figure 4: Rio Mayo Monthly Inflows During Three Historic Periods 
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Figure 5a: SERF and CE values with a Power Utility Function for All Contracts 
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Figure 5b: SERF Efficient Set under a Power Utility Function 
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